Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution
Key points Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been established. We found that the detection thresholds of neurons at the first central stage of vestibular processing (i.e. vestibul...
Saved in:
Published in | The Journal of physiology Vol. 592; no. 7; pp. 1565 - 1580 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2014
BlackWell publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/jphysiol.2013.267534 |
Cover
Abstract | Key points
Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been established.
We found that the detection thresholds of neurons at the first central stage of vestibular processing (i.e. vestibular nuclei) dramatically increase immediately post‐lesion, and despite some recovery remain elevated even after 1 month, following the trend reported for vestibular patients’ perception.
After the lesion, parallel changes in neuronal trial‐to‐trial variability and sensitivity account for consistently elevated thresholds, thus providing a neural correlate for impaired behavioural performance.
In a subset of neurons, sensory substitution with extravestibular (i.e. proprioceptive) inputs after the lesion combined with residual vestibular information serves to improve neuronal detection thresholds for head‐on‐body motion.
Our results provide a neural correlate for rehabilitation approaches that take advantage of the convergence of proprioceptive and vestibular inputs to improve patient outcomes.
The vestibular system is responsible for processing self‐motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first‐order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self‐motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two‐fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head‐on‐body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self‐motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. |
---|---|
AbstractList | The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues.The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ∼20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s −1 . After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s −1 , and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s −1 ). While thresholds showed slight improvement by week 3 (25 deg s −1 ), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. Key points Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been established. We found that the detection thresholds of neurons at the first central stage of vestibular processing (i.e. vestibular nuclei) dramatically increase immediately post‐lesion, and despite some recovery remain elevated even after 1 month, following the trend reported for vestibular patients’ perception. After the lesion, parallel changes in neuronal trial‐to‐trial variability and sensitivity account for consistently elevated thresholds, thus providing a neural correlate for impaired behavioural performance. In a subset of neurons, sensory substitution with extravestibular (i.e. proprioceptive) inputs after the lesion combined with residual vestibular information serves to improve neuronal detection thresholds for head‐on‐body motion. Our results provide a neural correlate for rehabilitation approaches that take advantage of the convergence of proprioceptive and vestibular inputs to improve patient outcomes. The vestibular system is responsible for processing self‐motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first‐order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self‐motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two‐fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head‐on‐body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self‐motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. Key points Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been established. We found that the detection thresholds of neurons at the first central stage of vestibular processing (i.e. vestibular nuclei) dramatically increase immediately post-lesion, and despite some recovery remain elevated even after 1 month, following the trend reported for vestibular patients' perception. After the lesion, parallel changes in neuronal trial-to-trial variability and sensitivity account for consistently elevated thresholds, thus providing a neural correlate for impaired behavioural performance. In a subset of neurons, sensory substitution with extravestibular (i.e. proprioceptive) inputs after the lesion combined with residual vestibular information serves to improve neuronal detection thresholds for head-on-body motion. Our results provide a neural correlate for rehabilitation approaches that take advantage of the convergence of proprioceptive and vestibular inputs to improve patient outcomes. The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s-1. After unilateral vestibular injury patients' direction-discrimination thresholds worsen to 20 deg s-1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s-1). While thresholds showed slight improvement by week 3 (25 deg s-1), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. [PUBLICATION ABSTRACT] Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been established.We found that the detection thresholds of neurons at the first central stage of vestibular processing (i.e. vestibular nuclei) dramatically increase immediately post-lesion, and despite some recovery remain elevated even after 1 month, following the trend reported for vestibular patients' perception.After the lesion, parallel changes in neuronal trial-to-trial variability and sensitivity account for consistently elevated thresholds, thus providing a neural correlate for impaired behavioural performance.In a subset of neurons, sensory substitution with extravestibular (i.e. proprioceptive) inputs after the lesion combined with residual vestibular information serves to improve neuronal detection thresholds for head-on-body motion.Our results provide a neural correlate for rehabilitation approaches that take advantage of the convergence of proprioceptive and vestibular inputs to improve patient outcomes. The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s-1. After unilateral vestibular injury patients' direction-discrimination thresholds worsen to similar to 20 deg s-1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s-1). While thresholds showed slight improvement by week 3 (25 deg s-1), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. |
Author | Dale, Alexis Sadeghi, Soroush G. Mitchell, Diana E. Carriot, Jerome Jamali, Mohsen Cullen, Kathleen E. |
Author_xml | – sequence: 1 givenname: Mohsen surname: Jamali fullname: Jamali, Mohsen organization: McGill University – sequence: 2 givenname: Diana E. surname: Mitchell fullname: Mitchell, Diana E. organization: McGill University – sequence: 3 givenname: Alexis surname: Dale fullname: Dale, Alexis organization: McGill University – sequence: 4 givenname: Jerome surname: Carriot fullname: Carriot, Jerome organization: McGill University – sequence: 5 givenname: Soroush G. surname: Sadeghi fullname: Sadeghi, Soroush G. organization: The State University of New York – sequence: 6 givenname: Kathleen E. surname: Cullen fullname: Cullen, Kathleen E. organization: McGill University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24366259$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URNPCP0DIEhs2E3xtz0zcBRKqeKoCFmVteTx3GkfOONgzQSP1x9dJGgTd0JUf9ztHx773jJz0oUdCXgKbA4B4u9osp-SCn3MGYs6ruhTyCZmBrFRR10qckBljnBeiLuGUnKW0YhlkSj0jp1yKquKlmpHbbzjG0BtPWxzQDi70dFhGTMvg20TbMbr-hm4xDa4ZvYnUhvUG-2R25EU-9UPMld0p0dDRrNzkLdKtic40zrthoqZvacqiECeaxiZ7DXvFc_K0Mz7hi_v1nPz8-OH68nNx9f3Tl8v3V4UtQbFiYRrTQSktdGArg5wDtoqBZAi1abgom65sZL5TyqCtABctWFnJziqhsBbn5N3BdzM2a2wt5tDG6010axMnHYzT_1Z6t9Q3YauFqlUFPBu8uTeI4deYP0OvXbLovekxjEnncJIBh0o-AgVelgulFhl9_QBdhTHmXuwpEPVCSMjUq7_D_0l97GEGLg6AjSGliJ22btj3J7_FeQ1M7wZGHwdG7wZGHwYmi-UD8dH_PzJ1kP12HqdHafT11x8Vk0zcAQPv3lk |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1186_s12974_021_02222_y crossref_primary_10_1163_22134808_bja10069 crossref_primary_10_1038_s41598_023_42441_2 crossref_primary_10_14814_phy2_12385 crossref_primary_10_1038_s41598_020_79756_3 crossref_primary_10_1152_jn_00481_2018 crossref_primary_10_3390_ijms25031422 crossref_primary_10_1007_s10162_022_00853_3 crossref_primary_10_1016_j_tins_2023_08_009 crossref_primary_10_1152_jn_00082_2017 crossref_primary_10_3389_fnhum_2016_00181 crossref_primary_10_3389_fncir_2021_760313 crossref_primary_10_3389_fneur_2017_00117 crossref_primary_10_1016_j_pneurobio_2023_102403 crossref_primary_10_3389_fneur_2025_1542496 crossref_primary_10_1159_000494965 crossref_primary_10_1016_j_neuroscience_2021_05_028 crossref_primary_10_3389_fnsys_2022_828532 crossref_primary_10_1038_s41598_024_80344_y crossref_primary_10_1038_s41598_024_84939_3 crossref_primary_10_3390_cells10123377 crossref_primary_10_1007_s00415_015_7909_y crossref_primary_10_3233_VES_220202 crossref_primary_10_1038_s41598_019_47675_7 crossref_primary_10_1038_ncomms13229 crossref_primary_10_1152_jn_00212_2016 crossref_primary_10_1152_jn_00748_2013 crossref_primary_10_3390_biom13111637 crossref_primary_10_1038_s41598_024_53512_3 crossref_primary_10_1523_JNEUROSCI_1350_18_2018 crossref_primary_10_1016_j_neuropsychologia_2018_01_033 crossref_primary_10_3390_s140713173 crossref_primary_10_1163_22134808_00002506 crossref_primary_10_1152_jn_00280_2014 crossref_primary_10_1093_braincomms_fcad345 crossref_primary_10_1113_JP281183 crossref_primary_10_1177_15459683211034758 crossref_primary_10_1016_j_neuroscience_2025_01_011 crossref_primary_10_1016_j_pneurobio_2021_102119 crossref_primary_10_3389_fnsys_2015_00117 |
Cites_doi | 10.1038/nrn1668 10.1152/jn.1993.70.2.828 10.1152/jn.1999.82.5.2612 10.1152/jn.1970.33.3.393 10.1523/JNEUROSCI.5318-09.2010 10.1097/00001756-200008210-00011 10.1007/s00221-008-1350-8 10.1152/jn.91066.2008 10.1196/annals.1325.032 10.1016/j.pneurobio.2004.05.003 10.1113/jphysiol.2012.230334 10.1007/BF00234137 10.1523/JNEUROSCI.3931-07.2007 10.1111/j.1749-6632.1996.tb15704.x 10.1152/jn.1984.52.4.724 10.1111/j.1749-6632.2001.tb03759.x 10.1523/JNEUROSCI.2493-12.2012 10.1016/j.jneumeth.2008.05.021 10.1016/S0006-8993(01)02600-2 10.1016/j.tins.2011.12.001 10.1152/jn.00396.2010 10.1007/BF00161093 10.1038/nn1433 10.1152/jn.1999.82.1.436 10.1152/jn.00910.2010 10.1007/BF00201025 10.1016/0042-6989(80)90128-5 10.1523/JNEUROSCI.21-06-02131.2001 10.1007/s00221-009-1751-3 10.1152/jn.1992.68.1.244 10.1007/BF00337114 10.1152/jn.00365.2013 10.1111/j.1749-6632.2011.06159.x 10.1523/JNEUROSCI.3988-03.2004 10.1152/jn.00761.2007 10.1097/00001756-200208270-00011 10.1152/jn.00451.2011 10.1152/jn.1999.82.1.416 10.3389/fneur.2011.00057 10.1016/0165-0173(89)90013-1 10.1038/nrn2258 10.3233/VES-2004-14604 10.1523/JNEUROSCI.2157-12.2012 10.1152/jn.00091.2013 10.1152/jn.1993.70.2.844 10.1590/S1413-35552010000500003 10.1152/jn.1966.29.3.467 10.1152/jn.1993.70.5.2176 10.1038/nrn3503 10.1007/s00221-010-2288-1 10.1038/nrn2501 10.1007/s00221-008-1442-5 10.1007/BF02935559 10.1523/JNEUROSCI.5421-07.2008 10.1016/j.pneurobio.2005.10.002 10.1038/nrn3061 10.1111/j.1749-6632.2001.tb03776.x 10.1152/jn.00829.2006 10.1523/JNEUROSCI.4690-06.2007 10.1016/S0006-8993(00)02913-9 10.1523/JNEUROSCI.1067-12.2012 10.1152/jn.00013.2006 10.1152/jn.00788.2010 10.1371/journal.pone.0061862 10.1152/jappl.1966.21.3.1068 10.1152/jn.1999.81.5.2119 10.3389/fneur.2012.00025 10.1152/jn.2002.88.1.13 10.1007/s00221-006-0567-7 10.1152/jn.1990.64.6.1695 10.1097/MOO.0b013e32833de71f 10.1523/JNEUROSCI.1368-10.2010 10.1152/jn.1975.38.5.1140 10.1523/JNEUROSCI.0459-13.2013 |
ContentType | Journal Article |
Copyright | 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 The Physiological Society 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 |
Copyright_xml | – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society – notice: 2014 The Physiological Society – notice: 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2013.267534 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 1580 |
ExternalDocumentID | PMC3979612 3260606571 24366259 10_1113_jphysiol_2013_267534 TJP6040 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: DC2390 – fundername: NIDCD NIH HHS grantid: DC2390 – fundername: NIDCD NIH HHS grantid: R01 DC002390 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ 31~ 3EH 3O- AAYJJ AAYXX ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF FA8 H13 HF~ H~9 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5190-8abaf154c1f1c6ae221ed90140e17ab235bf5b4ed999aec61e8d1c464fc939e73 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:26:28 EDT 2025 Fri Jul 11 05:25:53 EDT 2025 Fri Jul 11 04:34:46 EDT 2025 Fri Jul 25 12:07:26 EDT 2025 Mon Jul 21 05:53:22 EDT 2025 Tue Jul 01 04:29:11 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:22:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5190-8abaf154c1f1c6ae221ed90140e17ab235bf5b4ed999aec61e8d1c464fc939e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3979612 |
PMID | 24366259 |
PQID | 1511378341 |
PQPubID | 1086388 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3979612 proquest_miscellaneous_1544012164 proquest_miscellaneous_1512558998 proquest_journals_1511378341 pubmed_primary_24366259 crossref_citationtrail_10_1113_jphysiol_2013_267534 crossref_primary_10_1113_jphysiol_2013_267534 wiley_primary_10_1113_jphysiol_2013_267534_TJP6040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 1 April 2014 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Oxford, UK |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2014 |
Publisher | Wiley Subscription Services, Inc BlackWell publishing Ltd |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: BlackWell publishing Ltd |
References | 1965; 53 2010; 14 2010; 18 2007a; 27 2010; 104 2002; 13 2004; 24 2008; 9 2001; 908 1973; 18 1970; 33 2006; 175 1996; 781 2011; 12 2009; 195 1999; 82 2013; 8 1999; 81 2001b; 21 2005; 1039 2008; 186 2001a; 942 2001; 942 1984; 52 1966; 29 2013; 14 2004; 73 2000; 884 1982; 2 1993; 70 2010; 28 2000; 11 2002; 88 2008; 28 2005; 76 2013; 110 1966; 21 1996; 3 2011; 1233 2010; 30 2007; 27 2008a; 99 2006; 96 2011; 2 1980; 20 2010; 204 1986; 54 1975; 38 2012; 35 2012; 107 2012; 32 1991; 5 2012; 590 2011; 105 1990; 64 2012; 3 2013; 33 2004; 14 2005; 8 2009; 101 2005; 6 1992; 68 2008b; 189 1989; 14 1992; 67 2007b; 97 2008; 173 1966 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_72_1 Hayes AV (e_1_2_6_28_1) 1982; 2 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Seemungal BM (e_1_2_6_65_1) 2004; 14 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Chubb MC (e_1_2_6_10_1) 1984; 52 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Horak FB (e_1_2_6_30_1) 2010; 28 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 Fuchs AF (e_1_2_6_23_1) 1966; 21 e_1_2_6_40_1 e_1_2_6_61_1 Green DM (e_1_2_6_26_1) 1966 Kiang NY (e_1_2_6_37_1) 1965; 53 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 4985725 - J Neurophysiol. 1970 May;33(3):393-403 18077671 - J Neurosci. 2007 Dec 12;27(50):13590-602 20693901 - Curr Opin Otolaryngol Head Neck Surg. 2010 Oct;18(5):420-4 20660422 - J Neurophysiol. 2010 Oct;104(4):2034-51 23825433 - J Neurosci. 2013 Jul 3;33(27):11302-13 10976939 - Neuroreport. 2000 Aug 21;11(12):2659-62 19283371 - Exp Brain Res. 2009 May;195(1):45-57 22245372 - Trends Neurosci. 2012 Mar;35(3):185-96 4212157 - Exp Brain Res. 1973 Dec 20;18(5):548-62 23077054 - J Neurosci. 2012 Oct 17;32(42):14685-95 23015443 - J Neurosci. 2012 Sep 26;32(39):13537-42 8294978 - J Neurophysiol. 1993 Nov;70(5):2176-80 14999061 - J Neurosci. 2004 Mar 3;24(9):2102-11 11245697 - J Neurosci. 2001 Mar 15;21(6):2131-42 16943321 - J Neurophysiol. 2006 Dec;96(6):2915-30 10561431 - J Neurophysiol. 1999 Nov;82(5):2612-32 18463238 - J Neurosci. 2008 May 7;28(19):4848-60 5961161 - J Neurophysiol. 1966 May;29(3):467-92 16957885 - Exp Brain Res. 2006 Nov;175(3):471-84 18577401 - J Neurosci Methods. 2008 Aug 15;173(1):165-81 23671577 - PLoS One. 2013;8(5):e61862 18337373 - J Neurophysiol. 2008 May;99(5):2533-45 15735328 - J Vestib Res. 2004;14(6):461-6 10400968 - J Neurophysiol. 1999 Jul;82(1):416-28 23864379 - J Neurophysiol. 2013 Oct;110(8):1822-36 22072512 - J Neurophysiol. 2012 Feb;107(3):973-83 21148096 - J Neurophysiol. 2011 Feb;105(2):661-73 809547 - J Neurophysiol. 1975 Sep;38(5):1140-61 22699911 - J Neurosci. 2012 Jun 13;32(24):8306-16 11082490 - Brain Res. 2000 Nov 24;884(1--2):87-97 18319728 - Nat Rev Neurosci. 2008 Apr;9(4):292-303 21180862 - Rev Bras Fisioter. 2010 Sep-Oct;14(5):361-71 18971293 - J Neurophysiol. 2009 Jan;101(1):141-9 6333490 - J Neurophysiol. 1984 Oct;52(4):724-42 9001977 - J Comput Neurosci. 1996 Dec;3(4):347-68 2074457 - J Neurophysiol. 1990 Dec;64(6):1695-703 22403570 - Front Neurol. 2012 Feb 28;3:25 1668393 - Mol Neurobiol. 1991;5(2-4):369-87 8410175 - J Neurophysiol. 1993 Aug;70(2):828-43 10322053 - J Neurophysiol. 1999 May;81(5):2119-30 21951002 - Ann N Y Acad Sci. 2011 Sep;1233:256-62 3487348 - Biol Cybern. 1986;54(1):41-51 4958032 - J Appl Physiol. 1966 May;21(3):1068-70 22946096 - J Physiol. 2012 Nov 15;590(Pt 22):5783-94 1517823 - J Neurophysiol. 1992 Jul;68(1):244-64 21922014 - Front Neurol. 2011 Sep 06;2:57 1627687 - Biol Cybern. 1992;67(2):183-90 6776685 - Vision Res. 1980;20(6):535-8 12218702 - Neuroreport. 2002 Aug 27;13(12):1541-5 15826987 - Ann N Y Acad Sci. 2005 Apr;1039:337-48 11710495 - Ann N Y Acad Sci. 2001 Oct;942:486-9 10400970 - J Neurophysiol. 1999 Jul;82(1):436-49 20086283 - Restor Neurol Neurosci. 2010;28(1):57-68 2665890 - Brain Res Brain Res Rev. 1989 Apr-Jun;14(2):155-80 15861181 - Nat Rev Neurosci. 2005 May;6(5):389-97 20526711 - Exp Brain Res. 2010 Jul;204(1):11-20 12091529 - J Neurophysiol. 2002 Jul;88(1):13-28 21307329 - J Neurophysiol. 2011 Apr;105(4):1798-814 18350283 - Exp Brain Res. 2008 Apr;186(4):677-81 5834666 - Trans Am Otol Soc. 1965;53:35-58 20668199 - J Neurosci. 2010 Jul 28;30(30):10158-68 18854855 - Nat Rev Neurosci. 2008 Nov;9(11):813-25 16263204 - Prog Neurobiol. 2005 Aug;76(6):349-92 17122313 - J Neurophysiol. 2007 Feb;97(2):1503-14 11710477 - Ann N Y Acad Sci. 2001 Oct;942:345-63 8694418 - Ann N Y Acad Sci. 1996 Jun 19;781:244-63 18535821 - Exp Brain Res. 2008 Aug;189(4):463-72 23686172 - Nat Rev Neurosci. 2013 Jun;14(6):429-42 24068754 - J Neurophysiol. 2013 Dec;110(12):2764-72 11457431 - Brain Res. 2001 Jul 20;908(1):58-66 8410176 - J Neurophysiol. 1993 Aug;70(2):844-56 21685932 - Nat Rev Neurosci. 2011 Jul;12(7):415-26 15261395 - Prog Neurobiol. 2004 Jul;73(4):259-309 15806098 - Nat Neurosci. 2005 May;8(5):673-8 20203191 - J Neurosci. 2010 Mar 3;30(9):3310-25 17251416 - J Neurosci. 2007 Jan 24;27(4):771-81 |
References_xml | – volume: 53 start-page: 35 year: 1965 end-page: 58 article-title: Stimulus coding in the cochlear nucleus publication-title: Trans Am Otol Soc – volume: 186 start-page: 677 year: 2008 end-page: 681 article-title: Vestibular thresholds for yaw rotation about an earth‐vertical axis as a function of frequency publication-title: Exp Brain Res – volume: 110 start-page: 1822 year: 2013 end-page: 1836 article-title: Responses of central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral labyrinthectomy publication-title: J Neurophysiol – volume: 29 start-page: 467 year: 1966 end-page: 492 article-title: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway publication-title: J Neurophysiol – volume: 3 start-page: 25 year: 2012 article-title: Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis publication-title: Front Neurol – volume: 8 start-page: e61862 year: 2013 article-title: Vestibular perception following acute unilateral vestibular lesions publication-title: PLoS One – volume: 18 start-page: 548 year: 1973 end-page: 562 article-title: Mechanisms underlying recovery of eye‐head coordination following bilateral labyrinthectomy in monkeys publication-title: Exp Brain Res – volume: 18 start-page: 420 year: 2010 end-page: 424 article-title: Mechanisms of vestibular compensation: recent advances publication-title: Curr Opin Otolaryngol Head Neck Surg – volume: 105 start-page: 1798 year: 2011 end-page: 1814 article-title: Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding publication-title: J Neurophysiol – volume: 28 start-page: 57 year: 2010 end-page: 68 article-title: Postural compensation for vestibular loss and implications for rehabilitation publication-title: Restor Neurol Neurosci – volume: 1039 start-page: 337 year: 2005 end-page: 348 article-title: Gaze position corrective eye movements in normal subjects and in patients with vestibular deficits publication-title: Ann N Y Acad Sci – volume: 173 start-page: 165 year: 2008 end-page: 181 article-title: An improved method for the estimation of firing rate dynamics using an optimal digital filter publication-title: J Neurosci Methods – volume: 175 start-page: 471 year: 2006 end-page: 484 article-title: Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations publication-title: Exp Brain Res – volume: 64 start-page: 1695 year: 1990 end-page: 1703 article-title: Response of vestibular neurons to head rotations in vertical planes. III. Response of vestibulocollic neurons to vestibular and neck stimulation publication-title: J Neurophysiol – volume: 14 start-page: 429 year: 2013 end-page: 442 article-title: Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons publication-title: Nat Rev Neurosci – volume: 6 start-page: 389 year: 2005 end-page: 397 article-title: Neuronal variability: noise or part of the signal? publication-title: Nat Rev Neurosci – volume: 32 start-page: 13537 year: 2012 end-page: 13542 article-title: Vestibular labyrinth contributions to human whole‐body motion discrimination publication-title: J Neurosci – start-page: 455 year: 1966 – volume: 32 start-page: 8306 year: 2012 end-page: 8316 article-title: Detection thresholds of macaque otolith afferents publication-title: J Neurosci – volume: 590 start-page: 5783 year: 2012 end-page: 5794 article-title: Human standing is modified by an unconscious integration of congruent sensory and motor signals publication-title: J Physiol – volume: 101 start-page: 141 year: 2009 end-page: 149 article-title: Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations publication-title: J Neurophysiol – volume: 52 start-page: 724 year: 1984 end-page: 742 article-title: Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements publication-title: J Neurophysiol – volume: 70 start-page: 828 year: 1993 end-page: 843 article-title: Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons publication-title: J Neurophysiol – volume: 942 start-page: 345 year: 2001 end-page: 363 article-title: Signal processing by vestibular nuclei neurons is dependent on the current behavioral goal publication-title: Ann N Y Acad Sci – volume: 82 start-page: 436 year: 1999 end-page: 449 article-title: Integration of vestibular and head movement signals in the vestibular nuclei during whole‐body rotation publication-title: J Neurophysiol – volume: 5 start-page: 369 year: 1991 end-page: 387 article-title: Excitatory amino acid receptors in normal and abnormal vestibular function publication-title: Mol Neurobiol – volume: 33 start-page: 393 year: 1970 end-page: 403 article-title: Oculomotor unit behavior in the monkey publication-title: J Neurophysiol – volume: 884 start-page: 87 year: 2000 end-page: 97 article-title: Co‐localization of NMDA receptors and AMPA receptors in neurons of the vestibular nuclei of rats publication-title: Brain Res – volume: 38 start-page: 1140 year: 1975 end-page: 1161 article-title: Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement publication-title: J Neurophysiol – volume: 82 start-page: 416 year: 1999 end-page: 428 article-title: Firing behavior of vestibular neurons during active and passive head movements: vestibulo‐spinal and other non‐eye‐movement related neurons publication-title: J Neurophysiol – volume: 21 start-page: 1068 year: 1966 end-page: 1070 article-title: A method for measuring horizontal and vertical eye movement chronically in the monkey publication-title: J Appl Physiol – volume: 67 start-page: 183 year: 1992 end-page: 190 article-title: Information in channel‐coded systems: correlated receivers publication-title: Biol Cybern – volume: 70 start-page: 2176 year: 1993 end-page: 2180 article-title: Activity of medial vestibulospinal tract cells during rotation and ocular movement in the alert squirrel monkey publication-title: J Neurophysiol – volume: 104 start-page: 2034 year: 2010 end-page: 2051 article-title: Ion channels set spike timing regularity of mammalian vestibular afferent neurons publication-title: J Neurophysiol – volume: 35 start-page: 185 year: 2012 end-page: 196 article-title: The vestibular system: multimodal integration and encoding of self‐motion for motor control publication-title: Trends Neurosci – volume: 2 start-page: 1 year: 1982 end-page: 10 article-title: A UNIX‐based multiple process system for real‐time data acquisition and control publication-title: WESCON Conf Proc – volume: 9 start-page: 813 year: 2008 end-page: 825 article-title: Silent synapses and the emergence of a postsynaptic mechanism for LTP publication-title: Nat Rev Neurosci – volume: 942 start-page: 486 year: 2001a end-page: 489 article-title: Passive activation of neck proprioceptive inputs does not influence the discharge patterns of vestibular nuclei neurons publication-title: Ann N Y Acad Sci – volume: 28 start-page: 4848 year: 2008 end-page: 4860 article-title: Interaural level difference discrimination thresholds for single neurons in the lateral superior olive publication-title: J Neurosci – volume: 8 start-page: 673 year: 2005 end-page: 678 article-title: Electroreceptor neuron dynamics shape information transmission publication-title: Nat Neurosci – volume: 27 start-page: 771 year: 2007a end-page: 781 article-title: Neural variability, detection thresholds, and information transmission in the vestibular system publication-title: J Neurosci – volume: 96 start-page: 2915 year: 2006 end-page: 2930 article-title: Responses of monkey vestibular‐only neurons to translation and angular rotation publication-title: J Neurophysiol – volume: 97 start-page: 1503 year: 2007b end-page: 1514 article-title: Response of vestibular‐nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy publication-title: J Neurophysiol – volume: 195 start-page: 45 year: 2009 end-page: 57 article-title: Different neural strategies for multimodal integration: comparison of two macaque monkey species publication-title: Exp Brain Res – volume: 70 start-page: 844 year: 1993 end-page: 856 article-title: Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. II. Eye movement related neurons publication-title: J Neurophysiol – volume: 908 start-page: 58 year: 2001 end-page: 66 article-title: Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation publication-title: Brain Res – volume: 11 start-page: 2659 year: 2000 end-page: 2662 article-title: Neck muscle vibration alters visually‐perceived roll after unilateral vestibular loss publication-title: NeuroReport – volume: 81 start-page: 2119 year: 1999 end-page: 2130 article-title: Short‐ and long‐term consequences of canal plugging on gaze shifts in the rhesus monkey. I. Effects on gaze stabilization publication-title: J Neurophysiol – volume: 21 start-page: 2131 year: 2001b end-page: 2142 article-title: Selective processing of vestibular reafference during self‐generated head motion publication-title: J Neurosci – volume: 12 start-page: 415 year: 2011 end-page: 426 article-title: The benefits of noise in neural systems: bridging theory and experiment publication-title: Nat Rev Neurosci – volume: 73 start-page: 259 year: 2004 end-page: 309 article-title: Basic organization principles of the VOR: lessons from frogs publication-title: Prog Neurobiol – volume: 82 start-page: 2612 year: 1999 end-page: 2632 article-title: Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements publication-title: J Neurophysiol – volume: 33 start-page: 11302 year: 2013 end-page: 11313 article-title: Strong correlations between sensitivity and variability give rise to constant discrimination thresholds across the otolith afferent population publication-title: J Neurosci – volume: 88 start-page: 13 year: 2002 end-page: 28 article-title: Vestibuloocular reflex dynamics during high‐frequency and high‐acceleration rotations of the head on body in rhesus monkey publication-title: J Neurophysiol – volume: 24 start-page: 2102 year: 2004 end-page: 2111 article-title: Dissociating self‐generated from passively applied head motion: neural mechanisms in the vestibular nuclei publication-title: J Neurosci – volume: 204 start-page: 11 year: 2010 end-page: 20 article-title: Human discrimination of rotational velocities publication-title: Exp Brain Res – volume: 2 start-page: 57 year: 2011 article-title: Postural compensation for unilateral vestibular loss publication-title: Front Neurol – volume: 32 start-page: 14685 year: 2012 end-page: 14695 article-title: Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss publication-title: J Neurosci – volume: 13 start-page: 1541 year: 2002 end-page: 1545 article-title: NMDA and AMPA receptor subunit protein expression in the rat vestibular nucleus following unilateral labyrinthectomy publication-title: NeuroReport – volume: 30 start-page: 10158 year: 2010 end-page: 10168 article-title: Neural correlates of motor learning in the vestibulo‐ocular reflex: dynamic regulation of multimodal integration in the macaque vestibular system publication-title: J Neurosci – volume: 30 start-page: 3310 year: 2010 end-page: 3325 article-title: Functional organization of vestibular commissural connections in frog publication-title: J Neurosci – volume: 14 start-page: 155 year: 1989 end-page: 180 article-title: Mechanisms of recovery following unilateral labyrinthectomy: a review publication-title: Brain Res Brain Res Rev – volume: 107 start-page: 973 year: 2012 end-page: 983 article-title: Frequency dependence of vestibuloocular reflex thresholds publication-title: J Neurophysiol – volume: 189 start-page: 463 year: 2008b end-page: 472 article-title: Coding of self‐motion signals in ventro‐posterior thalamus neurons in the alert squirrel monkey publication-title: Exp Brain Res – volume: 54 start-page: 41 year: 1986 end-page: 51 article-title: A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents publication-title: Biol Cybern – volume: 9 start-page: 292 year: 2008 end-page: 303 article-title: Noise in the nervous system publication-title: Nat Rev Neurosci – volume: 781 start-page: 244 year: 1996 end-page: 263 article-title: Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey publication-title: Ann N Y Acad Sci – volume: 20 start-page: 535 year: 1980 end-page: 538 article-title: Implantation of magnetic search coils for measurement of eye position: an improved method publication-title: Vision Res – volume: 14 start-page: 361 year: 2010 end-page: 371 article-title: A systematic review about the effects of the vestibular rehabilitation in middle‐age and older adults publication-title: Rev Bras Fisioter – volume: 27 start-page: 13590 year: 2007 end-page: 13602 article-title: Vestibular signals in primate thalamus: properties and origins publication-title: J Neurosci – volume: 1233 start-page: 256 year: 2011 end-page: 262 article-title: Vestibular perceptual thresholds to angular rotation in acute unilateral vestibular paresis and with galvanic stimulation publication-title: Ann N Y Acad Sci – volume: 76 start-page: 349 year: 2005 end-page: 392 article-title: Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity publication-title: Prog Neurobiol – volume: 3 start-page: 347 year: 1996 end-page: 368 article-title: The use of system identification techniques in the analysis of oculomotor burst neuron spike train dynamics publication-title: J Comput Neurosci – volume: 14 start-page: 461 year: 2004 end-page: 466 article-title: Perceptual and nystagmic thresholds of vestibular function in yaw publication-title: J Vestib Res – volume: 110 start-page: 2764 year: 2013 end-page: 2772 article-title: Whole‐body motion‐detection tasks can yield much lower thresholds than direction‐recognition tasks: implications for the role of vibration publication-title: J Neurophysiol – volume: 105 start-page: 661 year: 2011 end-page: 673 article-title: Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation publication-title: J Neurophysiol – volume: 68 start-page: 244 year: 1992 end-page: 264 article-title: Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys publication-title: J Neurophysiol – volume: 99 start-page: 2533 year: 2008a end-page: 2545 article-title: Activity of ventroposterior thalamus neurons during rotation and translation in the horizontal plane in the alert squirrel monkey publication-title: J Neurophysiol – ident: e_1_2_6_71_1 doi: 10.1038/nrn1668 – ident: e_1_2_6_13_1 doi: 10.1152/jn.1993.70.2.828 – ident: e_1_2_6_74_1 doi: 10.1152/jn.1999.82.5.2612 – ident: e_1_2_6_53_1 doi: 10.1152/jn.1970.33.3.393 – ident: e_1_2_6_40_1 doi: 10.1523/JNEUROSCI.5318-09.2010 – ident: e_1_2_6_3_1 doi: 10.1097/00001756-200008210-00011 – ident: e_1_2_6_25_1 doi: 10.1007/s00221-008-1350-8 – ident: e_1_2_6_32_1 doi: 10.1152/jn.91066.2008 – ident: e_1_2_6_50_1 doi: 10.1196/annals.1325.032 – ident: e_1_2_6_72_1 doi: 10.1016/j.pneurobio.2004.05.003 – ident: e_1_2_6_39_1 doi: 10.1113/jphysiol.2012.230334 – ident: e_1_2_6_18_1 doi: 10.1007/BF00234137 – ident: e_1_2_6_47_1 doi: 10.1523/JNEUROSCI.3931-07.2007 – ident: e_1_2_6_5_1 doi: 10.1111/j.1749-6632.1996.tb15704.x – volume: 52 start-page: 724 year: 1984 ident: e_1_2_6_10_1 article-title: Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements publication-title: J Neurophysiol doi: 10.1152/jn.1984.52.4.724 – ident: e_1_2_6_16_1 doi: 10.1111/j.1749-6632.2001.tb03759.x – ident: e_1_2_6_63_1 doi: 10.1523/JNEUROSCI.2493-12.2012 – ident: e_1_2_6_9_1 doi: 10.1016/j.jneumeth.2008.05.021 – ident: e_1_2_6_29_1 doi: 10.1016/S0006-8993(01)02600-2 – ident: e_1_2_6_12_1 doi: 10.1016/j.tins.2011.12.001 – ident: e_1_2_6_35_1 doi: 10.1152/jn.00396.2010 – ident: e_1_2_6_15_1 doi: 10.1007/BF00161093 – ident: e_1_2_6_6_1 doi: 10.1038/nn1433 – ident: e_1_2_6_24_1 doi: 10.1152/jn.1999.82.1.436 – ident: e_1_2_6_44_1 doi: 10.1152/jn.00910.2010 – ident: e_1_2_6_70_1 doi: 10.1007/BF00201025 – ident: e_1_2_6_34_1 doi: 10.1016/0042-6989(80)90128-5 – ident: e_1_2_6_55_1 doi: 10.1523/JNEUROSCI.21-06-02131.2001 – ident: e_1_2_6_60_1 doi: 10.1007/s00221-009-1751-3 – ident: e_1_2_6_64_1 doi: 10.1152/jn.1992.68.1.244 – ident: e_1_2_6_67_1 doi: 10.1007/BF00337114 – ident: e_1_2_6_48_1 doi: 10.1152/jn.00365.2013 – ident: e_1_2_6_17_1 doi: 10.1111/j.1749-6632.2011.06159.x – ident: e_1_2_6_56_1 doi: 10.1523/JNEUROSCI.3988-03.2004 – ident: e_1_2_6_42_1 doi: 10.1152/jn.00761.2007 – ident: e_1_2_6_38_1 doi: 10.1097/00001756-200208270-00011 – ident: e_1_2_6_27_1 doi: 10.1152/jn.00451.2011 – volume: 2 start-page: 1 year: 1982 ident: e_1_2_6_28_1 article-title: A UNIX‐based multiple process system for real‐time data acquisition and control publication-title: WESCON Conf Proc – ident: e_1_2_6_45_1 doi: 10.1152/jn.1999.82.1.416 – ident: e_1_2_6_51_1 doi: 10.3389/fneur.2011.00057 – ident: e_1_2_6_68_1 doi: 10.1016/0165-0173(89)90013-1 – ident: e_1_2_6_20_1 doi: 10.1038/nrn2258 – volume: 14 start-page: 461 year: 2004 ident: e_1_2_6_65_1 article-title: Perceptual and nystagmic thresholds of vestibular function in yaw publication-title: J Vestib Res doi: 10.3233/VES-2004-14604 – ident: e_1_2_6_76_1 doi: 10.1523/JNEUROSCI.2157-12.2012 – ident: e_1_2_6_7_1 doi: 10.1152/jn.00091.2013 – ident: e_1_2_6_14_1 doi: 10.1152/jn.1993.70.2.844 – ident: e_1_2_6_52_1 doi: 10.1590/S1413-35552010000500003 – ident: e_1_2_6_66_1 doi: 10.1152/jn.1966.29.3.467 – ident: e_1_2_6_4_1 doi: 10.1152/jn.1993.70.5.2176 – ident: e_1_2_6_21_1 doi: 10.1038/nrn3503 – ident: e_1_2_6_41_1 doi: 10.1007/s00221-010-2288-1 – ident: e_1_2_6_36_1 doi: 10.1038/nrn2501 – ident: e_1_2_6_43_1 doi: 10.1007/s00221-008-1442-5 – volume: 53 start-page: 35 year: 1965 ident: e_1_2_6_37_1 article-title: Stimulus coding in the cochlear nucleus publication-title: Trans Am Otol Soc – ident: e_1_2_6_69_1 doi: 10.1007/BF02935559 – ident: e_1_2_6_75_1 doi: 10.1523/JNEUROSCI.5421-07.2008 – ident: e_1_2_6_73_1 doi: 10.1016/j.pneurobio.2005.10.002 – ident: e_1_2_6_46_1 doi: 10.1038/nrn3061 – ident: e_1_2_6_54_1 doi: 10.1111/j.1749-6632.2001.tb03776.x – ident: e_1_2_6_59_1 doi: 10.1152/jn.00829.2006 – ident: e_1_2_6_58_1 doi: 10.1523/JNEUROSCI.4690-06.2007 – ident: e_1_2_6_8_1 doi: 10.1016/S0006-8993(00)02913-9 – ident: e_1_2_6_78_1 doi: 10.1523/JNEUROSCI.1067-12.2012 – ident: e_1_2_6_79_1 doi: 10.1152/jn.00013.2006 – volume: 28 start-page: 57 year: 2010 ident: e_1_2_6_30_1 article-title: Postural compensation for vestibular loss and implications for rehabilitation publication-title: Restor Neurol Neurosci – ident: e_1_2_6_62_1 doi: 10.1152/jn.00788.2010 – ident: e_1_2_6_11_1 doi: 10.1371/journal.pone.0061862 – volume: 21 start-page: 1068 year: 1966 ident: e_1_2_6_23_1 article-title: A method for measuring horizontal and vertical eye movement chronically in the monkey publication-title: J Appl Physiol doi: 10.1152/jappl.1966.21.3.1068 – ident: e_1_2_6_49_1 doi: 10.1152/jn.1999.81.5.2119 – start-page: 455 volume-title: Signal Detection Theory and Psychophysics year: 1966 ident: e_1_2_6_26_1 – ident: e_1_2_6_2_1 doi: 10.3389/fneur.2012.00025 – ident: e_1_2_6_31_1 doi: 10.1152/jn.2002.88.1.13 – ident: e_1_2_6_57_1 doi: 10.1007/s00221-006-0567-7 – ident: e_1_2_6_77_1 doi: 10.1152/jn.1990.64.6.1695 – ident: e_1_2_6_19_1 doi: 10.1097/MOO.0b013e32833de71f – ident: e_1_2_6_61_1 doi: 10.1523/JNEUROSCI.1368-10.2010 – ident: e_1_2_6_22_1 doi: 10.1152/jn.1975.38.5.1140 – ident: e_1_2_6_33_1 doi: 10.1523/JNEUROSCI.0459-13.2013 – reference: 18535821 - Exp Brain Res. 2008 Aug;189(4):463-72 – reference: 23864379 - J Neurophysiol. 2013 Oct;110(8):1822-36 – reference: 5834666 - Trans Am Otol Soc. 1965;53:35-58 – reference: 9001977 - J Comput Neurosci. 1996 Dec;3(4):347-68 – reference: 4212157 - Exp Brain Res. 1973 Dec 20;18(5):548-62 – reference: 16957885 - Exp Brain Res. 2006 Nov;175(3):471-84 – reference: 18854855 - Nat Rev Neurosci. 2008 Nov;9(11):813-25 – reference: 20086283 - Restor Neurol Neurosci. 2010;28(1):57-68 – reference: 10322053 - J Neurophysiol. 1999 May;81(5):2119-30 – reference: 10561431 - J Neurophysiol. 1999 Nov;82(5):2612-32 – reference: 6776685 - Vision Res. 1980;20(6):535-8 – reference: 14999061 - J Neurosci. 2004 Mar 3;24(9):2102-11 – reference: 18577401 - J Neurosci Methods. 2008 Aug 15;173(1):165-81 – reference: 17251416 - J Neurosci. 2007 Jan 24;27(4):771-81 – reference: 10400968 - J Neurophysiol. 1999 Jul;82(1):416-28 – reference: 18337373 - J Neurophysiol. 2008 May;99(5):2533-45 – reference: 8694418 - Ann N Y Acad Sci. 1996 Jun 19;781:244-63 – reference: 21307329 - J Neurophysiol. 2011 Apr;105(4):1798-814 – reference: 18971293 - J Neurophysiol. 2009 Jan;101(1):141-9 – reference: 22072512 - J Neurophysiol. 2012 Feb;107(3):973-83 – reference: 23671577 - PLoS One. 2013;8(5):e61862 – reference: 4985725 - J Neurophysiol. 1970 May;33(3):393-403 – reference: 23015443 - J Neurosci. 2012 Sep 26;32(39):13537-42 – reference: 17122313 - J Neurophysiol. 2007 Feb;97(2):1503-14 – reference: 1627687 - Biol Cybern. 1992;67(2):183-90 – reference: 15826987 - Ann N Y Acad Sci. 2005 Apr;1039:337-48 – reference: 15861181 - Nat Rev Neurosci. 2005 May;6(5):389-97 – reference: 16943321 - J Neurophysiol. 2006 Dec;96(6):2915-30 – reference: 23077054 - J Neurosci. 2012 Oct 17;32(42):14685-95 – reference: 15806098 - Nat Neurosci. 2005 May;8(5):673-8 – reference: 22946096 - J Physiol. 2012 Nov 15;590(Pt 22):5783-94 – reference: 23686172 - Nat Rev Neurosci. 2013 Jun;14(6):429-42 – reference: 18463238 - J Neurosci. 2008 May 7;28(19):4848-60 – reference: 22403570 - Front Neurol. 2012 Feb 28;3:25 – reference: 4958032 - J Appl Physiol. 1966 May;21(3):1068-70 – reference: 8294978 - J Neurophysiol. 1993 Nov;70(5):2176-80 – reference: 11245697 - J Neurosci. 2001 Mar 15;21(6):2131-42 – reference: 18077671 - J Neurosci. 2007 Dec 12;27(50):13590-602 – reference: 18319728 - Nat Rev Neurosci. 2008 Apr;9(4):292-303 – reference: 15735328 - J Vestib Res. 2004;14(6):461-6 – reference: 20203191 - J Neurosci. 2010 Mar 3;30(9):3310-25 – reference: 8410175 - J Neurophysiol. 1993 Aug;70(2):828-43 – reference: 21180862 - Rev Bras Fisioter. 2010 Sep-Oct;14(5):361-71 – reference: 22699911 - J Neurosci. 2012 Jun 13;32(24):8306-16 – reference: 16263204 - Prog Neurobiol. 2005 Aug;76(6):349-92 – reference: 6333490 - J Neurophysiol. 1984 Oct;52(4):724-42 – reference: 10976939 - Neuroreport. 2000 Aug 21;11(12):2659-62 – reference: 2665890 - Brain Res Brain Res Rev. 1989 Apr-Jun;14(2):155-80 – reference: 20693901 - Curr Opin Otolaryngol Head Neck Surg. 2010 Oct;18(5):420-4 – reference: 22245372 - Trends Neurosci. 2012 Mar;35(3):185-96 – reference: 1668393 - Mol Neurobiol. 1991;5(2-4):369-87 – reference: 15261395 - Prog Neurobiol. 2004 Jul;73(4):259-309 – reference: 24068754 - J Neurophysiol. 2013 Dec;110(12):2764-72 – reference: 1517823 - J Neurophysiol. 1992 Jul;68(1):244-64 – reference: 21148096 - J Neurophysiol. 2011 Feb;105(2):661-73 – reference: 11710495 - Ann N Y Acad Sci. 2001 Oct;942:486-9 – reference: 5961161 - J Neurophysiol. 1966 May;29(3):467-92 – reference: 20668199 - J Neurosci. 2010 Jul 28;30(30):10158-68 – reference: 11457431 - Brain Res. 2001 Jul 20;908(1):58-66 – reference: 11710477 - Ann N Y Acad Sci. 2001 Oct;942:345-63 – reference: 19283371 - Exp Brain Res. 2009 May;195(1):45-57 – reference: 20526711 - Exp Brain Res. 2010 Jul;204(1):11-20 – reference: 10400970 - J Neurophysiol. 1999 Jul;82(1):436-49 – reference: 809547 - J Neurophysiol. 1975 Sep;38(5):1140-61 – reference: 12218702 - Neuroreport. 2002 Aug 27;13(12):1541-5 – reference: 12091529 - J Neurophysiol. 2002 Jul;88(1):13-28 – reference: 11082490 - Brain Res. 2000 Nov 24;884(1--2):87-97 – reference: 23825433 - J Neurosci. 2013 Jul 3;33(27):11302-13 – reference: 20660422 - J Neurophysiol. 2010 Oct;104(4):2034-51 – reference: 8410176 - J Neurophysiol. 1993 Aug;70(2):844-56 – reference: 21685932 - Nat Rev Neurosci. 2011 Jul;12(7):415-26 – reference: 3487348 - Biol Cybern. 1986;54(1):41-51 – reference: 18350283 - Exp Brain Res. 2008 Apr;186(4):677-81 – reference: 2074457 - J Neurophysiol. 1990 Dec;64(6):1695-703 – reference: 21922014 - Front Neurol. 2011 Sep 06;2:57 – reference: 21951002 - Ann N Y Acad Sci. 2011 Sep;1233:256-62 |
SSID | ssj0013099 |
Score | 2.331672 |
Snippet | Key points
Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had... The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as... Key points Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had... The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2... Unilateral vestibular injury impairs our ability to detect motion. However, before this study the neural mechanisms underlying this impairment had not yet been... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1565 |
SubjectTerms | Action Potentials Animals Cues Disease Models, Animal Head Movements Macaca Macaca mulatta Motion Perception Neurons - pathology Neuroscience: Development/Plasticity/Repair Proprioception Recovery of Function Sensory Thresholds Time Factors Vestibular Diseases - pathology Vestibular Diseases - physiopathology Vestibular Diseases - psychology Vestibule, Labyrinth - pathology Vestibule, Labyrinth - physiopathology |
Title | Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2013.267534 https://www.ncbi.nlm.nih.gov/pubmed/24366259 https://www.proquest.com/docview/1511378341 https://www.proquest.com/docview/1512558998 https://www.proquest.com/docview/1544012164 https://pubmed.ncbi.nlm.nih.gov/PMC3979612 |
Volume | 592 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnnrh0fJYWiojIW5Z1o84CbeqsCpFoAq1Um-R7djlmVSbLNIifnxn7CSwFAGCazKTxN4Ze76d8TeEPFYZV4UXs0RXRZ7IiunEZM4kIjcV81ybPGR0X79RR2fy-Dw93yDz4SxM5IcY_3BDzwjrNTq4Nn0XEoZkAx8C9G8wfcDElEPgK5AWlAmFFPrP3_LvyYRZUYyk4VnK-hN08Jinv3rI-g51Ley8Xj35Y1QbtqX5TXIxDChWo3ycLjsztV9_4nr8_xHfIjf6yJUeRFO7TTZcvU12DmpA7Z9X9Ak9iWrNxWqHfAucHyheuS4Ue9W0A6tpMdnV0ng2kgaGD4N1sBQr2wFQBzN5RkP9fN-Iq6WNp4tYyevoF4D2kVl8RXVd0RaUmsWKtrD-haIH0LhDzuYvTg-Pkr7PQ2LTcJJdG-0hlLPMM6u045y5CtO7M8cybbhIjU-NhGtFoZ1VzOUVs1JJbwtRuEzcJZt1U7v7hObeGeEAdJuMS-Ot4Ub6bKYhiNGgyCdEDL9taXsSdOzF8amMYEiUwySXOMllnOQJSUaty0gC8gf5vcFsyn5JaEsIrZjAtiZsQh6Nt8GZMUOja9csgwxAPITAv5OREon4FLzmXrTE8aO4FAoB7YRkazY6CiCZ-Pqd-v27QCqO-d0wQTyY4F-Nszw9PlGwCzz4F6VdsgVX-yqoPbLZLZbuIQR4ndkH9335aj848RXc7VL- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoALr_JYKGAkxC3L-rF5cKuAspS2qtBW6i2yE5vyStAmi7SIH8-MnQSWIkCIazKTxM6MPZ9n_BngYZyIOHNyEukySyNVch2ZxJpIpqbkTmiT-ozuwWE8O1Z7J9OTDXjR74UJ_BDDght5hh-vycFpQbrzcmIbeOexf035Ay7HAiNfqc7BeYUxB6GwZ6_F93TCJMsG2vBkyrs9dPicx796yvocdSbwPFs_-WNc6yem3ctw2jcp1KO8Hy9bMy6-_MT2-B_afAUudcEr2wnWdhU2bHUNtnYqBO4fV-wROwpq9ZvVFnz1tB8kXtrW13tVrEXDaSjf1bCwPZJ5kg9DpbCMitsRU3tLecJ8CX13FlfDascWoZjXss-I7gO5-IrpqmQNKtWLFWtwCPR1D6hxHY53n8-fzqLuqIeomPrN7Npoh9FcwR0vYm2F4LakDO_E8kQbIafGTY3Ca1mmbRFzm5a8ULFyRSYzm8gbsFnVlb0FLHXWSIu42yRCGVcYYZRLJhrjGI2KYgSy_7l50fGg03EcH_KAh2Ted3JOnZyHTh5BNGh9Cjwgf5Df7u0m70aFJsfoiks62YSP4MFwG_2ZkjS6svXSyyDKIxT8OxmliIsvxtfcDKY4fJRQMiZMO4JkzUgHAeITX79TvT31vOKU4vUdJLwN_lU78_neUYwTwe1_UboPF2bzg_18_-XhqztwESW6oqht2GwXS3sX473W3PO-_A3U-lYk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvAp0aQtGQtyyrB9xEm4VdFUKVCvUSr1FdmIXKCTVJou0FT-esZ0EliJAcE1mnNiZsb_JjD8DPJEJk5nlk0iVWRqJkqpIJ0ZHPNUltUzp1Gd03x7K_WNxcBKfrMG03wsT-CGGH27OM_x87Rz8vLSdkzuygY8-9K9d-oDyMUPgy8UVuCokggoHjt6x79mESZYNrOFJTLstdNjOs1-1srpEXcKdl8snf4S1fl2a3oTTvkehHOVsvGj1uLj4iezx_7t8C2500JXsBlu7DWumugMbuxWG7Z-X5CmZBbX6dLkBXz3phxMvTeurvSrSotk0LtvVkLA5kniKD-0KYYkrbceI2tvJc-IL6LuTuBpSWzIPpbyGfMHYPlCLL4mqStKgUj1fkgYnQF_1gBp34Xi6d_RiP-oOeoiK2G9lV1pZxHIFtbSQyjBGTenyuxNDE6UZj7WNtcBrWaZMIalJS1oIKWyR8cwk_B6sV3VlNoGk1mhuMOrWCRPaFpppYZOJQhSjUJGNgPffNi86FnR3GMenPERDPO8HOXeDnIdBHkE0aJ0HFpA_yG_3ZpN3c0KTI7ai3J1rQkfweLiN3uxSNKoy9cLLYIznYuDfyQjhmPgkPuZ-sMThpZjg0kW0I0hWbHQQcGziq3eqD-89q7hL8PoBYt4E_6qf-dHBTOIy8OBflB7BtdnLaf7m1eHrLbiOAl1F1Dast_OF2UGw1-qH3pO_AaRtVNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+detection+thresholds+during+vestibular+compensation%3A+contributions+of+response+variability+and+sensory+substitution&rft.jtitle=The+Journal+of+physiology&rft.au=Jamali%2C+Mohsen&rft.au=Mitchell%2C+Diana+E&rft.au=Dale%2C+Alexis&rft.au=Carriot%2C+Jerome&rft.date=2014-04-01&rft.eissn=1469-7793&rft.volume=592&rft.issue=7&rft.spage=1565&rft_id=info:doi/10.1113%2Fjphysiol.2013.267534&rft_id=info%3Apmid%2F24366259&rft.externalDocID=24366259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |