Interactive effects of hypoxia, hypercapnia and lung volume on sympathetic nerve activity in humans

New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its i...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 100; no. 9; pp. 1018 - 1029
Main Authors Jouett, Noah P., Watenpaugh, Donald E., Dunlap, Mark E., Smith, Michael L.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its importance? We demonstrate that the synergistic interaction of oxygen‐ and carbon dioxide‐chemosensitive control of the sympathetic nervous system with hypoxia and hypercapnia exists at very mild excitatory stimuli, is significantly overridden by lung inflation and does not extend to inhibitory modulation by hypocapnia in healthy subjects. These findings demonstrate the important inhibitory modulation of sympathetic nerve activity by lung inflation mechanisms in healthy individuals even in the presence of strong sympathoexcitatory stimuli. We hypothesized that simultaneous stimulation of O2‐ and CO2‐sensitive chemoreflexes produces synergistic activation of the sympathetic nervous system and that this effect would be most apparent at low lung volume (expiratory) phases of respiration. Each subject (n = 11) breathed 16 gas mixtures in random order: a 4 × 4 matrix of normoxic to hypoxic (8, 12, 16 and 21% O2) combined with normocapnic to hypercapnic gases (0, 2, 4 and 6% CO2). Tidal volume, arterial pressure, heart rate and muscle sympathetic nerve activity (MSNA) were measured continuously before and while breathing each gas mixture for 2 min. Changes in MSNA were determined for each gas mixture. The MSNA was subdivided into low and high lung volume and respiratory phases to investigate further modulation by components of normal respiratory phase. Both hypoxia and hypercapnia increased mean MSNA independently. Mean and low lung volume MSNA increased exponentially with increasing levels of combined hypoxia and hypercapnia and resulted in a significant interaction (P < 0.01). In contrast, MSNA during the high lung volume phase of respiration never increased significantly (P > 0.4). Similar but less pronounced effects were found for expiratory and inspiratory phases of respiration. These effects created marked respiratory periodicity in MSNA at higher levels of combined hypoxia and hypercapnia. Finally, the response to hypoxia was not affected by hypocapnia, suggesting that the interaction occurs only during excitatory chemosensitive stimuli. These data indicate that hypoxia and hypercapnia interact to elicit synergistic sympathoexcitation and that withdrawal of sympathoinhibitory effects of lung inflation exaggerates this chemoreflex interaction.
AbstractList New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its importance? We demonstrate that the synergistic interaction of oxygen- and carbon dioxide-chemosensitive control of the sympathetic nervous system with hypoxia and hypercapnia exists at very mild excitatory stimuli, is significantly overridden by lung inflation and does not extend to inhibitory modulation by hypocapnia in healthy subjects. These findings demonstrate the important inhibitory modulation of sympathetic nerve activity by lung inflation mechanisms in healthy individuals even in the presence of strong sympathoexcitatory stimuli. We hypothesized that simultaneous stimulation of O2- and CO2-sensitive chemoreflexes produces synergistic activation of the sympathetic nervous system and that this effect would be most apparent at low lung volume (expiratory) phases of respiration. Each subject (n = 11) breathed 16 gas mixtures in random order: a 4 × 4 matrix of normoxic to hypoxic (8, 12, 16 and 21% O2) combined with normocapnic to hypercapnic gases (0, 2, 4 and 6% CO2). Tidal volume, arterial pressure, heart rate and muscle sympathetic nerve activity (MSNA) were measured continuously before and while breathing each gas mixture for 2 min. Changes in MSNA were determined for each gas mixture. The MSNA was subdivided into low and high lung volume and respiratory phases to investigate further modulation by components of normal respiratory phase. Both hypoxia and hypercapnia increased mean MSNA independently. Mean and low lung volume MSNA increased exponentially with increasing levels of combined hypoxia and hypercapnia and resulted in a significant interaction (P < 0.01). In contrast, MSNA during the high lung volume phase of respiration never increased significantly (P > 0.4). Similar but less pronounced effects were found for expiratory and inspiratory phases of respiration. These effects created marked respiratory periodicity in MSNA at higher levels of combined hypoxia and hypercapnia. Finally, the response to hypoxia was not affected by hypocapnia, suggesting that the interaction occurs only during excitatory chemosensitive stimuli. These data indicate that hypoxia and hypercapnia interact to elicit synergistic sympathoexcitation and that withdrawal of sympathoinhibitory effects of lung inflation exaggerates this chemoreflex interaction.
New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its importance? We demonstrate that the synergistic interaction of oxygen‐ and carbon dioxide‐chemosensitive control of the sympathetic nervous system with hypoxia and hypercapnia exists at very mild excitatory stimuli, is significantly overridden by lung inflation and does not extend to inhibitory modulation by hypocapnia in healthy subjects. These findings demonstrate the important inhibitory modulation of sympathetic nerve activity by lung inflation mechanisms in healthy individuals even in the presence of strong sympathoexcitatory stimuli. We hypothesized that simultaneous stimulation of O2‐ and CO2‐sensitive chemoreflexes produces synergistic activation of the sympathetic nervous system and that this effect would be most apparent at low lung volume (expiratory) phases of respiration. Each subject (n = 11) breathed 16 gas mixtures in random order: a 4 × 4 matrix of normoxic to hypoxic (8, 12, 16 and 21% O2) combined with normocapnic to hypercapnic gases (0, 2, 4 and 6% CO2). Tidal volume, arterial pressure, heart rate and muscle sympathetic nerve activity (MSNA) were measured continuously before and while breathing each gas mixture for 2 min. Changes in MSNA were determined for each gas mixture. The MSNA was subdivided into low and high lung volume and respiratory phases to investigate further modulation by components of normal respiratory phase. Both hypoxia and hypercapnia increased mean MSNA independently. Mean and low lung volume MSNA increased exponentially with increasing levels of combined hypoxia and hypercapnia and resulted in a significant interaction (P < 0.01). In contrast, MSNA during the high lung volume phase of respiration never increased significantly (P > 0.4). Similar but less pronounced effects were found for expiratory and inspiratory phases of respiration. These effects created marked respiratory periodicity in MSNA at higher levels of combined hypoxia and hypercapnia. Finally, the response to hypoxia was not affected by hypocapnia, suggesting that the interaction occurs only during excitatory chemosensitive stimuli. These data indicate that hypoxia and hypercapnia interact to elicit synergistic sympathoexcitation and that withdrawal of sympathoinhibitory effects of lung inflation exaggerates this chemoreflex interaction.
NEW FINDINGSWhat is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its importance? We demonstrate that the synergistic interaction of oxygen- and carbon dioxide-chemosensitive control of the sympathetic nervous system with hypoxia and hypercapnia exists at very mild excitatory stimuli, is significantly overridden by lung inflation and does not extend to inhibitory modulation by hypocapnia in healthy subjects. These findings demonstrate the important inhibitory modulation of sympathetic nerve activity by lung inflation mechanisms in healthy individuals even in the presence of strong sympathoexcitatory stimuli. We hypothesized that simultaneous stimulation of O2 - and CO2 -sensitive chemoreflexes produces synergistic activation of the sympathetic nervous system and that this effect would be most apparent at low lung volume (expiratory) phases of respiration. Each subject (n = 11) breathed 16 gas mixtures in random order: a 4 × 4 matrix of normoxic to hypoxic (8, 12, 16 and 21% O2 ) combined with normocapnic to hypercapnic gases (0, 2, 4 and 6% CO2). Tidal volume, arterial pressure, heart rate and muscle sympathetic nerve activity (MSNA) were measured continuously before and while breathing each gas mixture for 2 min. Changes in MSNA were determined for each gas mixture. The MSNA was subdivided into low and high lung volume and respiratory phases to investigate further modulation by components of normal respiratory phase. Both hypoxia and hypercapnia increased mean MSNA independently. Mean and low lung volume MSNA increased exponentially with increasing levels of combined hypoxia and hypercapnia and resulted in a significant interaction (P < 0.01). In contrast, MSNA during the high lung volume phase of respiration never increased significantly (P > 0.4). Similar but less pronounced effects were found for expiratory and inspiratory phases of respiration. These effects created marked respiratory periodicity in MSNA at higher levels of combined hypoxia and hypercapnia. Finally, the response to hypoxia was not affected by hypocapnia, suggesting that the interaction occurs only during excitatory chemosensitive stimuli. These data indicate that hypoxia and hypercapnia interact to elicit synergistic sympathoexcitation and that withdrawal of sympathoinhibitory effects of lung inflation exaggerates this chemoreflex interaction.
What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on chemoreflex control of SNA and the modulation of lung volume and respiratory phase on this interaction. What is the main finding and its importance? We demonstrate that the synergistic interaction of oxygen- and carbon dioxide-chemosensitive control of the sympathetic nervous system with hypoxia and hypercapnia exists at very mild excitatory stimuli, is significantly overridden by lung inflation and does not extend to inhibitory modulation by hypocapnia in healthy subjects. These findings demonstrate the important inhibitory modulation of sympathetic nerve activity by lung inflation mechanisms in healthy individuals even in the presence of strong sympathoexcitatory stimuli. We hypothesized that simultaneous stimulation of O2 - and CO2 -sensitive chemoreflexes produces synergistic activation of the sympathetic nervous system and that this effect would be most apparent at low lung volume (expiratory) phases of respiration. Each subject (n = 11) breathed 16 gas mixtures in random order: a 4 × 4 matrix of normoxic to hypoxic (8, 12, 16 and 21% O2 ) combined with normocapnic to hypercapnic gases (0, 2, 4 and 6% CO2). Tidal volume, arterial pressure, heart rate and muscle sympathetic nerve activity (MSNA) were measured continuously before and while breathing each gas mixture for 2 min. Changes in MSNA were determined for each gas mixture. The MSNA was subdivided into low and high lung volume and respiratory phases to investigate further modulation by components of normal respiratory phase. Both hypoxia and hypercapnia increased mean MSNA independently. Mean and low lung volume MSNA increased exponentially with increasing levels of combined hypoxia and hypercapnia and resulted in a significant interaction (P < 0.01). In contrast, MSNA during the high lung volume phase of respiration never increased significantly (P > 0.4). Similar but less pronounced effects were found for expiratory and inspiratory phases of respiration. These effects created marked respiratory periodicity in MSNA at higher levels of combined hypoxia and hypercapnia. Finally, the response to hypoxia was not affected by hypocapnia, suggesting that the interaction occurs only during excitatory chemosensitive stimuli. These data indicate that hypoxia and hypercapnia interact to elicit synergistic sympathoexcitation and that withdrawal of sympathoinhibitory effects of lung inflation exaggerates this chemoreflex interaction.
Author Dunlap, Mark E.
Smith, Michael L.
Jouett, Noah P.
Watenpaugh, Donald E.
Author_xml – sequence: 1
  givenname: Noah P.
  surname: Jouett
  fullname: Jouett, Noah P.
  organization: University of North Texas Health Science Center
– sequence: 2
  givenname: Donald E.
  surname: Watenpaugh
  fullname: Watenpaugh, Donald E.
  organization: Sleep Consultants of Texas
– sequence: 3
  givenname: Mark E.
  surname: Dunlap
  fullname: Dunlap, Mark E.
  organization: Case Western Reserve University
– sequence: 4
  givenname: Michael L.
  surname: Smith
  fullname: Smith, Michael L.
  organization: University of North Texas Health Science Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26132990$$D View this record in MEDLINE/PubMed
BookMark eNp1kdFq1UAQhhep2NMq-ASy4I0XTZ3NJpvdSym1LRT0QsG7MNkz8WxJduPupjVvb45tFYrCwAzDN_8M8x-xAx88MfZawKkQQr4__wy6BlM-YxtRKVNUVf3tgG3A1LoA1cAhO0rpBkBI0NULdlgqIUtjYMPslc8U0WZ3S5z6nmxOPPR8t0zhp8OTfUHR4uQdcvRbPsz-O78NwzwSD56nZZww7yg7yz3FVeS3lssLd57v5hF9esme9zgkevWQj9nXj-dfzi6L608XV2cfrgtbCwOFJN3XCqiXtralaXRXWlPWWMm-0gidlh0pq7CypYIOtmLtWyzJ4FahVVIes3f3ulMMP2ZKuR1dsjQM6CnMqRUNmDWU3qNvn6A3YY5-vW5PaV03TSNW6s0DNXcjbdspuhHj0j6-7-9GG0NKkfo_iIB270z76MyKnj5BrcuYXfA5ohv-NVDcD9y5gZb_Cq_FpVgtlr8AKamcfw
CitedBy_id crossref_primary_10_1113_JP277691
crossref_primary_10_1161_HYPERTENSIONAHA_119_13925
crossref_primary_10_1002_ppul_23658
crossref_primary_10_1007_s00421_024_05485_4
crossref_primary_10_1155_2023_8787132
crossref_primary_10_1177_02676591211056564
crossref_primary_10_1253_circj_CJ_16_0349
crossref_primary_10_3389_fphys_2021_642850
crossref_primary_10_1161_CIRCRESAHA_120_317114
crossref_primary_10_14814_phy2_13991
crossref_primary_10_1113_JP282327
crossref_primary_10_1152_japplphysiol_00701_2018
crossref_primary_10_14814_phy2_15274
crossref_primary_10_1002_vrc2_835
crossref_primary_10_1113_EP085546
crossref_primary_10_1152_japplphysiol_00245_2023
crossref_primary_10_1016_j_hfc_2019_08_009
crossref_primary_10_1002_vrc2_414
crossref_primary_10_2147_NSS_S315375
crossref_primary_10_1016_j_resp_2019_103306
crossref_primary_10_1097_ALN_0000000000003578
crossref_primary_10_1152_ajpregu_00021_2023
crossref_primary_10_1164_rccm_201811_2097PP
crossref_primary_10_1016_j_thorsurg_2020_04_011
crossref_primary_10_1152_ajpregu_00142_2020
crossref_primary_10_1186_s40064_016_3237_7
crossref_primary_10_3389_fncel_2021_700821
crossref_primary_10_1152_ajpheart_00810_2020
crossref_primary_10_1152_japplphysiol_00741_2018
crossref_primary_10_1007_s10286_024_01027_2
crossref_primary_10_1016_j_chest_2021_02_017
crossref_primary_10_1053_j_jvca_2017_12_026
crossref_primary_10_3724_abbs_2022084
crossref_primary_10_1213_ANE_0000000000001421
crossref_primary_10_12677_ACM_2023_1361449
crossref_primary_10_1093_cvr_cvae023
crossref_primary_10_1152_japplphysiol_00683_2016
crossref_primary_10_3357_AMHP_6163_2023
crossref_primary_10_1152_japplphysiol_00274_2020
crossref_primary_10_1016_j_pulmoe_2020_12_004
crossref_primary_10_2174_1570161118666200318103553
crossref_primary_10_1253_circj_CJ_17_0440
crossref_primary_10_1113_JP287181
crossref_primary_10_1016_j_ccl_2021_12_006
crossref_primary_10_1164_rccm_201807_1417LE
Cites_doi 10.1152/ajpheart.00109.2014
10.1152/jappl.1992.72.2.439
10.1016/S0272-5231(21)00401-9
10.1002/cphy.cp020319
10.1152/ajpheart.1990.258.3.H713
10.1113/jphysiol.1961.sp006804
10.1152/jappl.1967.22.1.117
10.1164/ajrccm/141.6.1522
10.1113/jphysiol.1961.sp006806
10.1007/s11886-013-0415-x
10.1016/j.jacc.2013.04.080
10.1016/0165-1838(95)00062-3
10.1016/j.autneu.2009.05.240
10.1097/HJH.0b013e3283350ea4
10.1016/0165-1838(94)00174-I
10.3389/fphys.2014.00238
10.1097/00004872-198812040-00166
10.1113/jphysiol.1990.sp018142
10.1113/jphysiol.1985.sp015766
10.1152/ajplegacy.1937.121.1.75
10.1161/01.RES.67.1.130
10.1152/ajpheart.1996.271.3.H1240
10.3109/10641968809075998
10.1152/physrev.1994.74.3.543
10.1111/j.1748-1716.1972.tb05158.x
10.1113/jphysiol.1965.sp007634
10.1139/y2012-024
10.1007/s11906-999-0032-7
10.1152/physrev.1996.76.1.193
10.1152/jappl.1987.62.2.389
10.1113/expphysiol.2014.082826
10.1152/jappl.1989.67.5.2101
10.1007/978-94-007-4584-1_30
10.1097/00004872-199715120-00062
10.1113/expphysiol.2012.067421
10.1152/physrev.1971.51.2.312
10.7326/0003-4819-103-2-190
10.1152/jappl.1989.67.5.2095
10.1046/j.1365-201X.2003.01083.x
10.1016/j.cjca.2014.10.014
10.1378/chest.94.1.9
ContentType Journal Article
Copyright 2015 The Authors. Experimental Physiology © 2015 The Physiological Society
2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
2015 The Physiological Society
Copyright_xml – notice: 2015 The Authors. Experimental Physiology © 2015 The Physiological Society
– notice: 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
– notice: 2015 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TS
7X8
DOI 10.1113/EP085092
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 1029
ExternalDocumentID 3794835421
26132990
10_1113_EP085092
EPH1670
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-49266
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
18M
1OC
24P
29G
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RCA
ROL
RX1
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3O-
53G
AAYXX
ABUWG
ACCMX
ACQPF
AFKRA
BBNVY
BENPR
BHPHI
C1A
CAG
CCPQU
CHEAL
CITATION
COF
GROUPED_DOAJ
H13
HCIFZ
HF~
L98
M7P
MVM
PGMZT
PHGZM
PHGZT
RIG
RPM
X7M
ZXP
1OB
CGR
CUY
CVF
ECM
EIF
FIJ
IPNFZ
NPM
SAMSI
7QP
7TK
7TS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c5190-3e8f560ef3c5c2978b2c925a43f48a0b83be6c6a4c260b0d13f4ca2e9ad6ac633
IEDL.DBID DR2
ISSN 0958-0670
IngestDate Fri Jul 11 08:28:39 EDT 2025
Fri Jul 25 19:26:04 EDT 2025
Wed Feb 19 02:27:23 EST 2025
Thu Apr 24 22:51:36 EDT 2025
Tue Jul 01 02:04:05 EDT 2025
Wed Jan 22 16:56:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5190-3e8f560ef3c5c2978b2c925a43f48a0b83be6c6a4c260b0d13f4ca2e9ad6ac633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/EP085092
PMID 26132990
PQID 1708857771
PQPubID 37290
PageCount 12
ParticipantIDs proquest_miscellaneous_1709709683
proquest_journals_1708857771
pubmed_primary_26132990
crossref_primary_10_1113_EP085092
crossref_citationtrail_10_1113_EP085092
wiley_primary_10_1113_EP085092_EPH1670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 1 September 2015
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2015
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1995; 53
1990; 426
1989; 67
1967; 22
2013; 62
2015; 100
1985; 6
1985; 365
1988; 10
1985; 103
1988; 94
2009; 150
1994
1961; 159
1972; 84
1999; 1
2003; 177
1996; 76
1990; 141
1992; 72
1996; 56
2013; 15
2012; 90
2014; 5
1990; 67
1987; 62
2014; 307
1971; 51
1990; 258
2013; 98
1965; 178
2010; 28
1988; 6
1997; 15
1995; 46
1996; 271
1983
2014; 30
1937; 121
1994; 74
2012; 758
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
Smith ML (e_1_2_5_38_1) 1996; 271
e_1_2_5_26_1
Abboud F (e_1_2_5_2_1) 1983
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_22_1
Eyzaguirre C (e_1_2_5_9_1) 1983
e_1_2_5_29_1
Trzebski A (e_1_2_5_44_1) 1995; 46
e_1_2_5_42_1
e_1_2_5_41_1
e_1_2_5_40_1
Comroe JH (e_1_2_5_4_1) 1937; 121
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_16_1
Shephard JW (e_1_2_5_37_1) 1994
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
Sullivan CE (e_1_2_5_43_1) 1985; 6
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_3_1
Issa FG (e_1_2_5_20_1) 1992; 72
Cozine RA (e_1_2_5_5_1) 1967; 22
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 46
  start-page: 17
  year: 1995
  end-page: 35
  article-title: Modulation of human sympathetic periodicity by mild, brief hypoxia and hypercapnia
  publication-title: J Physiol Pharmacol
– volume: 141
  start-page: 1522
  year: 1990
  end-page: 1526
  article-title: Influence of apnea type and sleep stage on nocturnal postapneic desaturation
  publication-title: Am Rev Respir Dis
– year: 1983
– volume: 15
  start-page: 415
  year: 2013
  article-title: Obstructive sleep apnea: incidence and impact on hypertension?
  publication-title: Curr Cardiol Rep
– volume: 53
  start-page: 148
  year: 1995
  end-page: 156
  article-title: Effects of static lung inflation on sympathetic activity in human muscle nerves at rest and during asphyxia
  publication-title: J Auton Nerv Syst
– volume: 94
  start-page: 9
  year: 1988
  end-page: 14
  article-title: Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients
  publication-title: Chest
– volume: 84
  start-page: 82
  year: 1972
  end-page: 94
  article-title: Manoeuvres affecting sympathetic outflow in human muscle nerves
  publication-title: Acta Physiol Scand
– volume: 6
  start-page: 633
  year: 1985
  end-page: 650
  article-title: Obstructive sleep apnea
  publication-title: Clin Chest Med
– volume: 103
  start-page: 190
  year: 1985
  end-page: 195
  article-title: Undiagnosed sleep apnea in patients with essential hypertension
  publication-title: Ann Intern Med
– volume: 426
  start-page: 355
  year: 1990
  end-page: 368
  article-title: Respiratory‐related discharge pattern of sympathetic nerve activity in the spontaneously hypertensive rat
  publication-title: J Physiol
– volume: 159
  start-page: 251
  year: 1961
  end-page: 267
  article-title: The effect of sympathetic stimulation on carotid nerve activity
  publication-title: J Physiol
– volume: 51
  start-page: 312
  year: 1971
  end-page: 367
  article-title: Integrative neural cardiovascular control
  publication-title: Physiol Rev
– volume: 1
  start-page: 268
  year: 1999
  end-page: 273
  article-title: Obstructive sleep apnea as a cause of neurogenic hypertension
  publication-title: Curr Hypertens Rep
– volume: 67
  start-page: 2095
  year: 1989
  end-page: 2100
  article-title: Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans
  publication-title: J Appl Physiol
– volume: 258
  start-page: H713
  year: 1990
  end-page: H721
  article-title: Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 22
  start-page: 117
  year: 1967
  end-page: 121
  article-title: Medullary surface chemoreceptors and regulation of respiration in the cat
  publication-title: J Appl Physiol
– volume: 10
  start-page: 413
  issue: Suppl 1
  year: 1988
  end-page: 422
  article-title: Sympathetic activation by hypoxia and hypercapnia – implications for sleep apnea
  publication-title: Clin Exp Hypertens A
– volume: 159
  start-page: 222
  year: 1961
  end-page: 237
  article-title: Chemoreceptor activity of the carotid body of the cat
  publication-title: J Physiol
– volume: 6
  start-page: S529
  issue: Suppl
  year: 1988
  end-page: S531
  article-title: Is high and fluctuating muscle nerve sympathetic activity in the sleep apnoea syndrome of pathogenetic importance for the development of hypertension?
  publication-title: J Hypertens
– volume: 758
  start-page: 215
  year: 2012
  end-page: 223
  article-title: Cyclic AMP and Epac contribute to the genesis of the positive interaction between hypoxia and hypercapnia in the carotid body
  publication-title: Adv Exp Med Biol
– year: 1994
– volume: 150
  start-page: 70
  year: 2009
  end-page: 75
  article-title: Impact of lung inflation cycle frequency on rat muscle and skin sympathetic activity recorded using suction electrodes
  publication-title: Auton Neurosci
– volume: 365
  start-page: 181
  year: 1985
  end-page: 196
  article-title: Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man
  publication-title: J Physiol
– volume: 30
  start-page: 1516
  year: 2014
  end-page: 1522
  article-title: Obstructive sleep apnea as a predictor of atrial fibrillation after coronary artery bypass grafting: a systematic review and meta‐analysis
  publication-title: Can J Cardiol
– volume: 72
  start-page: 439
  year: 1992
  end-page: 446
  article-title: Identification of a subsurface area in the ventral medulla sensitive to local changes in PCO
  publication-title: J Appl Physiol
– volume: 90
  start-page: 525
  year: 2012
  end-page: 536
  article-title: Glutamate and GABA in the medial amygdala induce selective central sympathetic/parasympathetic cardiovascular responses
  publication-title: Can J Physiol Pharmacol
– volume: 271
  start-page: H1240
  year: 1996
  end-page: H1249
  article-title: Valsalva's maneuver revisited: a quantitative method yielding insights into human autonomic control
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 178
  start-page: 385
  year: 1965
  end-page: 409
  article-title: Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body
  publication-title: J Physiol
– volume: 56
  start-page: 184
  year: 1996
  end-page: 190
  article-title: Role of hypoxemia in sleep apnea‐induced sympathoexcitation
  publication-title: J Auton Nerv Syst
– volume: 76
  start-page: 193
  year: 1996
  end-page: 244
  article-title: Modulation of cardiovascular control mechanisms and their interaction
  publication-title: Physiol Rev
– volume: 74
  start-page: 543
  year: 1994
  end-page: 594
  article-title: Peripheral chemoreceptors and cardiovascular regulation
  publication-title: Physiol Rev
– volume: 28
  start-page: 543
  year: 2010
  end-page: 550
  article-title: Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure
  publication-title: J Hypertens
– volume: 67
  start-page: 2101
  year: 1989
  end-page: 2106
  article-title: Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans
  publication-title: J Appl Physiol
– volume: 177
  start-page: 377
  year: 2003
  end-page: 384
  article-title: Chemoreflexes—physiology and clinical implications
  publication-title: Acta Physiol Scand
– volume: 15
  start-page: 1613
  year: 1997
  end-page: 1619
  article-title: The sympathetic nervous system and obstructive sleep apnea: implications for hypertension
  publication-title: J Hypertens
– volume: 5
  start-page: 238
  year: 2014
  article-title: The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities
  publication-title: Front Physiol
– volume: 67
  start-page: 130
  year: 1990
  end-page: 141
  article-title: Influence of lung volume on sympathetic nerve discharge in normal humans
  publication-title: Circ Res
– volume: 62
  start-page: 389
  year: 1987
  end-page: 402
  article-title: Central chemoreceptors
  publication-title: J Appl Physiol
– volume: 62
  start-page: 610
  year: 2013
  end-page: 616
  article-title: Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10701 adults
  publication-title: J Am Coll Cardiol
– volume: 98
  start-page: 405
  year: 2013
  end-page: 414
  article-title: Inhibition of augmented muscle vasoconstrictor drive following asphyxic apnoea in awake human subjects is not affected by relief of chemical drive
  publication-title: Exp Physiol
– volume: 121
  start-page: 75
  year: 1937
  end-page: 97
  article-title: The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog
  publication-title: Am J Physiol
– volume: 100
  start-page: 130
  year: 2015
  end-page: 135
  article-title: Chemoreflex physiology and implications for sleep apnoea: insights from studies in humans
  publication-title: Exp Physiol
– volume: 307
  start-page: H1159
  year: 2014
  end-page: H1168
  article-title: Slow and deep respiration suppresses steady‐state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application
  publication-title: Am J Physiol Heart Circ Physiol
– ident: e_1_2_5_16_1
  doi: 10.1152/ajpheart.00109.2014
– volume: 72
  start-page: 439
  year: 1992
  ident: e_1_2_5_20_1
  article-title: Identification of a subsurface area in the ventral medulla sensitive to local changes in PCO2
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1992.72.2.439
– volume: 6
  start-page: 633
  year: 1985
  ident: e_1_2_5_43_1
  article-title: Obstructive sleep apnea
  publication-title: Clin Chest Med
  doi: 10.1016/S0272-5231(21)00401-9
– volume-title: Cardiorespiratory Changes in Obstructive Sleep Apnea
  year: 1994
  ident: e_1_2_5_37_1
– volume-title: Interaction of Cardiovascular Reflexes in Circulatory Control
  year: 1983
  ident: e_1_2_5_2_1
  doi: 10.1002/cphy.cp020319
– ident: e_1_2_5_33_1
  doi: 10.1152/ajpheart.1990.258.3.H713
– ident: e_1_2_5_11_1
  doi: 10.1113/jphysiol.1961.sp006804
– volume: 22
  start-page: 117
  year: 1967
  ident: e_1_2_5_5_1
  article-title: Medullary surface chemoreceptors and regulation of respiration in the cat
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1967.22.1.117
– ident: e_1_2_5_36_1
  doi: 10.1164/ajrccm/141.6.1522
– ident: e_1_2_5_12_1
  doi: 10.1113/jphysiol.1961.sp006806
– ident: e_1_2_5_15_1
  doi: 10.1007/s11886-013-0415-x
– ident: e_1_2_5_14_1
  doi: 10.1016/j.jacc.2013.04.080
– ident: e_1_2_5_39_1
  doi: 10.1016/0165-1838(95)00062-3
– ident: e_1_2_5_19_1
  doi: 10.1016/j.autneu.2009.05.240
– ident: e_1_2_5_23_1
  doi: 10.1097/HJH.0b013e3283350ea4
– ident: e_1_2_5_24_1
  doi: 10.1016/0165-1838(94)00174-I
– ident: e_1_2_5_45_1
  doi: 10.3389/fphys.2014.00238
– ident: e_1_2_5_18_1
  doi: 10.1097/00004872-198812040-00166
– ident: e_1_2_5_6_1
  doi: 10.1113/jphysiol.1990.sp018142
– ident: e_1_2_5_8_1
  doi: 10.1113/jphysiol.1985.sp015766
– volume: 121
  start-page: 75
  year: 1937
  ident: e_1_2_5_4_1
  article-title: The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1937.121.1.75
– ident: e_1_2_5_34_1
  doi: 10.1161/01.RES.67.1.130
– volume: 271
  start-page: H1240
  year: 1996
  ident: e_1_2_5_38_1
  article-title: Valsalva's maneuver revisited: a quantitative method yielding insights into human autonomic control
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1996.271.3.H1240
– ident: e_1_2_5_40_1
  doi: 10.3109/10641968809075998
– ident: e_1_2_5_26_1
  doi: 10.1152/physrev.1994.74.3.543
– ident: e_1_2_5_7_1
  doi: 10.1111/j.1748-1716.1972.tb05158.x
– ident: e_1_2_5_10_1
  doi: 10.1113/jphysiol.1965.sp007634
– ident: e_1_2_5_29_1
  doi: 10.1139/y2012-024
– ident: e_1_2_5_28_1
  doi: 10.1007/s11906-999-0032-7
– ident: e_1_2_5_30_1
  doi: 10.1152/physrev.1996.76.1.193
– ident: e_1_2_5_3_1
  doi: 10.1152/jappl.1987.62.2.389
– ident: e_1_2_5_25_1
  doi: 10.1113/expphysiol.2014.082826
– ident: e_1_2_5_42_1
  doi: 10.1152/jappl.1989.67.5.2101
– ident: e_1_2_5_32_1
  doi: 10.1007/978-94-007-4584-1_30
– ident: e_1_2_5_27_1
  doi: 10.1097/00004872-199715120-00062
– ident: e_1_2_5_35_1
  doi: 10.1113/expphysiol.2012.067421
– volume-title: Arterial Chemoreceptors
  year: 1983
  ident: e_1_2_5_9_1
– ident: e_1_2_5_22_1
  doi: 10.1152/physrev.1971.51.2.312
– volume: 46
  start-page: 17
  year: 1995
  ident: e_1_2_5_44_1
  article-title: Modulation of human sympathetic periodicity by mild, brief hypoxia and hypercapnia
  publication-title: J Physiol Pharmacol
– ident: e_1_2_5_13_1
  doi: 10.7326/0003-4819-103-2-190
– ident: e_1_2_5_41_1
  doi: 10.1152/jappl.1989.67.5.2095
– ident: e_1_2_5_21_1
  doi: 10.1046/j.1365-201X.2003.01083.x
– ident: e_1_2_5_31_1
  doi: 10.1016/j.cjca.2014.10.014
– ident: e_1_2_5_17_1
  doi: 10.1378/chest.94.1.9
SSID ssj0013084
Score 2.3536248
Snippet New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2...
What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2 on...
New Findings What is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2...
NEW FINDINGSWhat is the central question of this study? The central question of this study was to investigate the interaction of mild exposures to O2 and CO2...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1018
SubjectTerms Adult
Apnea - metabolism
Apnea - physiopathology
Blood Pressure - physiology
Carbon Dioxide - metabolism
Chemoreceptor Cells - metabolism
Female
Heart Rate - physiology
Humans
Hypercapnia - metabolism
Hypercapnia - physiopathology
Hypoxia - metabolism
Hypoxia - physiopathology
Lung - metabolism
Lung - physiopathology
Male
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiopathology
Oxygen - metabolism
Respiration
Sympathetic Nervous System - metabolism
Sympathetic Nervous System - physiology
Tidal Volume - physiology
Young Adult
Title Interactive effects of hypoxia, hypercapnia and lung volume on sympathetic nerve activity in humans
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FEP085092
https://www.ncbi.nlm.nih.gov/pubmed/26132990
https://www.proquest.com/docview/1708857771
https://www.proquest.com/docview/1709709683
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7anHppk24fmyZBhZJe6nQl-XkMIWEptITSQKAHM5JluiQrL_uAbn99Z2R7y6YNhIIPwh5JtjUafSPNA-CdKpSVFampWNgiimuVRSgllVjZ0CY3WrFz8ucv6fgq_nSdXHdWlewL08aH2Gy48cwI8ponOJouC4nkYAPnlxxtrWDxy6ZajIe-qj8HCKOQbJgARB6xK0oXd5aqfuwrbq9Ef8HLbbQalpuLZ_C9f9HWyuTmZLU0J_bXnRiO__clu_C0Q6HitGWbPXjk_HMYnHrSwKdrcSyCXWjYcB-ADZuGGOSi6Mw_RFOLH-tZ83OCH7jg5hZnfoICfSVuSX6IVuqJxovFesppj9lZUni2rxShLUL_YuJFyBG4eAFXF-ffzsZRl5ohsgk7n2uX14SVXK1tYhVpokbZQiUY6zrOcWRybVxqU4wt6UtmVEm6b1G5AqsUbar1S9jxjXevQRBDcAAcgg0ZxtUoQyLTtGIqwn6xrPIhvO-HqbRd3HJOn3FbtvqLLvv_N4S3G8pZG6vjHzQH_UiX3WxdlDIjWZtkWSapic1jmmd8eILeNatAU9CV5noIr1oO2XRCWqjmZX0Ix2Gc7-2dCmNJ3Lj_UMI38IQQWtIatR3AznK-coeEgpbmCB6r-PIocP1vhigASg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-tAEB7E86Av6vFarbqC6IvRZjdXfCoHpccbIgo-CGGz2WBRN8W2cOqvd2aTVLyBHOjD0k6SJjsz-32buQBs85grN0OaKmMVO17OQ0e6Lo6IbIg0SgWn5OTzi6Bz453c-rcTcFjnwpT1IcYbbmQZ1l-TgdOGdGXlVG3g6JLKrcXof39RQ2_Lp6742yuElm03jBAicigZpao8i8ce1Ee-X4s-Acz3eNUuOMezcFf_1TLO5GF_OEj31cuHKo7_eS9zMFMBUdYuNec3TGgzDwttgyT8acR2mA0NtXvuC6DsvqG0rpFVESCsyNn9qFf868o9GuhnJXumK5k0GXtEF8JKx8cKw_qjJ-p8TPmSzFCIJbPnQgLAuobZNoH9Rbg5Prr-03Gq7gyO8in_XOgoR7ikc6F8xZGMplzF3JeeyL1IttJIpDpQgfQUUqa0lbn4vZJcxzILpAqEWIJJUxi9Agx1gmrgIHIIpZe1QoliAhdNjvDPc7OoAbv1PCWqKl1OHTQek5LCiKR-fg3YGkv2ynIdX8g066lOKoPtJ26I7tYPw9DFU4x_RlOj9yfS6GJoZWL8BJFowHKpIuOLIBEVtLI3YMdO9LdXx0HHRXVc_angJkx1rs_PkrO_F6drMI2AzS9j3JowOXge6nUERYN0wyr_K30tA44
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_iQHwRv51OjSDzxWKb9PNx6Mb8xAcr4ktJ0xQHWzqcgvvvvUuziagg9CG0lxZyubvfpfdByDFLmPQKcFNFIhPHL1nkCM-DETobPI9zzjA5-fYu7Kf-1VPwZKMqMRemrg8xP3BDyTD6GgV8XJRWyLHYQPceq60loH4bWCQPdnSj85g-p1__EFzTbxgwROxgNootPQuzz2ZzvxujHwjzO2A1Fqe3SlYsVKSdmrdrZEHpdbLR0eAmj6a0TU3wpjkV3yDSnOwJo7yojdGgVUlfpuPqYyBOcaBepRjrgaBCF3QIQk5r1UQrTSfTEfYmxoxGqjEIkpp3AUSnA01NI7_JJkl73YfzvmP7JzgywAxxruISAI0quQwkA3cxZzJhgfB56cfCzWOeq1CGwpfg1ORu4cF9KZhKRBEKGXK-RRZ1pdUOocA1rFIDtj0SfuFGAsg4mDUGAM33irhJTmYLmUlbXBx7XAyz2sng2WzJm-RoTjmuC2r8QtOa8SKzIjXJvAgUYhBFkQevmD8GYcA_HEKr6t3QJHCFMW-S7ZqH84-Aq8jR9jZJ2zD1z6_DoO_Bftn9L-EhWbq_6GU3l3fXe2QZEFVQB6G1yOLb67vaB9Tylh_Y7fkJUSDkYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+effects+of+hypoxia%2C+hypercapnia+and+lung+volume+on+sympathetic+nerve+activity+in+humans&rft.jtitle=Experimental+physiology&rft.au=Jouett%2C+Noah+P.&rft.au=Watenpaugh%2C+Donald+E.&rft.au=Dunlap%2C+Mark+E.&rft.au=Smith%2C+Michael+L.&rft.date=2015-09-01&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=100&rft.issue=9&rft.spage=1018&rft.epage=1029&rft_id=info:doi/10.1113%2FEP085092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_EP085092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon