Targeting signaling factors for degradation, an emerging mechanism for TRAF functions

Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of in...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 266; no. 1; pp. 56 - 71
Main Authors Yang, Xiao-Dong, Sun, Shao-Cong
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB (NF‐κB)‐inducing kinase (NIK), an action required for the control of NIK‐regulated non‐canonical NF‐κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK‐binding adapter. Recent evidence suggests that the cIAP‐TRAF2‐TRAF3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
AbstractList Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of nuclear factor-κB (NF-κB)-inducing kinase (NIK), an action required for the control of NIK-regulated non-canonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB (NF‐κB)‐inducing kinase (NIK), an action required for the control of NIK‐regulated non‐canonical NF‐κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK‐binding adapter. Recent evidence suggests that the cIAP‐TRAF2‐TRAF3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However, emerging evidence suggests that TRAF proteins, particularly TRAF2 and TRAF3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well-recognized function of TRAF2 and TRAF3 in this aspect is to mediate ubiquitin-dependent degradation of NF-κB-inducing kinase (NIK), an action required for the control of NIK-regulated noncanonical NF-κB signaling pathway. TRAF2 and TRAF3 form a complex with the E3 ubiquitin ligase cIAP (cIAP1 or cIAP2), in which TRAF3 serves as the NIK-binding adapter. Recent evidence suggests that the cIAP-TRAF2-TRAF3 E3 complex also targets additional signaling factors for ubiquitin-dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Tumor necrosis factor receptor ( TNFR )‐associated factors ( TRAF s) form a family of proteins that are best known as signaling adapters of TNFR s. However, emerging evidence suggests that TRAF proteins, particularly TRAF 2 and TRAF 3, also regulate signal transduction by controlling the fate of intracellular signaling factors. A well‐recognized function of TRAF 2 and TRAF 3 in this aspect is to mediate ubiquitin‐dependent degradation of nuclear factor‐κB ( NF ‐κB)‐inducing kinase ( NIK ), an action required for the control of NIK ‐regulated non‐canonical NF ‐κB signaling pathway. TRAF 2 and TRAF 3 form a complex with the E3 ubiquitin ligase cIAP ( cIAP 1 or cIAP 2), in which TRAF 3 serves as the NIK ‐binding adapter. Recent evidence suggests that the cIAP ‐ TRAF 2‐ TRAF 3 E3 complex also targets additional signaling factors for ubiquitin‐dependent degradation, thereby regulating important aspects of immune and inflammatory responses. This review provides both historical aspects and new insights into the signaling functions of this ubiquitination system.
Author Sun, Shao-Cong
Yang, Xiao-Dong
AuthorAffiliation 3 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
1 Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
AuthorAffiliation_xml – name: 1 Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– name: 3 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
– name: 2 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Author_xml – sequence: 1
  givenname: Xiao-Dong
  surname: Yang
  fullname: Yang, Xiao-Dong
  organization: Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 2
  givenname: Shao-Cong
  surname: Sun
  fullname: Sun, Shao-Cong
  email: ssun@mdanderson.org
  organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26085207$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFPFDEUhRsDkQV94A-QeZTEgd522pm-mMBGkATQ4AK-NZ1OZ6jOtNjOqvx7u7uwERPty71Jv3PuzT3baMN5ZxDaBXwA6R3aIRwAoQAv0AQ4xjnm7MsGmmDALCeV4FtoO8avGENJSfESbRGOK0ZwOUHXMxU6M1rXZdF2TvWLrlV69CFmrQ9ZY7qgGjVa795mymVmMKFbQIPRd8rZOCyx2dXRSdbOnV6A8RXabFUfzevHuoOuT97Pph_y84-nZ9Oj81wzEJCTtiHaiEYbVtcFBqEEA04Ja6EhCrMq9UJA1SgwTUM54yWtalAi1Zrwiu6gdyvf-3k9mOTjxqB6eR_soMKD9MrK5z_O3snO_5BFUdJSiGTw5tEg-O9zE0c52KhN3ytn_DxK4AITwIWgCd37c9Z6yNMtE7C_AnTwMQbTrhHAcpGTTDnJZU6JPfyL1XZcHjmtafv_KX7a3jz821qeXVw9KfKVwsbR_ForVPgm0_1KJm8vT-WMHt8cf5oS-Zn-Bs0-s18
CitedBy_id crossref_primary_10_1007_s00417_020_04956_6
crossref_primary_10_3389_fimmu_2022_781003
crossref_primary_10_1038_s41392_022_00966_4
crossref_primary_10_1038_s41392_020_00421_2
crossref_primary_10_1038_s41419_021_04445_6
crossref_primary_10_1515_bmc_2017_0008
crossref_primary_10_3390_ijms26072941
crossref_primary_10_1186_s12935_020_01595_z
crossref_primary_10_3389_fimmu_2018_01986
crossref_primary_10_1172_jci_insight_133652
crossref_primary_10_1038_srep23938
crossref_primary_10_1016_j_bbi_2020_04_064
crossref_primary_10_3389_fimmu_2018_02111
crossref_primary_10_1016_j_heliyon_2024_e32904
crossref_primary_10_1097_CAD_0000000000000943
crossref_primary_10_3390_biom14050510
crossref_primary_10_1007_s10753_018_0828_1
crossref_primary_10_1038_s41584_023_01002_7
crossref_primary_10_3390_biomedicines6020043
crossref_primary_10_1007_s12272_021_01330_w
crossref_primary_10_1016_j_cyto_2024_156824
crossref_primary_10_1371_journal_pone_0233192
crossref_primary_10_1186_s13059_018_1498_x
crossref_primary_10_3390_v15112229
crossref_primary_10_1016_j_imlet_2018_01_010
crossref_primary_10_1128_jvi_00791_22
crossref_primary_10_32604_or_2023_044473
crossref_primary_10_1007_s40495_017_0117_y
crossref_primary_10_1016_j_it_2020_10_013
crossref_primary_10_1007_s00223_017_0349_1
crossref_primary_10_1016_j_molmed_2019_02_005
crossref_primary_10_1007_s12672_023_00703_5
crossref_primary_10_1016_j_fsi_2019_12_024
crossref_primary_10_1016_j_isci_2020_101665
crossref_primary_10_3389_fmicb_2019_01302
crossref_primary_10_1016_j_fsi_2022_01_018
crossref_primary_10_3390_cells10082068
crossref_primary_10_1186_s12917_023_03758_2
crossref_primary_10_1016_j_bbi_2019_01_028
crossref_primary_10_1016_j_cbd_2022_100968
crossref_primary_10_1017_S0031182021000548
crossref_primary_10_31083_j_fbl2811316
crossref_primary_10_1007_s00018_021_03816_8
crossref_primary_10_1016_j_jacbts_2021_12_002
crossref_primary_10_3390_ani11020468
crossref_primary_10_1016_j_clinbiochem_2016_08_010
crossref_primary_10_1016_j_biocel_2022_106193
crossref_primary_10_1016_j_molcel_2018_05_016
crossref_primary_10_1155_2022_4576679
crossref_primary_10_1161_JAHA_122_028185
crossref_primary_10_1681_ASN_2019111206
crossref_primary_10_15252_embr_201745176
crossref_primary_10_1038_s41420_023_01675_9
crossref_primary_10_1038_srep42980
crossref_primary_10_1007_s00018_016_2191_4
crossref_primary_10_1093_plcell_koac035
crossref_primary_10_3390_genes7090060
crossref_primary_10_1016_j_fsi_2020_06_022
crossref_primary_10_1096_fj_202302307R
crossref_primary_10_1016_j_bcp_2016_03_009
crossref_primary_10_3389_fimmu_2018_01849
crossref_primary_10_1016_j_fsi_2020_03_049
crossref_primary_10_1038_s41467_018_05168_7
crossref_primary_10_1016_j_jbc_2022_102036
crossref_primary_10_1038_cr_2016_40
crossref_primary_10_1172_JCI95720
crossref_primary_10_1186_s12951_025_03246_9
crossref_primary_10_4103_sjamf_sjamf_104_20
crossref_primary_10_1007_s00005_018_0522_x
crossref_primary_10_1097_SHK_0000000000002514
crossref_primary_10_3390_nu14102120
crossref_primary_10_1186_s13045_022_01291_7
crossref_primary_10_1016_j_bbamcr_2017_02_011
crossref_primary_10_1097_CMR_0000000000000452
crossref_primary_10_1016_j_semcancer_2016_07_003
crossref_primary_10_3389_fimmu_2018_01999
crossref_primary_10_3389_fmolb_2023_1168250
crossref_primary_10_1038_s41467_018_06756_3
crossref_primary_10_1038_s41423_020_00583_7
crossref_primary_10_1111_imr_12317
crossref_primary_10_1111_jipb_13182
crossref_primary_10_1038_s41419_024_06570_4
crossref_primary_10_4049_jimmunol_1501610
crossref_primary_10_1038_s41388_018_0411_0
crossref_primary_10_3390_cancers12071760
crossref_primary_10_1038_s41419_021_03887_2
crossref_primary_10_1128_mBio_00808_19
crossref_primary_10_3389_fimmu_2021_769167
crossref_primary_10_3892_or_2022_8335
crossref_primary_10_1182_bloodadvances_2020003597
crossref_primary_10_3389_fimmu_2018_02161
Cites_doi 10.1101/cshperspect.a000109
10.1016/j.immuni.2010.08.014
10.1073/pnas.1410124111
10.1074/jbc.M708690200
10.1016/j.cytogfr.2013.12.002
10.1128/JVI.00323-12
10.1083/jcb.200801010
10.1038/nm.3111
10.1182/blood-2010-10-312793
10.1016/j.molcel.2010.03.009
10.1038/ncomms6930
10.1182/blood-2008-07-165456
10.1038/nri1733
10.1182/blood-2008-12-192914
10.4049/jimmunol.1303237
10.1111/j.1600-065X.2010.00942.x
10.1073/pnas.0707959105
10.1016/j.cell.2007.10.030
10.1146/annurev.biochem.78.101807.093809
10.1182/blood-2014-06-578542
10.1074/jbc.M403286200
10.1038/ni842
10.1016/S1074-7613(00)80391-X
10.1074/jbc.M306708200
10.1038/nature04374
10.1172/JCI58644
10.4049/jimmunol.1401548
10.4049/jimmunol.1000290
10.1074/jbc.M111.221853
10.1016/j.ajhg.2013.09.009
10.1016/j.immuni.2008.01.009
10.1016/j.cell.2007.10.037
10.1038/leu.2011.309
10.4049/jimmunol.168.11.5491
10.4161/cc.5.8.2637
10.1182/blood-2011-06-359166
10.1016/S0021-9258(19)79059-0
10.1038/cdd.2009.80
10.1016/j.coph.2013.05.017
10.1084/jem.20011544
10.1074/jbc.M110.105874
10.1074/jbc.M304266200
10.7150/ijms.5457
10.1038/ni.1990
10.1084/jem.20061166
10.1161/CIRCRESAHA.111.300119
10.4049/jimmunol.1301328
10.7554/eLife.00785
10.1172/JCI44943
10.1038/nri1001
10.1038/ni.1676
10.1038/ni.1819
10.1084/jem.20122135
10.1371/journal.pone.0102120
10.1073/pnas.0805186105
10.1016/S0092-8674(00)81409-9
10.1084/jem.20110128
10.1007/978-0-387-70630-6_3
10.1111/j.1600-065X.2012.01100.x
10.1146/annurev.immunol.23.021704.115839
10.4049/jimmunol.1200021
10.1016/j.immuni.2004.09.011
10.1128/JVI.79.14.8948-8959.2005
10.1038/385540a0
10.1186/1750-2187-8-7
10.1016/S1359-6101(03)00021-2
10.1074/jbc.M413634200
10.4049/jimmunol.173.3.1849
10.1016/j.immuni.2014.02.006
10.1038/nri3325
10.1038/nri1462
10.1080/08916930600833390
10.1084/jem.193.8.943
10.1042/bj3570617
10.1073/pnas.230436397
10.1016/j.coi.2014.05.009
10.1016/B978-0-12-801430-1.00002-0
10.4049/jimmunol.179.11.7514
10.1038/onc.2013.543
10.1038/cr.2010.170
10.1084/jem.20100703
10.1016/0092-8674(95)90149-3
10.1073/pnas.0603493103
10.1016/j.bcp.2006.08.007
10.4049/jimmunol.181.1.354
10.1016/S1074-7613(00)80497-5
10.1074/jbc.M802729200
10.1016/j.ccr.2007.07.003
10.1016/S1471-4906(02)02302-5
10.1038/nature11831
10.1074/jbc.M310969200
10.1111/j.1600-065X.2011.01088.x
10.1016/S1097-2765(01)00187-3
10.1084/jem.20080124
10.1038/nsmb.1873
10.1128/MCB.05033-11
10.1084/jem.194.8.1021
10.1038/nri2998
10.1084/jem.182.6.2091
10.1101/gad.183434.111
10.1016/j.immuni.2007.11.022
10.1073/pnas.1204032109
10.1182/blood-2009-09-243535
10.1016/j.immuni.2007.11.021
10.1074/jbc.M112.350538
10.1093/jnci/djs235
10.1007/978-0-387-70630-6_4
10.1084/jem.20080108
10.1016/0092-8674(94)90532-0
10.1016/j.ccr.2007.07.004
10.1038/leu.2009.149
10.1074/jbc.M113.526269
10.1074/jbc.M114.587808
10.1111/j.1365-2141.2012.09113.x
10.1038/nature04369
10.1038/nri2526
10.1074/jbc.M301863200
10.1084/jem.20131019
10.1016/j.molcel.2009.09.037
10.1038/ni.1678
10.1126/science.1069017
10.1101/gad.1329805
10.1182/blood-2014-10-602714
10.1073/pnas.1109427108
10.1016/j.cell.2006.12.033
10.1038/nature03308
10.1016/j.immuni.2007.07.012
10.4049/jimmunol.164.12.6166
10.1016/j.molimm.2009.07.029
10.1038/ni.2944
10.1074/jbc.M510891200
ContentType Journal Article
Copyright 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/imr.12311
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 71
ExternalDocumentID PMC4473799
26085207
10_1111_imr_12311
IMR12311
ark_67375_WNG_T3BVBPC2_S
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cancer Prevention Research Institute of Texas
  funderid: RP140244
– fundername: US National Institutes of Health
  funderid: AI057555; AI064639; GM84459; AI104519
– fundername: NIAID NIH HHS
  grantid: AI104519
– fundername: NIAID NIH HHS
  grantid: R01 AI064639
– fundername: NIAID NIH HHS
  grantid: AI057555
– fundername: NIAID NIH HHS
  grantid: R01 AI104519
– fundername: NIAID NIH HHS
  grantid: R01 AI057555
– fundername: NIGMS NIH HHS
  grantid: GM84459
– fundername: NIAID NIH HHS
  grantid: R37 AI064639
– fundername: NIAID NIH HHS
  grantid: AI064639
– fundername: NIGMS NIH HHS
  grantid: R01 GM084459
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5191-2fd2ce9dce5bb4019a9516325f1d2a0586329918da1edd3656738b1a9673b2683
IEDL.DBID DR2
ISSN 0105-2896
1600-065X
IngestDate Thu Aug 21 13:59:11 EDT 2025
Fri Jul 11 02:00:13 EDT 2025
Mon Jul 21 05:45:58 EDT 2025
Tue Jul 01 00:20:58 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Wed Jan 22 16:59:24 EST 2025
Wed Oct 30 09:49:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NIK
TRAF2
cIAP
TRAF3
inflammation
non-canonical NF-κB
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5191-2fd2ce9dce5bb4019a9516325f1d2a0586329918da1edd3656738b1a9673b2683
Notes US National Institutes of Health - No. AI057555; No. AI064639; No. GM84459; No. AI104519
ArticleID:IMR12311
Cancer Prevention Research Institute of Texas - No. RP140244
istex:8449667F2482A66CDDDA0CB46A8A92FC28D92BBD
ark:/67375/WNG-T3BVBPC2-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1111/imr.12311
PMID 26085207
PQID 1690210493
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4473799
proquest_miscellaneous_1690210493
pubmed_primary_26085207
crossref_primary_10_1111_imr_12311
crossref_citationtrail_10_1111_imr_12311
wiley_primary_10_1111_imr_12311_IMR12311
istex_primary_ark_67375_WNG_T3BVBPC2_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Zapata JM, Llobet D, Krajewska M, Lefebvre S, Kress CL, Reed JC. Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood 2009;113:4595-4603.
Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282.
Sanjo H, Zajonc DM, Braden R, Norris PS, Ware CF. Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 2010;285:17148-17155.
Fotin-Mleczek M, et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J Biol Chem 2004;279:677-685.
Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 2008;105:3503-3508.
Saha SK, Cheng G. TRAF3: a new regulator of type I interferons. Cell Cycle 2006;5:804-807.
Andreakos E, Williams RO, Wales J, Foxwell BM, Feldmann M. Activation of NF-kappaB by the intracellular expression of NF-kappaB-inducing kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci USA 2006;103:14459-14464.
Chen K, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 2013;93:812-824.
Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012;26:203-234.
Jin J, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun 2015;6:5930.
Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013;8:7.
Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996;5:407-415.
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-555.
Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243-1252.
Chan TD, Gardam S, Gatto D, Turner VM, Silke J, Brink R. In vivo control of B-cell survival and antigen-specific B-cell responses. Immunol Rev 2010;237:90-103.
Hacker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011;11:457-468.
Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439:208-211.
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2009;11:11 19D.
Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. Adv Exp Med Biol 2007;597:48-59.
Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011;186:143-155.
Yi Z, Lin WW, Stunz LL, Bishop GA. Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2014;25:147-156.
Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409.
Olashaw NE. Inducible activation of RelB in fibroblasts. J Biol Chem 1996;271:30307-30310.
Sanjabi S, et al. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005;19:2138-2151.
de Jong SJ, Albrecht JC, Giehler F, Kieser A, Sticht H, Biesinger B. Noncanonical NF-kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3-binding motif. Sci Signal 2013;6:ra27.
Jin J, et al. Noncanonical NF-kappaB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 2014;40:342-354.
Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378.
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133-146.
Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051.
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173.
Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045.
Hagemann T, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008;205:1261-1268.
Yeh WC, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715-725.
Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943-954.
Brower V. Macrophages: cancer therapy's double-edged sword. J Natl Cancer Inst 2012;104:649-652.
Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci USA 2000;97:12705-12710.
Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012.
Nagel I, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009;23:2153-2155.
Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390.
Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev 2012;246:125-140.
Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693.
Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci USA 2012;109:14122-14127.
Lin WJ, et al. Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity. Proc Natl Acad Sci USA 2011;108:18354-18359.
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964.
Lee S, Challa-Malladi M, Bratton SB, Wright CW. nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem 2014;289:30680-30689.
le Luong A, et al. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013;112:1583-1591.
Heinemann S, Biesinger B, Fleckenstein B, Albrecht JC. NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6. J Biol Chem 2006;281:8565-8572.
Watts TH. Tnf/Tnfr family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23-68.
Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol 2014;545:35-65.
Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453.
Grumont R, et al. c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 2001;194:1021-1032.
Authier H, et al. IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci USA 2014;111:14794-14799.
Piao JH, et al. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011;286:17879-17888.
Chang JH, et al. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med 2014;211:137-151.
Vandenabeele P, Bertrand MJ. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 2012;12:833-844.
Vince JE, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008;182:171-184.
Lalani AI, et al. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. J Immunol 2015;194:334-348.
Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131-144.
Bushell KR, et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 2015;125:999-1005.
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012;122:1164-1171.
Yi Z, Lin WW, Stunz LL, Bishop GA. The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol 2014;15:866-874.
Evans PC, et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003;278:23180-23186.
Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994;78:681-692.
Liu S, et al. MAVS recruits multiple ubiquitin E3 ligase
2004; 21
2010; 11
2012; 122
2011; 118
2011; 117
2013; 2
2010; 17
2006; 39
2004; 4
2014; 25
2009; 113
2008; 105
2012; 246
2013; 8
2012; 12
2003; 278
2013; 6
1997; 7
2008; 182
2009; 11
2007; 179
2010; 237
1997; 385
2010; 115
2004; 173
2008; 28
2000; 97
1994; 78
2013; 112
2014; 15
1998; 92
2012; 26
2006; 281
2006; 203
2010; 2
2013; 191
2009; 16
2011; 121
2005; 79
2014; 124
2010; 33
2010; 38
2012; 188
2010; 207
2015; 125
2002; 3
2013; 93
2010; 285
2012; 104
2014; 40
2007; 12
2012; 109
2009; 78
2014; 545
2015; 194
2005; 19
2004; 279
2005; 5
2013; 210
2014; 30
2006; 103
2015; 34
2009; 46
2012; 287
2006; 72
2002; 195
2008; 9
2003; 14
2011; 11
2011; 12
2005; 23
2014; 211
2013; 19
2011; 208
2013; 10
2013; 13
2007; 131
2003; 3
2011; 21
2000; 164
2014; 9
1996; 5
2011; 286
2007; 27
2014; 289
2009; 23
2015; 6
2006; 439
2007; 128
2002; 296
2005; 434
2011; 31
2006; 5
2008; 205
2014; 193
2014; 111
2008; 283
2008; 181
2005; 280
2009; 36
1995; 83
2007; 597
2011; 108
2001; 194
2012; 157
2001; 7
2001; 193
2002; 168
2002; 23
1996; 271
2009; 9
2013; 494
2001; 357
1995; 182
2012; 86
2011; 186
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_125_1
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_91_1
Olashaw NE (e_1_2_14_78_1) 1996; 271
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_120_1
e_1_2_14_7_1
Shen J (e_1_2_14_105_1) 2013; 6
e_1_2_14_108_1
e_1_2_14_124_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
e_1_2_14_131_1
e_1_2_14_116_1
e_1_2_14_135_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
Ha H (e_1_2_14_2_1) 2009; 11
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_123_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_130_1
e_1_2_14_117_1
e_1_2_14_134_1
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_9_1
e_1_2_14_106_1
Jong SJ (e_1_2_14_53_1) 2013; 6
e_1_2_14_126_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_118_1
e_1_2_14_133_1
References_xml – reference: Watts TH. Tnf/Tnfr family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23-68.
– reference: He JQ, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006;203:2413-2418.
– reference: Yi Z, Lin WW, Stunz LL, Bishop GA. Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2014;25:147-156.
– reference: Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012;26:203-234.
– reference: Bishop GA. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol 2004;4:775-786.
– reference: Jin W, Zhou XF, Yu J, Cheng X, Sun SC. Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK. Blood 2009;113:6603-6610.
– reference: Lee CE, et al. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood 2014;124:2964-2972.
– reference: Piao JH, et al. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011;286:17879-17888.
– reference: Annunziata CM, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007;12:115-130.
– reference: Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008;28:100-111.
– reference: Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012;122:1164-1171.
– reference: Lalani AI, et al. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice. J Immunol 2015;194:334-348.
– reference: Shen J, Qiao YQ, Ran ZH, Wang TR. Up-regulation and pre-activation of TRAF3 and TRAF5 in inflammatory bowel disease. Int J Med Sci 2013;10:156-163.
– reference: Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279:26243-26250.
– reference: Ganeff C, et al. Induction of the alternative NF-kappaB pathway by lymphotoxin alphabeta (LTalphabeta) relies on internalization of LTbeta receptor. Mol Cell Biol 2011;31:4319-4334.
– reference: Moore CR, Liu Y, Shao C, Covey LR, Morse HC 3rd, Xie P. Specific deletion of TRAF3 in B lymphocytes leads to B-lymphoma development in mice. Leukemia 2012;26:1122-1127.
– reference: Harhaj EW, Dixit VM. Regulation of NF-kappaB by deubiquitinases. Immunol Rev 2012;246:107-124.
– reference: Jin J, et al. Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages. Nat Commun 2015;6:5930.
– reference: Sasaki Y, et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci USA 2008;105:10883-10888.
– reference: Saha SK, Cheng G. TRAF3: a new regulator of type I interferons. Cell Cycle 2006;5:804-807.
– reference: Chan TD, Gardam S, Gatto D, Turner VM, Silke J, Brink R. In vivo control of B-cell survival and antigen-specific B-cell responses. Immunol Rev 2010;237:90-103.
– reference: Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 "super repressor". J Immunol 2007;179:7514-7522.
– reference: Schjerven H, Tran TN, Brandtzaeg P, Johansen FE. De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. J Immunol 2004;173:1849-1857.
– reference: Vince JE, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007;131:682-693.
– reference: Basak S, et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007;128:369-381.
– reference: Xiao Y, et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 2013;19:595-602.
– reference: Krausgruber T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011;12:231-238.
– reference: Hagemann T, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008;205:1261-1268.
– reference: Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399-434.
– reference: Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998;92:819-828.
– reference: Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 1995;182:2091-2096.
– reference: Wicovsky A, et al. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ 2009;16:1445-1459.
– reference: Vince JE, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008;182:171-184.
– reference: Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014;30:24-31.
– reference: Chen K, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 2013;93:812-824.
– reference: Otto C, et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 2012;157:702-708.
– reference: Fotin-Mleczek M, et al. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J Biol Chem 2004;279:677-685.
– reference: Jin J, et al. Noncanonical NF-kappaB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 2014;40:342-354.
– reference: Liu S, Chen ZJ. Expanding role of ubiquitination in NF-κB signaling. Cell Res 2011;21:6-21.
– reference: Takaoka A, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434:243-249.
– reference: Yi Z, Stunz LL, Bishop GA. TNF receptor associated factor 3 plays a key role in development and function of invariant natural killer T cells. J Exp Med 2013;210:1079-1086.
– reference: Au PY, Yeh WC. Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 2007;597:32-47.
– reference: Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996;5:407-415.
– reference: Yi Z, Stunz LL, Lin WW, Bishop GA. TRAF3 regulates homeostasis of CD8+ central memory T cells. PLoS ONE 2014;9:e102120.
– reference: Grumont R, et al. c-Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription. J Exp Med 2001;194:1021-1032.
– reference: Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol 2013;13:595-601.
– reference: Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133-146.
– reference: Perez de Diego R, et al. Human TRAF3 adapter molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010;33:400-411.
– reference: Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007;12:131-144.
– reference: Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal 2013;8:7.
– reference: Evans PC, et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003;278:23180-23186.
– reference: Tamura C, et al. Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells. Autoimmunity 2006;39:445-453.
– reference: Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173.
– reference: Zarnegar B, Yamazaki S, He JQ, Cheng G. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 2008;105:3503-3508.
– reference: Yi Z, Lin WW, Stunz LL, Bishop GA. The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2. Nat Immunol 2014;15:866-874.
– reference: Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401.
– reference: Vandenabeele P, Bertrand MJ. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 2012;12:833-844.
– reference: Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943-954.
– reference: Shen J, Qiao Y, Ran Z, Wang T, Xu J, Feng J. Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse. Int J Clin Exp Pathol 2013;6:917-925.
– reference: Andreakos E, Williams RO, Wales J, Foxwell BM, Feldmann M. Activation of NF-kappaB by the intracellular expression of NF-kappaB-inducing kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci USA 2006;103:14459-14464.
– reference: Lind EF, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol 2008;181:354-363.
– reference: Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J Exp Med 2002;195:835-844.
– reference: Malinin NL, Boldin MP, Kovalenko AV, Wallach D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 1997;385:540-544.
– reference: Yeh WC, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715-725.
– reference: Michel M, Wilhelmi I, Schultz AS, Preussner M, Heyd F. Activation-induced tumor necrosis factor receptor-associated factor 3 (Traf3) alternative splicing controls the noncanonical nuclear factor kappaB pathway and chemokine expression in human T cells. J Biol Chem 2014;289:13651-13660.
– reference: Enesa K, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008;283:7036-7045.
– reference: Brower V. Macrophages: cancer therapy's double-edged sword. J Natl Cancer Inst 2012;104:649-652.
– reference: Hofmann J, Mair F, Greter M, Schmidt-Supprian M, Becher B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 2011;208:1917-1929.
– reference: Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27:253-267.
– reference: Gardam S, et al. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011;117:4041-4051.
– reference: Chang JH, et al. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med 2014;211:137-151.
– reference: Sanjabi S, et al. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev 2005;19:2138-2151.
– reference: Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629-642.
– reference: Zarnegar BJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378.
– reference: Lee S, Challa-Malladi M, Bratton SB, Wright CW. nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem 2014;289:30680-30689.
– reference: Vallabhapurapu S, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-1370.
– reference: Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 2010;38:101-113.
– reference: Heinemann S, Biesinger B, Fleckenstein B, Albrecht JC. NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6. J Biol Chem 2006;281:8565-8572.
– reference: Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J Immunol 2011;186:143-155.
– reference: Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382-45390.
– reference: Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M. Different modes of ubiquitination of the adapter TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010;11:70-75.
– reference: le Luong A, et al. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013;112:1583-1591.
– reference: O'Sullivan BJ, Thomas R. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-kappaB. J Immunol 2002;168:5491-5498.
– reference: Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 2005;280:10018-10024.
– reference: He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. Adv Exp Med Biol 2007;597:48-59.
– reference: Murray SE, et al. NF-kappaB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. J Clin Invest 2011;121:4775-4786.
– reference: Nagel I, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009;23:2153-2155.
– reference: Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2010;2:a000109.
– reference: Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010;17:939-947.
– reference: Yu J, Zhou X, Nakaya M, Jin W, Cheng X, Sun SC. T cell-intrinsic function of the noncanonical NF-kappaB pathway in the regulation of GM-CSF expression and experimental autoimmune encephalomyelitis. Pathogenesis. J Immunol 2014;193:422-430.
– reference: Olashaw NE. Inducible activation of RelB in fibroblasts. J Biol Chem 1996;271:30307-30310.
– reference: Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-555.
– reference: Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 2009;36:315-325.
– reference: Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 2009;9:271-285.
– reference: Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010;115:3541-3552.
– reference: Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ. Isolation and characterization of two novel A20-like proteins. Biochem J 2001;357:617-623.
– reference: Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003;278:36005-36012.
– reference: Sanjo H, Zajonc DM, Braden R, Norris PS, Ware CF. Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 2010;285:17148-17155.
– reference: Liu P, Li K, Garofalo RP, Brasier AR. Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. J Biol Chem 2008;283:23169-23178.
– reference: Choudhary S, Boldogh S, Garofalo R, Jamaluddin M, Brasier AR. Respiratory syncytial virus influences NF-kappaB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-kappaB2. J Virol 2005;79:8948-8959.
– reference: Fong CH, et al. An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation. J Exp Med 2008;205:1269-1276.
– reference: Häcker H, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006;439:204-207.
– reference: Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439:208-211.
– reference: Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72:1161-1179.
– reference: McPherson AJ, Snell LM, Mak TW, Watts TH. Opposing roles for TRAF1 in the alternative versus classical NF-kappaB pathway in T cells. J Biol Chem 2012;287:23010-23019.
– reference: Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2009;11:11 19D.
– reference: Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adapters and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14:193-209.
– reference: Hacker H, Tseng PH, Karin M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011;11:457-468.
– reference: Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A. A thymic precursor to the NK T cell lineage. Science 2002;296:553-555.
– reference: Bushell KR, et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 2015;125:999-1005.
– reference: Hacker H, Chi L, Rehg JE, Redecke V. NIK prevents the development of hypereosinophilic syndrome-like disease in mice independent of IKKalpha activation. J Immunol 2012;188:4602-4610.
– reference: Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001;7:401-409.
– reference: Ruckle A, Haasbach E, Julkunen I, Planz O, Ehrhardt C, Ludwig S. The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-kappaB pathway and p52/RelB-dependent gene expression in lung epithelial cells. J Virol 2012;86:10211-10217.
– reference: de Jong SJ, Albrecht JC, Giehler F, Kieser A, Sticht H, Biesinger B. Noncanonical NF-kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3-binding motif. Sci Signal 2013;6:ra27.
– reference: Rothe M, Pan M-G, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83:1243-1252.
– reference: Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009;46:3278-3282.
– reference: Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol 2014;545:35-65.
– reference: Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964.
– reference: Burchill MA, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008;28:112-121.
– reference: Shen RR, et al. TRAF2 is an NF-kappaB-activating oncogene in epithelial cancers. Oncogene 2015;34:209-216.
– reference: Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3:958-965.
– reference: Hu H, et al. OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature 2013;494:371-374.
– reference: Liu S, et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2013;2:e00785.
– reference: Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad Sci USA 2012;109:14122-14127.
– reference: Rossi D, et al. Alteration of BIRC3 and multiple other NF-kappaB pathway genes in splenic marginal zone lymphoma. Blood 2011;118:4930-4934.
– reference: Lin WJ, et al. Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity. Proc Natl Acad Sci USA 2011;108:18354-18359.
– reference: Sanjabi S, Hoffmann A, Liou HC, Baltimore D, Smale ST. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci USA 2000;97:12705-12710.
– reference: Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994;78:681-692.
– reference: Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev 2012;246:125-140.
– reference: Rowe AM, Murray SE, Raue HP, Koguchi Y, Slifka MK, Parker DC. A cell-intrinsic requirement for NF-kappaB-inducing kinase in CD4 and CD8 T cell memory. J Immunol 2013;191:3663-3672.
– reference: Authier H, et al. IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci USA 2014;111:14794-14799.
– reference: Varfolomeev E, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007;131:669-681.
– reference: Zapata JM, Llobet D, Krajewska M, Lefebvre S, Kress CL, Reed JC. Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood 2009;113:4595-4603.
– reference: Zhu S, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010;207:2647-2662.
– volume: 115
  start-page: 3541
  year: 2010
  end-page: 3552
  article-title: Classical and/or alternative NF‐kappaB pathway activation in multiple myeloma
  publication-title: Blood
– volume: 287
  start-page: 23010
  year: 2012
  end-page: 23019
  article-title: Opposing roles for TRAF1 in the alternative versus classical NF‐kappaB pathway in T cells
  publication-title: J Biol Chem
– volume: 72
  start-page: 1161
  year: 2006
  end-page: 1179
  article-title: The alternative NF‐kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development
  publication-title: Biochem Pharmacol
– volume: 31
  start-page: 4319
  year: 2011
  end-page: 4334
  article-title: Induction of the alternative NF‐kappaB pathway by lymphotoxin alphabeta (LTalphabeta) relies on internalization of LTbeta receptor
  publication-title: Mol Cell Biol
– volume: 26
  start-page: 1122
  year: 2012
  end-page: 1127
  article-title: Specific deletion of TRAF3 in B lymphocytes leads to B‐lymphoma development in mice
  publication-title: Leukemia
– volume: 17
  start-page: 939
  year: 2010
  end-page: 947
  article-title: Lys11‐linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
  publication-title: Nat Struct Mol Biol
– volume: 78
  start-page: 681
  year: 1994
  end-page: 692
  article-title: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor
  publication-title: Cell
– volume: 8
  start-page: 7
  year: 2013
  article-title: TRAF molecules in cell signaling and in human diseases
  publication-title: J Mol Signal
– volume: 195
  start-page: 835
  year: 2002
  end-page: 844
  article-title: A natural killer T (NKT) cell developmental pathway involving a thymus‐dependent NK1.1(‐)CD4(+) CD1d‐dependent precursor stage
  publication-title: J Exp Med
– volume: 434
  start-page: 243
  year: 2005
  end-page: 249
  article-title: Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors
  publication-title: Nature
– volume: 13
  start-page: 595
  year: 2013
  end-page: 601
  article-title: Tumour‐associated macrophages and cancer
  publication-title: Curr Opin Pharmacol
– volume: 128
  start-page: 369
  year: 2007
  end-page: 381
  article-title: A fourth IkappaB protein within the NF‐kappaB signaling module
  publication-title: Cell
– volume: 7
  start-page: 715
  year: 1997
  end-page: 725
  article-title: Early lethality, functional NF‐kappaB activation, and increased sensitivity to TNF‐induced cell death in TRAF2‐deficient mice
  publication-title: Immunity
– volume: 3
  start-page: 133
  year: 2003
  end-page: 146
  article-title: Interleukin‐12 and the regulation of innate resistance and adaptive immunity
  publication-title: Nat Rev Immunol
– volume: 286
  start-page: 17879
  year: 2011
  end-page: 17888
  article-title: Tumor necrosis factor receptor‐associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease
  publication-title: J Biol Chem
– volume: 113
  start-page: 4595
  year: 2009
  end-page: 4603
  article-title: Lymphocyte‐specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer
  publication-title: Blood
– volume: 11
  start-page: 70
  year: 2010
  end-page: 75
  article-title: Different modes of ubiquitination of the adapter TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines
  publication-title: Nat Immunol
– volume: 108
  start-page: 18354
  year: 2011
  end-page: 18359
  article-title: Crucial role for TNF receptor‐associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 12705
  year: 2000
  end-page: 12710
  article-title: Selective requirement for c‐Rel during IL‐12 P40 gene induction in macrophages
  publication-title: Proc Natl Acad Sci USA
– volume: 104
  start-page: 649
  year: 2012
  end-page: 652
  article-title: Macrophages: cancer therapy's double‐edged sword
  publication-title: J Natl Cancer Inst
– volume: 46
  start-page: 3278
  year: 2009
  end-page: 3282
  article-title: TNF receptor‐associated factor 1 is a positive regulator of the NF‐kappaB alternative pathway
  publication-title: Mol Immunol
– volume: 357
  start-page: 617
  year: 2001
  end-page: 623
  article-title: Isolation and characterization of two novel A20‐like proteins
  publication-title: Biochem J
– volume: 281
  start-page: 8565
  year: 2006
  end-page: 8572
  article-title: NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6
  publication-title: J Biol Chem
– volume: 16
  start-page: 1445
  year: 2009
  end-page: 1459
  article-title: TNF‐like weak inducer of apoptosis inhibits proinflammatory TNF receptor‐1 signaling
  publication-title: Cell Death Differ
– volume: 23
  start-page: 549
  year: 2002
  end-page: 555
  article-title: Macrophage polarization: tumor‐associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol
– volume: 38
  start-page: 101
  year: 2010
  end-page: 113
  article-title: Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation
  publication-title: Mol Cell
– volume: 12
  start-page: 833
  year: 2012
  end-page: 844
  article-title: The role of the IAP E3 ubiquitin ligases in regulating pattern‐recognition receptor signalling
  publication-title: Nat Rev Immunol
– volume: 131
  start-page: 682
  year: 2007
  end-page: 693
  article-title: IAP antagonists target cIAP1 to induce TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 9
  start-page: 1364
  year: 2008
  end-page: 1370
  article-title: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK‐dependent alternative NF‐kappaB signaling
  publication-title: Nat Immunol
– volume: 280
  start-page: 10018
  year: 2005
  end-page: 10024
  article-title: An atypical tumor necrosis factor (TNF) receptor‐associated factor‐binding motif of B cell‐activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF‐kappaB signaling pathway
  publication-title: J Biol Chem
– volume: 83
  start-page: 1243
  year: 1995
  end-page: 1252
  article-title: The TNFR2‐TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins
  publication-title: Cell
– volume: 9
  start-page: 271
  year: 2009
  end-page: 285
  article-title: The role of TNF superfamily members in T‐cell function and diseases
  publication-title: Nat Rev Immunol
– volume: 86
  start-page: 10211
  year: 2012
  end-page: 10217
  article-title: The NS1 protein of influenza A virus blocks RIG‐I‐mediated activation of the noncanonical NF‐kappaB pathway and p52/RelB‐dependent gene expression in lung epithelial cells
  publication-title: J Virol
– volume: 93
  start-page: 812
  year: 2013
  end-page: 824
  article-title: Germline mutations in NFKB2 implicate the noncanonical NF‐kappaB pathway in the pathogenesis of common variable immunodeficiency
  publication-title: Am J Hum Genet
– volume: 6
  start-page: 917
  year: 2013
  end-page: 925
  article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse
  publication-title: Int J Clin Exp Pathol
– volume: 279
  start-page: 26243
  year: 2004
  end-page: 26250
  article-title: Regulation of the NF‐kappaB‐inducing kinase by tumor necrosis factor receptor‐associated factor 3‐induced degradation
  publication-title: J Biol Chem
– volume: 11
  start-page: 457
  year: 2011
  end-page: 468
  article-title: Expanding TRAF function: TRAF3 as a tri‐faced immune regulator
  publication-title: Nat Rev Immunol
– volume: 125
  start-page: 999
  year: 2015
  end-page: 1005
  article-title: Genetic inactivation of TRAF3 in canine and human B‐cell lymphoma
  publication-title: Blood
– volume: 494
  start-page: 371
  year: 2013
  end-page: 374
  article-title: OTUD7B controls non‐canonical NF‐kappaB activation through deubiquitination of TRAF3
  publication-title: Nature
– volume: 182
  start-page: 171
  year: 2008
  end-page: 184
  article-title: TWEAK‐FN14 signaling induces lysosomal degradation of a cIAP1‐TRAF2 complex to sensitize tumor cells to TNFalpha
  publication-title: J Cell Biol
– volume: 164
  start-page: 6166
  year: 2000
  end-page: 6173
  article-title: M‐1/M‐2 macrophages and the Th1/Th2 paradigm
  publication-title: J Immunol
– volume: 7
  start-page: 401
  year: 2001
  end-page: 409
  article-title: NF‐kappaB‐inducing kinase regulates the processing of NF‐kappaB2 p100
  publication-title: Mol Cell
– volume: 23
  start-page: 2153
  year: 2009
  end-page: 2155
  article-title: Biallelic inactivation of TRAF3 in a subset of B‐cell lymphomas with interstitial del(14)(q24.1q32.33)
  publication-title: Leukemia
– volume: 439
  start-page: 204
  year: 2006
  end-page: 207
  article-title: Specificity in Toll‐like receptor signalling through distinct effector functions of TRAF3 and TRAF6
  publication-title: Nature
– volume: 289
  start-page: 13651
  year: 2014
  end-page: 13660
  article-title: Activation‐induced tumor necrosis factor receptor‐associated factor 3 (Traf3) alternative splicing controls the noncanonical nuclear factor kappaB pathway and chemokine expression in human T cells
  publication-title: J Biol Chem
– volume: 78
  start-page: 399
  year: 2009
  end-page: 434
  article-title: RING domain E3 ubiquitin ligases
  publication-title: Annu Rev Biochem
– volume: 121
  start-page: 4775
  year: 2011
  end-page: 4786
  article-title: NF‐kappaB‐inducing kinase plays an essential T cell‐intrinsic role in graft‐versus‐host disease and lethal autoimmunity in mice
  publication-title: J Clin Invest
– volume: 279
  start-page: 677
  year: 2004
  end-page: 685
  article-title: Tumor necrosis factor receptor‐associated factor (TRAF) 1 regulates CD40‐induced TRAF2‐mediated NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 21
  start-page: 6
  year: 2011
  end-page: 21
  article-title: Expanding role of ubiquitination in NF‐κB signaling
  publication-title: Cell Res
– volume: 111
  start-page: 14794
  year: 2014
  end-page: 14799
  article-title: IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: ra27
  year: 2013
  article-title: Noncanonical NF‐kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3‐binding motif
  publication-title: Sci Signal
– volume: 112
  start-page: 1583
  year: 2013
  end-page: 1591
  article-title: Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination
  publication-title: Circ Res
– volume: 181
  start-page: 354
  year: 2008
  end-page: 363
  article-title: Dendritic cells require the NF‐kappaB2 pathway for cross‐presentation of soluble antigens
  publication-title: J Immunol
– volume: 203
  start-page: 2413
  year: 2006
  end-page: 2418
  article-title: Rescue of TRAF3‐null mice by p100 NF‐kappa B deficiency
  publication-title: J Exp Med
– volume: 6
  start-page: 5930
  year: 2015
  article-title: Proinflammatory TLR signalling is regulated by a TRAF2‐dependent proteolysis mechanism in macrophages
  publication-title: Nat Commun
– volume: 205
  start-page: 1269
  year: 2008
  end-page: 1276
  article-title: An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation
  publication-title: J Exp Med
– volume: 5
  start-page: 953
  year: 2005
  end-page: 964
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nat Rev Immunol
– volume: 9
  start-page: 1371
  year: 2008
  end-page: 1378
  article-title: Noncanonical NF‐kappaB activation requires coordinated assembly of a regulatory complex of the adapters cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
  publication-title: Nat Immunol
– volume: 109
  start-page: 14122
  year: 2012
  end-page: 14127
  article-title: Activation of the noncanonical NF‐kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype
  publication-title: Proc Natl Acad Sci USA
– volume: 237
  start-page: 90
  year: 2010
  end-page: 103
  article-title: control of B‐cell survival and antigen‐specific B‐cell responses
  publication-title: Immunol Rev
– volume: 173
  start-page: 1849
  year: 2004
  end-page: 1857
  article-title: synthesized RelB mediates TNF‐induced up‐regulation of the human polymeric Ig receptor
  publication-title: J Immunol
– volume: 21
  start-page: 629
  year: 2004
  end-page: 642
  article-title: TRAF2 differentially regulates the canonical and noncanonical pathways of NF‐kappaB activation in mature B cells
  publication-title: Immunity
– volume: 205
  start-page: 1261
  year: 2008
  end-page: 1268
  article-title: “Re‐educating” tumor‐associated macrophages by targeting NF‐kappaB
  publication-title: J Exp Med
– volume: 246
  start-page: 125
  year: 2012
  end-page: 140
  article-title: The noncanonical NF‐kappaB pathway
  publication-title: Immunol Rev
– volume: 385
  start-page: 540
  year: 1997
  end-page: 544
  article-title: MAP3K‐related kinase involved in NF‐κB induction by TNF, CD95 and IL‐1
  publication-title: Nature
– volume: 179
  start-page: 7514
  year: 2007
  end-page: 7522
  article-title: A novel mutation in the Nfkb2 gene generates an NF‐kappa B2 “super repressor”
  publication-title: J Immunol
– volume: 27
  start-page: 253
  year: 2007
  end-page: 267
  article-title: Tumor necrosis factor receptor‐associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs
  publication-title: Immunity
– volume: 28
  start-page: 112
  year: 2008
  end-page: 121
  article-title: Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire
  publication-title: Immunity
– volume: 15
  start-page: 866
  year: 2014
  end-page: 874
  article-title: The adapter TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL‐2
  publication-title: Nat Immunol
– volume: 33
  start-page: 400
  year: 2010
  end-page: 411
  article-title: Human TRAF3 adapter molecule deficiency leads to impaired Toll‐like receptor 3 response and susceptibility to herpes simplex encephalitis
  publication-title: Immunity
– volume: 117
  start-page: 4041
  year: 2011
  end-page: 4051
  article-title: Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response
  publication-title: Blood
– volume: 14
  start-page: 193
  year: 2003
  end-page: 209
  article-title: The signaling adapters and pathways activated by TNF superfamily
  publication-title: Cytokine Growth Factor Rev
– volume: 105
  start-page: 3503
  year: 2008
  end-page: 3508
  article-title: Control of canonical NF‐kappaB activation through the NIK‐IKK complex pathway
  publication-title: Proc Natl Acad Sci USA
– volume: 278
  start-page: 23180
  year: 2003
  end-page: 23186
  article-title: A novel type of deubiquitinating enzyme
  publication-title: J Biol Chem
– volume: 79
  start-page: 8948
  year: 2005
  end-page: 8959
  article-title: Respiratory syncytial virus influences NF‐kappaB‐dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF‐kappaB2
  publication-title: J Virol
– volume: 289
  start-page: 30680
  year: 2014
  end-page: 30689
  article-title: nuclear factor‐kappaB‐inducing kinase (NIK) contains an amino‐terminal inhibitor of apoptosis (IAP)‐binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c‐IAP1)
  publication-title: J Biol Chem
– volume: 278
  start-page: 36005
  year: 2003
  end-page: 36012
  article-title: TWEAK induces NF‐kappaB2 p100 processing and long lasting NF‐kappaB activation
  publication-title: J Biol Chem
– volume: 2
  start-page: e00785
  year: 2013
  article-title: MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
  publication-title: eLife
– volume: 122
  start-page: 1164
  year: 2012
  end-page: 1171
  article-title: Innate immunity in the central nervous system
  publication-title: J Clin Invest
– volume: 439
  start-page: 208
  year: 2006
  end-page: 211
  article-title: Critical role of TRAF3 in the Toll‐like receptor‐dependent and ‐independent antiviral response
  publication-title: Nature
– volume: 207
  start-page: 2647
  year: 2010
  end-page: 2662
  article-title: Modulation of experimental autoimmune encephalomyelitis through TRAF3‐mediated suppression of interleukin 17 receptor signaling
  publication-title: J Exp Med
– volume: 28
  start-page: 391
  year: 2008
  end-page: 401
  article-title: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor
  publication-title: Immunity
– volume: 5
  start-page: 407
  year: 1996
  end-page: 415
  article-title: Targeted disruption of TRAF3 leads to postnatal lethality and defective T‐dependent immune responses
  publication-title: Immunity
– volume: 12
  start-page: 231
  year: 2011
  end-page: 238
  article-title: IRF5 promotes inflammatory macrophage polarization and TH1‐TH17 responses
  publication-title: Nat Immunol
– volume: 12
  start-page: 115
  year: 2007
  end-page: 130
  article-title: Frequent engagement of the classical and alternative NF‐kappaB pathways by diverse genetic abnormalities in multiple myeloma
  publication-title: Cancer Cell
– volume: 131
  start-page: 669
  year: 2007
  end-page: 681
  article-title: IAP antagonists induce autoubiquitination of c‐IAPs, NF‐kappaB activation, and TNFalpha‐dependent apoptosis
  publication-title: Cell
– volume: 40
  start-page: 342
  year: 2014
  end-page: 354
  article-title: Noncanonical NF‐kappaB pathway controls the production of type I interferons in antiviral innate immunity
  publication-title: Immunity
– volume: 182
  start-page: 2091
  year: 1995
  end-page: 2096
  article-title: Positive selection of mouse NK1 T cells by CD1‐expressing cortical thymocytes
  publication-title: J Exp Med
– volume: 25
  start-page: 147
  year: 2014
  end-page: 156
  article-title: Roles for TNF‐receptor associated factor 3 (TRAF3) in lymphocyte functions
  publication-title: Cytokine Growth Factor Rev
– volume: 113
  start-page: 6603
  year: 2009
  end-page: 6610
  article-title: Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK
  publication-title: Blood
– volume: 157
  start-page: 702
  year: 2012
  end-page: 708
  article-title: Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma
  publication-title: Br J Haematol
– volume: 210
  start-page: 1079
  year: 2013
  end-page: 1086
  article-title: TNF receptor associated factor 3 plays a key role in development and function of invariant natural killer T cells
  publication-title: J Exp Med
– volume: 124
  start-page: 2964
  year: 2014
  end-page: 2972
  article-title: Autosomal‐dominant B‐cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100
  publication-title: Blood
– volume: 26
  start-page: 203
  year: 2012
  end-page: 234
  article-title: NF‐kappaB, the first quarter‐century: remarkable progress and outstanding questions
  publication-title: Genes Dev
– volume: 12
  start-page: 131
  year: 2007
  end-page: 144
  article-title: Promiscuous mutations activate the noncanonical NF‐kappaB pathway in multiple myeloma
  publication-title: Cancer Cell
– volume: 283
  start-page: 23169
  year: 2008
  end-page: 23178
  article-title: Respiratory syncytial virus induces RelA release from cytoplasmic 100‐kDa NF‐kappa B2 complexes via a novel retinoic acid‐inducible gene‐I{middle dot}NF‐ kappa B‐inducing kinase signaling pathway
  publication-title: J Biol Chem
– volume: 246
  start-page: 107
  year: 2012
  end-page: 124
  article-title: Regulation of NF‐kappaB by deubiquitinases
  publication-title: Immunol Rev
– volume: 193
  start-page: 422
  year: 2014
  end-page: 430
  article-title: T cell‐intrinsic function of the noncanonical NF‐kappaB pathway in the regulation of GM‐CSF expression and experimental autoimmune encephalomyelitis. Pathogenesis
  publication-title: J Immunol
– volume: 296
  start-page: 553
  year: 2002
  end-page: 555
  article-title: A thymic precursor to the NK T cell lineage
  publication-title: Science
– volume: 9
  start-page: e102120
  year: 2014
  article-title: TRAF3 regulates homeostasis of CD8 central memory T cells
  publication-title: PLoS ONE
– volume: 30
  start-page: 24
  year: 2014
  end-page: 31
  article-title: Impact of myeloid cells on the efficacy of anticancer chemotherapy
  publication-title: Curr Opin Immunol
– volume: 278
  start-page: 45382
  year: 2003
  end-page: 45390
  article-title: Tumor necrosis factor receptor‐associated factor 2 (TRAF2)‐deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling
  publication-title: J Biol Chem
– volume: 208
  start-page: 1917
  year: 2011
  end-page: 1929
  article-title: NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell‐mediated immune responses
  publication-title: J Exp Med
– volume: 597
  start-page: 32
  year: 2007
  end-page: 47
  article-title: Physiological roles and mechanisms of signaling by TRAF2 and TRAF5
  publication-title: Adv Exp Med Biol
– volume: 193
  start-page: 943
  year: 2001
  end-page: 954
  article-title: Differential signaling and tumor necrosis factor receptor‐associated factor (TRAF) degradation mediated by CD40 and the Epstein‐Barr virus oncoprotein latent membrane protein 1 (LMP1)
  publication-title: J Exp Med
– volume: 4
  start-page: 775
  year: 2004
  end-page: 786
  article-title: The multifaceted roles of TRAFs in the regulation of B‐cell function
  publication-title: Nat Rev Immunol
– volume: 19
  start-page: 595
  year: 2013
  end-page: 602
  article-title: Peli1 promotes microglia‐mediated CNS inflammation by regulating Traf3 degradation
  publication-title: Nat Med
– volume: 194
  start-page: 334
  year: 2015
  end-page: 348
  article-title: Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice
  publication-title: J Immunol
– volume: 103
  start-page: 14459
  year: 2006
  end-page: 14464
  article-title: Activation of NF‐kappaB by the intracellular expression of NF‐kappaB‐inducing kinase acts as a powerful vaccine adjuvant
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 315
  year: 2009
  end-page: 325
  article-title: Key role of Ubc5 and lysine‐63 polyubiquitination in viral activation of IRF3
  publication-title: Mol Cell
– volume: 168
  start-page: 5491
  year: 2002
  end-page: 5498
  article-title: CD40 ligation conditions dendritic cell antigen‐presenting function through sustained activation of NF‐kappaB
  publication-title: J Immunol
– volume: 11
  start-page: 11 19D
  year: 2009
  article-title: TRAF‐mediated TNFR‐family signaling
  publication-title: Curr Protoc Immunol
– volume: 118
  start-page: 4930
  year: 2011
  end-page: 4934
  article-title: Alteration of BIRC3 and multiple other NF‐kappaB pathway genes in splenic marginal zone lymphoma
  publication-title: Blood
– volume: 3
  start-page: 958
  year: 2002
  end-page: 965
  article-title: BAFF‐induced NEMO‐independent processing of NF‐kappaB2 in maturing B cells
  publication-title: Nat Immunol
– volume: 23
  start-page: 23
  year: 2005
  end-page: 68
  article-title: Tnf/Tnfr family members in costimulation of T cell responses
  publication-title: Annu Rev Immunol
– volume: 545
  start-page: 35
  year: 2014
  end-page: 65
  article-title: IAP family of cell death and signaling regulators
  publication-title: Methods Enzymol
– volume: 211
  start-page: 137
  year: 2014
  end-page: 151
  article-title: TRAF3 regulates the effector function of regulatory T cells and humoral immune responses
  publication-title: J Exp Med
– volume: 19
  start-page: 2138
  year: 2005
  end-page: 2151
  article-title: A c‐Rel subdomain responsible for enhanced DNA‐binding affinity and selective gene activation
  publication-title: Genes Dev
– volume: 39
  start-page: 445
  year: 2006
  end-page: 453
  article-title: Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25 CD4 regulatory T cells
  publication-title: Autoimmunity
– volume: 194
  start-page: 1021
  year: 2001
  end-page: 1032
  article-title: c‐Rel regulates interleukin 12 p70 expression in CD8(+) dendritic cells by specifically inducing p35 gene transcription
  publication-title: J Exp Med
– volume: 28
  start-page: 100
  year: 2008
  end-page: 111
  article-title: A two‐step process for thymic regulatory T cell development
  publication-title: Immunity
– volume: 191
  start-page: 3663
  year: 2013
  end-page: 3672
  article-title: A cell‐intrinsic requirement for NF‐kappaB‐inducing kinase in CD4 and CD8 T cell memory
  publication-title: J Immunol
– volume: 2
  start-page: a000109
  year: 2010
  article-title: Oncogenic activation of NF‐kappaB
  publication-title: Cold Spring Harb Perspect Biol
– volume: 5
  start-page: 804
  year: 2006
  end-page: 807
  article-title: TRAF3: a new regulator of type I interferons
  publication-title: Cell Cycle
– volume: 285
  start-page: 17148
  year: 2010
  end-page: 17155
  article-title: Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin‐beta receptor
  publication-title: J Biol Chem
– volume: 186
  start-page: 143
  year: 2011
  end-page: 155
  article-title: TNF receptor‐associated factor 3 is required for T cell‐mediated immunity and TCR/CD28 signaling
  publication-title: J Immunol
– volume: 271
  start-page: 30307
  year: 1996
  end-page: 30310
  article-title: Inducible activation of RelB in fibroblasts
  publication-title: J Biol Chem
– volume: 34
  start-page: 209
  year: 2015
  end-page: 216
  article-title: TRAF2 is an NF‐kappaB‐activating oncogene in epithelial cancers
  publication-title: Oncogene
– volume: 92
  start-page: 819
  year: 1998
  end-page: 828
  article-title: Cotranslational biogenesis of NF‐kappaB p50 by the 26S proteasome
  publication-title: Cell
– volume: 597
  start-page: 48
  year: 2007
  end-page: 59
  article-title: TRAF3 and its biological function
  publication-title: Adv Exp Med Biol
– volume: 283
  start-page: 7036
  year: 2008
  end-page: 7045
  article-title: NF‐kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro‐inflammatory signaling
  publication-title: J Biol Chem
– volume: 10
  start-page: 156
  year: 2013
  end-page: 163
  article-title: Up‐regulation and pre‐activation of TRAF3 and TRAF5 in inflammatory bowel disease
  publication-title: Int J Med Sci
– volume: 105
  start-page: 10883
  year: 2008
  end-page: 10888
  article-title: NIK overexpression amplifies, whereas ablation of its TRAF3‐binding domain replaces BAFF:BAFF‐R‐mediated survival signals in B cells
  publication-title: Proc Natl Acad Sci USA
– volume: 188
  start-page: 4602
  year: 2012
  end-page: 4610
  article-title: NIK prevents the development of hypereosinophilic syndrome‐like disease in mice independent of IKKalpha activation
  publication-title: J Immunol
– ident: e_1_2_14_62_1
  doi: 10.1101/cshperspect.a000109
– ident: e_1_2_14_129_1
  doi: 10.1016/j.immuni.2010.08.014
– ident: e_1_2_14_81_1
  doi: 10.1073/pnas.1410124111
– ident: e_1_2_14_45_1
  doi: 10.1074/jbc.M708690200
– ident: e_1_2_14_63_1
  doi: 10.1016/j.cytogfr.2013.12.002
– ident: e_1_2_14_135_1
  doi: 10.1128/JVI.00323-12
– ident: e_1_2_14_57_1
  doi: 10.1083/jcb.200801010
– ident: e_1_2_14_101_1
  doi: 10.1038/nm.3111
– ident: e_1_2_14_27_1
  doi: 10.1182/blood-2010-10-312793
– ident: e_1_2_14_36_1
  doi: 10.1016/j.molcel.2010.03.009
– ident: e_1_2_14_15_1
  doi: 10.1038/ncomms6930
– ident: e_1_2_14_67_1
  doi: 10.1182/blood-2008-07-165456
– ident: e_1_2_14_115_1
  doi: 10.1038/nri1733
– ident: e_1_2_14_69_1
  doi: 10.1182/blood-2008-12-192914
– ident: e_1_2_14_73_1
  doi: 10.4049/jimmunol.1303237
– ident: e_1_2_14_61_1
  doi: 10.1111/j.1600-065X.2010.00942.x
– ident: e_1_2_14_83_1
  doi: 10.1073/pnas.0707959105
– ident: e_1_2_14_21_1
  doi: 10.1016/j.cell.2007.10.030
– ident: e_1_2_14_5_1
  doi: 10.1146/annurev.biochem.78.101807.093809
– ident: e_1_2_14_66_1
  doi: 10.1182/blood-2014-06-578542
– ident: e_1_2_14_12_1
  doi: 10.1074/jbc.M403286200
– ident: e_1_2_14_59_1
  doi: 10.1038/ni842
– ident: e_1_2_14_87_1
  doi: 10.1016/S1074-7613(00)80391-X
– ident: e_1_2_14_50_1
  doi: 10.1074/jbc.M306708200
– ident: e_1_2_14_127_1
  doi: 10.1038/nature04374
– ident: e_1_2_14_103_1
  doi: 10.1172/JCI58644
– ident: e_1_2_14_104_1
  doi: 10.4049/jimmunol.1401548
– ident: e_1_2_14_89_1
  doi: 10.4049/jimmunol.1000290
– ident: e_1_2_14_107_1
  doi: 10.1074/jbc.M111.221853
– ident: e_1_2_14_65_1
  doi: 10.1016/j.ajhg.2013.09.009
– ident: e_1_2_14_20_1
  doi: 10.1016/j.immuni.2008.01.009
– ident: e_1_2_14_22_1
  doi: 10.1016/j.cell.2007.10.037
– ident: e_1_2_14_113_1
  doi: 10.1038/leu.2011.309
– ident: e_1_2_14_79_1
  doi: 10.4049/jimmunol.168.11.5491
– ident: e_1_2_14_128_1
  doi: 10.4161/cc.5.8.2637
– ident: e_1_2_14_32_1
  doi: 10.1182/blood-2011-06-359166
– volume: 271
  start-page: 30307
  year: 1996
  ident: e_1_2_14_78_1
  article-title: Inducible activation of RelB in fibroblasts
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)79059-0
– ident: e_1_2_14_56_1
  doi: 10.1038/cdd.2009.80
– ident: e_1_2_14_122_1
  doi: 10.1016/j.coph.2013.05.017
– ident: e_1_2_14_93_1
  doi: 10.1084/jem.20011544
– ident: e_1_2_14_58_1
  doi: 10.1074/jbc.M110.105874
– ident: e_1_2_14_55_1
  doi: 10.1074/jbc.M304266200
– ident: e_1_2_14_106_1
  doi: 10.7150/ijms.5457
– ident: e_1_2_14_109_1
  doi: 10.1038/ni.1990
– ident: e_1_2_14_14_1
  doi: 10.1084/jem.20061166
– ident: e_1_2_14_46_1
  doi: 10.1161/CIRCRESAHA.111.300119
– ident: e_1_2_14_71_1
  doi: 10.4049/jimmunol.1301328
– ident: e_1_2_14_125_1
  doi: 10.7554/eLife.00785
– ident: e_1_2_14_70_1
  doi: 10.1172/JCI44943
– ident: e_1_2_14_118_1
  doi: 10.1038/nri1001
– ident: e_1_2_14_24_1
  doi: 10.1038/ni.1676
– ident: e_1_2_14_100_1
  doi: 10.1038/ni.1819
– ident: e_1_2_14_90_1
  doi: 10.1084/jem.20122135
– ident: e_1_2_14_94_1
  doi: 10.1371/journal.pone.0102120
– ident: e_1_2_14_18_1
  doi: 10.1073/pnas.0805186105
– ident: e_1_2_14_16_1
  doi: 10.1016/S0092-8674(00)81409-9
– ident: e_1_2_14_77_1
  doi: 10.1084/jem.20110128
– ident: e_1_2_14_99_1
  doi: 10.1007/978-0-387-70630-6_3
– ident: e_1_2_14_48_1
  doi: 10.1111/j.1600-065X.2012.01100.x
– ident: e_1_2_14_85_1
  doi: 10.1146/annurev.immunol.23.021704.115839
– ident: e_1_2_14_72_1
  doi: 10.4049/jimmunol.1200021
– ident: e_1_2_14_19_1
  doi: 10.1016/j.immuni.2004.09.011
– ident: e_1_2_14_132_1
  doi: 10.1128/JVI.79.14.8948-8959.2005
– ident: e_1_2_14_17_1
  doi: 10.1038/385540a0
– ident: e_1_2_14_3_1
  doi: 10.1186/1750-2187-8-7
– ident: e_1_2_14_7_1
  doi: 10.1016/S1359-6101(03)00021-2
– ident: e_1_2_14_13_1
  doi: 10.1074/jbc.M413634200
– ident: e_1_2_14_80_1
  doi: 10.4049/jimmunol.173.3.1849
– ident: e_1_2_14_131_1
  doi: 10.1016/j.immuni.2014.02.006
– ident: e_1_2_14_40_1
  doi: 10.1038/nri3325
– ident: e_1_2_14_42_1
  doi: 10.1038/nri1462
– ident: e_1_2_14_75_1
  doi: 10.1080/08916930600833390
– ident: e_1_2_14_41_1
  doi: 10.1084/jem.193.8.943
– ident: e_1_2_14_44_1
  doi: 10.1042/bj3570617
– ident: e_1_2_14_110_1
  doi: 10.1073/pnas.230436397
– ident: e_1_2_14_116_1
  doi: 10.1016/j.coi.2014.05.009
– ident: e_1_2_14_39_1
  doi: 10.1016/B978-0-12-801430-1.00002-0
– ident: e_1_2_14_64_1
  doi: 10.4049/jimmunol.179.11.7514
– ident: e_1_2_14_114_1
  doi: 10.1038/onc.2013.543
– ident: e_1_2_14_8_1
  doi: 10.1038/cr.2010.170
– ident: e_1_2_14_102_1
  doi: 10.1084/jem.20100703
– ident: e_1_2_14_25_1
  doi: 10.1016/0092-8674(95)90149-3
– volume: 11
  start-page: 11 19D
  year: 2009
  ident: e_1_2_14_2_1
  article-title: TRAF‐mediated TNFR‐family signaling
  publication-title: Curr Protoc Immunol
– ident: e_1_2_14_74_1
  doi: 10.1073/pnas.0603493103
– ident: e_1_2_14_60_1
  doi: 10.1016/j.bcp.2006.08.007
– ident: e_1_2_14_76_1
  doi: 10.4049/jimmunol.181.1.354
– volume: 6
  start-page: ra27
  year: 2013
  ident: e_1_2_14_53_1
  article-title: Noncanonical NF‐kappaB activation by the oncoprotein Tio occurs through a nonconserved TRAF3‐binding motif
  publication-title: Sci Signal
– ident: e_1_2_14_88_1
  doi: 10.1016/S1074-7613(00)80497-5
– ident: e_1_2_14_133_1
  doi: 10.1074/jbc.M802729200
– ident: e_1_2_14_29_1
  doi: 10.1016/j.ccr.2007.07.003
– ident: e_1_2_14_119_1
  doi: 10.1016/S1471-4906(02)02302-5
– ident: e_1_2_14_43_1
  doi: 10.1038/nature11831
– ident: e_1_2_14_51_1
  doi: 10.1074/jbc.M310969200
– ident: e_1_2_14_10_1
  doi: 10.1111/j.1600-065X.2011.01088.x
– ident: e_1_2_14_9_1
  doi: 10.1016/S1097-2765(01)00187-3
– ident: e_1_2_14_123_1
  doi: 10.1084/jem.20080124
– ident: e_1_2_14_47_1
  doi: 10.1038/nsmb.1873
– ident: e_1_2_14_52_1
  doi: 10.1128/MCB.05033-11
– ident: e_1_2_14_108_1
  doi: 10.1084/jem.194.8.1021
– ident: e_1_2_14_6_1
  doi: 10.1038/nri2998
– ident: e_1_2_14_91_1
  doi: 10.1084/jem.182.6.2091
– ident: e_1_2_14_11_1
  doi: 10.1101/gad.183434.111
– ident: e_1_2_14_96_1
  doi: 10.1016/j.immuni.2007.11.022
– ident: e_1_2_14_134_1
  doi: 10.1073/pnas.1204032109
– ident: e_1_2_14_31_1
  doi: 10.1182/blood-2009-09-243535
– ident: e_1_2_14_97_1
  doi: 10.1016/j.immuni.2007.11.021
– ident: e_1_2_14_37_1
  doi: 10.1074/jbc.M112.350538
– ident: e_1_2_14_120_1
  doi: 10.1093/jnci/djs235
– ident: e_1_2_14_124_1
  doi: 10.1007/978-0-387-70630-6_4
– ident: e_1_2_14_121_1
  doi: 10.1084/jem.20080108
– ident: e_1_2_14_4_1
  doi: 10.1016/0092-8674(94)90532-0
– ident: e_1_2_14_28_1
  doi: 10.1016/j.ccr.2007.07.004
– ident: e_1_2_14_30_1
  doi: 10.1038/leu.2009.149
– ident: e_1_2_14_86_1
  doi: 10.1074/jbc.M113.526269
– ident: e_1_2_14_35_1
  doi: 10.1074/jbc.M114.587808
– volume: 6
  start-page: 917
  year: 2013
  ident: e_1_2_14_105_1
  article-title: Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse
  publication-title: Int J Clin Exp Pathol
– ident: e_1_2_14_33_1
  doi: 10.1111/j.1365-2141.2012.09113.x
– ident: e_1_2_14_126_1
  doi: 10.1038/nature04369
– ident: e_1_2_14_84_1
  doi: 10.1038/nri2526
– ident: e_1_2_14_49_1
  doi: 10.1074/jbc.M301863200
– ident: e_1_2_14_98_1
  doi: 10.1084/jem.20131019
– ident: e_1_2_14_130_1
  doi: 10.1016/j.molcel.2009.09.037
– ident: e_1_2_14_23_1
  doi: 10.1038/ni.1678
– ident: e_1_2_14_92_1
  doi: 10.1126/science.1069017
– ident: e_1_2_14_111_1
  doi: 10.1101/gad.1329805
– ident: e_1_2_14_34_1
  doi: 10.1182/blood-2014-10-602714
– ident: e_1_2_14_68_1
  doi: 10.1073/pnas.1109427108
– ident: e_1_2_14_82_1
  doi: 10.1016/j.cell.2006.12.033
– ident: e_1_2_14_112_1
  doi: 10.1038/nature03308
– ident: e_1_2_14_26_1
  doi: 10.1016/j.immuni.2007.07.012
– ident: e_1_2_14_117_1
  doi: 10.4049/jimmunol.164.12.6166
– ident: e_1_2_14_38_1
  doi: 10.1016/j.molimm.2009.07.029
– ident: e_1_2_14_95_1
  doi: 10.1038/ni.2944
– ident: e_1_2_14_54_1
  doi: 10.1074/jbc.M510891200
SSID ssj0017324
Score 2.4732807
SecondaryResourceType review_article
Snippet Summary Tumor necrosis factor receptor (TNFR)‐associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However,...
Tumor necrosis factor receptor ( TNFR )‐associated factors ( TRAF s) form a family of proteins that are best known as signaling adapters of TNFR s. However,...
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) form a family of proteins that are best known as signaling adapters of TNFRs. However,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms Animals
cIAP
Humans
inflammation
NF-kappa B - metabolism
NF-kappaB-Inducing Kinase
NIK
non-canonical NF-κB
Protein Serine-Threonine Kinases - metabolism
Proteolysis
Signal Transduction
TNF Receptor-Associated Factor 2 - metabolism
TNF Receptor-Associated Factor 3 - metabolism
TRAF2
TRAF3
Title Targeting signaling factors for degradation, an emerging mechanism for TRAF functions
URI https://api.istex.fr/ark:/67375/WNG-T3BVBPC2-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fimr.12311
https://www.ncbi.nlm.nih.gov/pubmed/26085207
https://www.proquest.com/docview/1690210493
https://pubmed.ncbi.nlm.nih.gov/PMC4473799
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9Ki-BLtWp1q5YoIj50j9vsZ_CpLT2r0CLnXe2DEJJNDo_ztuU-oPrXO5PsLr22gvRpF3Y2bJKZ5Debmd8AvEtyqxQ3JhzZLKa_VSZU3VSFiSh0IWzGtabc4ZPT7HiYfDlPz9fgY5ML4_kh2h9uZBluvSYDV3p-zcjH01kHl12X10uxWgSI-i11VJTH3PN6d9MQnYqsZhWiKJ72zZW9aIOG9eouoHk7XvI6jnUbUe8R_Gi64ONPJp3lQnfKPzfYHe_Zx8ewWQNUtu81agvWbPUEHviSlb-fwnDgQsdxw2MU-qEom53VRXsYAmBmiH3CF2raY6pilIBMhZDY1FKS8Xg-dWKD_n6P0abq9P4ZDHtHg8PjsC7NEJYI-aKQjwwvrcARSbVGF00oRGpZzNNRZDhOdoH3iDwLoyJrDM4OFRfVkRJ41Twr4m1Yry4q-wJYYUqBmEbTgSZx2WBLBVXO0XFc5nmeBfChmSRZ1rzlVD7jl2z8Fxwl6UYpgLet6KUn67hL6L2b6VZCzSYU3Zan8vvpJzmID84Ovh5y-S2AN40qSLQ5OkhRlb1YziUdLaKrnIg4gOdeNdrW0D8sUt7NA8hXlKYVID7v1SfV-Kfj9U4S_AohsMNOJ_7dBfn5pO9udv5f9CU8RKyX-kjjV7C-mC3ta8RTC73rDOcvTBkbAg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVgguvKHL0yBAHNgo630fOPRBSGgTobCB3oy9dtSoZIvyEJTfxF_hPzHjfaiBInHpgdOutCPLXs_Y39gz3wA8DWIjJdfaHZvIp9Mq7cp2KN0gTVSSmogrRbnD_UHUHQVvD8KDNfhR58KU_BDNgRtZhl2vycDpQPqUlU-msxauu55XhVTumZOv6LDNX_V2cXafcd55ne103aqmgJsjVvFcPtY8N6nOTagU-hapRIgR-Twce5pjLxN8R8iUaOkZrX1EO7GfKE-m-FQ8Snxs9wJsUAVxYurfHTZkVV7s85JJvB266MZEFY8RxQ01XV3Z_TZoIr-dBW3_jNA8jZzt1te5Cj_rn1ZGvBy1lgvVyr__xif5v_zVa3ClwuBsqzSa67BmihtwsazKeXITRpmNjsc9nVF0i6SEfVbVJWKI8Zkmgo2yFtVLJgtGOdZU64lNDeVRT-ZTK5YNtzqMcIM17VswOpcx3Yb14rgwm8ASnacI2xTd2RJdD7aUUHEg5ft5HMeRAy9qrRB5Rc1OFUI-i9pFw1kRdlYceNKIfin5SM4Sem5Vq5GQsyMK4ItD8XHwRmT-9oftdztcvHfgca17ApcVuiuShTlezgXdnnJ01VPfgTulLjatoQuchLwdOxCvaGkjQJTlq1-KyaGlLg8C7EWa4oCtEv59CKLXH9qXu_8u-ggudbP-vtjvDfbuwWWEtmEZWH0f1hezpXmA8HGhHlqrZfDpvBX6F6BQdqE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VViAuvCnhaRCgHtgoa-_LBw5tQ2gojaqQQG9be-2IqGRb5SEof4m_wo9ixvtQA0Xi0gOnXWlHlr2esb-xZ74BeB7EVilujDeykaDTKuOpVqi8QCY6kTbiWlPu8F4v2hkG7w7CgxX4UeXCFPwQ9YEbWYZbr8nAT8zojJGPJ9MmLru-X0ZU7trTr-ivzV532zi5LzjvvBls73hlSQEvQ6jie3xkeGalyWyoNboWUiHCiAQPR77h2MkE3xExJUb51hiBYCcWifaVxKfmUSKw3UuwFkQtSXUi2v2aq8qPBS-IxFuhh15MVNIYUdhQ3dWlzW-N5vHbecj2zwDNs8DZ7Xyd6_Cz-mdFwMtRczHXzez7b3SS_8lPvQHXSgTONguTuQkrNr8Fl4uanKe3YThwsfG4ozOKbVGUrs_KqkQMET4zRK9RVKJ6xVTOKMOaKj2xiaUs6vFs4sQG_c0OI9TgDPsODC9kTHdhNT_O7T1gickkgjZNN7ZE1oMtJVQaSAuRxXEcNWCjUoo0K4nZqT7Il7Ry0HBWUjcrDXhWi54UbCTnCb10mlVLqOkRhe_FYfqp9zYdiK2PW_vbPP3QgKeV6qW4qNBNkcrt8WKW0t0pR0ddigasF6pYt4YOcBLyVtyAeElJawEiLF_-ko8_O-LyIMBeSIkDdjr49yGk3b2-e7n_76JP4Mp-u5O-7_Z2H8BVxLVhEVX9EFbn04V9hNhxrh87m2VweNH6_AutPXVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+signaling+factors+for+degradation%2C+an+emerging+mechanism+for+TRAF+functions&rft.jtitle=Immunological+reviews&rft.au=Yang%2C+Xiao-Dong&rft.au=Sun%2C+Shao-Cong&rft.date=2015-07-01&rft.eissn=1600-065X&rft.volume=266&rft.issue=1&rft.spage=56&rft_id=info:doi/10.1111%2Fimr.12311&rft_id=info%3Apmid%2F26085207&rft.externalDocID=26085207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon