Targeting signaling factors for degradation, an emerging mechanism for TRAF functions
Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of in...
Saved in:
Published in | Immunological reviews Vol. 266; no. 1; pp. 56 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB (NF‐κB)‐inducing kinase (NIK), an action required for the control of NIK‐regulated non‐canonical NF‐κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK‐binding adapter. Recent evidence suggests that the cIAP‐TRAF2‐TRAF3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. |
---|---|
AbstractList | Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB (NF‐κB)‐inducing kinase (NIK), an action required for the control of NIK‐regulated non‐canonical NF‐κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK‐binding adapter. Recent evidence suggests that the cIAP‐TRAF2‐TRAF3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of NF-κB-inducing kinase (NIK), an action required for the control of NIK-regulated noncanonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. Tumor necrosis factor receptor ( TNFR )‐associated factors ( TRAF s) form a family of proteins that are best known as signaling adapters of TNFR s. However, emerging evidence suggests that TRAF proteins, particularly TRAF 2 and TRAF 3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF 2 and TRAF 3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB ( NF ‐κB)‐inducing kinase ( NIK ), an action required for the control of NIK ‐regulated non‐canonical NF ‐κB signaling pathway. TRAF 2 and TRAF 3 form a complex with the E3 ubiquitin ligase cIAP ( cIAP 1 or cIAP 2), in which TRAF 3 serves as the NIK ‐binding adapter. Recent evidence suggests that the cIAP ‐ TRAF 2‐ TRAF 3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system. |
Author | Sun, Shao-Cong Yang, Xiao-Dong |
AuthorAffiliation | 3 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA 1 Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China 2 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA |
AuthorAffiliation_xml | – name: 1 Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China – name: 3 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA – name: 2 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA |
Author_xml | – sequence: 1 givenname: Xiao-Dong surname: Yang fullname: Yang, Xiao-Dong organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China – sequence: 2 givenname: Shao-Cong surname: Sun fullname: Sun, Shao-Cong email: ssun@mdanderson.org organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26085207$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVFPFDEUhRsDkQV94A-QeZTEgd522pm-mMBGkATQ4AK-NZ1OZ6jOtNjOqvx7u7uwERPty71Jv3PuzT3baMN5ZxDaBXwA6R3aIRwAoQAv0AQ4xjnm7MsGmmDALCeV4FtoO8avGENJSfESbRGOK0ZwOUHXMxU6M1rXZdF2TvWLrlV69CFmrQ9ZY7qgGjVa795mymVmMKFbQIPRd8rZOCyx2dXRSdbOnV6A8RXabFUfzevHuoOuT97Pph_y84-nZ9Oj81wzEJCTtiHaiEYbVtcFBqEEA04Ja6EhCrMq9UJA1SgwTUM54yWtalAi1Zrwiu6gdyvf-3k9mOTjxqB6eR_soMKD9MrK5z_O3snO_5BFUdJSiGTw5tEg-O9zE0c52KhN3ytn_DxK4AITwIWgCd37c9Z6yNMtE7C_AnTwMQbTrhHAcpGTTDnJZU6JPfyL1XZcHjmtafv_KX7a3jz821qeXVw9KfKVwsbR_ForVPgm0_1KJm8vT-WMHt8cf5oS-Zn-Bs0-s18 |
CitedBy_id | crossref_primary_10_1007_s00417_020_04956_6 crossref_primary_10_3389_fimmu_2022_781003 crossref_primary_10_1038_s41392_022_00966_4 crossref_primary_10_1038_s41392_020_00421_2 crossref_primary_10_1038_s41419_021_04445_6 crossref_primary_10_1515_bmc_2017_0008 crossref_primary_10_3390_ijms26072941 crossref_primary_10_1186_s12935_020_01595_z crossref_primary_10_3389_fimmu_2018_01986 crossref_primary_10_1172_jci_insight_133652 crossref_primary_10_1038_srep23938 crossref_primary_10_1016_j_bbi_2020_04_064 crossref_primary_10_3389_fimmu_2018_02111 crossref_primary_10_1016_j_heliyon_2024_e32904 crossref_primary_10_1097_CAD_0000000000000943 crossref_primary_10_3390_biom14050510 crossref_primary_10_1007_s10753_018_0828_1 crossref_primary_10_1038_s41584_023_01002_7 crossref_primary_10_3390_biomedicines6020043 crossref_primary_10_1007_s12272_021_01330_w crossref_primary_10_1016_j_cyto_2024_156824 crossref_primary_10_1371_journal_pone_0233192 crossref_primary_10_1186_s13059_018_1498_x crossref_primary_10_3390_v15112229 crossref_primary_10_1016_j_imlet_2018_01_010 crossref_primary_10_1128_jvi_00791_22 crossref_primary_10_32604_or_2023_044473 crossref_primary_10_1007_s40495_017_0117_y crossref_primary_10_1016_j_it_2020_10_013 crossref_primary_10_1007_s00223_017_0349_1 crossref_primary_10_1016_j_molmed_2019_02_005 crossref_primary_10_1007_s12672_023_00703_5 crossref_primary_10_1016_j_fsi_2019_12_024 crossref_primary_10_1016_j_isci_2020_101665 crossref_primary_10_3389_fmicb_2019_01302 crossref_primary_10_1016_j_fsi_2022_01_018 crossref_primary_10_3390_cells10082068 crossref_primary_10_1186_s12917_023_03758_2 crossref_primary_10_1016_j_bbi_2019_01_028 crossref_primary_10_1016_j_cbd_2022_100968 crossref_primary_10_1017_S0031182021000548 crossref_primary_10_31083_j_fbl2811316 crossref_primary_10_1007_s00018_021_03816_8 crossref_primary_10_1016_j_jacbts_2021_12_002 crossref_primary_10_3390_ani11020468 crossref_primary_10_1016_j_clinbiochem_2016_08_010 crossref_primary_10_1016_j_biocel_2022_106193 crossref_primary_10_1016_j_molcel_2018_05_016 crossref_primary_10_1155_2022_4576679 crossref_primary_10_1161_JAHA_122_028185 crossref_primary_10_1681_ASN_2019111206 crossref_primary_10_15252_embr_201745176 crossref_primary_10_1038_s41420_023_01675_9 crossref_primary_10_1038_srep42980 crossref_primary_10_1007_s00018_016_2191_4 crossref_primary_10_1093_plcell_koac035 crossref_primary_10_3390_genes7090060 crossref_primary_10_1016_j_fsi_2020_06_022 crossref_primary_10_1096_fj_202302307R crossref_primary_10_1016_j_bcp_2016_03_009 crossref_primary_10_3389_fimmu_2018_01849 crossref_primary_10_1016_j_fsi_2020_03_049 crossref_primary_10_1038_s41467_018_05168_7 crossref_primary_10_1016_j_jbc_2022_102036 crossref_primary_10_1038_cr_2016_40 crossref_primary_10_1172_JCI95720 crossref_primary_10_1186_s12951_025_03246_9 crossref_primary_10_4103_sjamf_sjamf_104_20 crossref_primary_10_1007_s00005_018_0522_x crossref_primary_10_1097_SHK_0000000000002514 crossref_primary_10_3390_nu14102120 crossref_primary_10_1186_s13045_022_01291_7 crossref_primary_10_1016_j_bbamcr_2017_02_011 crossref_primary_10_1097_CMR_0000000000000452 crossref_primary_10_1016_j_semcancer_2016_07_003 crossref_primary_10_3389_fimmu_2018_01999 crossref_primary_10_3389_fmolb_2023_1168250 crossref_primary_10_1038_s41467_018_06756_3 crossref_primary_10_1038_s41423_020_00583_7 crossref_primary_10_1111_imr_12317 crossref_primary_10_1111_jipb_13182 crossref_primary_10_1038_s41419_024_06570_4 crossref_primary_10_4049_jimmunol_1501610 crossref_primary_10_1038_s41388_018_0411_0 crossref_primary_10_3390_cancers12071760 crossref_primary_10_1038_s41419_021_03887_2 crossref_primary_10_1128_mBio_00808_19 crossref_primary_10_3389_fimmu_2021_769167 crossref_primary_10_3892_or_2022_8335 crossref_primary_10_1182_bloodadvances_2020003597 crossref_primary_10_3389_fimmu_2018_02161 |
Cites_doi | 10.1101/cshperspect.a000109 10.1016/j.immuni.2010.08.014 10.1073/pnas.1410124111 10.1074/jbc.M708690200 10.1016/j.cytogfr.2013.12.002 10.1128/JVI.00323-12 10.1083/jcb.200801010 10.1038/nm.3111 10.1182/blood-2010-10-312793 10.1016/j.molcel.2010.03.009 10.1038/ncomms6930 10.1182/blood-2008-07-165456 10.1038/nri1733 10.1182/blood-2008-12-192914 10.4049/jimmunol.1303237 10.1111/j.1600-065X.2010.00942.x 10.1073/pnas.0707959105 10.1016/j.cell.2007.10.030 10.1146/annurev.biochem.78.101807.093809 10.1182/blood-2014-06-578542 10.1074/jbc.M403286200 10.1038/ni842 10.1016/S1074-7613(00)80391-X 10.1074/jbc.M306708200 10.1038/nature04374 10.1172/JCI58644 10.4049/jimmunol.1401548 10.4049/jimmunol.1000290 10.1074/jbc.M111.221853 10.1016/j.ajhg.2013.09.009 10.1016/j.immuni.2008.01.009 10.1016/j.cell.2007.10.037 10.1038/leu.2011.309 10.4049/jimmunol.168.11.5491 10.4161/cc.5.8.2637 10.1182/blood-2011-06-359166 10.1016/S0021-9258(19)79059-0 10.1038/cdd.2009.80 10.1016/j.coph.2013.05.017 10.1084/jem.20011544 10.1074/jbc.M110.105874 10.1074/jbc.M304266200 10.7150/ijms.5457 10.1038/ni.1990 10.1084/jem.20061166 10.1161/CIRCRESAHA.111.300119 10.4049/jimmunol.1301328 10.7554/eLife.00785 10.1172/JCI44943 10.1038/nri1001 10.1038/ni.1676 10.1038/ni.1819 10.1084/jem.20122135 10.1371/journal.pone.0102120 10.1073/pnas.0805186105 10.1016/S0092-8674(00)81409-9 10.1084/jem.20110128 10.1007/978-0-387-70630-6_3 10.1111/j.1600-065X.2012.01100.x 10.1146/annurev.immunol.23.021704.115839 10.4049/jimmunol.1200021 10.1016/j.immuni.2004.09.011 10.1128/JVI.79.14.8948-8959.2005 10.1038/385540a0 10.1186/1750-2187-8-7 10.1016/S1359-6101(03)00021-2 10.1074/jbc.M413634200 10.4049/jimmunol.173.3.1849 10.1016/j.immuni.2014.02.006 10.1038/nri3325 10.1038/nri1462 10.1080/08916930600833390 10.1084/jem.193.8.943 10.1042/bj3570617 10.1073/pnas.230436397 10.1016/j.coi.2014.05.009 10.1016/B978-0-12-801430-1.00002-0 10.4049/jimmunol.179.11.7514 10.1038/onc.2013.543 10.1038/cr.2010.170 10.1084/jem.20100703 10.1016/0092-8674(95)90149-3 10.1073/pnas.0603493103 10.1016/j.bcp.2006.08.007 10.4049/jimmunol.181.1.354 10.1016/S1074-7613(00)80497-5 10.1074/jbc.M802729200 10.1016/j.ccr.2007.07.003 10.1016/S1471-4906(02)02302-5 10.1038/nature11831 10.1074/jbc.M310969200 10.1111/j.1600-065X.2011.01088.x 10.1016/S1097-2765(01)00187-3 10.1084/jem.20080124 10.1038/nsmb.1873 10.1128/MCB.05033-11 10.1084/jem.194.8.1021 10.1038/nri2998 10.1084/jem.182.6.2091 10.1101/gad.183434.111 10.1016/j.immuni.2007.11.022 10.1073/pnas.1204032109 10.1182/blood-2009-09-243535 10.1016/j.immuni.2007.11.021 10.1074/jbc.M112.350538 10.1093/jnci/djs235 10.1007/978-0-387-70630-6_4 10.1084/jem.20080108 10.1016/0092-8674(94)90532-0 10.1016/j.ccr.2007.07.004 10.1038/leu.2009.149 10.1074/jbc.M113.526269 10.1074/jbc.M114.587808 10.1111/j.1365-2141.2012.09113.x 10.1038/nature04369 10.1038/nri2526 10.1074/jbc.M301863200 10.1084/jem.20131019 10.1016/j.molcel.2009.09.037 10.1038/ni.1678 10.1126/science.1069017 10.1101/gad.1329805 10.1182/blood-2014-10-602714 10.1073/pnas.1109427108 10.1016/j.cell.2006.12.033 10.1038/nature03308 10.1016/j.immuni.2007.07.012 10.4049/jimmunol.164.12.6166 10.1016/j.molimm.2009.07.029 10.1038/ni.2944 10.1074/jbc.M510891200 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/imr.12311 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1600-065X |
EndPage | 71 |
ExternalDocumentID | PMC4473799 26085207 10_1111_imr_12311 IMR12311 ark_67375_WNG_T3BVBPC2_S |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cancer Prevention Research Institute of Texas funderid: RP140244 – fundername: US National Institutes of Health funderid: AI057555; AI064639; GM84459; AI104519 – fundername: NIAID NIH HHS grantid: AI104519 – fundername: NIAID NIH HHS grantid: R01 AI064639 – fundername: NIAID NIH HHS grantid: AI057555 – fundername: NIAID NIH HHS grantid: R01 AI104519 – fundername: NIAID NIH HHS grantid: R01 AI057555 – fundername: NIGMS NIH HHS grantid: GM84459 – fundername: NIAID NIH HHS grantid: R37 AI064639 – fundername: NIAID NIH HHS grantid: AI064639 – fundername: NIGMS NIH HHS grantid: R01 GM084459 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5191-2fd2ce9dce5bb4019a9516325f1d2a0586329918da1edd3656738b1a9673b2683 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 1600-065X |
IngestDate | Thu Aug 21 13:59:11 EDT 2025 Fri Jul 11 02:00:13 EDT 2025 Mon Jul 21 05:45:58 EDT 2025 Tue Jul 01 00:20:58 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Wed Jan 22 16:59:24 EST 2025 Wed Oct 30 09:49:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NIK TRAF2 cIAP TRAF3 inflammation non-canonical NF-κB |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5191-2fd2ce9dce5bb4019a9516325f1d2a0586329918da1edd3656738b1a9673b2683 |
Notes | US National Institutes of Health - No. AI057555; No. AI064639; No. GM84459; No. AI104519 ArticleID:IMR12311 Cancer Prevention Research Institute of Texas - No. RP140244 istex:8449667F2482A66CDDDA0CB46A8A92FC28D92BBD ark:/67375/WNG-T3BVBPC2-S ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/imr.12311 |
PMID | 26085207 |
PQID | 1690210493 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4473799 proquest_miscellaneous_1690210493 pubmed_primary_26085207 crossref_primary_10_1111_imr_12311 crossref_citationtrail_10_1111_imr_12311 wiley_primary_10_1111_imr_12311_IMR12311 istex_primary_ark_67375_WNG_T3BVBPC2_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Zapata JM, Llobet D, Krajewska M, Lefebvre S, Kress CL, Reed JC. Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood 2009;113:4595-4603. Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282. Sanjo H, Zajonc DM, Braden R, Norris PS, Ware CF. Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 2010;285:17148-17155. Fotin-Mleczek M, et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J Biol Chem 2004;279:677-685. Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 2008;105:3503-3508. Saha SK, Cheng G. TRAF3: a new regulator of type I interferons. Cell Cycle 2006;5:804-807. Andreakos E, Williams RO, Wales J, Foxwell BM, Feldmann M. Activation of NF-kappaB by the intracellular expression of NF-kappaB-inducing kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci USA 2006;103:14459-14464. Chen K, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 2013;93:812-824. Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012;26:203-234. Jin J, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun 2015;6:5930. Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013;8:7. Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996;5:407-415. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-555. Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243-1252. Chan TD, Gardam S, Gatto D, Turner VM, Silke J, Brink R. In vivo control of B-cell survival and antigen-specific B-cell responses. Immunol Rev 2010;237:90-103. Hacker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011;11:457-468. Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439:208-211. Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2009;11:11 19D. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. Adv Exp Med Biol 2007;597:48-59. Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011;186:143-155. Yi Z, Lin WW, Stunz LL, Bishop GA. Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2014;25:147-156. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409. Olashaw NE. Inducible activation of RelB in fibroblasts. J Biol Chem 1996;271:30307-30310. Sanjabi S, et al. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005;19:2138-2151. de Jong SJ, Albrecht JC, Giehler F, Kieser A, Sticht H, Biesinger B. Noncanonical NF-kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3-binding motif. Sci Signal 2013;6:ra27. Jin J, et al. Noncanonical NF-kappaB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 2014;40:342-354. Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133-146. Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173. Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045. Hagemann T, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008;205:1261-1268. Yeh WC, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715-725. Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943-954. Brower V. Macrophages: cancer therapy's double-edged sword. J Natl Cancer Inst 2012;104:649-652. Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci USA 2000;97:12705-12710. Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012. Nagel I, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009;23:2153-2155. Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390. Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev 2012;246:125-140. Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693. Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci USA 2012;109:14122-14127. Lin WJ, et al. Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity. Proc Natl Acad Sci USA 2011;108:18354-18359. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964. Lee S, Challa-Malladi M, Bratton SB, Wright CW. nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem 2014;289:30680-30689. le Luong A, et al. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013;112:1583-1591. Heinemann S, Biesinger B, Fleckenstein B, Albrecht JC. NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6. J Biol Chem 2006;281:8565-8572. Watts TH. Tnf/Tnfr family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23-68. Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol 2014;545:35-65. Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453. Grumont R, et al. c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 2001;194:1021-1032. Authier H, et al. IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci USA 2014;111:14794-14799. Piao JH, et al. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011;286:17879-17888. Chang JH, et al. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med 2014;211:137-151. Vandenabeele P, Bertrand MJ. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 2012;12:833-844. Vince JE, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008;182:171-184. Lalani AI, et al. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. J Immunol 2015;194:334-348. Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131-144. Bushell KR, et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 2015;125:999-1005. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012;122:1164-1171. Yi Z, Lin WW, Stunz LL, Bishop GA. The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol 2014;15:866-874. Evans PC, et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003;278:23180-23186. Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994;78:681-692. Liu S, et al. MAVS recruits multiple ubiquitin E3 ligase 2004; 21 2010; 11 2012; 122 2011; 118 2011; 117 2013; 2 2010; 17 2006; 39 2004; 4 2014; 25 2009; 113 2008; 105 2012; 246 2013; 8 2012; 12 2003; 278 2013; 6 1997; 7 2008; 182 2009; 11 2007; 179 2010; 237 1997; 385 2010; 115 2004; 173 2008; 28 2000; 97 1994; 78 2013; 112 2014; 15 1998; 92 2012; 26 2006; 281 2006; 203 2010; 2 2013; 191 2009; 16 2011; 121 2005; 79 2014; 124 2010; 33 2010; 38 2012; 188 2010; 207 2015; 125 2002; 3 2013; 93 2010; 285 2012; 104 2014; 40 2007; 12 2012; 109 2009; 78 2014; 545 2015; 194 2005; 19 2004; 279 2005; 5 2013; 210 2014; 30 2006; 103 2015; 34 2009; 46 2012; 287 2006; 72 2002; 195 2008; 9 2003; 14 2011; 11 2011; 12 2005; 23 2014; 211 2013; 19 2011; 208 2013; 10 2013; 13 2007; 131 2003; 3 2011; 21 2000; 164 2014; 9 1996; 5 2011; 286 2007; 27 2014; 289 2009; 23 2015; 6 2006; 439 2007; 128 2002; 296 2005; 434 2011; 31 2006; 5 2008; 205 2014; 193 2014; 111 2008; 283 2008; 181 2005; 280 2009; 36 1995; 83 2007; 597 2011; 108 2001; 194 2012; 157 2001; 7 2001; 193 2002; 168 2002; 23 1996; 271 2009; 9 2013; 494 2001; 357 1995; 182 2012; 86 2011; 186 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_125_1 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_91_1 Olashaw NE (e_1_2_14_78_1) 1996; 271 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_120_1 e_1_2_14_7_1 Shen J (e_1_2_14_105_1) 2013; 6 e_1_2_14_108_1 e_1_2_14_124_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 e_1_2_14_131_1 e_1_2_14_116_1 e_1_2_14_135_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 Ha H (e_1_2_14_2_1) 2009; 11 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_123_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_130_1 e_1_2_14_117_1 e_1_2_14_134_1 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_9_1 e_1_2_14_106_1 Jong SJ (e_1_2_14_53_1) 2013; 6 e_1_2_14_126_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_118_1 e_1_2_14_133_1 |
References_xml | – reference: Watts TH. Tnf/Tnfr family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23-68. – reference: He JQ, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006;203:2413-2418. – reference: Yi Z, Lin WW, Stunz LL, Bishop GA. Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2014;25:147-156. – reference: Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012;26:203-234. – reference: Bishop GA. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol 2004;4:775-786. – reference: Jin W, Zhou XF, Yu J, Cheng X, Sun SC. Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK. Blood 2009;113:6603-6610. – reference: Lee CE, et al. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood 2014;124:2964-2972. – reference: Piao JH, et al. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011;286:17879-17888. – reference: Annunziata CM, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115-130. – reference: Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008;28:100-111. – reference: Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012;122:1164-1171. – reference: Lalani AI, et al. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. J Immunol 2015;194:334-348. – reference: Shen J, Qiao YQ, Ran ZH, Wang TR. Up-regulation and pre-activation of TRAF3 and TRAF5 in inflammatory bowel disease. Int J Med Sci 2013;10:156-163. – reference: Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279:26243-26250. – reference: Ganeff C, et al. Induction of the alternative NF-kappaB pathway by lymphotoxin alphabeta (LTalphabeta) relies on internalization of LTbeta receptor. Mol Cell Biol 2011;31:4319-4334. – reference: Moore CR, Liu Y, Shao C, Covey LR, Morse HC 3rd, Xie P. Specific deletion of TRAF3 in B lymphocytes leads to B-lymphoma development in mice. Leukemia 2012;26:1122-1127. – reference: Harhaj EW, Dixit VM. Regulation of NF-kappaB by deubiquitinases. Immunol Rev 2012;246:107-124. – reference: Jin J, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun 2015;6:5930. – reference: Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci USA 2008;105:10883-10888. – reference: Saha SK, Cheng G. TRAF3: a new regulator of type I interferons. Cell Cycle 2006;5:804-807. – reference: Chan TD, Gardam S, Gatto D, Turner VM, Silke J, Brink R. In vivo control of B-cell survival and antigen-specific B-cell responses. Immunol Rev 2010;237:90-103. – reference: Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 "super repressor". J Immunol 2007;179:7514-7522. – reference: Schjerven H, Tran TN, Brandtzaeg P, Johansen FE. De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. J Immunol 2004;173:1849-1857. – reference: Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693. – reference: Basak S, et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007;128:369-381. – reference: Xiao Y, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 2013;19:595-602. – reference: Krausgruber T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011;12:231-238. – reference: Hagemann T, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008;205:1261-1268. – reference: Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399-434. – reference: Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998;92:819-828. – reference: Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 1995;182:2091-2096. – reference: Wicovsky A, et al. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ 2009;16:1445-1459. – reference: Vince JE, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008;182:171-184. – reference: Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014;30:24-31. – reference: Chen K, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 2013;93:812-824. – reference: Otto C, et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 2012;157:702-708. – reference: Fotin-Mleczek M, et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J Biol Chem 2004;279:677-685. – reference: Jin J, et al. Noncanonical NF-kappaB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 2014;40:342-354. – reference: Liu S, Chen ZJ. Expanding role of ubiquitination in NF-κB signaling. Cell Res 2011;21:6-21. – reference: Takaoka A, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434:243-249. – reference: Yi Z, Stunz LL, Bishop GA. TNF receptor associated factor 3 plays a key role in development and function of invariant natural killer T cells. J Exp Med 2013;210:1079-1086. – reference: Au PY, Yeh WC. Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 2007;597:32-47. – reference: Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996;5:407-415. – reference: Yi Z, Stunz LL, Lin WW, Bishop GA. TRAF3 regulates homeostasis of CD8+ central memory T cells. PLoS ONE 2014;9:e102120. – reference: Grumont R, et al. c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 2001;194:1021-1032. – reference: Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol 2013;13:595-601. – reference: Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133-146. – reference: Perez de Diego R, et al. Human TRAF3 adapter molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010;33:400-411. – reference: Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131-144. – reference: Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013;8:7. – reference: Evans PC, et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003;278:23180-23186. – reference: Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453. – reference: Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173. – reference: Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 2008;105:3503-3508. – reference: Yi Z, Lin WW, Stunz LL, Bishop GA. The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol 2014;15:866-874. – reference: Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401. – reference: Vandenabeele P, Bertrand MJ. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 2012;12:833-844. – reference: Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943-954. – reference: Shen J, Qiao Y, Ran Z, Wang T, Xu J, Feng J. Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse. Int J Clin Exp Pathol 2013;6:917-925. – reference: Andreakos E, Williams RO, Wales J, Foxwell BM, Feldmann M. Activation of NF-kappaB by the intracellular expression of NF-kappaB-inducing kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci USA 2006;103:14459-14464. – reference: Lind EF, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol 2008;181:354-363. – reference: Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J Exp Med 2002;195:835-844. – reference: Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 1997;385:540-544. – reference: Yeh WC, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715-725. – reference: Michel M, Wilhelmi I, Schultz AS, Preussner M, Heyd F. Activation-induced tumor necrosis factor receptor-associated factor 3 (Traf3) alternative splicing controls the noncanonical nuclear factor kappaB pathway and chemokine expression in human T cells. J Biol Chem 2014;289:13651-13660. – reference: Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045. – reference: Brower V. Macrophages: cancer therapy's double-edged sword. J Natl Cancer Inst 2012;104:649-652. – reference: Hofmann J, Mair F, Greter M, Schmidt-Supprian M, Becher B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 2011;208:1917-1929. – reference: Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253-267. – reference: Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051. – reference: Chang JH, et al. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med 2014;211:137-151. – reference: Sanjabi S, et al. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005;19:2138-2151. – reference: Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629-642. – reference: Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378. – reference: Lee S, Challa-Malladi M, Bratton SB, Wright CW. nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem 2014;289:30680-30689. – reference: Vallabhapurapu S, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-1370. – reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113. – reference: Heinemann S, Biesinger B, Fleckenstein B, Albrecht JC. NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6. J Biol Chem 2006;281:8565-8572. – reference: Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011;186:143-155. – reference: Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390. – reference: Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M. Different modes of ubiquitination of the adapter TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010;11:70-75. – reference: le Luong A, et al. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013;112:1583-1591. – reference: O'Sullivan BJ, Thomas R. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-kappaB. J Immunol 2002;168:5491-5498. – reference: Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 2005;280:10018-10024. – reference: He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. Adv Exp Med Biol 2007;597:48-59. – reference: Murray SE, et al. NF-kappaB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. J Clin Invest 2011;121:4775-4786. – reference: Nagel I, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009;23:2153-2155. – reference: Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2010;2:a000109. – reference: Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010;17:939-947. – reference: Yu J, Zhou X, Nakaya M, Jin W, Cheng X, Sun SC. T cell-intrinsic function of the noncanonical NF-kappaB pathway in the regulation of GM-CSF expression and experimental autoimmune encephalomyelitis. Pathogenesis. J Immunol 2014;193:422-430. – reference: Olashaw NE. Inducible activation of RelB in fibroblasts. J Biol Chem 1996;271:30307-30310. – reference: Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-555. – reference: Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 2009;36:315-325. – reference: Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 2009;9:271-285. – reference: Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010;115:3541-3552. – reference: Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ. Isolation and characterization of two novel A20-like proteins. Biochem J 2001;357:617-623. – reference: Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012. – reference: Sanjo H, Zajonc DM, Braden R, Norris PS, Ware CF. Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 2010;285:17148-17155. – reference: Liu P, Li K, Garofalo RP, Brasier AR. Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. J Biol Chem 2008;283:23169-23178. – reference: Choudhary S, Boldogh S, Garofalo R, Jamaluddin M, Brasier AR. Respiratory syncytial virus influences NF-kappaB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-kappaB2. J Virol 2005;79:8948-8959. – reference: Fong CH, et al. An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation. J Exp Med 2008;205:1269-1276. – reference: Häcker H, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006;439:204-207. – reference: Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439:208-211. – reference: Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72:1161-1179. – reference: McPherson AJ, Snell LM, Mak TW, Watts TH. Opposing roles for TRAF1 in the alternative versus classical NF-kappaB pathway in T cells. J Biol Chem 2012;287:23010-23019. – reference: Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2009;11:11 19D. – reference: Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adapters and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14:193-209. – reference: Hacker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011;11:457-468. – reference: Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A. A thymic precursor to the NK T cell lineage. Science 2002;296:553-555. – reference: Bushell KR, et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 2015;125:999-1005. – reference: Hacker H, Chi L, Rehg JE, Redecke V. NIK prevents the development of hypereosinophilic syndrome-like disease in mice independent of IKKalpha activation. J Immunol 2012;188:4602-4610. – reference: Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409. – reference: Ruckle A, Haasbach E, Julkunen I, Planz O, Ehrhardt C, Ludwig S. The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-kappaB pathway and p52/RelB-dependent gene expression in lung epithelial cells. J Virol 2012;86:10211-10217. – reference: de Jong SJ, Albrecht JC, Giehler F, Kieser A, Sticht H, Biesinger B. Noncanonical NF-kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3-binding motif. Sci Signal 2013;6:ra27. – reference: Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243-1252. – reference: Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282. – reference: Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol 2014;545:35-65. – reference: Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964. – reference: Burchill MA, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008;28:112-121. – reference: Shen RR, et al. TRAF2 is an NF-kappaB-activating oncogene in epithelial cancers. Oncogene 2015;34:209-216. – reference: Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3:958-965. – reference: Hu H, et al. OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature 2013;494:371-374. – reference: Liu S, et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2013;2:e00785. – reference: Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci USA 2012;109:14122-14127. – reference: Rossi D, et al. Alteration of BIRC3 and multiple other NF-kappaB pathway genes in splenic marginal zone lymphoma. Blood 2011;118:4930-4934. – reference: Lin WJ, et al. Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity. Proc Natl Acad Sci USA 2011;108:18354-18359. – reference: Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci USA 2000;97:12705-12710. – reference: Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994;78:681-692. – reference: Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev 2012;246:125-140. – reference: Rowe AM, Murray SE, Raue HP, Koguchi Y, Slifka MK, Parker DC. A cell-intrinsic requirement for NF-kappaB-inducing kinase in CD4 and CD8 T cell memory. J Immunol 2013;191:3663-3672. – reference: Authier H, et al. IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci USA 2014;111:14794-14799. – reference: Varfolomeev E, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007;131:669-681. – reference: Zapata JM, Llobet D, Krajewska M, Lefebvre S, Kress CL, Reed JC. Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood 2009;113:4595-4603. – reference: Zhu S, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010;207:2647-2662. – volume: 115 start-page: 3541 year: 2010 end-page: 3552 article-title: Classical and/or alternative NF‐kappaB pathway activation in multiple myeloma publication-title: Blood – volume: 287 start-page: 23010 year: 2012 end-page: 23019 article-title: Opposing roles for TRAF1 in the alternative versus classical NF‐kappaB pathway in T cells publication-title: J Biol Chem – volume: 72 start-page: 1161 year: 2006 end-page: 1179 article-title: The alternative NF‐kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development publication-title: Biochem Pharmacol – volume: 31 start-page: 4319 year: 2011 end-page: 4334 article-title: Induction of the alternative NF‐kappaB pathway by lymphotoxin alphabeta (LTalphabeta) relies on internalization of LTbeta receptor publication-title: Mol Cell Biol – volume: 26 start-page: 1122 year: 2012 end-page: 1127 article-title: Specific deletion of TRAF3 in B lymphocytes leads to B‐lymphoma development in mice publication-title: Leukemia – volume: 17 start-page: 939 year: 2010 end-page: 947 article-title: Lys11‐linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne publication-title: Nat Struct Mol Biol – volume: 78 start-page: 681 year: 1994 end-page: 692 article-title: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor publication-title: Cell – volume: 8 start-page: 7 year: 2013 article-title: TRAF molecules in cell signaling and in human diseases publication-title: J Mol Signal – volume: 195 start-page: 835 year: 2002 end-page: 844 article-title: A natural killer T (NKT) cell developmental pathway involving a thymus‐dependent NK1.1(‐)CD4(+) CD1d‐dependent precursor stage publication-title: J Exp Med – volume: 434 start-page: 243 year: 2005 end-page: 249 article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors publication-title: Nature – volume: 13 start-page: 595 year: 2013 end-page: 601 article-title: Tumour‐associated macrophages and cancer publication-title: Curr Opin Pharmacol – volume: 128 start-page: 369 year: 2007 end-page: 381 article-title: A fourth IkappaB protein within the NF‐kappaB signaling module publication-title: Cell – volume: 7 start-page: 715 year: 1997 end-page: 725 article-title: Early lethality, functional NF‐kappaB activation, and increased sensitivity to TNF‐induced cell death in TRAF2‐deficient mice publication-title: Immunity – volume: 3 start-page: 133 year: 2003 end-page: 146 article-title: Interleukin‐12 and the regulation of innate resistance and adaptive immunity publication-title: Nat Rev Immunol – volume: 286 start-page: 17879 year: 2011 end-page: 17888 article-title: Tumor necrosis factor receptor‐associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease publication-title: J Biol Chem – volume: 113 start-page: 4595 year: 2009 end-page: 4603 article-title: Lymphocyte‐specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer publication-title: Blood – volume: 11 start-page: 70 year: 2010 end-page: 75 article-title: Different modes of ubiquitination of the adapter TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines publication-title: Nat Immunol – volume: 108 start-page: 18354 year: 2011 end-page: 18359 article-title: Crucial role for TNF receptor‐associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 12705 year: 2000 end-page: 12710 article-title: Selective requirement for c‐Rel during IL‐12 P40 gene induction in macrophages publication-title: Proc Natl Acad Sci USA – volume: 104 start-page: 649 year: 2012 end-page: 652 article-title: Macrophages: cancer therapy's double‐edged sword publication-title: J Natl Cancer Inst – volume: 46 start-page: 3278 year: 2009 end-page: 3282 article-title: TNF receptor‐associated factor 1 is a positive regulator of the NF‐kappaB alternative pathway publication-title: Mol Immunol – volume: 357 start-page: 617 year: 2001 end-page: 623 article-title: Isolation and characterization of two novel A20‐like proteins publication-title: Biochem J – volume: 281 start-page: 8565 year: 2006 end-page: 8572 article-title: NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6 publication-title: J Biol Chem – volume: 16 start-page: 1445 year: 2009 end-page: 1459 article-title: TNF‐like weak inducer of apoptosis inhibits proinflammatory TNF receptor‐1 signaling publication-title: Cell Death Differ – volume: 23 start-page: 549 year: 2002 end-page: 555 article-title: Macrophage polarization: tumor‐associated macrophages as a paradigm for polarized M2 mononuclear phagocytes publication-title: Trends Immunol – volume: 38 start-page: 101 year: 2010 end-page: 113 article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation publication-title: Mol Cell – volume: 12 start-page: 833 year: 2012 end-page: 844 article-title: The role of the IAP E3 ubiquitin ligases in regulating pattern‐recognition receptor signalling publication-title: Nat Rev Immunol – volume: 131 start-page: 682 year: 2007 end-page: 693 article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis publication-title: Cell – volume: 9 start-page: 1364 year: 2008 end-page: 1370 article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK‐dependent alternative NF‐kappaB signaling publication-title: Nat Immunol – volume: 280 start-page: 10018 year: 2005 end-page: 10024 article-title: An atypical tumor necrosis factor (TNF) receptor‐associated factor‐binding motif of B cell‐activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF‐kappaB signaling pathway publication-title: J Biol Chem – volume: 83 start-page: 1243 year: 1995 end-page: 1252 article-title: The TNFR2‐TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins publication-title: Cell – volume: 9 start-page: 271 year: 2009 end-page: 285 article-title: The role of TNF superfamily members in T‐cell function and diseases publication-title: Nat Rev Immunol – volume: 86 start-page: 10211 year: 2012 end-page: 10217 article-title: The NS1 protein of influenza A virus blocks RIG‐I‐mediated activation of the noncanonical NF‐kappaB pathway and p52/RelB‐dependent gene expression in lung epithelial cells publication-title: J Virol – volume: 93 start-page: 812 year: 2013 end-page: 824 article-title: Germline mutations in NFKB2 implicate the noncanonical NF‐kappaB pathway in the pathogenesis of common variable immunodeficiency publication-title: Am J Hum Genet – volume: 6 start-page: 917 year: 2013 end-page: 925 article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse publication-title: Int J Clin Exp Pathol – volume: 279 start-page: 26243 year: 2004 end-page: 26250 article-title: Regulation of the NF‐kappaB‐inducing kinase by tumor necrosis factor receptor‐associated factor 3‐induced degradation publication-title: J Biol Chem – volume: 11 start-page: 457 year: 2011 end-page: 468 article-title: Expanding TRAF function: TRAF3 as a tri‐faced immune regulator publication-title: Nat Rev Immunol – volume: 125 start-page: 999 year: 2015 end-page: 1005 article-title: Genetic inactivation of TRAF3 in canine and human B‐cell lymphoma publication-title: Blood – volume: 494 start-page: 371 year: 2013 end-page: 374 article-title: OTUD7B controls non‐canonical NF‐kappaB activation through deubiquitination of TRAF3 publication-title: Nature – volume: 182 start-page: 171 year: 2008 end-page: 184 article-title: TWEAK‐FN14 signaling induces lysosomal degradation of a cIAP1‐TRAF2 complex to sensitize tumor cells to TNFalpha publication-title: J Cell Biol – volume: 164 start-page: 6166 year: 2000 end-page: 6173 article-title: M‐1/M‐2 macrophages and the Th1/Th2 paradigm publication-title: J Immunol – volume: 7 start-page: 401 year: 2001 end-page: 409 article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100 publication-title: Mol Cell – volume: 23 start-page: 2153 year: 2009 end-page: 2155 article-title: Biallelic inactivation of TRAF3 in a subset of B‐cell lymphomas with interstitial del(14)(q24.1q32.33) publication-title: Leukemia – volume: 439 start-page: 204 year: 2006 end-page: 207 article-title: Specificity in Toll‐like receptor signalling through distinct effector functions of TRAF3 and TRAF6 publication-title: Nature – volume: 289 start-page: 13651 year: 2014 end-page: 13660 article-title: Activation‐induced tumor necrosis factor receptor‐associated factor 3 (Traf3) alternative splicing controls the noncanonical nuclear factor kappaB pathway and chemokine expression in human T cells publication-title: J Biol Chem – volume: 78 start-page: 399 year: 2009 end-page: 434 article-title: RING domain E3 ubiquitin ligases publication-title: Annu Rev Biochem – volume: 121 start-page: 4775 year: 2011 end-page: 4786 article-title: NF‐kappaB‐inducing kinase plays an essential T cell‐intrinsic role in graft‐versus‐host disease and lethal autoimmunity in mice publication-title: J Clin Invest – volume: 279 start-page: 677 year: 2004 end-page: 685 article-title: Tumor necrosis factor receptor‐associated factor (TRAF) 1 regulates CD40‐induced TRAF2‐mediated NF‐kappaB activation publication-title: J Biol Chem – volume: 21 start-page: 6 year: 2011 end-page: 21 article-title: Expanding role of ubiquitination in NF‐κB signaling publication-title: Cell Res – volume: 111 start-page: 14794 year: 2014 end-page: 14799 article-title: IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: ra27 year: 2013 article-title: Noncanonical NF‐kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3‐binding motif publication-title: Sci Signal – volume: 112 start-page: 1583 year: 2013 end-page: 1591 article-title: Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination publication-title: Circ Res – volume: 181 start-page: 354 year: 2008 end-page: 363 article-title: Dendritic cells require the NF‐kappaB2 pathway for cross‐presentation of soluble antigens publication-title: J Immunol – volume: 203 start-page: 2413 year: 2006 end-page: 2418 article-title: Rescue of TRAF3‐null mice by p100 NF‐kappa B deficiency publication-title: J Exp Med – volume: 6 start-page: 5930 year: 2015 article-title: Proinflammatory TLR signalling is regulated by a TRAF2‐dependent proteolysis mechanism in macrophages publication-title: Nat Commun – volume: 205 start-page: 1269 year: 2008 end-page: 1276 article-title: An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation publication-title: J Exp Med – volume: 5 start-page: 953 year: 2005 end-page: 964 article-title: Monocyte and macrophage heterogeneity publication-title: Nat Rev Immunol – volume: 9 start-page: 1371 year: 2008 end-page: 1378 article-title: Noncanonical NF‐kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK publication-title: Nat Immunol – volume: 109 start-page: 14122 year: 2012 end-page: 14127 article-title: Activation of the noncanonical NF‐kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype publication-title: Proc Natl Acad Sci USA – volume: 237 start-page: 90 year: 2010 end-page: 103 article-title: control of B‐cell survival and antigen‐specific B‐cell responses publication-title: Immunol Rev – volume: 173 start-page: 1849 year: 2004 end-page: 1857 article-title: synthesized RelB mediates TNF‐induced up‐regulation of the human polymeric Ig receptor publication-title: J Immunol – volume: 21 start-page: 629 year: 2004 end-page: 642 article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF‐kappaB activation in mature B cells publication-title: Immunity – volume: 205 start-page: 1261 year: 2008 end-page: 1268 article-title: “Re‐educating” tumor‐associated macrophages by targeting NF‐kappaB publication-title: J Exp Med – volume: 246 start-page: 125 year: 2012 end-page: 140 article-title: The noncanonical NF‐kappaB pathway publication-title: Immunol Rev – volume: 385 start-page: 540 year: 1997 end-page: 544 article-title: MAP3K‐related kinase involved in NF‐κB induction by TNF, CD95 and IL‐1 publication-title: Nature – volume: 179 start-page: 7514 year: 2007 end-page: 7522 article-title: A novel mutation in the Nfkb2 gene generates an NF‐kappa B2 “super repressor” publication-title: J Immunol – volume: 27 start-page: 253 year: 2007 end-page: 267 article-title: Tumor necrosis factor receptor‐associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs publication-title: Immunity – volume: 28 start-page: 112 year: 2008 end-page: 121 article-title: Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire publication-title: Immunity – volume: 15 start-page: 866 year: 2014 end-page: 874 article-title: The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL‐2 publication-title: Nat Immunol – volume: 33 start-page: 400 year: 2010 end-page: 411 article-title: Human TRAF3 adapter molecule deficiency leads to impaired Toll‐like receptor 3 response and susceptibility to herpes simplex encephalitis publication-title: Immunity – volume: 117 start-page: 4041 year: 2011 end-page: 4051 article-title: Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response publication-title: Blood – volume: 14 start-page: 193 year: 2003 end-page: 209 article-title: The signaling adapters and pathways activated by TNF superfamily publication-title: Cytokine Growth Factor Rev – volume: 105 start-page: 3503 year: 2008 end-page: 3508 article-title: Control of canonical NF‐kappaB activation through the NIK‐IKK complex pathway publication-title: Proc Natl Acad Sci USA – volume: 278 start-page: 23180 year: 2003 end-page: 23186 article-title: A novel type of deubiquitinating enzyme publication-title: J Biol Chem – volume: 79 start-page: 8948 year: 2005 end-page: 8959 article-title: Respiratory syncytial virus influences NF‐kappaB‐dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF‐kappaB2 publication-title: J Virol – volume: 289 start-page: 30680 year: 2014 end-page: 30689 article-title: nuclear factor‐kappaB‐inducing kinase (NIK) contains an amino‐terminal inhibitor of apoptosis (IAP)‐binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c‐IAP1) publication-title: J Biol Chem – volume: 278 start-page: 36005 year: 2003 end-page: 36012 article-title: TWEAK induces NF‐kappaB2 p100 processing and long lasting NF‐kappaB activation publication-title: J Biol Chem – volume: 2 start-page: e00785 year: 2013 article-title: MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades publication-title: eLife – volume: 122 start-page: 1164 year: 2012 end-page: 1171 article-title: Innate immunity in the central nervous system publication-title: J Clin Invest – volume: 439 start-page: 208 year: 2006 end-page: 211 article-title: Critical role of TRAF3 in the Toll‐like receptor‐dependent and ‐independent antiviral response publication-title: Nature – volume: 207 start-page: 2647 year: 2010 end-page: 2662 article-title: Modulation of experimental autoimmune encephalomyelitis through TRAF3‐mediated suppression of interleukin 17 receptor signaling publication-title: J Exp Med – volume: 28 start-page: 391 year: 2008 end-page: 401 article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor publication-title: Immunity – volume: 5 start-page: 407 year: 1996 end-page: 415 article-title: Targeted disruption of TRAF3 leads to postnatal lethality and defective T‐dependent immune responses publication-title: Immunity – volume: 12 start-page: 231 year: 2011 end-page: 238 article-title: IRF5 promotes inflammatory macrophage polarization and TH1‐TH17 responses publication-title: Nat Immunol – volume: 12 start-page: 115 year: 2007 end-page: 130 article-title: Frequent engagement of the classical and alternative NF‐kappaB pathways by diverse genetic abnormalities in multiple myeloma publication-title: Cancer Cell – volume: 131 start-page: 669 year: 2007 end-page: 681 article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis publication-title: Cell – volume: 40 start-page: 342 year: 2014 end-page: 354 article-title: Noncanonical NF‐kappaB pathway controls the production of type I interferons in antiviral innate immunity publication-title: Immunity – volume: 182 start-page: 2091 year: 1995 end-page: 2096 article-title: Positive selection of mouse NK1 T cells by CD1‐expressing cortical thymocytes publication-title: J Exp Med – volume: 25 start-page: 147 year: 2014 end-page: 156 article-title: Roles for TNF‐receptor associated factor 3 (TRAF3) in lymphocyte functions publication-title: Cytokine Growth Factor Rev – volume: 113 start-page: 6603 year: 2009 end-page: 6610 article-title: Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK publication-title: Blood – volume: 157 start-page: 702 year: 2012 end-page: 708 article-title: Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma publication-title: Br J Haematol – volume: 210 start-page: 1079 year: 2013 end-page: 1086 article-title: TNF receptor associated factor 3 plays a key role in development and function of invariant natural killer T cells publication-title: J Exp Med – volume: 124 start-page: 2964 year: 2014 end-page: 2972 article-title: Autosomal‐dominant B‐cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100 publication-title: Blood – volume: 26 start-page: 203 year: 2012 end-page: 234 article-title: NF‐kappaB, the first quarter‐century: remarkable progress and outstanding questions publication-title: Genes Dev – volume: 12 start-page: 131 year: 2007 end-page: 144 article-title: Promiscuous mutations activate the noncanonical NF‐kappaB pathway in multiple myeloma publication-title: Cancer Cell – volume: 283 start-page: 23169 year: 2008 end-page: 23178 article-title: Respiratory syncytial virus induces RelA release from cytoplasmic 100‐kDa NF‐kappa B2 complexes via a novel retinoic acid‐inducible gene‐I{middle dot}NF‐ kappa B‐inducing kinase signaling pathway publication-title: J Biol Chem – volume: 246 start-page: 107 year: 2012 end-page: 124 article-title: Regulation of NF‐kappaB by deubiquitinases publication-title: Immunol Rev – volume: 193 start-page: 422 year: 2014 end-page: 430 article-title: T cell‐intrinsic function of the noncanonical NF‐kappaB pathway in the regulation of GM‐CSF expression and experimental autoimmune encephalomyelitis. Pathogenesis publication-title: J Immunol – volume: 296 start-page: 553 year: 2002 end-page: 555 article-title: A thymic precursor to the NK T cell lineage publication-title: Science – volume: 9 start-page: e102120 year: 2014 article-title: TRAF3 regulates homeostasis of CD8 central memory T cells publication-title: PLoS ONE – volume: 30 start-page: 24 year: 2014 end-page: 31 article-title: Impact of myeloid cells on the efficacy of anticancer chemotherapy publication-title: Curr Opin Immunol – volume: 278 start-page: 45382 year: 2003 end-page: 45390 article-title: Tumor necrosis factor receptor‐associated factor 2 (TRAF2)‐deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling publication-title: J Biol Chem – volume: 208 start-page: 1917 year: 2011 end-page: 1929 article-title: NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell‐mediated immune responses publication-title: J Exp Med – volume: 597 start-page: 32 year: 2007 end-page: 47 article-title: Physiological roles and mechanisms of signaling by TRAF2 and TRAF5 publication-title: Adv Exp Med Biol – volume: 193 start-page: 943 year: 2001 end-page: 954 article-title: Differential signaling and tumor necrosis factor receptor‐associated factor (TRAF) degradation mediated by CD40 and the Epstein‐Barr virus oncoprotein latent membrane protein 1 (LMP1) publication-title: J Exp Med – volume: 4 start-page: 775 year: 2004 end-page: 786 article-title: The multifaceted roles of TRAFs in the regulation of B‐cell function publication-title: Nat Rev Immunol – volume: 19 start-page: 595 year: 2013 end-page: 602 article-title: Peli1 promotes microglia‐mediated CNS inflammation by regulating Traf3 degradation publication-title: Nat Med – volume: 194 start-page: 334 year: 2015 end-page: 348 article-title: Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice publication-title: J Immunol – volume: 103 start-page: 14459 year: 2006 end-page: 14464 article-title: Activation of NF‐kappaB by the intracellular expression of NF‐kappaB‐inducing kinase acts as a powerful vaccine adjuvant publication-title: Proc Natl Acad Sci USA – volume: 36 start-page: 315 year: 2009 end-page: 325 article-title: Key role of Ubc5 and lysine‐63 polyubiquitination in viral activation of IRF3 publication-title: Mol Cell – volume: 168 start-page: 5491 year: 2002 end-page: 5498 article-title: CD40 ligation conditions dendritic cell antigen‐presenting function through sustained activation of NF‐kappaB publication-title: J Immunol – volume: 11 start-page: 11 19D year: 2009 article-title: TRAF‐mediated TNFR‐family signaling publication-title: Curr Protoc Immunol – volume: 118 start-page: 4930 year: 2011 end-page: 4934 article-title: Alteration of BIRC3 and multiple other NF‐kappaB pathway genes in splenic marginal zone lymphoma publication-title: Blood – volume: 3 start-page: 958 year: 2002 end-page: 965 article-title: BAFF‐induced NEMO‐independent processing of NF‐kappaB2 in maturing B cells publication-title: Nat Immunol – volume: 23 start-page: 23 year: 2005 end-page: 68 article-title: Tnf/Tnfr family members in costimulation of T cell responses publication-title: Annu Rev Immunol – volume: 545 start-page: 35 year: 2014 end-page: 65 article-title: IAP family of cell death and signaling regulators publication-title: Methods Enzymol – volume: 211 start-page: 137 year: 2014 end-page: 151 article-title: TRAF3 regulates the effector function of regulatory T cells and humoral immune responses publication-title: J Exp Med – volume: 19 start-page: 2138 year: 2005 end-page: 2151 article-title: A c‐Rel subdomain responsible for enhanced DNA‐binding affinity and selective gene activation publication-title: Genes Dev – volume: 39 start-page: 445 year: 2006 end-page: 453 article-title: Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25 CD4 regulatory T cells publication-title: Autoimmunity – volume: 194 start-page: 1021 year: 2001 end-page: 1032 article-title: c‐Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription publication-title: J Exp Med – volume: 28 start-page: 100 year: 2008 end-page: 111 article-title: A two‐step process for thymic regulatory T cell development publication-title: Immunity – volume: 191 start-page: 3663 year: 2013 end-page: 3672 article-title: A cell‐intrinsic requirement for NF‐kappaB‐inducing kinase in CD4 and CD8 T cell memory publication-title: J Immunol – volume: 2 start-page: a000109 year: 2010 article-title: Oncogenic activation of NF‐kappaB publication-title: Cold Spring Harb Perspect Biol – volume: 5 start-page: 804 year: 2006 end-page: 807 article-title: TRAF3: a new regulator of type I interferons publication-title: Cell Cycle – volume: 285 start-page: 17148 year: 2010 end-page: 17155 article-title: Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin‐beta receptor publication-title: J Biol Chem – volume: 186 start-page: 143 year: 2011 end-page: 155 article-title: TNF receptor‐associated factor 3 is required for T cell‐mediated immunity and TCR/CD28 signaling publication-title: J Immunol – volume: 271 start-page: 30307 year: 1996 end-page: 30310 article-title: Inducible activation of RelB in fibroblasts publication-title: J Biol Chem – volume: 34 start-page: 209 year: 2015 end-page: 216 article-title: TRAF2 is an NF‐kappaB‐activating oncogene in epithelial cancers publication-title: Oncogene – volume: 92 start-page: 819 year: 1998 end-page: 828 article-title: Cotranslational biogenesis of NF‐kappaB p50 by the 26S proteasome publication-title: Cell – volume: 597 start-page: 48 year: 2007 end-page: 59 article-title: TRAF3 and its biological function publication-title: Adv Exp Med Biol – volume: 283 start-page: 7036 year: 2008 end-page: 7045 article-title: NF‐kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro‐inflammatory signaling publication-title: J Biol Chem – volume: 10 start-page: 156 year: 2013 end-page: 163 article-title: Up‐regulation and pre‐activation of TRAF3 and TRAF5 in inflammatory bowel disease publication-title: Int J Med Sci – volume: 105 start-page: 10883 year: 2008 end-page: 10888 article-title: NIK overexpression amplifies, whereas ablation of its TRAF3‐binding domain replaces BAFF:BAFF‐R‐mediated survival signals in B cells publication-title: Proc Natl Acad Sci USA – volume: 188 start-page: 4602 year: 2012 end-page: 4610 article-title: NIK prevents the development of hypereosinophilic syndrome‐like disease in mice independent of IKKalpha activation publication-title: J Immunol – ident: e_1_2_14_62_1 doi: 10.1101/cshperspect.a000109 – ident: e_1_2_14_129_1 doi: 10.1016/j.immuni.2010.08.014 – ident: e_1_2_14_81_1 doi: 10.1073/pnas.1410124111 – ident: e_1_2_14_45_1 doi: 10.1074/jbc.M708690200 – ident: e_1_2_14_63_1 doi: 10.1016/j.cytogfr.2013.12.002 – ident: e_1_2_14_135_1 doi: 10.1128/JVI.00323-12 – ident: e_1_2_14_57_1 doi: 10.1083/jcb.200801010 – ident: e_1_2_14_101_1 doi: 10.1038/nm.3111 – ident: e_1_2_14_27_1 doi: 10.1182/blood-2010-10-312793 – ident: e_1_2_14_36_1 doi: 10.1016/j.molcel.2010.03.009 – ident: e_1_2_14_15_1 doi: 10.1038/ncomms6930 – ident: e_1_2_14_67_1 doi: 10.1182/blood-2008-07-165456 – ident: e_1_2_14_115_1 doi: 10.1038/nri1733 – ident: e_1_2_14_69_1 doi: 10.1182/blood-2008-12-192914 – ident: e_1_2_14_73_1 doi: 10.4049/jimmunol.1303237 – ident: e_1_2_14_61_1 doi: 10.1111/j.1600-065X.2010.00942.x – ident: e_1_2_14_83_1 doi: 10.1073/pnas.0707959105 – ident: e_1_2_14_21_1 doi: 10.1016/j.cell.2007.10.030 – ident: e_1_2_14_5_1 doi: 10.1146/annurev.biochem.78.101807.093809 – ident: e_1_2_14_66_1 doi: 10.1182/blood-2014-06-578542 – ident: e_1_2_14_12_1 doi: 10.1074/jbc.M403286200 – ident: e_1_2_14_59_1 doi: 10.1038/ni842 – ident: e_1_2_14_87_1 doi: 10.1016/S1074-7613(00)80391-X – ident: e_1_2_14_50_1 doi: 10.1074/jbc.M306708200 – ident: e_1_2_14_127_1 doi: 10.1038/nature04374 – ident: e_1_2_14_103_1 doi: 10.1172/JCI58644 – ident: e_1_2_14_104_1 doi: 10.4049/jimmunol.1401548 – ident: e_1_2_14_89_1 doi: 10.4049/jimmunol.1000290 – ident: e_1_2_14_107_1 doi: 10.1074/jbc.M111.221853 – ident: e_1_2_14_65_1 doi: 10.1016/j.ajhg.2013.09.009 – ident: e_1_2_14_20_1 doi: 10.1016/j.immuni.2008.01.009 – ident: e_1_2_14_22_1 doi: 10.1016/j.cell.2007.10.037 – ident: e_1_2_14_113_1 doi: 10.1038/leu.2011.309 – ident: e_1_2_14_79_1 doi: 10.4049/jimmunol.168.11.5491 – ident: e_1_2_14_128_1 doi: 10.4161/cc.5.8.2637 – ident: e_1_2_14_32_1 doi: 10.1182/blood-2011-06-359166 – volume: 271 start-page: 30307 year: 1996 ident: e_1_2_14_78_1 article-title: Inducible activation of RelB in fibroblasts publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)79059-0 – ident: e_1_2_14_56_1 doi: 10.1038/cdd.2009.80 – ident: e_1_2_14_122_1 doi: 10.1016/j.coph.2013.05.017 – ident: e_1_2_14_93_1 doi: 10.1084/jem.20011544 – ident: e_1_2_14_58_1 doi: 10.1074/jbc.M110.105874 – ident: e_1_2_14_55_1 doi: 10.1074/jbc.M304266200 – ident: e_1_2_14_106_1 doi: 10.7150/ijms.5457 – ident: e_1_2_14_109_1 doi: 10.1038/ni.1990 – ident: e_1_2_14_14_1 doi: 10.1084/jem.20061166 – ident: e_1_2_14_46_1 doi: 10.1161/CIRCRESAHA.111.300119 – ident: e_1_2_14_71_1 doi: 10.4049/jimmunol.1301328 – ident: e_1_2_14_125_1 doi: 10.7554/eLife.00785 – ident: e_1_2_14_70_1 doi: 10.1172/JCI44943 – ident: e_1_2_14_118_1 doi: 10.1038/nri1001 – ident: e_1_2_14_24_1 doi: 10.1038/ni.1676 – ident: e_1_2_14_100_1 doi: 10.1038/ni.1819 – ident: e_1_2_14_90_1 doi: 10.1084/jem.20122135 – ident: e_1_2_14_94_1 doi: 10.1371/journal.pone.0102120 – ident: e_1_2_14_18_1 doi: 10.1073/pnas.0805186105 – ident: e_1_2_14_16_1 doi: 10.1016/S0092-8674(00)81409-9 – ident: e_1_2_14_77_1 doi: 10.1084/jem.20110128 – ident: e_1_2_14_99_1 doi: 10.1007/978-0-387-70630-6_3 – ident: e_1_2_14_48_1 doi: 10.1111/j.1600-065X.2012.01100.x – ident: e_1_2_14_85_1 doi: 10.1146/annurev.immunol.23.021704.115839 – ident: e_1_2_14_72_1 doi: 10.4049/jimmunol.1200021 – ident: e_1_2_14_19_1 doi: 10.1016/j.immuni.2004.09.011 – ident: e_1_2_14_132_1 doi: 10.1128/JVI.79.14.8948-8959.2005 – ident: e_1_2_14_17_1 doi: 10.1038/385540a0 – ident: e_1_2_14_3_1 doi: 10.1186/1750-2187-8-7 – ident: e_1_2_14_7_1 doi: 10.1016/S1359-6101(03)00021-2 – ident: e_1_2_14_13_1 doi: 10.1074/jbc.M413634200 – ident: e_1_2_14_80_1 doi: 10.4049/jimmunol.173.3.1849 – ident: e_1_2_14_131_1 doi: 10.1016/j.immuni.2014.02.006 – ident: e_1_2_14_40_1 doi: 10.1038/nri3325 – ident: e_1_2_14_42_1 doi: 10.1038/nri1462 – ident: e_1_2_14_75_1 doi: 10.1080/08916930600833390 – ident: e_1_2_14_41_1 doi: 10.1084/jem.193.8.943 – ident: e_1_2_14_44_1 doi: 10.1042/bj3570617 – ident: e_1_2_14_110_1 doi: 10.1073/pnas.230436397 – ident: e_1_2_14_116_1 doi: 10.1016/j.coi.2014.05.009 – ident: e_1_2_14_39_1 doi: 10.1016/B978-0-12-801430-1.00002-0 – ident: e_1_2_14_64_1 doi: 10.4049/jimmunol.179.11.7514 – ident: e_1_2_14_114_1 doi: 10.1038/onc.2013.543 – ident: e_1_2_14_8_1 doi: 10.1038/cr.2010.170 – ident: e_1_2_14_102_1 doi: 10.1084/jem.20100703 – ident: e_1_2_14_25_1 doi: 10.1016/0092-8674(95)90149-3 – volume: 11 start-page: 11 19D year: 2009 ident: e_1_2_14_2_1 article-title: TRAF‐mediated TNFR‐family signaling publication-title: Curr Protoc Immunol – ident: e_1_2_14_74_1 doi: 10.1073/pnas.0603493103 – ident: e_1_2_14_60_1 doi: 10.1016/j.bcp.2006.08.007 – ident: e_1_2_14_76_1 doi: 10.4049/jimmunol.181.1.354 – volume: 6 start-page: ra27 year: 2013 ident: e_1_2_14_53_1 article-title: Noncanonical NF‐kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3‐binding motif publication-title: Sci Signal – ident: e_1_2_14_88_1 doi: 10.1016/S1074-7613(00)80497-5 – ident: e_1_2_14_133_1 doi: 10.1074/jbc.M802729200 – ident: e_1_2_14_29_1 doi: 10.1016/j.ccr.2007.07.003 – ident: e_1_2_14_119_1 doi: 10.1016/S1471-4906(02)02302-5 – ident: e_1_2_14_43_1 doi: 10.1038/nature11831 – ident: e_1_2_14_51_1 doi: 10.1074/jbc.M310969200 – ident: e_1_2_14_10_1 doi: 10.1111/j.1600-065X.2011.01088.x – ident: e_1_2_14_9_1 doi: 10.1016/S1097-2765(01)00187-3 – ident: e_1_2_14_123_1 doi: 10.1084/jem.20080124 – ident: e_1_2_14_47_1 doi: 10.1038/nsmb.1873 – ident: e_1_2_14_52_1 doi: 10.1128/MCB.05033-11 – ident: e_1_2_14_108_1 doi: 10.1084/jem.194.8.1021 – ident: e_1_2_14_6_1 doi: 10.1038/nri2998 – ident: e_1_2_14_91_1 doi: 10.1084/jem.182.6.2091 – ident: e_1_2_14_11_1 doi: 10.1101/gad.183434.111 – ident: e_1_2_14_96_1 doi: 10.1016/j.immuni.2007.11.022 – ident: e_1_2_14_134_1 doi: 10.1073/pnas.1204032109 – ident: e_1_2_14_31_1 doi: 10.1182/blood-2009-09-243535 – ident: e_1_2_14_97_1 doi: 10.1016/j.immuni.2007.11.021 – ident: e_1_2_14_37_1 doi: 10.1074/jbc.M112.350538 – ident: e_1_2_14_120_1 doi: 10.1093/jnci/djs235 – ident: e_1_2_14_124_1 doi: 10.1007/978-0-387-70630-6_4 – ident: e_1_2_14_121_1 doi: 10.1084/jem.20080108 – ident: e_1_2_14_4_1 doi: 10.1016/0092-8674(94)90532-0 – ident: e_1_2_14_28_1 doi: 10.1016/j.ccr.2007.07.004 – ident: e_1_2_14_30_1 doi: 10.1038/leu.2009.149 – ident: e_1_2_14_86_1 doi: 10.1074/jbc.M113.526269 – ident: e_1_2_14_35_1 doi: 10.1074/jbc.M114.587808 – volume: 6 start-page: 917 year: 2013 ident: e_1_2_14_105_1 article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse publication-title: Int J Clin Exp Pathol – ident: e_1_2_14_33_1 doi: 10.1111/j.1365-2141.2012.09113.x – ident: e_1_2_14_126_1 doi: 10.1038/nature04369 – ident: e_1_2_14_84_1 doi: 10.1038/nri2526 – ident: e_1_2_14_49_1 doi: 10.1074/jbc.M301863200 – ident: e_1_2_14_98_1 doi: 10.1084/jem.20131019 – ident: e_1_2_14_130_1 doi: 10.1016/j.molcel.2009.09.037 – ident: e_1_2_14_23_1 doi: 10.1038/ni.1678 – ident: e_1_2_14_92_1 doi: 10.1126/science.1069017 – ident: e_1_2_14_111_1 doi: 10.1101/gad.1329805 – ident: e_1_2_14_34_1 doi: 10.1182/blood-2014-10-602714 – ident: e_1_2_14_68_1 doi: 10.1073/pnas.1109427108 – ident: e_1_2_14_82_1 doi: 10.1016/j.cell.2006.12.033 – ident: e_1_2_14_112_1 doi: 10.1038/nature03308 – ident: e_1_2_14_26_1 doi: 10.1016/j.immuni.2007.07.012 – ident: e_1_2_14_117_1 doi: 10.4049/jimmunol.164.12.6166 – ident: e_1_2_14_38_1 doi: 10.1016/j.molimm.2009.07.029 – ident: e_1_2_14_95_1 doi: 10.1038/ni.2944 – ident: e_1_2_14_54_1 doi: 10.1074/jbc.M510891200 |
SSID | ssj0017324 |
Score | 2.4732807 |
SecondaryResourceType | review_article |
Snippet | Summary
Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However,... Tumor necrosis factor receptor ( TNFR )‐associated factors ( TRAF s) form a family of proteins that are best known as signaling adapters of TNFR s. However,... Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However,... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56 |
SubjectTerms | Animals cIAP Humans inflammation NF-kappa B - metabolism NF-kappaB-Inducing Kinase NIK non-canonical NF-κB Protein Serine-Threonine Kinases - metabolism Proteolysis Signal Transduction TNF Receptor-Associated Factor 2 - metabolism TNF Receptor-Associated Factor 3 - metabolism TRAF2 TRAF3 |
Title | Targeting signaling factors for degradation, an emerging mechanism for TRAF functions |
URI | https://api.istex.fr/ark:/67375/WNG-T3BVBPC2-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fimr.12311 https://www.ncbi.nlm.nih.gov/pubmed/26085207 https://www.proquest.com/docview/1690210493 https://pubmed.ncbi.nlm.nih.gov/PMC4473799 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9Ki-BLtWp1q5YoIj50j9vsZ_CpLT2r0CLnXe2DEJJNDo_ztuU-oPrXO5PsLr22gvRpF3Y2bJKZ5Debmd8AvEtyqxQ3JhzZLKa_VSZU3VSFiSh0IWzGtabc4ZPT7HiYfDlPz9fgY5ML4_kh2h9uZBluvSYDV3p-zcjH01kHl12X10uxWgSI-i11VJTH3PN6d9MQnYqsZhWiKJ72zZW9aIOG9eouoHk7XvI6jnUbUe8R_Gi64ONPJp3lQnfKPzfYHe_Zx8ewWQNUtu81agvWbPUEHviSlb-fwnDgQsdxw2MU-qEom53VRXsYAmBmiH3CF2raY6pilIBMhZDY1FKS8Xg-dWKD_n6P0abq9P4ZDHtHg8PjsC7NEJYI-aKQjwwvrcARSbVGF00oRGpZzNNRZDhOdoH3iDwLoyJrDM4OFRfVkRJ41Twr4m1Yry4q-wJYYUqBmEbTgSZx2WBLBVXO0XFc5nmeBfChmSRZ1rzlVD7jl2z8Fxwl6UYpgLet6KUn67hL6L2b6VZCzSYU3Zan8vvpJzmID84Ovh5y-S2AN40qSLQ5OkhRlb1YziUdLaKrnIg4gOdeNdrW0D8sUt7NA8hXlKYVID7v1SfV-Kfj9U4S_AohsMNOJ_7dBfn5pO9udv5f9CU8RKyX-kjjV7C-mC3ta8RTC73rDOcvTBkbAg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVgguvKHL0yBAHNgo630fOPRBSGgTobCB3oy9dtSoZIvyEJTfxF_hPzHjfaiBInHpgdOutCPLXs_Y39gz3wA8DWIjJdfaHZvIp9Mq7cp2KN0gTVSSmogrRbnD_UHUHQVvD8KDNfhR58KU_BDNgRtZhl2vycDpQPqUlU-msxauu55XhVTumZOv6LDNX_V2cXafcd55ne103aqmgJsjVvFcPtY8N6nOTagU-hapRIgR-Twce5pjLxN8R8iUaOkZrX1EO7GfKE-m-FQ8Snxs9wJsUAVxYurfHTZkVV7s85JJvB266MZEFY8RxQ01XV3Z_TZoIr-dBW3_jNA8jZzt1te5Cj_rn1ZGvBy1lgvVyr__xif5v_zVa3ClwuBsqzSa67BmihtwsazKeXITRpmNjsc9nVF0i6SEfVbVJWKI8Zkmgo2yFtVLJgtGOdZU64lNDeVRT-ZTK5YNtzqMcIM17VswOpcx3Yb14rgwm8ASnacI2xTd2RJdD7aUUHEg5ft5HMeRAy9qrRB5Rc1OFUI-i9pFw1kRdlYceNKIfin5SM4Sem5Vq5GQsyMK4ItD8XHwRmT-9oftdztcvHfgca17ApcVuiuShTlezgXdnnJ01VPfgTulLjatoQuchLwdOxCvaGkjQJTlq1-KyaGlLg8C7EWa4oCtEv59CKLXH9qXu_8u-ggudbP-vtjvDfbuwWWEtmEZWH0f1hezpXmA8HGhHlqrZfDpvBX6F6BQdqE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VViAuvCnhaRCgHtgoa-_LBw5tQ2gojaqQQG9be-2IqGRb5SEof4m_wo9ixvtQA0Xi0gOnXWlHlr2esb-xZ74BeB7EVilujDeykaDTKuOpVqi8QCY6kTbiWlPu8F4v2hkG7w7CgxX4UeXCFPwQ9YEbWYZbr8nAT8zojJGPJ9MmLru-X0ZU7trTr-ivzV532zi5LzjvvBls73hlSQEvQ6jie3xkeGalyWyoNboWUiHCiAQPR77h2MkE3xExJUb51hiBYCcWifaVxKfmUSKw3UuwFkQtSXUi2v2aq8qPBS-IxFuhh15MVNIYUdhQ3dWlzW-N5vHbecj2zwDNs8DZ7Xyd6_Cz-mdFwMtRczHXzez7b3SS_8lPvQHXSgTONguTuQkrNr8Fl4uanKe3YThwsfG4ozOKbVGUrs_KqkQMET4zRK9RVKJ6xVTOKMOaKj2xiaUs6vFs4sQG_c0OI9TgDPsODC9kTHdhNT_O7T1gickkgjZNN7ZE1oMtJVQaSAuRxXEcNWCjUoo0K4nZqT7Il7Ry0HBWUjcrDXhWi54UbCTnCb10mlVLqOkRhe_FYfqp9zYdiK2PW_vbPP3QgKeV6qW4qNBNkcrt8WKW0t0pR0ddigasF6pYt4YOcBLyVtyAeElJawEiLF_-ko8_O-LyIMBeSIkDdjr49yGk3b2-e7n_76JP4Mp-u5O-7_Z2H8BVxLVhEVX9EFbn04V9hNhxrh87m2VweNH6_AutPXVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+signaling+factors+for+degradation%2C+an+emerging+mechanism+for+TRAF+functions&rft.jtitle=Immunological+reviews&rft.au=Yang%2C+Xiao-Dong&rft.au=Sun%2C+Shao-Cong&rft.date=2015-07-01&rft.eissn=1600-065X&rft.volume=266&rft.issue=1&rft.spage=56&rft_id=info:doi/10.1111%2Fimr.12311&rft_id=info%3Apmid%2F26085207&rft.externalDocID=26085207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |