Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double‐blind, randomised, controlled trial

Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting. Isolated vitamin C and E supplements are widely used, and un...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 592; no. 8; pp. 1887 - 1901
Main Authors Paulsen, Gøran, Cumming, Kristoffer T., Holden, Geir, Hallén, Jostein, Rønnestad, Bent Ronny, Sveen, Ole, Skaug, Arne, Paur, Ingvild, Bastani, Nasser E., Østgaard, Hege Nymo, Buer, Charlotte, Midttun, Magnus, Freuchen, Fredrik, Wiig, Håvard, Ulseth, Elisabeth Tallaksen, Garthe, Ina, Blomhoff, Rune, Benestad, Haakon B., Raastad, Truls
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.04.2014
BlackWell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting. Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes. Our results show that vitamin C and E supplements blunted the endurance training‐induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance. Training‐induced increases in V̇O2 max and running performance were not detectably affected by the supplementation. The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution. In this double‐blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty‐four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high‐intensity interval sessions [4–6 × 4–6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30–60 min; 70–90% of HRmax). Maximal oxygen uptake (V̇O2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their V̇O2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator‐activated receptor‐γ coactivator 1 α (PGC‐1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC‐1α: −13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen‐activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in V̇O2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
AbstractList Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting.Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes.Our results show that vitamin C and E supplements blunted the endurance training-induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance.Training-induced increases in VO2 max and running performance were not detectably affected by the supplementation.The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution. In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean plus or minus s.d.: 8 plus or minus 5%) and performance in the 20 m shuttle test (10 plus or minus 11%) to the same degree as those in the placebo group (mean plus or minus s.d.: 8 plus or minus 5% and 14 plus or minus 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor- gamma coactivator 1 alpha (PGC-1 alpha ) increased in the m. vastus lateralis in the placebo group by 59 plus or minus 97% and 19 plus or minus 51%, respectively, but not in the vitamin C and E group (COX4: -13 plus or minus 54%; PGC-1 alpha : -13 plus or minus 29%; P less than or equal to 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P less than or equal to 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting. Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes. Our results show that vitamin C and E supplements blunted the endurance training-induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance. Training-induced increases in and running performance were not detectably affected by the supplementation. The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution. In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-[gamma] coactivator 1 [alpha] (PGC-1[alpha]) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1[alpha]: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4–6 × 4–6 min; >90% of maximal heart rate (HR max )] and steady state continuous sessions (30–60 min; 70–90% of HR max ). Maximal oxygen uptake ( ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their (mean ±  s.d. : 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ±  s.d. : 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC-1α: −13 ± 29%; P  ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group ( P  ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting. Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes. Our results show that vitamin C and E supplements blunted the endurance training‐induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance. Training‐induced increases in and running performance were not detectably affected by the supplementation. The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution. Abstract In this double‐blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty‐four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high‐intensity interval sessions [4–6 × 4–6 min; >90% of maximal heart rate (HR max )] and steady state continuous sessions (30–60 min; 70–90% of HR max ). Maximal oxygen uptake ( ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their (mean ±  s.d. : 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ±  s.d. : 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator‐activated receptor‐γ coactivator 1 α (PGC‐1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC‐1α: −13 ± 29%; P  ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen‐activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group ( P  ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting. Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes. Our results show that vitamin C and E supplements blunted the endurance training‐induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance. Training‐induced increases in V̇O2 max and running performance were not detectably affected by the supplementation. The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution. In this double‐blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty‐four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high‐intensity interval sessions [4–6 × 4–6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30–60 min; 70–90% of HRmax). Maximal oxygen uptake (V̇O2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their V̇O2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator‐activated receptor‐γ coactivator 1 α (PGC‐1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC‐1α: −13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen‐activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in V̇O2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Author Wiig, Håvard
Paulsen, Gøran
Hallén, Jostein
Paur, Ingvild
Østgaard, Hege Nymo
Midttun, Magnus
Bastani, Nasser E.
Blomhoff, Rune
Ulseth, Elisabeth Tallaksen
Garthe, Ina
Freuchen, Fredrik
Rønnestad, Bent Ronny
Holden, Geir
Cumming, Kristoffer T.
Benestad, Haakon B.
Raastad, Truls
Sveen, Ole
Skaug, Arne
Buer, Charlotte
Author_xml – sequence: 1
  givenname: Gøran
  surname: Paulsen
  fullname: Paulsen, Gøran
  organization: Norwegian Olympic Federation
– sequence: 2
  givenname: Kristoffer T.
  surname: Cumming
  fullname: Cumming, Kristoffer T.
  organization: Norwegian School of Sport Sciences
– sequence: 3
  givenname: Geir
  surname: Holden
  fullname: Holden, Geir
  organization: Norwegian School of Sport Sciences
– sequence: 4
  givenname: Jostein
  surname: Hallén
  fullname: Hallén, Jostein
  organization: Norwegian School of Sport Sciences
– sequence: 5
  givenname: Bent Ronny
  surname: Rønnestad
  fullname: Rønnestad, Bent Ronny
  organization: Lillehammer University College
– sequence: 6
  givenname: Ole
  surname: Sveen
  fullname: Sveen, Ole
  organization: Østfold University College
– sequence: 7
  givenname: Arne
  surname: Skaug
  fullname: Skaug, Arne
  organization: Østfold University College
– sequence: 8
  givenname: Ingvild
  surname: Paur
  fullname: Paur, Ingvild
  organization: Departments of Nutrition
– sequence: 9
  givenname: Nasser E.
  surname: Bastani
  fullname: Bastani, Nasser E.
  organization: Departments of Nutrition
– sequence: 10
  givenname: Hege Nymo
  surname: Østgaard
  fullname: Østgaard, Hege Nymo
  organization: Norwegian School of Sport Sciences
– sequence: 11
  givenname: Charlotte
  surname: Buer
  fullname: Buer, Charlotte
  organization: Norwegian School of Sport Sciences
– sequence: 12
  givenname: Magnus
  surname: Midttun
  fullname: Midttun, Magnus
  organization: Norwegian School of Sport Sciences
– sequence: 13
  givenname: Fredrik
  surname: Freuchen
  fullname: Freuchen, Fredrik
  organization: Norwegian School of Sport Sciences
– sequence: 14
  givenname: Håvard
  surname: Wiig
  fullname: Wiig, Håvard
  organization: Norwegian School of Sport Sciences
– sequence: 15
  givenname: Elisabeth Tallaksen
  surname: Ulseth
  fullname: Ulseth, Elisabeth Tallaksen
  organization: University of Oslo
– sequence: 16
  givenname: Ina
  surname: Garthe
  fullname: Garthe, Ina
  organization: Norwegian Olympic Federation
– sequence: 17
  givenname: Rune
  surname: Blomhoff
  fullname: Blomhoff, Rune
  organization: Oslo University Hospital
– sequence: 18
  givenname: Haakon B.
  surname: Benestad
  fullname: Benestad, Haakon B.
  organization: University of Oslo
– sequence: 19
  givenname: Truls
  surname: Raastad
  fullname: Raastad, Truls
  organization: Norwegian School of Sport Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24492839$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS1URNPAGyBkiQ2LTvDPeByzqISi8qdKsChsrTtjp3HksQd7BpRd92x4Rp4ER0krYMXKV7rfOfK55wydhBgsQk8pWVBK-cvtsNllF_2CEcoXrJE1VQ_QjNaNqqRU_ATNCGGs4lLQU3SW85YUkCj1CJ2yulZsydUM_fjiRuhdwCsMweBLnKdh8La3YYTRxYA30A82ZdxZ7ycPCYOB4bgbI7bBTAlCZ_GYwAUXbnAx20w9hPwKAzZxar39dfuz9S6Yc1xYE3uXbZm7GMYUvbemiB34x-jhGny2T47vHH1-c3m9elddfXz7fvX6quoEVaxqGG8aIRVQKbpOGAV2zdbK8tq0qu1qAsLKtTFGNpIRUS9NB9wCB8IZE4LyObo4-A5T21vTlawJvB6S6yHtdASn_94Et9E38ZuuywWlUMXgxdEgxa-TzaMuifYHgmDjlDUVvF5ywdWyoM__QbdxSqHEKxQVDRP7MueoPlBdijknu77_DCV6D-i7tvW-bX1ou8ie_RnkXnRXbwHUAfjuvN39l6m-_vCpIZLx36CPwFk
CODEN JPHYA7
CitedBy_id crossref_primary_10_1007_s00394_018_1646_9
crossref_primary_10_1016_j_freeradbiomed_2021_09_014
crossref_primary_10_1038_s43587_021_00164_x
crossref_primary_10_3390_nu14102092
crossref_primary_10_1007_s11332_021_00756_5
crossref_primary_10_5812_asjsm_134047
crossref_primary_10_1113_JP271957
crossref_primary_10_1080_13510002_2018_1472924
crossref_primary_10_1111_cpf_12283
crossref_primary_10_3390_sports9030037
crossref_primary_10_1186_s12970_020_00345_w
crossref_primary_10_3389_fimmu_2023_1127088
crossref_primary_10_1016_j_nut_2016_06_017
crossref_primary_10_1152_japplphysiol_00760_2014
crossref_primary_10_1152_japplphysiol_01055_2014
crossref_primary_10_1016_j_arres_2024_100104
crossref_primary_10_1016_j_freeradbiomed_2016_02_007
crossref_primary_10_1016_j_freeradbiomed_2016_02_005
crossref_primary_10_1071_AN14679
crossref_primary_10_1089_ars_2015_6393
crossref_primary_10_1123_ijspp_2021_0051
crossref_primary_10_1016_j_jshs_2024_05_001
crossref_primary_10_1016_j_mce_2015_05_036
crossref_primary_10_3389_fendo_2020_00519
crossref_primary_10_15758_ajk_2019_21_2_31
crossref_primary_10_1007_s11332_017_0392_3
crossref_primary_10_3390_ijms232314716
crossref_primary_10_1139_apnm_2014_0070
crossref_primary_10_3390_ijerph17124405
crossref_primary_10_5812_jcrps_80469
crossref_primary_10_1016_j_freeradbiomed_2015_04_006
crossref_primary_10_3390_antiox7080107
crossref_primary_10_1007_s12170_024_00735_8
crossref_primary_10_3934_publichealth_2021038
crossref_primary_10_1089_ars_2014_6210
crossref_primary_10_1007_s40279_021_01440_x
crossref_primary_10_1136_bjsports_2018_099027
crossref_primary_10_1556_2060_104_2017_4_2
crossref_primary_10_3390_nu9020142
crossref_primary_10_1155_2022_7436577
crossref_primary_10_1016_j_freeradbiomed_2018_09_012
crossref_primary_10_1152_japplphysiol_00685_2018
crossref_primary_10_1016_j_freeradbiomed_2014_09_013
crossref_primary_10_3389_fendo_2017_00087
crossref_primary_10_3390_biomedicines9121909
crossref_primary_10_1007_s00421_019_04162_1
crossref_primary_10_3390_nu10050547
crossref_primary_10_1016_j_freeradbiomed_2015_10_412
crossref_primary_10_1080_15438627_2018_1563899
crossref_primary_10_1139_apnm_2014_0538
crossref_primary_10_1038_s41598_020_58500_x
crossref_primary_10_1155_2016_1245049
crossref_primary_10_1007_s10522_020_09879_7
crossref_primary_10_1016_j_clnu_2018_08_032
crossref_primary_10_3390_life11111269
crossref_primary_10_3390_nu15132848
crossref_primary_10_3390_antiox6010005
crossref_primary_10_3389_fnut_2023_1094767
crossref_primary_10_3390_antiox5040048
crossref_primary_10_3390_nu11102357
crossref_primary_10_1113_JP270650
crossref_primary_10_1002_art_41174
crossref_primary_10_1111_sms_14102
crossref_primary_10_1113_JP270654
crossref_primary_10_1002_fsn3_2319
crossref_primary_10_3389_fphys_2024_1369174
crossref_primary_10_1186_s12986_021_00543_6
crossref_primary_10_17816_clinutr106711
crossref_primary_10_3390_antiox10040558
crossref_primary_10_1016_j_freeradbiomed_2015_03_018
crossref_primary_10_1249_JES_0000000000000070
crossref_primary_10_1080_10408398_2020_1860898
crossref_primary_10_1080_07315724_2018_1461146
crossref_primary_10_1016_j_clnu_2020_04_015
crossref_primary_10_1016_j_jesf_2022_06_001
crossref_primary_10_1186_s12970_020_00389_y
crossref_primary_10_1016_j_cellsig_2015_12_011
crossref_primary_10_3389_fnut_2018_00132
crossref_primary_10_1186_2055_0928_1_1
crossref_primary_10_1016_j_nut_2019_01_007
crossref_primary_10_1002_14651858_CD009789_pub2
crossref_primary_10_1080_10408398_2019_1703642
crossref_primary_10_1007_s11332_024_01205_9
crossref_primary_10_3389_fphys_2022_834597
crossref_primary_10_3390_antiox9050372
crossref_primary_10_1039_C6FO00611F
crossref_primary_10_3389_fphys_2018_01883
crossref_primary_10_1123_ijspp_2019_0101
crossref_primary_10_3389_fphys_2021_745194
crossref_primary_10_1113_jphysiol_2014_278978
crossref_primary_10_3390_nu12123908
crossref_primary_10_2174_1381612825666190701164923
crossref_primary_10_1096_fj_15_276857
crossref_primary_10_3390_antiox10091443
crossref_primary_10_1186_2193_1801_3_715
crossref_primary_10_3390_antiox12020501
crossref_primary_10_1249_MSS_0000000000000620
crossref_primary_10_1152_ajpcell_00426_2019
crossref_primary_10_1007_s40279_019_01160_3
crossref_primary_10_1042_BSR20201128
crossref_primary_10_3390_antiox12010016
crossref_primary_10_1111_liv_15024
crossref_primary_10_1113_jphysiol_2014_279398
crossref_primary_10_1152_ajpheart_00158_2015
crossref_primary_10_1186_s12970_018_0242_y
crossref_primary_10_1113_jphysiol_2014_279950
crossref_primary_10_1152_ajpregu_00243_2019
crossref_primary_10_3390_jcm13082184
crossref_primary_10_1002_tsm2_87
crossref_primary_10_1172_jci_insight_126347
crossref_primary_10_1007_s10974_022_09625_1
crossref_primary_10_1111_sms_13212
crossref_primary_10_1186_s40798_022_00428_9
crossref_primary_10_1249_JSR_0000000000001083
crossref_primary_10_1016_j_freeradbiomed_2020_10_026
crossref_primary_10_1007_s40279_017_0759_2
crossref_primary_10_1016_j_intimp_2014_07_034
crossref_primary_10_3390_bioengineering10101176
crossref_primary_10_3390_ijms21186469
crossref_primary_10_1016_j_bbadis_2021_166126
crossref_primary_10_1113_jphysiol_2014_282665
crossref_primary_10_5604_01_3001_0015_5535
crossref_primary_10_1016_j_redox_2021_101956
crossref_primary_10_3390_cells11193041
crossref_primary_10_1123_ijsnem_2018_0020
crossref_primary_10_1113_jphysiol_2014_272294
crossref_primary_10_1519_JSC_0000000000002104
crossref_primary_10_1007_s40279_019_01185_8
crossref_primary_10_1016_j_redox_2021_102005
crossref_primary_10_5114_jhk_186660
crossref_primary_10_3390_nu13113726
crossref_primary_10_20463_pan_2023_0012
crossref_primary_10_3390_antiox9090879
crossref_primary_10_3389_fphys_2016_00282
crossref_primary_10_1007_s40279_019_01159_w
crossref_primary_10_14814_phy2_12224
crossref_primary_10_1139_cjpp_2019_0067
crossref_primary_10_1016_j_freeradbiomed_2015_11_032
crossref_primary_10_1002_mnfr_202001219
crossref_primary_10_3390_nu11061244
crossref_primary_10_1007_s00394_023_03083_2
crossref_primary_10_1139_apnm_2014_0244
crossref_primary_10_1186_s12970_017_0168_9
crossref_primary_10_1016_j_appet_2015_08_004
crossref_primary_10_3389_fnut_2022_864323
crossref_primary_10_1186_s40795_017_0185_8
crossref_primary_10_14814_phy2_12142
crossref_primary_10_1080_02640414_2017_1398893
crossref_primary_10_1016_j_redox_2024_103053
crossref_primary_10_3389_fphys_2016_00486
crossref_primary_10_3390_ijms20123024
crossref_primary_10_15758_ajk_2023_25_3_60
crossref_primary_10_1016_j_freeradbiomed_2016_01_012
crossref_primary_10_1097_MD_0000000000037782
crossref_primary_10_1039_C6FO00758A
crossref_primary_10_1016_j_fct_2021_112618
crossref_primary_10_3390_ijms241512453
crossref_primary_10_1016_j_freeradbiomed_2016_01_006
crossref_primary_10_1016_j_cotox_2019_01_003
crossref_primary_10_1016_j_redox_2020_101480
crossref_primary_10_1007_s40279_017_0693_3
crossref_primary_10_1186_s12970_021_00416_6
crossref_primary_10_1139_apnm_2014_0302
crossref_primary_10_1007_s00394_023_03102_2
crossref_primary_10_3389_fphys_2021_751374
crossref_primary_10_1016_j_smhs_2023_03_006
crossref_primary_10_1111_febs_16337
crossref_primary_10_1053_j_seminoncol_2014_03_002
crossref_primary_10_3390_nu11071471
crossref_primary_10_1249_JSR_0000000000000385
crossref_primary_10_1152_ajpendo_00230_2016
crossref_primary_10_1016_j_redox_2020_101471
crossref_primary_10_1007_s12192_014_0543_2
crossref_primary_10_1155_2018_5157645
crossref_primary_10_3390_life14050567
crossref_primary_10_1530_JOE_17_0186
crossref_primary_10_1007_s40279_014_0282_7
crossref_primary_10_3390_nu15102371
crossref_primary_10_1177_1559827614557773
crossref_primary_10_3390_cells11101698
crossref_primary_10_1016_j_redox_2019_101188
crossref_primary_10_3390_app14062655
crossref_primary_10_1139_apnm_2017_0275
crossref_primary_10_3390_cells12172183
crossref_primary_10_1007_s40279_017_0694_2
crossref_primary_10_1007_s00394_014_0821_x
crossref_primary_10_1016_j_freeradbiomed_2020_10_001
crossref_primary_10_1186_s40798_022_00533_9
crossref_primary_10_1038_s41467_021_24634_3
crossref_primary_10_3390_ijerph17228452
crossref_primary_10_1111_nbu_12091
crossref_primary_10_1073_pnas_1507176112
crossref_primary_10_3390_cosmetics9030047
crossref_primary_10_1016_j_freeradbiomed_2015_01_027
crossref_primary_10_1016_j_freeradbiomed_2016_02_022
crossref_primary_10_1152_japplphysiol_00277_2018
crossref_primary_10_3389_fnut_2024_1358231
crossref_primary_10_1038_s41598_020_63272_5
crossref_primary_10_1016_j_redox_2020_101499
crossref_primary_10_1210_jc_2018_01741
crossref_primary_10_1016_j_exger_2021_111584
crossref_primary_10_1123_ijsnem_2021_0335
crossref_primary_10_3389_fspor_2023_854442
crossref_primary_10_1016_j_redox_2017_02_015
crossref_primary_10_1101_cshperspect_a029710
crossref_primary_10_3390_antiox12051050
crossref_primary_10_1016_j_lfs_2020_117630
crossref_primary_10_3390_nu15245136
crossref_primary_10_3109_10715762_2014_937341
crossref_primary_10_3390_antiox6040079
crossref_primary_10_1089_ars_2020_8036
crossref_primary_10_1016_j_redox_2022_102374
crossref_primary_10_1016_j_redox_2020_101484
Cites_doi 10.1080/03670244.2012.706000
10.1080/17461391.2013.785597
10.1172/JCI37694
10.2165/00007256-200737090-00001
10.1249/MSS.0b013e3181cd76be
10.1113/jphysiol.2012.230185
10.1016/j.freeradbiomed.2009.08.007
10.7326/0003-4819-140-7-200404060-00010
10.1152/jappl.1967.23.3.353
10.1042/bj2880341
10.1093/ajcn/67.4.669
10.1186/1550-2783-4-19
10.1080/07315724.2003.10719272
10.1161/01.CIR.0000040584.91836.0D
10.1152/japplphysiol.01027.2010
10.1152/ajpcell.00037.2009
10.1123/ijspp.6.1.58
10.1249/JSR.0b013e31825e19cd
10.1152/ajpendo.00567.2011
10.1371/journal.pone.0041817
10.2741/2011
10.1016/j.exger.2010.03.014
10.1249/MSS.0b013e318213fefb
10.3109/10715762.2013.825043
10.1111/j.1748-1716.2010.02124.x
10.1152/jappl.1996.80.6.2250
10.1016/j.apmr.2012.06.021
10.1016/j.jchromb.2005.07.008
10.1152/japplphysiol.00949.2010
10.1016/j.cccn.2003.09.018
10.1002/rcm.4197
10.1073/pnas.91.21.10005
10.1073/pnas.0903485106
10.1080/02640410600951597
10.2337/diacare.15.11.1701
10.2165/00007256-200939080-00003
10.1113/jphysiol.2013.258061
10.1152/ajpendo.00207.2010
10.1016/j.nutres.2012.05.009
10.3390/nu5093684
10.1113/jphysiol.2010.189860
10.1016/j.cct.2012.11.003
10.1093/ajcn/87.1.142
10.2165/11594400-000000000-00000
10.3390/ijms13022091
10.1249/MSS.0b013e318203afa3
10.1089/ars.2005.7.221
10.1113/expphysiol.2012.069286
10.1249/MSS.0b013e3181cfc908
10.1146/annurev.cellbio.21.020604.150721
10.1152/japplphysiol.00003.2009
10.1155/2012/707941
10.1080/02640418808729800
ContentType Journal Article
Copyright 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
2014 The Physiological Society
2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014
Copyright_xml – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society
– notice: 2014 The Physiological Society
– notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
5PM
DOI 10.1113/jphysiol.2013.267419
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Physical Education Index
MEDLINE
Technology Research Database

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 1901
ExternalDocumentID 3273998481
10_1113_jphysiol_2013_267419
24492839
TJP6072
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Sana Pharma AS (Oslo, Norway)
– fundername: Norwegian Olympic Federation
– fundername: Smartfish AS (Oslo, Norway)
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c5192-62366579a175cc5d9aef2f9e34db9bc40a5e7fddd76720548dca3ea3a03225513
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 21:21:55 EDT 2024
Fri Aug 16 07:49:53 EDT 2024
Fri Sep 13 08:35:05 EDT 2024
Fri Aug 23 00:58:08 EDT 2024
Sat Sep 28 08:00:16 EDT 2024
Sat Aug 24 01:15:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5192-62366579a175cc5d9aef2f9e34db9bc40a5e7fddd76720548dca3ea3a03225513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001759
PMID 24492839
PQID 1515625111
PQPubID 1086388
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4001759
proquest_miscellaneous_1534835398
proquest_journals_1515625111
crossref_primary_10_1113_jphysiol_2013_267419
pubmed_primary_24492839
wiley_primary_10_1113_jphysiol_2013_267419_TJP6072
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Oxford, UK
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2014
Publisher Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Publisher_xml – name: Wiley Subscription Services, Inc
– name: BlackWell Publishing Ltd
References 2009; 47
2012; 2012
1967; 23
1992; 288
2010; 588
2005; 21
1992; 15
2009; 119
2012; 13
2013; 5
2012; 11
2007; 37
2011; 110
2009a; 106
1991; 45
2013; 98
2013; 52
2002; 106
2010; 199
2007; 6
2005; 824
2007; 4
2013; 591
2004; 339
2007; 25
2009; 23
2006; 11
2004; 140
2009; 297
2014; 48
2012; 302
2011; 6
2012; 32
1998; 67
2012; 590
2010; 45
2012; 93
2010; 42
2009b; 39
2011; 300
2012; 112
2013; 34
1988; 6
2011; 41
2005; 7
2011; 43
2008; 87
2014
1996; 80
2012; 7
1994; 91
2003; 22
2009; 106
23878368 - J Physiol. 2013 Oct 15;591(20):5047-59
22586215 - J Physiol. 2012 Jul 15;590(Pt 14):3349-60
9537614 - Am J Clin Nutr. 1998 Apr;67(4):669-84
23879691 - Free Radic Res. 2014 Jan;48(1):30-42
21030665 - J Appl Physiol (1985). 2011 Mar;110(3):834-45
16212495 - Annu Rev Cell Dev Biol. 2005;21:247-69
21487150 - Int J Sports Physiol Perform. 2011 Mar;6(1):58-69
22207723 - J Appl Physiol (1985). 2012 Mar;112(6):990-1000
19686839 - Free Radic Biol Med. 2009 Nov 15;47(10):1394-400
22408440 - Int J Mol Sci. 2012;13(2):2091-109
19494238 - Am J Physiol Cell Physiol. 2009 Aug;297(2):C299-309
17654232 - J Sports Sci. 2007 Sep;25(11):1203-10
22777327 - Curr Sports Med Rep. 2012 Jul-Aug;11(4):180-4
23104933 - Exp Physiol. 2013 Mar;98(3):784-95
22848618 - PLoS One. 2012;7(7):e41817
24067392 - Nutrients. 2013 Sep;5(9):3684-95
12427646 - Circulation. 2002 Nov 12;106(20):2530-2
8806937 - J Appl Physiol (1985). 1996 Jun;80(6):2250-4
20019626 - Med Sci Sports Exerc. 2010 Jul;42(7):1388-95
21085043 - Med Sci Sports Exerc. 2011 Jun;43(6):1017-24
6047957 - J Appl Physiol. 1967 Sep;23(3):353-8
22060178 - Sports Med. 2011 Dec 1;41(12):1043-69
24737894 - J Physiol. 2014 Apr 15;592(8):1721-2
20345409 - Acta Physiol (Oxf). 2010 Aug;199(4):529-47
14687889 - Clin Chim Acta. 2004 Jan;339(1-2):11-25
17617995 - Curr Sports Med Rep. 2007 Jul;6(4):211-3
15650410 - Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):221-35
19741299 - J Clin Invest. 2009 Oct;119(10):3079-88
18175748 - Am J Clin Nutr. 2008 Jan;87(1):142-9
22928084 - Oxid Med Cell Longev. 2012;2012:707941
16720354 - Front Biosci. 2006;11:2802-27
23282192 - Ecol Food Nutr. 2013;52(1):76-84
19433800 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8665-70
17997853 - J Int Soc Sports Nutr. 2007 Nov 12;4:19
22901555 - Nutr Res. 2012 Jul;32(7):479-85
7937827 - Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10005-8
19670343 - Rapid Commun Mass Spectrom. 2009 Sep;23(18):2885-90
20139793 - Med Sci Sports Exerc. 2010 Aug;42(8):1448-53
21325105 - Am J Physiol Endocrinol Metab. 2011 May;300(5):E761-70
21694556 - Med Sci Sports Exerc. 2011 Jul;43(7):1334-59
20350594 - Exp Gerontol. 2010 Jun;45(6):410-8
1463440 - Biochem J. 1992 Dec 1;288 ( Pt 2):341-4
12569111 - J Am Coll Nutr. 2003 Feb;22(1):18-35
19265068 - J Appl Physiol (1985). 2009 May;106(5):1513-21
3184250 - J Sports Sci. 1988 Summer;6(2):93-101
25225257 - J Physiol. 2014 Sep 15;592(18):3951-2
16046288 - J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Sep 25;824(1-2):132-8
1810720 - Eur J Clin Nutr. 1991 Dec;45(12):583-99
22772083 - Arch Phys Med Rehabil. 2012 Dec;93(12):2223-8.e2
19769414 - Sports Med. 2009;39(8):643-62
23178737 - Contemp Clin Trials. 2013 Mar;34(2):212-7
1468304 - Diabetes Care. 1992 Nov;15(11):1701-11
20724368 - J Physiol. 2010 Oct 15;588(Pt 20):4029-37
23600891 - Eur J Sport Sci. 2014;14(2):160-8
17722947 - Sports Med. 2007;37(9):737-63
15068981 - Ann Intern Med. 2004 Apr 6;140(7):533-7
22307485 - Am J Physiol Endocrinol Metab. 2012 Feb 15;302(4):E476-7; author reply E478-9
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
Black AE (e_1_2_5_9_1) 1991; 45
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Gibala MJ (e_1_2_5_19_1) 2007; 6
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 23
  start-page: 2885
  year: 2009
  end-page: 2890
  article-title: Determination of 8‐epi PGF concentrations as a biomarker of oxidative stress using triple‐stage liquid chromatography/tandem mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
– volume: 288
  start-page: 341
  year: 1992
  end-page: 344
  article-title: Vitamin E in human low‐density lipoprotein. When and how this antioxidant becomes a pro‐oxidant
  publication-title: Biochem J
– volume: 11
  start-page: 180
  year: 2012
  end-page: 184
  article-title: Effect of vitamin C supplements on physical performance
  publication-title: Curr Sports Med Rep
– volume: 67
  start-page: 669
  year: 1998
  end-page: 684
  article-title: Human plasma and tissue α‐tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E
  publication-title: Am J Clin Nutr
– volume: 43
  start-page: 1017
  year: 2011
  end-page: 1024
  article-title: Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis
  publication-title: Med Sci Sports Exerc
– volume: 15
  start-page: 1701
  year: 1992
  end-page: 1711
  article-title: Effects of physical training on the metabolism of skeletal muscle
  publication-title: Diabetes Care
– volume: 45
  start-page: 410
  year: 2010
  end-page: 418
  article-title: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis)
  publication-title: Exp Gerontol
– volume: 106
  start-page: 1513
  year: 2009a
  end-page: 1521
  article-title: Reduced carbohydrate availability does not modulate training‐induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle
  publication-title: J Appl Physiol
– volume: 22
  start-page: 18
  year: 2003
  end-page: 35
  article-title: Vitamin C as an antioxidant: evaluation of its role in disease prevention
  publication-title: J Am Coll Nutr
– volume: 588
  start-page: 4029
  year: 2010
  end-page: 4037
  article-title: Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle
  publication-title: J Physiol
– volume: 39
  start-page: 643
  year: 2009b
  end-page: 662
  article-title: The exercise‐induced stress response of skeletal muscle, with specific emphasis on humans
  publication-title: Sports Med
– volume: 43
  start-page: 1334
  year: 2011
  end-page: 1359
  article-title: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise
  publication-title: Med Sci Sports Exerc
– volume: 300
  start-page: E761
  year: 2011
  end-page: E770
  article-title: Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training
  publication-title: Am J Physiol Endocrinol Metab
– volume: 41
  start-page: 1043
  year: 2011
  end-page: 1069
  article-title: Antioxidant supplementation during exercise training: beneficial or detrimental?
  publication-title: Sports Med
– volume: 23
  start-page: 353
  year: 1967
  end-page: 358
  article-title: Maximal oxygen uptake in athletes
  publication-title: J Appl Physiol
– volume: 4
  start-page: 19
  year: 2007
  article-title: Performance enhancement with supplements: incongruence between rationale and practice
  publication-title: J Int Soc Sports Nutr
– volume: 93
  start-page: 2223
  year: 2012
  end-page: 2228
  article-title: Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients
  publication-title: Arch Phys Med Rehabil
– volume: 42
  start-page: 1448
  year: 2010
  end-page: 1453
  article-title: Effect of exercise on oxidative stress: a 12‐month randomized, controlled trial
  publication-title: Med Sci Sports Exerc
– volume: 140
  start-page: 533
  year: 2004
  end-page: 537
  article-title: Vitamin C pharmacokinetics: implications for oral and intravenous use
  publication-title: Ann Intern Med
– volume: 6
  start-page: 93
  year: 1988
  end-page: 101
  article-title: The multistage 20 metre shuttle run test for aerobic fitness
  publication-title: J Sports Sci
– volume: 302
  start-page: E476
  year: 2012
  end-page: E477
  article-title: Antioxidant supplements in exercise: worse than useless?
  publication-title: Am J Physiol Endocrinol Metab
– volume: 5
  start-page: 3684
  year: 2013
  end-page: 3695
  article-title: A randomized steady‐state bioavailability study of synthetic natural (kiwifruit‐derived) vitamin C
  publication-title: Nutrients
– volume: 45
  start-page: 583
  year: 1991
  end-page: 599
  article-title: Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys
  publication-title: Eur J Clin Nutr
– volume: 112
  start-page: 990
  year: 2012
  end-page: 1000
  article-title: Role of vitamin C and E supplementation on IL‐6 in response to training
  publication-title: J Appl Physiol
– volume: 25
  start-page: 1203
  year: 2007
  end-page: 1210
  article-title: Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen
  publication-title: J Sports Sci
– volume: 591
  start-page: 5047
  year: 2013
  end-page: 5059
  article-title: Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men
  publication-title: J Physiol
– volume: 110
  start-page: 834
  year: 2011
  end-page: 845
  article-title: Nutritional modulation of training‐induced skeletal muscle adaptations
  publication-title: J Appl Physiol
– volume: 7
  start-page: 221
  year: 2005
  end-page: 235
  article-title: Factors regulating isoprostane formation
  publication-title: Antioxid Redox Signal
– volume: 590
  start-page: 3349
  year: 2012
  end-page: 3360
  article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects
  publication-title: J Physiol
– volume: 106
  start-page: 8665
  year: 2009
  end-page: 8670
  article-title: Antioxidants prevent health‐promoting effects of physical exercise in humans
  publication-title: Proc Natl Acad Sci U S A
– year: 2014
  article-title: Effects of dietary antioxidants on training and performance in female runners
  publication-title: Eur J Sport Sci
– volume: 2012
  start-page: 707941
  year: 2012
  article-title: Does vitamin C and E supplementation impair the favorable adaptations of regular exercise?
  publication-title: Oxid Med Cell Longev
– volume: 91
  start-page: 10005
  year: 1994
  end-page: 10008
  article-title: Human plasma vitamin E kinetics demonstrate rapid recycling of plasma RRR‐α‐tocopherol
  publication-title: Proc Natl Acad Sci U S A
– volume: 297
  start-page: C299
  year: 2009
  end-page: C309
  article-title: Cdc42GAP, reactive oxygen species, and the vimentin network
  publication-title: Am J Physiol Cell Physiol
– volume: 21
  start-page: 247
  year: 2005
  end-page: 269
  article-title: Rho GTPases: biochemistry and biology
  publication-title: Annu Rev Cell Dev Biol
– volume: 11
  start-page: 2802
  year: 2006
  end-page: 2827
  article-title: Response and function of skeletal muscle heat shock protein 70
  publication-title: Front Biosci
– volume: 6
  start-page: 58
  year: 2011
  end-page: 69
  article-title: Vitamin C consumption does not impair training‐induced improvements in exercise performance
  publication-title: Int J Sports Physiol Perform
– volume: 87
  start-page: 142
  year: 2008
  end-page: 149
  article-title: Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training‐induced adaptations in endurance performance
  publication-title: Am J Clin Nutr
– volume: 48
  start-page: 30
  year: 2014
  end-page: 42
  article-title: Free radicals and sprint exercise in humans
  publication-title: Free Radic Res
– volume: 37
  start-page: 737
  year: 2007
  end-page: 763
  article-title: The molecular bases of training adaptation
  publication-title: Sports Med
– volume: 824
  start-page: 132
  year: 2005
  end-page: 138
  article-title: High‐throughput analysis of vitamin C in human plasma with the use of HPLC with monolithic column and UV‐detection
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 34
  start-page: 212
  year: 2013
  end-page: 217
  article-title: Aerobic training reduces systemic oxidative stress in young women with elevated levels of F ‐isoprostanes
  publication-title: Contemp Clin Trials
– volume: 7
  start-page: e41817
  year: 2012
  article-title: PGC‐1α is dispensable for exercise‐induced mitochondrial biogenesis in skeletal muscle
  publication-title: PLoS One
– volume: 339
  start-page: 11
  year: 2004
  end-page: 25
  article-title: Vitamins in human arteriosclerosis with emphasis on vitamin C and vitamin E
  publication-title: Clin Chim Acta
– volume: 47
  start-page: 1394
  year: 2009
  end-page: 1400
  article-title: Exercise activation of muscle peroxisome proliferator‐activated receptor‐γ coactivator‐1α signalling is redox sensitive
  publication-title: Free Radic Biol Med
– volume: 80
  start-page: 2250
  year: 1996
  end-page: 2254
  article-title: Mitochondrial enzymes increase in muscle in response to 7–10 days of cycle exercise
  publication-title: J Appl Physiol (1985)
– volume: 199
  start-page: 529
  year: 2010
  end-page: 547
  article-title: Regulation of skeletal muscle mitochondrial function: genes to proteins
  publication-title: Acta Physiol (Oxf)
– volume: 32
  start-page: 479
  year: 2012
  end-page: 485
  article-title: Utility of multifrequency bioelectrical impedance compared with dual‐energy x‐ray absorptiometry for assessment of total and regional body composition varies between men and women
  publication-title: Nutr Res
– volume: 6
  start-page: 211
  year: 2007
  end-page: 213
  article-title: High‐intensity interval training: a time‐efficient strategy for health promotion?
  publication-title: Curr Sports Med Rep
– volume: 13
  start-page: 2091
  year: 2012
  end-page: 2109
  article-title: Antioxidant‐induced stress
  publication-title: Int J Mol Sci
– volume: 119
  start-page: 3079
  year: 2009
  end-page: 3088
  article-title: Cdc42 is an antihypertrophic molecular switch in the mouse heart
  publication-title: J Clin Invest
– volume: 52
  start-page: 76
  year: 2013
  end-page: 84
  article-title: Dietary supplement use pattern of US adult population in the 2007–2008 National Health and Nutrition Examination Survey (NHANES)
  publication-title: Ecol Food Nutr
– volume: 98
  start-page: 784
  year: 2013
  end-page: 795
  article-title: Training‐induced mitochondrial adaptation: role of peroxisome proliferator‐activated receptor γ coactivator‐1α, nuclear factor‐κB and β‐blockade
  publication-title: Exp Physiol
– volume: 42
  start-page: 1388
  year: 2010
  end-page: 1395
  article-title: Antioxidant supplementation does not alter endurance training adaptation
  publication-title: Med Sci Sports Exerc
– volume: 106
  start-page: 2530
  year: 2002
  end-page: 2532
  article-title: Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability
  publication-title: Circulation
– ident: e_1_2_5_28_1
  doi: 10.1080/03670244.2012.706000
– volume: 45
  start-page: 583
  year: 1991
  ident: e_1_2_5_9_1
  article-title: Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys
  publication-title: Eur J Clin Nutr
  contributor:
    fullname: Black AE
– ident: e_1_2_5_12_1
  doi: 10.1080/17461391.2013.785597
– ident: e_1_2_5_34_1
  doi: 10.1172/JCI37694
– ident: e_1_2_5_16_1
  doi: 10.2165/00007256-200737090-00001
– ident: e_1_2_5_54_1
  doi: 10.1249/MSS.0b013e3181cd76be
– ident: e_1_2_5_30_1
  doi: 10.1113/jphysiol.2012.230185
– ident: e_1_2_5_26_1
  doi: 10.1016/j.freeradbiomed.2009.08.007
– ident: e_1_2_5_41_1
  doi: 10.7326/0003-4819-140-7-200404060-00010
– ident: e_1_2_5_49_1
  doi: 10.1152/jappl.1967.23.3.353
– ident: e_1_2_5_10_1
  doi: 10.1042/bj2880341
– ident: e_1_2_5_13_1
  doi: 10.1093/ajcn/67.4.669
– ident: e_1_2_5_43_1
  doi: 10.1186/1550-2783-4-19
– ident: e_1_2_5_40_1
  doi: 10.1080/07315724.2003.10719272
– ident: e_1_2_5_46_1
  doi: 10.1161/01.CIR.0000040584.91836.0D
– ident: e_1_2_5_55_1
  doi: 10.1152/japplphysiol.01027.2010
– ident: e_1_2_5_32_1
  doi: 10.1152/ajpcell.00037.2009
– ident: e_1_2_5_47_1
  doi: 10.1123/ijspp.6.1.58
– ident: e_1_2_5_11_1
  doi: 10.1249/JSR.0b013e31825e19cd
– ident: e_1_2_5_22_1
  doi: 10.1152/ajpendo.00567.2011
– ident: e_1_2_5_48_1
  doi: 10.1371/journal.pone.0041817
– ident: e_1_2_5_33_1
  doi: 10.2741/2011
– ident: e_1_2_5_44_1
  doi: 10.1016/j.exger.2010.03.014
– ident: e_1_2_5_18_1
  doi: 10.1249/MSS.0b013e318213fefb
– ident: e_1_2_5_35_1
  doi: 10.3109/10715762.2013.825043
– ident: e_1_2_5_29_1
  doi: 10.1111/j.1748-1716.2010.02124.x
– ident: e_1_2_5_50_1
  doi: 10.1152/jappl.1996.80.6.2250
– ident: e_1_2_5_7_1
  doi: 10.1016/j.apmr.2012.06.021
– ident: e_1_2_5_27_1
  doi: 10.1016/j.jchromb.2005.07.008
– ident: e_1_2_5_23_1
  doi: 10.1152/japplphysiol.00949.2010
– ident: e_1_2_5_2_1
  doi: 10.1016/j.cccn.2003.09.018
– ident: e_1_2_5_6_1
  doi: 10.1002/rcm.4197
– ident: e_1_2_5_52_1
  doi: 10.1073/pnas.91.21.10005
– ident: e_1_2_5_45_1
  doi: 10.1073/pnas.0903485106
– ident: e_1_2_5_3_1
  doi: 10.1080/02640410600951597
– ident: e_1_2_5_24_1
  doi: 10.2337/diacare.15.11.1701
– volume: 6
  start-page: 211
  year: 2007
  ident: e_1_2_5_19_1
  article-title: High‐intensity interval training: a time‐efficient strategy for health promotion?
  publication-title: Curr Sports Med Rep
  contributor:
    fullname: Gibala MJ
– ident: e_1_2_5_37_1
  doi: 10.2165/00007256-200939080-00003
– ident: e_1_2_5_20_1
  doi: 10.1113/jphysiol.2013.258061
– ident: e_1_2_5_56_1
  doi: 10.1152/ajpendo.00207.2010
– ident: e_1_2_5_4_1
  doi: 10.1016/j.nutres.2012.05.009
– ident: e_1_2_5_15_1
  doi: 10.3390/nu5093684
– ident: e_1_2_5_38_1
  doi: 10.1113/jphysiol.2010.189860
– ident: e_1_2_5_5_1
  doi: 10.1016/j.cct.2012.11.003
– ident: e_1_2_5_21_1
  doi: 10.1093/ajcn/87.1.142
– ident: e_1_2_5_42_1
  doi: 10.2165/11594400-000000000-00000
– ident: e_1_2_5_53_1
  doi: 10.3390/ijms13022091
– ident: e_1_2_5_51_1
  doi: 10.1249/MSS.0b013e318203afa3
– ident: e_1_2_5_8_1
  doi: 10.1089/ars.2005.7.221
– ident: e_1_2_5_17_1
  doi: 10.1113/expphysiol.2012.069286
– ident: e_1_2_5_14_1
  doi: 10.1249/MSS.0b013e3181cfc908
– ident: e_1_2_5_25_1
  doi: 10.1146/annurev.cellbio.21.020604.150721
– ident: e_1_2_5_36_1
  doi: 10.1152/japplphysiol.00003.2009
– ident: e_1_2_5_39_1
  doi: 10.1155/2012/707941
– ident: e_1_2_5_31_1
  doi: 10.1080/02640418808729800
SSID ssj0013099
Score 2.5797207
Snippet Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by...
In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans....
Key points Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by...
Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1887
SubjectTerms Adaptation, Physiological
Adult
Ascorbic Acid - administration & dosage
Ascorbic Acid - pharmacology
Biosynthesis
cdc42 GTP-Binding Protein - genetics
cdc42 GTP-Binding Protein - metabolism
Dietary Supplements
Double-Blind Method
Electron Transport Complex IV - genetics
Electron Transport Complex IV - metabolism
Exercise
Female
Humans
Integrative
Kinases
Male
Mitogen-Activated Protein Kinase 1 - genetics
Mitogen-Activated Protein Kinase 1 - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Oxygen Consumption - drug effects
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Physical Endurance - drug effects
Transcription Factors - genetics
Transcription Factors - metabolism
Vitamin C
Vitamin E - administration & dosage
Vitamin E - pharmacology
Vitamins - administration & dosage
Vitamins - pharmacology
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnrjwKo-FgoyEOJEl8SOJuVVVV1UlUIVa1Fs0jp12S5tU3eTQnnrnwm_klzDjJAtLOSC4RbE90Uxm4m8y4xnGXmfKQg6goip2VaRSbyLQpY5cJVQuqxRMaAbz4WO6e6j2jvTRGpuNZ2H6-hDLH25kGeF7TQYOduhCklCxgdPg-jcUPkjkVKS4NdI5PqqpR9jok_gZTIiNWRYNz3QynKBDMu_-RGR1h7oFO29nT_6KasO2NLvHjkeG-myUL9OutdPy-rdaj__P8X12d0CufKtXtQdszdcP2cZWjV77-RV_w_f7Zc3x1Qb7-nnewvm85tscasd3-IKah_aJ6qQJ_AQQrl8uOMUNKBGWg4OLYaxtuK9dRx0_PB9bWHAkFvoJLt5z4K7p7Jn_fvPNIlfuLce5rkGN9Xg9JN-fecdDS5JH7HC2c7C9Gw1tH6IS4aSIEJBROMgAIpuy1M6Ar0RlvFTOGluqGLTPKudclmYCEWfuSpAeJMT0cdKJfMzW66b2TxmX1vukBIhtLpTLKyitUzr2lUXYmIp4wqLxVRcXfXWPoveKZDFKuyBpF720J2xz1IdisPVFQZAwJU8tmbBXy2HkmUQItW86miNR9bU0-YQ96dVn-UAEWAZBHhLPVhRrOYEqgK-O1POTUAlcEcjQuFIEvfkrHoqDvf00zsSzf1n0nN3BuyF1KdGbbL297PwLRGWtfRls7gc1ajgd
  priority: 102
  providerName: Wiley-Blackwell
Title Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double‐blind, randomised, controlled trial
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2013.267419
https://www.ncbi.nlm.nih.gov/pubmed/24492839
https://www.proquest.com/docview/1515625111/abstract/
https://search.proquest.com/docview/1534835398
https://pubmed.ncbi.nlm.nih.gov/PMC4001759
Volume 592
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbanrggoDwCpTIS4kR2Ez-SmFu1alWKilaoRb1F40foVrvOqrt76E_gXzN2khWrXhCXKJIt2_GMPd_En2cI-VgKDRWASJvMNqkonEpBGpnahomKNwWomAzm8ntxfi0ubuTNHpHDXZhI2jd6NvLzxcjPbiO3crkw44EnNp5eTkTYW6Ua75P9kvPBRR-ODjKltiHCS5n39-XynI_v4t-CNpw45HzECrSmIWooWjiFVlbtmqZHePMxbfJvOBvt0dkz8rQHkvSkG_Bzsuf8C3J44tGJXjzQT3TaDaL99XBIfv-crWEx83RCwVt6Slchl2fHGw-CobeA6Pl-RcNv_MBLpWBh2ZetW-q83YQEHI4OGSUoNhbT-62-UKC23ei5SzVCVvuZYk3bovo4fO-Z8HNnacwP8pJcn51eTc7TPgdDahDbsRTRUTibUYATboy0ClzDGuW4sFppIzKQrmystWVRMoR_lTXAHXDIwk4hc_6KHPjWuzeEcu1cbgAyXTFhqwaMtkJmrtGI4QqWJSQdpr9edqE26s5F4fUguTpIru4kl5CjQUZ1v_BWdcBnRXCb8oR82BbjN4cJBO_aTajDUQ8lV1VCXnci3XY46EJCyh1hbyuEcNy7JailMSx3r5UJYVEt_ukb6quLaZGV7O1_d_eOPMH2Ipkol0fkYH2_ce8RJ631MXoIX7-F5w92HNfIH0YRFr4
link.rule.ids 230,315,733,786,790,891,1382,27957,27958,46329,46753,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcCFV3ksFDAS4kS2iR9JzK2qWpbSVhXaot6iceywC21SdZNDOXHnwm_klzB2HrCUA0LcItmeaCYz8Tee8QwhzxOhIQUQQRGaIhCxVQHIXAamYCLlRQzKN4PZP4gnR2L3WB6vkNf9XZi2PsRw4OYsw_-vnYG7A-nOyl21gY_e969c_CDiYxbj3qiukKto-dL7Vu_Yz3BCqNRQNjyRUXeHDuls_InK8h51CXhezp_8Fdf6jWnnJpn1LLX5KJ_GTa3H-effqj3-B55vkRsdeKWbrbbdJiu2vEPWNkt03E8v6At62C6rPlyska_v5zWczku6RaE0dJsuXP_QNlfdKQOdASL28wV1oQOXC0vBwFk3VlfUlqZxTT8s7btYUCTmWwouXlGgpmr0if3-5ZtGtsxLinNNhUpr8bnLvz-xhvquJHfJ0c72dGsSdJ0fghwRJQsQk7mIkAIEN3kujQJbsEJZLoxWOhchSJsUxpgkThiCztTkwC1wCN3_SUb8Hlktq9I-IJRra6McINQpEyYtINdGyNAWGpFjzMIRCfpvnZ21BT6y1jHiWS_tzEk7a6U9Iuu9QmSduS8yhwpj56xFI_JsGEaenQihtFXj5nDUfslVOiL3W_0ZXogYSyHOQ-LJkmYNE1wR8OWRcj7zxcCFwxkSVzKvOH_FQzbdPYzDhD38l0VPybXJdH8v23tz8PYRuY4zfCZTJNfJan3e2McI0mr9xBvgD5X5PD8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRAXXuWxUMBIiBPZJn4kMbeq7aoUqFaoRb1F49huF9pk1U0O5cSdC7-RX8I4L1jKAcEtkscTjfON_TkezxDyPBEaUgARuNC4QMRWBSBzGRjHRMpdDKopBvNuP949FHtH8miFTPq7MG1-iOGHm_eMZr72Dj43rnNyn2zgY7P1L_3xQcTHLMalUV0hV0XMmUf39nv28zQhVGrIGp7IqLtCh3o2_qRleYm6xDsvh0_-SmubdWlykxz3FrXhKJ_GdaXH-effkj3-v8m3yI2OutLNFmu3yYot7pC1zQK37WcX9AWdtt3K44s18vXDrIKzWUG3KBSG7tCFrx7aRqp7KNATQL5-vqD-4MBHwlIwMO_aqpLawtS-5IelfQ0LisqagoKLVxSoKWt9ar9_-abRKvOSoqwpEbIWn7vo-1NraFOT5C45nOwcbO0GXd2HIEc-yQJkZP48SAFSmzyXRoF1zCnLhdFK5yIEaRNnjEnihCHlTE0O3AKH0M9OMuL3yGpRFvYBoVxbG-UAoU6ZMKmDXBshQ-s08saYhSMS9J86m7fpPbJ2W8SzfrQzP9pZO9ojst7jIeucfZF5Thj7rVo0Is-GZrTZDyEUtqy9DEfsS67SEbnfwmd4ITIshSwPlSdLwBoEfArw5ZZidtKkAheeZUjsyRrc_JUN2cHeNA4T9vBfOj0l16bbk-zt6_03j8h1FGjCmCK5Tlar89o-RoZW6SeN-_0Axqc67g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+C+and+E+supplementation+hampers+cellular+adaptation+to+endurance+training+in+humans%3A+a+double-blind%2C+randomised%2C+controlled+trial&rft.jtitle=The+Journal+of+physiology&rft.au=Paulsen%2C+Goeran&rft.au=Cumming%2C+Kristoffer+T&rft.au=Holden%2C+Geir&rft.au=Hallen%2C+Jostein&rft.date=2014-04-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=592&rft.issue=8&rft.spage=1887&rft.epage=1901&rft_id=info:doi/10.1113%2Fjphysiol.2013.267419&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon