The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified...
Saved in:
Published in | The EMBO journal Vol. 40; no. 2; pp. e104532 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.01.2021
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity.
Synopsis
The mTORC1 signaling pathway mediates metabolic reprograming and effector function of activated T cells, which is important for antitumor immunity. TSC1 ubiquitination by E3 ubiquitin ligase Peli1 negatively regulates mTORC1 activation and controls glycolytic metabolism and antitumor effector function of T cells.
Peli1 negatively regulates activation of the metabolic kinase mTORC1.
Peli1 mediates K63 ubiquitination of mTORC1‐inhibitory protein TSC1 and promotes TSC1/TSC2 complex stability.
Peli1 deletion promotes the metabolic activities of T cells.
Peli1 deficiency in mice promotes antitumor immunity.
Graphical Abstract
K63‐linked ubiquitination of TSC1 by the Peli E3 inhibits mTORC1 signaling and metabolic reprogramming of T cells. |
---|---|
AbstractList | Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity.
Synopsis
The mTORC1 signaling pathway mediates metabolic reprograming and effector function of activated T cells, which is important for antitumor immunity. TSC1 ubiquitination by E3 ubiquitin ligase Peli1 negatively regulates mTORC1 activation and controls glycolytic metabolism and antitumor effector function of T cells.
Peli1 negatively regulates activation of the metabolic kinase mTORC1.
Peli1 mediates K63 ubiquitination of mTORC1‐inhibitory protein TSC1 and promotes TSC1/TSC2 complex stability.
Peli1 deletion promotes the metabolic activities of T cells.
Peli1 deficiency in mice promotes antitumor immunity.
K63‐linked ubiquitination of TSC1 by the Peli E3 inhibits mTORC1 signaling and metabolic reprogramming of T cells. Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor-infiltrating CD4 and CD8 T cells. The Peli1-deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild-type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1-inhibitory proteins, TSC1 and TSC2. Peli1 mediates non-degradative ubiquitination of TSC1, thereby promoting TSC1-TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1-mediated actions on T cell metabolism and antitumor immunity. Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor-infiltrating CD4 and CD8 T cells. The Peli1-deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild-type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1-inhibitory proteins, TSC1 and TSC2. Peli1 mediates non-degradative ubiquitination of TSC1, thereby promoting TSC1-TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1-mediated actions on T cell metabolism and antitumor immunity.Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor-infiltrating CD4 and CD8 T cells. The Peli1-deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild-type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1-inhibitory proteins, TSC1 and TSC2. Peli1 mediates non-degradative ubiquitination of TSC1, thereby promoting TSC1-TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1-mediated actions on T cell metabolism and antitumor immunity. Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity. Synopsis The mTORC1 signaling pathway mediates metabolic reprograming and effector function of activated T cells, which is important for antitumor immunity. TSC1 ubiquitination by E3 ubiquitin ligase Peli1 negatively regulates mTORC1 activation and controls glycolytic metabolism and antitumor effector function of T cells. Peli1 negatively regulates activation of the metabolic kinase mTORC1. Peli1 mediates K63 ubiquitination of mTORC1‐inhibitory protein TSC1 and promotes TSC1/TSC2 complex stability. Peli1 deletion promotes the metabolic activities of T cells. Peli1 deficiency in mice promotes antitumor immunity. Graphical Abstract K63‐linked ubiquitination of TSC1 by the Peli E3 inhibits mTORC1 signaling and metabolic reprogramming of T cells. Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity. K63‐linked ubiquitination of TSC1 by the Peli E3 inhibits mTORC1 signaling and metabolic reprogramming of T cells. |
Author | Gao, Tianxiao Ko, Chun‐Jung Xie, Xiaoping Zhu, Lele Yang, Jin‐Young Cheng, Xuhong Zhou, Xiaofei Jie, Zuliang Sun, Shao‐Cong Zhang, Lingyun |
AuthorAffiliation | 2 Center for Reproductive Medicine Henan Key Laboratory of Reproduction and Genetics The First Affiliated Hospital of Zhengzhou University Zhengzhou China 4 MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences Houston TX USA 1 Department of Immunology The University of Texas MD Anderson Cancer Center Houston TX USA 3 Department of Biological Sciences Pusan National University Busan South Korea |
AuthorAffiliation_xml | – name: 4 MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences Houston TX USA – name: 1 Department of Immunology The University of Texas MD Anderson Cancer Center Houston TX USA – name: 3 Department of Biological Sciences Pusan National University Busan South Korea – name: 2 Center for Reproductive Medicine Henan Key Laboratory of Reproduction and Genetics The First Affiliated Hospital of Zhengzhou University Zhengzhou China |
Author_xml | – sequence: 1 givenname: Chun‐Jung orcidid: 0000-0001-6565-7060 surname: Ko fullname: Ko, Chun‐Jung organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Lingyun surname: Zhang fullname: Zhang, Lingyun organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University – sequence: 3 givenname: Zuliang surname: Jie fullname: Jie, Zuliang organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Lele surname: Zhu fullname: Zhu, Lele organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Xiaofei surname: Zhou fullname: Zhou, Xiaofei organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 6 givenname: Xiaoping orcidid: 0000-0001-6616-1059 surname: Xie fullname: Xie, Xiaoping organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 7 givenname: Tianxiao surname: Gao fullname: Gao, Tianxiao organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 8 givenname: Jin‐Young surname: Yang fullname: Yang, Jin‐Young organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Department of Biological Sciences, Pusan National University – sequence: 9 givenname: Xuhong surname: Cheng fullname: Cheng, Xuhong organization: Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 10 givenname: Shao‐Cong surname: Sun fullname: Sun, Shao‐Cong email: ssun@mdanderson.org organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33215753$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9vFCEYhompsdvq3ZMh8eJlKjDDDJMYE92sv1JTY9YzYWY-tmwYmAJj0_--rNta20Q9ceB5Xr6P9wgdOO8AoeeUnFDOOHsNY7c9YYQRSipeskdoQauaFIw0_AAtCKtpUVHRHqKjGLeEEC4a-gQdliWjvOHlArn1OeBViefOXMwmGYet2agI-BtYQ3GAzWxVgohT5kZIqvPW9Fj1yXgXsdd4XJ99X1KcPI7zNAWIESuXTJpHH_Aa92BtjolTxiE-RY-1shGe3ZzH6MeH1Xr5qTg9-_h5-e606DltWdGC0KViFR_ooAWjjFPViF6zTg0dkFoPXaloT2vdacZ6TYQQNQwZI0JXdVkeo7f73GnuRhh6cCkoK6dgRhWupFdG3r9x5lxu_E_ZCNI2hOWAVzcBwV_MEJMcTdztohz4OUqWXyFtK6od-vIBuvVzcHm9TDWNyBTjmXrx50S_R7mtIgP1HuiDjzGAlr1JavfNeUBjJSXyV-dy17m86zyL5IF4m_0P5c1euTQWrv7Ly9XX91_u6XSvx2y6DYS7jf_65DWbsNC4 |
CitedBy_id | crossref_primary_10_1186_s12967_021_03226_1 crossref_primary_10_3390_ijms24098441 crossref_primary_10_1038_s41419_024_06470_7 crossref_primary_10_1016_j_yjmcc_2022_09_004 crossref_primary_10_1136_jitc_2022_005845 crossref_primary_10_1016_j_celrep_2021_109904 crossref_primary_10_3389_fimmu_2023_1292022 crossref_primary_10_1016_j_clim_2023_109736 crossref_primary_10_1038_s41467_025_56440_6 crossref_primary_10_1155_2021_2982924 crossref_primary_10_1186_s40164_024_00552_0 crossref_primary_10_1016_j_cellsig_2024_111194 crossref_primary_10_1016_j_jsbmb_2022_106120 crossref_primary_10_1038_s41419_023_05937_3 crossref_primary_10_4049_jimmunol_2100236 crossref_primary_10_1186_s13046_024_03008_9 |
Cites_doi | 10.3389/fimmu.2018.00014 10.1038/ni.2090 10.4049/jimmunol.161.10.5516 10.1016/j.cytogfr.2017.03.004 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I 10.1016/j.it.2008.10.001 10.1038/ni.1777 10.1002/ijc.2910610120 10.1158/2159-8290.CD-17-0952 10.1016/j.celrep.2018.01.040 10.1016/j.cell.2013.05.016 10.1038/s41571-019-0203-7 10.1038/nri3198 10.1038/ncb839 10.1146/annurev-immunol-032712-095956 10.4161/auto.1.2.1697 10.1016/1044-0305(94)80016-2 10.1172/JCI73939 10.1126/science.1242454 10.1038/cmi.2011.60 10.4049/jimmunol.1103143 10.1016/S1097-2765(01)00187-3 10.1016/j.cell.2017.04.004 10.1038/sj.onc.1204009 10.1038/s41586-018-0697-7 10.1084/jem.20062694 10.1038/s41590-019-0405-2 10.1074/jbc.C500451200 10.1002/eji.201141411 10.1101/gad.1599207 10.1158/1078-0432.CCR-17-0894 10.1016/j.smim.2012.12.004 10.1016/j.smim.2016.10.009 10.4161/trns.28263 10.1038/nri3701 10.1146/annurev-cellbio-092910-154237 10.1146/annurev.immunol.021908.132706 10.1042/BJ20080281 10.1038/nri3599 10.1016/j.celrep.2019.03.037 10.1038/nature11866 10.1002/gene.20012 10.1016/j.cell.2018.08.061 10.1002/jms.229 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020 The Authors 2020 The Authors. 2021 EMBO |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2021 EMBO |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.2020104532 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Chun‐Jung Ko et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC7809702 33215753 10_15252_embj_2020104532 EMBJ2020104532 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201906380080 funderid: 10.13039/501100004543 – fundername: MD Anderson Cancer Center grantid: P30CA016672 funderid: 10.13039/100007313 – fundername: National Institutes of Health grantid: AI104519; AI64639 funderid: 10.13039/100000002 – fundername: MD Anderson Cancer Center funderid: P30CA016672 – fundername: National Institutes of Health funderid: AI104519; AI64639 – fundername: China Scholarship Council funderid: 201906380080 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NIAID NIH HHS grantid: R01 AI104519 – fundername: NIAID NIH HHS grantid: R01 AI064639 – fundername: NIAID NIH HHS grantid: R37 AI064639 – fundername: China Scholarship Council grantid: 201906380080 – fundername: ; grantid: AI104519; AI64639 – fundername: ; grantid: P30CA016672 – fundername: ; grantid: 201906380080 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM AASGY |
ID | FETCH-LOGICAL-c5192-9e8f3a245d1df821251a78cf2badbe06fdb3a1c16fbf22cf08886ed25108f4633 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:22:08 EDT 2025 Fri Jul 11 03:42:57 EDT 2025 Sat Aug 23 12:51:01 EDT 2025 Mon Jul 21 05:57:21 EDT 2025 Tue Jul 01 01:47:22 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Wed Jan 22 16:58:45 EST 2025 Fri Feb 21 02:37:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Peli1 T cell metabolism; antitumor immunity ubiquitination mTORC1 |
Language | English |
License | 2020 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5192-9e8f3a245d1df821251a78cf2badbe06fdb3a1c16fbf22cf08886ed25108f4633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6616-1059 0000-0001-6565-7060 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.2020104532 |
PMID | 33215753 |
PQID | 2477899825 |
PQPubID | 35985 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7809702 proquest_miscellaneous_2463099842 proquest_journals_2477899825 pubmed_primary_33215753 crossref_citationtrail_10_15252_embj_2020104532 crossref_primary_10_15252_embj_2020104532 wiley_primary_10_15252_embj_2020104532_EMBJ2020104532 springer_journals_10_15252_embj_2020104532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 January 2021 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 15 January 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Mizushima (CR23) 2007; 21 Cunha, Yang, Carter, Guy, Harris, Crawford, Quarato, Boada‐Romero, Kalkavan, Johnson (CR10) 2018; 175 Yang, Chi (CR42) 2012; 24 Li, Wenes, Romero, Huang, Fendt, Ho (CR19) 2019; 16 Moynagh (CR25) 2014; 14 Moynagh (CR24) 2009; 30 Menk, Scharping, Moreci, Zeng, Guy, Salvatore, Bae, Xie, Young, Wendell (CR22) 2018; 22 Chong‐Kopera, Inoki, Li, Zhu, Garcia‐Gonzalo, Rosa, Guan (CR9) 2006; 281 Chang, Jin, Chang, Xiao, Brittain, Yu, Zhou, Wang, Cheng, Li (CR6) 2011; 12 Smith‐Garvin, Koretzky, Jordan (CR35) 2009; 27 Inoki, Li, Zhu, Wu, Guan (CR16) 2002; 4 Rivadeneira, Delgoffe (CR32) 2018; 24 Chang, Jin, Sun (CR7) 2009; 10 O'Brien, Gorentla, Xie, Srivatsan, McLeod, He, Zhong (CR26) 2011; 41 Durgeau, Virk, Corgnac, Mami‐Chouaib (CR12) 2018; 9 Tanida, Minematsu‐Ikeguchi, Ueno, Kominami (CR36) 2005; 1 Aagaard, Lukas, Bartkova, Kjerulff, Strauss, Bartek (CR1) 1995; 61 Reiley, Jin, Lee, Wright, Wu, Tewalt, Leonard, Norbury, Fitzpatrick, Zhang (CR31) 2007; 204 Peng, Gygi (CR28) 2001; 36 Kim, Guan (CR18) 2015; 125 Testa, Schaft, van der Hoeven, Glaser, Anastassiadis, Zhang, Hermann, Stremmel, Stewart (CR37) 2004; 38 Almeida, Lochner, Berod, Sparwasser (CR2) 2016; 28 Gnanaprakasam, Sherman, Wang (CR14) 2017; 35 Buck, Sowell, Kaech, Pearce (CR4) 2017; 169 Jin, Chang, Sun (CR17) 2012; 9 Wang, Saffold, Cao, Krauss, Chen (CR39) 1998; 161 Pearce, Poffenberger, Chang, Jones (CR27) 2013; 342 Eng, McCormack, Yates (CR13) 1994; 5 Chang, Curtis, Maggi, Faubert, Villarino, O'Sullivan, Huang, van der Windt, Blagih, Qiu (CR5) 2013; 153 Lunt, Vander Heiden (CR20) 2011; 27 DeVorkin, Pavey, Carleton, Comber, Ho, Lim, McNamara, Huang, Kim, Zacharias (CR11) 2019; 27 Shoji‐Kawata, Sumpter, Leveno, Campbell, Zou, Kinch, Wilkins, Sun, Pallauf, MacDuff (CR34) 2013; 494 Pollizzi, Powell (CR30) 2014; 14 Maciver, Michalek, Rathmell (CR21) 2013; 31 Yang, Herter‐Sprie, Zhang, Lin, Biancur, Wang, Deng, Hai, Yang, Wong (CR41) 2018; 8 Zeng, Chi (CR43) 2014; 5 Huang, Manning (CR15) 2008; 412 Benvenuto, Li, Brown, Braverman, Vass, Cheadle, Halley, Sampson, Wienecke, DeClue (CR3) 2000; 19 Poillet‐Perez, Xie, Zhan, Yang, Sharp, Hu, Su, Maganti, Jiang, Lu (CR29) 2018; 563 Zhou, Yu, Cheng, Zhao, Manyam, Zhang, Schluns, Li, Wang, Sun (CR44) 2019; 20 Waickman, Powell (CR38) 2012; 188 Xiao, Harhaj, Sun (CR40) 2001; 7 Chi (CR8) 2012; 12 Shevchenko, Wilm, Vorm, Mann (CR33) 1996; 68 2012; 188 2007; 204 2015; 125 2018; 563 2019; 16 2013; 342 2002; 4 2011; 12 2018; 22 2012; 12 2009; 27 2018; 24 2018; 175 2018; 9 1995; 61 2018; 8 2009; 30 2014; 5 2000; 19 2009; 10 2001; 7 2019; 20 2004; 38 2017; 35 2013; 31 2019; 27 2011; 41 2014; 14 2005; 1 2008; 412 2013; 153 2006; 281 2013; 494 2016; 28 2011; 27 2007; 21 1996; 68 2012; 24 2017; 169 2001; 36 1994; 5 1998; 161 2012; 9 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Wang J (e_1_2_9_40_1) 1998; 161 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 153 start-page: 1239 year: 2013 end-page: 1251 ident: CR5 article-title: Posttranscriptional control of T cell effector function by aerobic glycolysis publication-title: Cell – volume: 175 start-page: 429 issue: 2 year: 2018 end-page: 441. ident: CR10 article-title: LC3‐associated phagocytosis in myeloid cells promotes tumor immune tolerance publication-title: Cell – volume: 28 start-page: 514 year: 2016 end-page: 524 ident: CR2 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin Immunol – volume: 204 start-page: 1475 year: 2007 end-page: 1485 ident: CR31 article-title: Deubiquitinating enzyme CYLD negatively regulates the ubiquitin‐dependent kinase Tak1 and prevents abnormal T cell responses publication-title: J Exp Med – volume: 188 start-page: 4721 year: 2012 end-page: 4729 ident: CR38 article-title: Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells publication-title: J Immunol – volume: 19 start-page: 6306 year: 2000 end-page: 6316 ident: CR3 article-title: The tuberous sclerosis‐1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination publication-title: Oncogene – volume: 161 start-page: 5516 year: 1998 end-page: 5524 ident: CR39 article-title: Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell‐tumor fusion vaccines publication-title: J Immunol – volume: 9 start-page: 14 year: 2018 ident: CR12 article-title: Recent advances in targeting CD8 T‐cell immunity for more effective cancer immunotherapy publication-title: Front Immunol – volume: 22 start-page: 1509 year: 2018 end-page: 1521 ident: CR22 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep – volume: 31 start-page: 259 year: 2013 end-page: 283 ident: CR21 article-title: Metabolic regulation of T lymphocytes publication-title: Annu Rev Immunol – volume: 21 start-page: 2861 year: 2007 end-page: 2873 ident: CR23 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 61 start-page: 115 year: 1995 end-page: 120 ident: CR1 article-title: Aberrations of p16Ink4 and retinoblastoma tumour‐suppressor genes occur in distinct sub‐sets of human cancer cell lines publication-title: Int J Cancer – volume: 7 start-page: 401 year: 2001 end-page: 409 ident: CR40 article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100 publication-title: Mol Cell – volume: 36 start-page: 1083 year: 2001 end-page: 1091 ident: CR28 article-title: Proteomics: the move to mixtures publication-title: J Mass Spectrom – volume: 35 start-page: 63 year: 2017 end-page: 70 ident: CR14 article-title: MYC and HIF in shaping immune response and immune metabolism publication-title: Cytokine Growth Factor Rev – volume: 12 start-page: 325 year: 2012 end-page: 338 ident: CR8 article-title: Regulation and function of mTOR signalling in T cell fate decisions publication-title: Nat Rev Immunol – volume: 27 start-page: 502 issue: 2 year: 2019 end-page: 513. ident: CR11 article-title: Autophagy regulation of metabolism is required for CD8(+) T cell anti‐tumor immunity publication-title: Cell Rep – volume: 38 start-page: 151 year: 2004 end-page: 158 ident: CR37 article-title: A reliable lacZ expression reporter cassette for multipurpose, knockout‐first alleles publication-title: Genesis – volume: 24 start-page: 2473 year: 2018 end-page: 2481 ident: CR32 article-title: Antitumor T‐cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy publication-title: Clin Cancer Res – volume: 1 start-page: 84 year: 2005 end-page: 91 ident: CR36 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy – volume: 169 start-page: 570 year: 2017 end-page: 586 ident: CR4 article-title: Metabolic Instruction of Immunity publication-title: Cell – volume: 563 start-page: 569 year: 2018 end-page: 573 ident: CR29 article-title: Autophagy maintains tumour growth through circulating arginine publication-title: Nature – volume: 412 start-page: 179 year: 2008 end-page: 190 ident: CR15 article-title: The TSC1‐TSC2 complex: a molecular switchboard controlling cell growth publication-title: Biochem J – volume: 5 year: 2014 ident: CR43 article-title: mTOR signaling and transcriptional regulation in T lymphocytes publication-title: Transcription – volume: 68 start-page: 850 year: 1996 end-page: 858 ident: CR33 article-title: Mass spectrometric sequencing of proteins silver‐stained polyacrylamide gels publication-title: Anal Chem – volume: 125 start-page: 25 year: 2015 end-page: 32 ident: CR18 article-title: mTOR: a pharmacologic target for autophagy regulation publication-title: J Clin Invest – volume: 20 start-page: 879 year: 2019 end-page: 889 ident: CR44 article-title: The deubiquitinase Otub1 controls the activation of CD8(+) T cells and NK cells by regulating IL‐15‐mediated priming publication-title: Nat Immunol – volume: 41 start-page: 3361 year: 2011 end-page: 3370 ident: CR26 article-title: Regulation of T‐cell survival and mitochondrial homeostasis by TSC1 publication-title: Eur J Immunol – volume: 14 start-page: 435 year: 2014 end-page: 446 ident: CR30 article-title: Integrating canonical and metabolic signalling programmes in the regulation of T cell responses publication-title: Nat Rev Immunol – volume: 9 start-page: 113 year: 2012 end-page: 122 ident: CR17 article-title: Peli: a family of signal‐responsive E3 ubiquitin ligases mediating TLR signaling and T‐cell tolerance publication-title: Cell Mol Immunol – volume: 27 start-page: 441 year: 2011 end-page: 464 ident: CR20 article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation publication-title: Annu Rev Cell Dev Biol – volume: 342 start-page: 1242454 year: 2013 ident: CR27 article-title: Fueling immunity: insights into metabolism and lymphocyte function publication-title: Science – volume: 10 start-page: 1089 year: 2009 end-page: 1095 ident: CR7 article-title: Peli1 facilitates TRIF‐dependent Toll‐like receptor signaling and proinflammatory cytokine production publication-title: Nat Immunol – volume: 27 start-page: 591 year: 2009 end-page: 619 ident: CR35 article-title: T cell activation publication-title: Annu Rev Immunol – volume: 8 start-page: 276 year: 2018 end-page: 287 ident: CR41 article-title: Autophagy sustains pancreatic cancer growth through both cell‐autonomous and nonautonomous mechanisms publication-title: Cancer Discov – volume: 5 start-page: 976 year: 1994 end-page: 989 ident: CR13 article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database publication-title: J Am Soc Mass Spectrom – volume: 4 start-page: 648 year: 2002 end-page: 657 ident: CR16 article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling publication-title: Nat Cell Biol – volume: 12 start-page: 1002 year: 2011 end-page: 1009 ident: CR6 article-title: The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity publication-title: Nat Immunol – volume: 494 start-page: 201 year: 2013 end-page: 206 ident: CR34 article-title: Identification of a candidate therapeutic autophagy‐inducing peptide publication-title: Nature – volume: 30 start-page: 33 year: 2009 end-page: 42 ident: CR24 article-title: The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling publication-title: Trends Immunol – volume: 281 start-page: 8313 year: 2006 end-page: 8316 ident: CR9 article-title: TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase publication-title: J Biol Chem – volume: 14 start-page: 122 year: 2014 end-page: 131 ident: CR25 article-title: The roles of Pellino E3 ubiquitin ligases in immunity publication-title: Nat Rev Immunol – volume: 16 start-page: 425 year: 2019 end-page: 441 ident: CR19 article-title: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy publication-title: Nat Rev Clin Oncol – volume: 24 start-page: 421 year: 2012 end-page: 428 ident: CR42 article-title: mTOR and metabolic pathways in T cell quiescence and functional activation publication-title: Semin Immunol – volume: 12 start-page: 1002 year: 2011 end-page: 1009 article-title: The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity publication-title: Nat Immunol – volume: 9 start-page: 14 year: 2018 article-title: Recent advances in targeting CD8 T‐cell immunity for more effective cancer immunotherapy publication-title: Front Immunol – volume: 20 start-page: 879 year: 2019 end-page: 889 article-title: The deubiquitinase Otub1 controls the activation of CD8(+) T cells and NK cells by regulating IL‐15‐mediated priming publication-title: Nat Immunol – volume: 494 start-page: 201 year: 2013 end-page: 206 article-title: Identification of a candidate therapeutic autophagy‐inducing peptide publication-title: Nature – volume: 19 start-page: 6306 year: 2000 end-page: 6316 article-title: The tuberous sclerosis‐1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination publication-title: Oncogene – volume: 36 start-page: 1083 year: 2001 end-page: 1091 article-title: Proteomics: the move to mixtures publication-title: J Mass Spectrom – volume: 21 start-page: 2861 year: 2007 end-page: 2873 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 24 start-page: 421 year: 2012 end-page: 428 article-title: mTOR and metabolic pathways in T cell quiescence and functional activation publication-title: Semin Immunol – volume: 7 start-page: 401 year: 2001 end-page: 409 article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100 publication-title: Mol Cell – volume: 14 start-page: 435 year: 2014 end-page: 446 article-title: Integrating canonical and metabolic signalling programmes in the regulation of T cell responses publication-title: Nat Rev Immunol – volume: 28 start-page: 514 year: 2016 end-page: 524 article-title: Metabolic pathways in T cell activation and lineage differentiation publication-title: Semin Immunol – volume: 175 start-page: 429 issue: 2 year: 2018 end-page: 441. article-title: LC3‐associated phagocytosis in myeloid cells promotes tumor immune tolerance publication-title: Cell – volume: 24 start-page: 2473 year: 2018 end-page: 2481 article-title: Antitumor T‐cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy publication-title: Clin Cancer Res – volume: 9 start-page: 113 year: 2012 end-page: 122 article-title: Peli: a family of signal‐responsive E3 ubiquitin ligases mediating TLR signaling and T‐cell tolerance publication-title: Cell Mol Immunol – volume: 22 start-page: 1509 year: 2018 end-page: 1521 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep – volume: 16 start-page: 425 year: 2019 end-page: 441 article-title: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy publication-title: Nat Rev Clin Oncol – volume: 153 start-page: 1239 year: 2013 end-page: 1251 article-title: Posttranscriptional control of T cell effector function by aerobic glycolysis publication-title: Cell – volume: 10 start-page: 1089 year: 2009 end-page: 1095 article-title: Peli1 facilitates TRIF‐dependent Toll‐like receptor signaling and proinflammatory cytokine production publication-title: Nat Immunol – volume: 12 start-page: 325 year: 2012 end-page: 338 article-title: Regulation and function of mTOR signalling in T cell fate decisions publication-title: Nat Rev Immunol – volume: 125 start-page: 25 year: 2015 end-page: 32 article-title: mTOR: a pharmacologic target for autophagy regulation publication-title: J Clin Invest – volume: 342 start-page: 1242454 year: 2013 article-title: Fueling immunity: insights into metabolism and lymphocyte function publication-title: Science – volume: 5 year: 2014 article-title: mTOR signaling and transcriptional regulation in T lymphocytes publication-title: Transcription – volume: 41 start-page: 3361 year: 2011 end-page: 3370 article-title: Regulation of T‐cell survival and mitochondrial homeostasis by TSC1 publication-title: Eur J Immunol – volume: 38 start-page: 151 year: 2004 end-page: 158 article-title: A reliable lacZ expression reporter cassette for multipurpose, knockout‐first alleles publication-title: Genesis – volume: 161 start-page: 5516 year: 1998 end-page: 5524 article-title: Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell‐tumor fusion vaccines publication-title: J Immunol – volume: 204 start-page: 1475 year: 2007 end-page: 1485 article-title: Deubiquitinating enzyme CYLD negatively regulates the ubiquitin‐dependent kinase Tak1 and prevents abnormal T cell responses publication-title: J Exp Med – volume: 1 start-page: 84 year: 2005 end-page: 91 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy – volume: 31 start-page: 259 year: 2013 end-page: 283 article-title: Metabolic regulation of T lymphocytes publication-title: Annu Rev Immunol – volume: 61 start-page: 115 year: 1995 end-page: 120 article-title: Aberrations of p16Ink4 and retinoblastoma tumour‐suppressor genes occur in distinct sub‐sets of human cancer cell lines publication-title: Int J Cancer – volume: 412 start-page: 179 year: 2008 end-page: 190 article-title: The TSC1‐TSC2 complex: a molecular switchboard controlling cell growth publication-title: Biochem J – volume: 27 start-page: 441 year: 2011 end-page: 464 article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation publication-title: Annu Rev Cell Dev Biol – volume: 30 start-page: 33 year: 2009 end-page: 42 article-title: The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling publication-title: Trends Immunol – volume: 281 start-page: 8313 year: 2006 end-page: 8316 article-title: TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase publication-title: J Biol Chem – volume: 169 start-page: 570 year: 2017 end-page: 586 article-title: Metabolic Instruction of Immunity publication-title: Cell – volume: 27 start-page: 502 issue: 2 year: 2019 end-page: 513. article-title: Autophagy regulation of metabolism is required for CD8(+) T cell anti‐tumor immunity publication-title: Cell Rep – volume: 563 start-page: 569 year: 2018 end-page: 573 article-title: Autophagy maintains tumour growth through circulating arginine publication-title: Nature – volume: 27 start-page: 591 year: 2009 end-page: 619 article-title: T cell activation publication-title: Annu Rev Immunol – volume: 188 start-page: 4721 year: 2012 end-page: 4729 article-title: Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells publication-title: J Immunol – volume: 5 start-page: 976 year: 1994 end-page: 989 article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database publication-title: J Am Soc Mass Spectrom – volume: 35 start-page: 63 year: 2017 end-page: 70 article-title: MYC and HIF in shaping immune response and immune metabolism publication-title: Cytokine Growth Factor Rev – volume: 8 start-page: 276 year: 2018 end-page: 287 article-title: Autophagy sustains pancreatic cancer growth through both cell‐autonomous and nonautonomous mechanisms publication-title: Cancer Discov – volume: 4 start-page: 648 year: 2002 end-page: 657 article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling publication-title: Nat Cell Biol – volume: 14 start-page: 122 year: 2014 end-page: 131 article-title: The roles of Pellino E3 ubiquitin ligases in immunity publication-title: Nat Rev Immunol – volume: 68 start-page: 850 year: 1996 end-page: 858 article-title: Mass spectrometric sequencing of proteins silver‐stained polyacrylamide gels publication-title: Anal Chem – ident: e_1_2_9_13_1 doi: 10.3389/fimmu.2018.00014 – ident: e_1_2_9_7_1 doi: 10.1038/ni.2090 – volume: 161 start-page: 5516 year: 1998 ident: e_1_2_9_40_1 article-title: Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell‐tumor fusion vaccines publication-title: J Immunol doi: 10.4049/jimmunol.161.10.5516 – ident: e_1_2_9_15_1 doi: 10.1016/j.cytogfr.2017.03.004 – ident: e_1_2_9_34_1 doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I – ident: e_1_2_9_25_1 doi: 10.1016/j.it.2008.10.001 – ident: e_1_2_9_8_1 doi: 10.1038/ni.1777 – ident: e_1_2_9_2_1 doi: 10.1002/ijc.2910610120 – ident: e_1_2_9_42_1 doi: 10.1158/2159-8290.CD-17-0952 – ident: e_1_2_9_23_1 doi: 10.1016/j.celrep.2018.01.040 – ident: e_1_2_9_6_1 doi: 10.1016/j.cell.2013.05.016 – ident: e_1_2_9_20_1 doi: 10.1038/s41571-019-0203-7 – ident: e_1_2_9_9_1 doi: 10.1038/nri3198 – ident: e_1_2_9_17_1 doi: 10.1038/ncb839 – ident: e_1_2_9_22_1 doi: 10.1146/annurev-immunol-032712-095956 – ident: e_1_2_9_37_1 doi: 10.4161/auto.1.2.1697 – ident: e_1_2_9_14_1 doi: 10.1016/1044-0305(94)80016-2 – ident: e_1_2_9_19_1 doi: 10.1172/JCI73939 – ident: e_1_2_9_28_1 doi: 10.1126/science.1242454 – ident: e_1_2_9_18_1 doi: 10.1038/cmi.2011.60 – ident: e_1_2_9_39_1 doi: 10.4049/jimmunol.1103143 – ident: e_1_2_9_41_1 doi: 10.1016/S1097-2765(01)00187-3 – ident: e_1_2_9_5_1 doi: 10.1016/j.cell.2017.04.004 – ident: e_1_2_9_4_1 doi: 10.1038/sj.onc.1204009 – ident: e_1_2_9_30_1 doi: 10.1038/s41586-018-0697-7 – ident: e_1_2_9_32_1 doi: 10.1084/jem.20062694 – ident: e_1_2_9_45_1 doi: 10.1038/s41590-019-0405-2 – ident: e_1_2_9_10_1 doi: 10.1074/jbc.C500451200 – ident: e_1_2_9_27_1 doi: 10.1002/eji.201141411 – ident: e_1_2_9_24_1 doi: 10.1101/gad.1599207 – ident: e_1_2_9_33_1 doi: 10.1158/1078-0432.CCR-17-0894 – ident: e_1_2_9_43_1 doi: 10.1016/j.smim.2012.12.004 – ident: e_1_2_9_3_1 doi: 10.1016/j.smim.2016.10.009 – ident: e_1_2_9_44_1 doi: 10.4161/trns.28263 – ident: e_1_2_9_31_1 doi: 10.1038/nri3701 – ident: e_1_2_9_21_1 doi: 10.1146/annurev-cellbio-092910-154237 – ident: e_1_2_9_36_1 doi: 10.1146/annurev.immunol.021908.132706 – ident: e_1_2_9_16_1 doi: 10.1042/BJ20080281 – ident: e_1_2_9_26_1 doi: 10.1038/nri3599 – ident: e_1_2_9_12_1 doi: 10.1016/j.celrep.2019.03.037 – ident: e_1_2_9_35_1 doi: 10.1038/nature11866 – ident: e_1_2_9_38_1 doi: 10.1002/gene.20012 – ident: e_1_2_9_11_1 doi: 10.1016/j.cell.2018.08.061 – ident: e_1_2_9_29_1 doi: 10.1002/jms.229 |
SSID | ssj0005871 |
Score | 2.4501088 |
Snippet | Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e104532 |
SubjectTerms | Ablation Animals Antitumor activity CD4 antigen CD4-Positive T-Lymphocytes - metabolism CD8 antigen CD8-Positive T-Lymphocytes - metabolism Cell activation Cell Line Cell Line, Tumor Dimerization Effector cells EMBO19 EMBO21 EMBO31 Glycolysis Glycolysis - physiology Growth factors HEK293 Cells Humans Immunity Kinases Lymphocytes Lymphocytes T Mechanistic Target of Rapamycin Complex 1 - metabolism Metabolic rate Metabolism Mice Mice, Inbred C57BL Mice, Transgenic mTORC1 Nuclear Proteins - metabolism Peli1 Proteins Receptors, Antigen, T-Cell - metabolism Signal transduction T cell metabolism; antitumor immunity T cell receptors Tuberous Sclerosis Complex 1 Tuberous Sclerosis Complex 1 Protein - metabolism Tuberous Sclerosis Complex 2 Tuberous Sclerosis Complex 2 Protein - metabolism Tumorigenesis Ubiquitin Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses |
URI | https://link.springer.com/article/10.15252/embj.2020104532 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2020104532 https://www.ncbi.nlm.nih.gov/pubmed/33215753 https://www.proquest.com/docview/2477899825 https://www.proquest.com/docview/2463099842 https://pubmed.ncbi.nlm.nih.gov/PMC7809702 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYILouW1UCojcQEpavxK7GMbbVVVKiC0lXqLYseGoN2kbJID_56xk82yagFxjOxMYs_Y841nPIPQu1JzYYw1kVHaRRzWYqQUd1GpjFJOqliHFBuXH5PzK35xLa7H8w5_F-Z3_72ggh7blf4OZpx32nLBYLO9LwhLfZGGLMm2wRwymFbhNIUTqUaH5F0UdhXQLVR5Ozhy8pDu4teggM6eoMcjcsQnA6v30T1bH6AHQy3JnwfoYbYp3fYU1cB8PGe419WPvuqqGi-rr6Cu8Ge7rAheD_XnbYsB_eGV7UAQlpXBwx2HFjcOrxafvmQEdw1u-5sQK4sLf6G3XzVrvMD-uB_IhPBa2z5DV2fzRXYejYUVIgOAjUbKSscKykVJSiepxzhFKo2juii1jRNXalYQQxKnHaXGwU4kE1tCt1g6njD2HO3VTW1fIiyZpVpowxPtcw9STR1JE6Kd4KVjxMzQ8Wa2czNmHffFL5a5tz48f3LPn3zLnxl6P71xM2Tc-Evfww0D83HttTnlaeqtSCpm6O3UDBzwc1PUtul9n4QBNpYcSLwY-D19jDGAQWDFzVC6IwlTB5-Re7elrr6FzNypjFUaA80PG5nZ_tafxyCCVP1zsPn88vRi-_jqfz7yGj2iPhgnJhERh2ivW_f2DaCpTh-FhXTkNZr4BUC8FlE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemTmi8IBhfhQFG4gWkaPFXYj-WqlMp60DQSXuLYsceQW0ymuSB_x7b-aiq8SEeI18use9s_853vgPgTSYpU0qrQAlpAmrnYiAENUEmlBCGi1D6FBvLi2h-SRdX7OoA4P4ujI92712SfqXuavTgU72R361B59y3lBG77B5yFnE2AoeTyeLrYhfYwb2Z5U9WKOKic07-jsf-ZnQLYd4OlBy8pftY1m9GZ_fBvQ5Fwkkr9gfgQBfH4E5bV_LnMTia9mXcHoLCKgKcEdjI_EeT13kB1_m13brgZ73OEdy2teh1BS0ShBtdW6VY5wq29x0qWBq4WX36MkWwLmHV3Pi4WZi6y73NptzCFXRH_5aND7XV1SNweTZbTedBV2QhUBa84UBobkiKKctQZjh2eCeNuTJYppnUYWQySVKkUGSkwVgZuyrxSGeWLOSGRoQ8BqOiLPRTADnRWDKpaCRdHkIssUFxhKRhNDMEqTE47Uc7UV0GclcIY504S8TJJ3HySXbyGYO3wxs3bfaNv9Ce9AJMunlYJZjGsbMoMRuD10OzlYAbm7TQZeNoImJxMqeWxZNW3sPHCLGQyFp0YxDvacJA4LJz77cU-TefpTvmoYhDy_NdrzO73_pzH5jXqn92Npkt3y92j8_-5yOvwNF8tTxPzj9cfHwO7mIXpBOiALETMKq3jX5hUVYtX3bT6hfA4h3O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEY8LgvJaaMFIXECKNn4ksY-Q7qoUWiq0lXqLYsemqXaTZZMc-PeM81qtykMcI08msWdsf-MZzyD0NlM80NpoT0tlPQ5z0ZOSWy-TWkorpK_aFBunZ-HxBT-5DC77A7dqiHYfXJLdnQaXpamop-vMDvV66NSs1DUYd86VywMGS_BtsFOIM77iMN6GeIjW4GrPWDgRsndT_o7D7rZ0A2veDJkc_aa7qLbdluYP0YMeT-IPnQI8QrdMsY_udBUmf-6je_FQ0O0xKkAl8IzhRuU_mrzOC7zMv8Mmhs_NMid401WlNxUGTIhXpgb1WOYadzcfKlxavFp8_RYTXJe4atZtBC1O3TXfZlVu8AI7JwCwaYNuTfUEXcxni_jY68steBpgHPWkEZallAcZyaygDvmkkdCWqjRTxg9tplhKNAmtspRqC-uTCE0GZL6wPGTsKdorysI8R1gwQ1WgNA-Vy0hIFbUkComyAc8sI3qCpsNoJ7rPRe5KYiwTZ5M4-SROPslWPhP0bnxj3eXh-AvtwSDApJ-RVUJ5FDnbkgYT9GZsBgm4sUkLUzaOJmSAmAUHFs86eY8fYwzAEdh2ExTtaMJI4PJ077YU-VWbrzsSvox84Pl-0Jntb_25D0GrVf_sbDI7_XiyfXzxPx95je6eH82TL5_OPr9E96mL1vGJR4IDtFdvGnMIcKtWr9o59Qv-mCCo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+E3+ubiquitin+ligase+Peli1+regulates+the+metabolic+actions+of+mTORC1+to+suppress+antitumor+T+cell+responses&rft.jtitle=The+EMBO+journal&rft.au=Ko%2C+Chun%E2%80%90Jung&rft.au=Zhang%2C+Lingyun&rft.au=Jie%2C+Zuliang&rft.au=Zhu%2C+Lele&rft.date=2021-01-15&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.2020104532&rft.externalDBID=10.15252%252Fembj.2020104532&rft.externalDocID=EMBJ2020104532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |