Microstructure and hydrogen storage properties of the Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys

Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg 2 Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg 2 Ni 0.9 Co 0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 905 - 13
Main Authors Li, Defa, Huang, Feng, Ren, Bingzhi, Wang, Shujie, Zhang, Wei, Zhu, Liming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg 2 Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg 2 Ni 0.9 Co 0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg 2−x Y x Ni 0.9 Co 0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg 2 Ni 0.9 Co 0.1 alloy was composed of the peritectic Mg 2 Ni, eutectic Mg–Mg 2 Ni, and a small amount of pre-precipitated Mg–Ni–Co ternary phases, and was converted into the Mg 2 NiH 4 , Mg 2 Ni 0.9 Co 0.1 H 4 , and MgH 2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi 4 phase and a trace amount of the Y 2 O 3 phase along with the Mg and Mg 2 Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg 2 NiH 4 , MgH 2 , MgYNi 4 , YH 3 , Y 2 O 3 , and Mg 2 NiH 0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg 2 Ni matrix phase in the Mg 2−x Y x Ni 0.9 Co 0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg 2 Ni 0.9 Co 0.1 and Mg 1.8 Y 0.2 Ni 0.9 Co 0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg 2 Ni 0.9 Co 0.1 and Mg 1.8 Y 0.2 Ni 0.9 Co 0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.
AbstractList Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg2Ni0.9Co0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg2Ni0.9Co0.1 alloy was composed of the peritectic Mg2Ni, eutectic Mg-Mg2Ni, and a small amount of pre-precipitated Mg-Ni-Co ternary phases, and was converted into the Mg2NiH4, Mg2Ni0.9Co0.1H4, and MgH2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi4 phase and a trace amount of the Y2O3 phase along with the Mg and Mg2Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg2NiH4, MgH2, MgYNi4, YH3, Y2O3, and Mg2NiH0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg2Ni matrix phase in the Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg2Ni0.9Co0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg2Ni0.9Co0.1 alloy was composed of the peritectic Mg2Ni, eutectic Mg-Mg2Ni, and a small amount of pre-precipitated Mg-Ni-Co ternary phases, and was converted into the Mg2NiH4, Mg2Ni0.9Co0.1H4, and MgH2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi4 phase and a trace amount of the Y2O3 phase along with the Mg and Mg2Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg2NiH4, MgH2, MgYNi4, YH3, Y2O3, and Mg2NiH0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg2Ni matrix phase in the Mg2-xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.
Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg 2 Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg 2 Ni 0.9 Co 0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg 2−x Y x Ni 0.9 Co 0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg 2 Ni 0.9 Co 0.1 alloy was composed of the peritectic Mg 2 Ni, eutectic Mg–Mg 2 Ni, and a small amount of pre-precipitated Mg–Ni–Co ternary phases, and was converted into the Mg 2 NiH 4 , Mg 2 Ni 0.9 Co 0.1 H 4 , and MgH 2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi 4 phase and a trace amount of the Y 2 O 3 phase along with the Mg and Mg 2 Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg 2 NiH 4 , MgH 2 , MgYNi 4 , YH 3 , Y 2 O 3 , and Mg 2 NiH 0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg 2 Ni matrix phase in the Mg 2−x Y x Ni 0.9 Co 0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg 2 Ni 0.9 Co 0.1 and Mg 1.8 Y 0.2 Ni 0.9 Co 0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg 2 Ni 0.9 Co 0.1 and Mg 1.8 Y 0.2 Ni 0.9 Co 0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.
Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg2Ni0.9Co0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg2Ni0.9Co0.1 alloy was composed of the peritectic Mg2Ni, eutectic Mg–Mg2Ni, and a small amount of pre-precipitated Mg–Ni–Co ternary phases, and was converted into the Mg2NiH4, Mg2Ni0.9Co0.1H4, and MgH2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi4 phase and a trace amount of the Y2O3 phase along with the Mg and Mg2Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg2NiH4, MgH2, MgYNi4, YH3, Y2O3, and Mg2NiH0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg2Ni matrix phase in the Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.
Abstract Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to substitute Mg partially in Mg2Ni0.9Co0.1 and characterized and discussed the effects of Y on the solidification and de-/hydrogenation behaviors. The Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) hydrogen storage alloys were prepared using a metallurgy method. The phase composition of the alloys was studied using X-ray diffraction (XRD). Additionally, their microstructure and chemical composition were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The hydrogen absorption and desorption properties of the alloys were studied using pressure-composition isotherms and differential scanning calorimetric (DSC) measurements. The structure of the as-cast Mg2Ni0.9Co0.1 alloy was composed of the peritectic Mg2Ni, eutectic Mg–Mg2Ni, and a small amount of pre-precipitated Mg–Ni–Co ternary phases, and was converted into the Mg2NiH4, Mg2Ni0.9Co0.1H4, and MgH2 phases after hydrogen absorption. Furthermore, the XRD patterns of the alloys showed the MgYNi4 phase and a trace amount of the Y2O3 phase along with the Mg and Mg2Ni phases after the addition of Y. After hydrogen absorption, the phase of the alloys was composed of the Mg2NiH4, MgH2, MgYNi4, YH3, Y2O3, and Mg2NiH0.3 phases. With the increase of Y addition, the area ratios of the peritectic Mg2Ni matrix phase in the Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys gradually decreased until they disappeared. However, the eutectic structure gradually increased, and the microstructures of the alloys were obviously refined. The addition of Y improves the activation performance of the alloys. The alloy only needed one cycle of de-/hydrogenation to complete the activation for x = 0.4. The DSC curves showed that the initial dehydrogenation temperatures of Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 were 200 and 156 °C, respectively. The desorption activation energies of the hydrides of the Mg2Ni0.9Co0.1 and Mg1.8Y0.2Ni0.9Co0.1 alloys calculated using the Kissinger method were 94.7 and 56.5 kJ/mol, respectively. Moreover, the addition of Y reduced the initial desorption temperature of the alloys and improved their kinetic properties.
ArticleNumber 905
Author Ren, Bingzhi
Huang, Feng
Zhu, Liming
Li, Defa
Wang, Shujie
Zhang, Wei
Author_xml – sequence: 1
  givenname: Defa
  surname: Li
  fullname: Li, Defa
  organization: School of Mechanical and Vehicle Engineering, West Anhui University
– sequence: 2
  givenname: Feng
  surname: Huang
  fullname: Huang, Feng
  email: 303_Lee@163.com
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology
– sequence: 3
  givenname: Bingzhi
  surname: Ren
  fullname: Ren, Bingzhi
  organization: School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology
– sequence: 4
  givenname: Shujie
  surname: Wang
  fullname: Wang, Shujie
  organization: The 13th Research Institute, CETC
– sequence: 5
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Mechanical and Vehicle Engineering, West Anhui University
– sequence: 6
  givenname: Liming
  surname: Zhu
  fullname: Zhu, Liming
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology
BookMark eNp9Ustu1DAUjVCRKKU_wCoSmyI1g195eIFQNeJRqYUNLFhZd-zrTEaZeLATOrNj2W75xH4JzqQC2kUt-SH7nONz7fM8Oehch0nykpIZJbx6EwTNZZURJrKcFoRlV0-SQ0ZEnjHO2MF_62fJcQgrElvOpKDyMHGXjfYu9H7Q_eAxhc6ky53xrsYuDb3zUGO68W6Dvm8wpM6m_RLTy5rdXv_eft9-bshMzl10kp5sb3_dvI2dnKZkxsaBn-4FyUy8TqFt3S68SJ5aaAMe381HybcP77_OP2UXXz6ez88uMp3Tqs8sYqljcZoWsioraQhKzhYmzxm3gMjBEksJwKIqQUuhAQsAbaHEQoCw_Cg5n3SNg5Xa-GYNfqccNGq_4XytIFakW1SGUyk4scZSKowVC42FKcFQYIVFyqPWu0lrMyzWaDR2vYf2nuj9k65Zqtr9VJSUZVGwPCqc3Cl492PA0Kt1EzS2LXTohqCYpJxUtCiqCH31ALpyg-_iW40oRgXP95bYhBo_L3i0f91QosZQqCkUKoZC7UOhriKpekDSTQ9940bXTfs4lU_UEO_pavT_XD3C-gPyp8-i
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179590
crossref_primary_10_1016_j_ijhydene_2024_11_060
crossref_primary_10_1016_j_ijhydene_2025_01_460
crossref_primary_10_1016_j_ijhydene_2024_08_198
crossref_primary_10_1016_j_jallcom_2025_179338
Cites_doi 10.1016/S0925-8388(96)03097-6
10.1016/j.jallcom.2023.171431
10.1016/j.ijhydene.2019.01.148
10.1016/j.apsusc.2016.02.203
10.1016/j.ijhydene.2011.09.057
10.1038/35104634
10.1016/j.cattod.2017.10.046
10.1016/j.ijhydene.2019.01.216
10.1016/j.jallcom.2019.153187
10.1016/j.jallcom.2018.05.267
10.1016/j.ijhydene.2006.09.044
10.1016/j.jpowsour.2018.01.003
10.1016/j.jallcom.2010.02.128
10.1016/j.jallcom.2009.04.028
10.1016/j.ijhydene.2009.08.088
10.1016/j.jallcom.2007.05.073
10.3390/catal8020089
10.1016/j.ijhydene.2018.08.115
10.1016/j.jallcom.2012.01.018
10.1016/j.ijhydene.2011.01.047
10.1016/j.jallcom.2018.12.223
10.1016/j.jpcs.2017.01.021
10.1016/S0925-8388(01)01535-3
10.1016/j.pnsc.2018.06.006
10.1016/j.jallcom.2016.03.194
10.1016/j.scriptamat.2008.12.001
10.1016/j.ijhydene.2009.07.053
10.1016/j.ijhydene.2015.12.099
10.1016/j.ijhydene.2021.04.198
10.1016/j.jpowsour.2017.11.034
10.1016/j.jpowsour.2013.07.049
10.1016/j.jallcom.2018.04.023
10.1016/0022-5088(84)90251-0
10.1016/S1003-6326(13)62916-7
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-51602-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_d319430fdf114df4bce6d7ad1a26fe13
PMC10776625
10_1038_s41598_024_51602_w
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing, China
  grantid: cstc2021jcyj-msxmX0573, cstc2021jcyj-msxmX0743
– fundername: Scientific Research Foundation of Education Department of Anhui Province of China
  grantid: 2022AH051688
  funderid: http://dx.doi.org/10.13039/501100018628
– fundername: High-level talents start-up project, West Anhui University
  grantid: WGKQ2022016
– fundername: Science and technology research program of Chongqing Education Commission of China
  grantid: KJQN202201531
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-fee7c103c1698789d0e932bd5523faee3af0f10aab87ac94cae6aacfa7e64a4f3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:15:22 EDT 2025
Thu Aug 21 18:41:49 EDT 2025
Fri Jul 11 01:55:12 EDT 2025
Wed Aug 13 09:30:51 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Tue Jul 01 00:50:59 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-fee7c103c1698789d0e932bd5523faee3af0f10aab87ac94cae6aacfa7e64a4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2912143513?pq-origsite=%requestingapplication%
PQID 2912143513
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d319430fdf114df4bce6d7ad1a26fe13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776625
proquest_miscellaneous_2913081668
proquest_journals_2912143513
crossref_primary_10_1038_s41598_024_51602_w
crossref_citationtrail_10_1038_s41598_024_51602_w
springer_journals_10_1038_s41598_024_51602_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang, Song, Kou (CR20) 2016; 371
Qi, Li, Yuan (CR1) 2019; 44
Xu, Lin, Wang (CR5) 2019; 782
Sun, Zhang, Zhu (CR13) 2016; 676
Yon, Wan, Ma (CR24) 2021; 46
Kalinichenka, Röntzsch, Baehtz (CR31) 2010; 496
Anik, Karanfil, Küçükdeveci (CR23) 2012; 37
Atias-Adrian, Deorsola, Ortigoza-Villalba (CR34) 2011; 36
Kalinicheka, Rontzsch, Kieback (CR18) 2009; 34
Zhang, Zhang, Ding (CR6) 2018; 28
Yang, Li, Liu (CR10) 2018; 378
Xie, Shao, Wang (CR21) 2007; 32
Zhang, Bu, Xiong (CR22) 2023; 965
Hayakawa, Ishido, Nomura (CR30) 1984; 103
Xie, Liu, Zhang (CR12) 2009; 482
Schlapbach, Züttel (CR4) 2001; 414
Li, Hu, Luo (CR16) 2018; 318
Yartys, Gutfleisch, Panasyuk (CR27) 1997; 253–254
Ding, Chen, Jin (CR28) 2018; 374
Zheng, Xiao, He (CR15) 2018; 762
Li, Yang, Luo (CR19) 2019; 44
Song, Dong, Zhang (CR26) 2020; 820
Luo, Han, Huang (CR9) 2018; 750
Song, Li, Zhang (CR33) 2014; 245
Yap, Ismail (CR14) 2017; 104
Jain, Lal, Jain (CR29) 2010; 35
Song, Li, Zhang (CR17) 2013; 23
Yang, Yuan, Bu (CR7) 2016; 41
Yang, Wang, Xia (CR2) 2019; 44
Zhu, Yang, Wei (CR3) 2012; 520
Ouyang, Yang, Dong (CR8) 2009; 61
Li, Li, Shao (CR11) 2018; 8
Yang, Yuan, Ji (CR25) 2002; 330–332
Mokbli, Abdellaoui, Zarrouk (CR32) 2008; 460
LZ Ouyang (51602_CR8) 2009; 61
S Kalinicheka (51602_CR18) 2009; 34
WJ Song (51602_CR33) 2014; 245
IC Atias-Adrian (51602_CR34) 2011; 36
H Hayakawa (51602_CR30) 1984; 103
W Sun (51602_CR13) 2016; 676
VA Yartys (51602_CR27) 1997; 253–254
S Luo (51602_CR9) 2018; 750
T Yang (51602_CR2) 2019; 44
S Kalinichenka (51602_CR31) 2010; 496
FAH Yap (51602_CR14) 2017; 104
H Yang (51602_CR25) 2002; 330–332
J Li (51602_CR11) 2018; 8
L Schlapbach (51602_CR4) 2001; 414
L Xie (51602_CR21) 2007; 32
J Zheng (51602_CR15) 2018; 762
YZ Li (51602_CR19) 2019; 44
C Xu (51602_CR5) 2019; 782
L Xie (51602_CR12) 2009; 482
WJ Song (51602_CR17) 2013; 23
W Song (51602_CR26) 2020; 820
T Yang (51602_CR7) 2016; 41
S Mokbli (51602_CR32) 2008; 460
T Yang (51602_CR10) 2018; 378
Y Zhang (51602_CR6) 2018; 28
H Zhang (51602_CR22) 2023; 965
H Yon (51602_CR24) 2021; 46
X Ding (51602_CR28) 2018; 374
Y Li (51602_CR16) 2018; 318
M Anik (51602_CR23) 2012; 37
Y Zhu (51602_CR3) 2012; 520
TB Zhang (51602_CR20) 2016; 371
IP Jain (51602_CR29) 2010; 35
Y Qi (51602_CR1) 2019; 44
References_xml – volume: 253–254
  start-page: 128
  year: 1997
  end-page: 133
  ident: CR27
  article-title: Desorption characteristics of rare earth (R) hydrides (R =Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behaviour of R-Fe-based-compounds
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(96)03097-6
– volume: 965
  issue: 25
  year: 2023
  ident: CR22
  article-title: Effect of bimetallic nitride NiCoN on the hydrogen absorption and desorption properties of MgH and the catalytic effect of in situ formed Mg Ni and Mg Co phases
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171431
– volume: 44
  start-page: 6728
  issue: 13
  year: 2019
  end-page: 6737
  ident: CR2
  article-title: Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg Y Ni alloy
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.01.148
– volume: 371
  start-page: 35
  year: 2016
  end-page: 43
  ident: CR20
  article-title: Surface valence transformation during thermal activation and hydrogenation thermodynamics of Mg–Ni–Y melt-spun ribbons
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.203
– volume: 37
  start-page: 299
  issue: 1
  year: 2012
  end-page: 308
  ident: CR23
  article-title: Development of the high performance magnesium based hydrogen storage alloy
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.09.057
– volume: 414
  start-page: 1476
  issue: 6861
  year: 2001
  end-page: 4687
  ident: CR4
  article-title: Hydrogen-storage materials for mobile applications
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 318
  start-page: 103
  year: 2018
  end-page: 106
  ident: CR16
  article-title: Hydrogen storage of casting MgTiNi alloys
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.10.046
– volume: 44
  start-page: 7371
  issue: 14
  year: 2019
  end-page: 7380
  ident: CR19
  article-title: Microstructure characteristics, hydrogen storage kinetic and thermodynamic properties of Mg Ni Y (x = 0–7) alloys
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.01.216
– volume: 820
  year: 2020
  ident: CR26
  article-title: Enhanced hydrogen absorption kinetics by introducing fine eutectic and long-period stacking ordered structure in ternary eutectic Mg–Ni–Y alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153187
– volume: 762
  start-page: 548
  year: 2018
  end-page: 554
  ident: CR15
  article-title: Enhanced reversible hydrogen desorption properties and mechanism of Mg(BH ) –AlH –LiH composite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.267
– volume: 32
  start-page: 1949
  issue: 12
  year: 2007
  end-page: 1953
  ident: CR21
  article-title: Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2006.09.044
– volume: 378
  start-page: 636
  year: 2018
  end-page: 645
  ident: CR10
  article-title: Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.003
– volume: 496
  start-page: 608
  issue: 1–2
  year: 2010
  end-page: 613
  ident: CR31
  article-title: Hydrogen desorption kinetics of melt-spun and hydrogenated Mg Ni and Mg Ni Y using in situ synchrotron, X-ray diffraction and thermogravimetry
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.02.128
– volume: 482
  start-page: 388
  issue: 1–2
  year: 2009
  end-page: 392
  ident: CR12
  article-title: Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH nanoparticles
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.04.028
– volume: 35
  start-page: 5133
  issue: 10
  year: 2010
  end-page: 5144
  ident: CR29
  article-title: Hydrogen storage in Mg: A most promising material
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.08.088
– volume: 460
  start-page: 432
  issue: 1–2
  year: 2008
  end-page: 439
  ident: CR32
  article-title: Hydriding and electrochemical properties of amorphous rich Mg Ni nanomaterial obtained by mechanical alloying starting from Mg Ni and MgNi
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.05.073
– volume: 8
  start-page: 89
  issue: 2
  year: 2018
  ident: CR11
  article-title: Catalysis and downsizing in Mg-based hydrogen storage materials
  publication-title: Catalysts
  doi: 10.3390/catal8020089
– volume: 44
  start-page: 5399
  issue: 11
  year: 2019
  end-page: 5407
  ident: CR1
  article-title: Structure and hydrogen storage performances of La–Mg–Ni–Cu alloys prepared by melt spinning
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.08.115
– volume: 520
  start-page: 207
  year: 2012
  end-page: 212
  ident: CR3
  article-title: Hydrogen storage properties of Mg–Ni–Fe composites prepared by hydriding combustion synthesis and mechanical milling
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.01.018
– volume: 36
  start-page: 7897
  issue: 13
  year: 2011
  end-page: 7901
  ident: CR34
  article-title: Development of nanostructured Mg Ni alloys for hydrogen storage applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.01.047
– volume: 782
  start-page: 242
  year: 2019
  end-page: 250
  ident: CR5
  article-title: Catalytic effect of in situ formed nano-Mg Ni and Mg Cu on the hydrogen storage properties of Mg-Y hydride composites
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.223
– volume: 104
  start-page: 214
  year: 2017
  end-page: 220
  ident: CR14
  article-title: The hydrogen storage properties of Mg–Li–Al composite system catalyzed by K ZrF
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.01.021
– volume: 330–332
  start-page: 640
  year: 2002
  end-page: 644
  ident: CR25
  article-title: Characteristics of Mg Ni M (M = Ti, Cr, Mn, Fe Co, Ni, Cu and Zn) alloys after surface treatment
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)01535-3
– volume: 28
  start-page: 464
  issue: 4
  year: 2018
  end-page: 469
  ident: CR6
  article-title: Microstructure characterization and hydrogen storage properties study of Mg Ni M (M = Ti, V, Fe or Si) alloys
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2018.06.006
– volume: 676
  start-page: 557
  year: 2016
  end-page: 564
  ident: CR13
  article-title: The hydrogen storage performance of a 4MgH –LiAlH –TiH composite system
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.03.194
– volume: 61
  start-page: 339
  issue: 4
  year: 2009
  end-page: 342
  ident: CR8
  article-title: Structure and hydrogen storage properties of Mg Pr and Mg PrNi alloys
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2008.12.001
– volume: 34
  start-page: 7749
  issue: 18
  year: 2009
  end-page: 7755
  ident: CR18
  article-title: Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.07.053
– volume: 41
  start-page: 2689
  issue: 4
  year: 2016
  end-page: 2699
  ident: CR7
  article-title: Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg Y binary alloy
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.12.099
– volume: 46
  start-page: 24202
  issue: 47
  year: 2021
  end-page: 24213
  ident: CR24
  article-title: Dual-tuning of de/hydrogenation kinetic properties of Mg-based hydrogen storage alloy by building a Ni-/Co-multi-platform collaborative system
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.04.198
– volume: 374
  start-page: 158
  issue: 15
  year: 2018
  end-page: 165
  ident: CR28
  article-title: Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg–Ni alloy
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.034
– volume: 245
  start-page: 808
  year: 2014
  end-page: 815
  ident: CR33
  article-title: Microstructure and tailoring hydrogenation performance of Y-doped Mg Ni alloys
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.049
– volume: 750
  start-page: 490
  year: 2018
  end-page: 498
  ident: CR9
  article-title: Effect of Al* generated in situ in hydriding on the dehydriding properties of Mg–Al alloys prepared by hydriding combustion synthesis and mechanical milling
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.04.023
– volume: 103
  start-page: 277
  issue: 2
  year: 1984
  end-page: 283
  ident: CR30
  article-title: Phase transformations among three polymorphs of Mg NiH
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(84)90251-0
– volume: 23
  start-page: 3677
  issue: 12
  year: 2013
  end-page: 3684
  ident: CR17
  article-title: Microstructure and hydrogenation kinetics of Mg Ni-based alloys with addition of Nd, Zn and Ti
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(13)62916-7
– volume: 46
  start-page: 24202
  issue: 47
  year: 2021
  ident: 51602_CR24
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.04.198
– volume: 8
  start-page: 89
  issue: 2
  year: 2018
  ident: 51602_CR11
  publication-title: Catalysts
  doi: 10.3390/catal8020089
– volume: 371
  start-page: 35
  year: 2016
  ident: 51602_CR20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.203
– volume: 35
  start-page: 5133
  issue: 10
  year: 2010
  ident: 51602_CR29
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.08.088
– volume: 28
  start-page: 464
  issue: 4
  year: 2018
  ident: 51602_CR6
  publication-title: Prog. Nat. Sci. Mater. Int.
  doi: 10.1016/j.pnsc.2018.06.006
– volume: 782
  start-page: 242
  year: 2019
  ident: 51602_CR5
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.223
– volume: 23
  start-page: 3677
  issue: 12
  year: 2013
  ident: 51602_CR17
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(13)62916-7
– volume: 318
  start-page: 103
  year: 2018
  ident: 51602_CR16
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.10.046
– volume: 44
  start-page: 5399
  issue: 11
  year: 2019
  ident: 51602_CR1
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.08.115
– volume: 36
  start-page: 7897
  issue: 13
  year: 2011
  ident: 51602_CR34
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.01.047
– volume: 676
  start-page: 557
  year: 2016
  ident: 51602_CR13
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.03.194
– volume: 245
  start-page: 808
  year: 2014
  ident: 51602_CR33
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.049
– volume: 750
  start-page: 490
  year: 2018
  ident: 51602_CR9
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.04.023
– volume: 37
  start-page: 299
  issue: 1
  year: 2012
  ident: 51602_CR23
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.09.057
– volume: 762
  start-page: 548
  year: 2018
  ident: 51602_CR15
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.267
– volume: 496
  start-page: 608
  issue: 1–2
  year: 2010
  ident: 51602_CR31
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.02.128
– volume: 460
  start-page: 432
  issue: 1–2
  year: 2008
  ident: 51602_CR32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.05.073
– volume: 330–332
  start-page: 640
  year: 2002
  ident: 51602_CR25
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)01535-3
– volume: 34
  start-page: 7749
  issue: 18
  year: 2009
  ident: 51602_CR18
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.07.053
– volume: 520
  start-page: 207
  year: 2012
  ident: 51602_CR3
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.01.018
– volume: 374
  start-page: 158
  issue: 15
  year: 2018
  ident: 51602_CR28
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.034
– volume: 104
  start-page: 214
  year: 2017
  ident: 51602_CR14
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.01.021
– volume: 41
  start-page: 2689
  issue: 4
  year: 2016
  ident: 51602_CR7
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.12.099
– volume: 61
  start-page: 339
  issue: 4
  year: 2009
  ident: 51602_CR8
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2008.12.001
– volume: 378
  start-page: 636
  year: 2018
  ident: 51602_CR10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.003
– volume: 253–254
  start-page: 128
  year: 1997
  ident: 51602_CR27
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(96)03097-6
– volume: 482
  start-page: 388
  issue: 1–2
  year: 2009
  ident: 51602_CR12
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.04.028
– volume: 44
  start-page: 7371
  issue: 14
  year: 2019
  ident: 51602_CR19
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.01.216
– volume: 32
  start-page: 1949
  issue: 12
  year: 2007
  ident: 51602_CR21
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2006.09.044
– volume: 820
  year: 2020
  ident: 51602_CR26
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153187
– volume: 103
  start-page: 277
  issue: 2
  year: 1984
  ident: 51602_CR30
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(84)90251-0
– volume: 414
  start-page: 1476
  issue: 6861
  year: 2001
  ident: 51602_CR4
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 965
  issue: 25
  year: 2023
  ident: 51602_CR22
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171431
– volume: 44
  start-page: 6728
  issue: 13
  year: 2019
  ident: 51602_CR2
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.01.148
SSID ssj0000529419
Score 2.4513988
Snippet Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg 2 Ni-based alloys. This study used a small amount of Y...
Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small amount of Y to...
Abstract Rare earth elements have excellent catalytic effects on improving hydrogen storage properties of the Mg2Ni-based alloys. This study used a small...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 905
SubjectTerms 639/301
639/4077
Absorption
Alloys
Dehydrogenation
Desorption
Differential scanning calorimetry
Heat treating
Humanities and Social Sciences
Hydrogen
Hydrogenation
Metallurgy
multidisciplinary
Rare earth elements
Scanning electron microscopy
Science
Science (multidisciplinary)
X-ray diffraction
X-ray spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEBQQgYKM1AOIzdZ2vIl94ABVqwppe6JSOVmOP2ilKql2W3X3xhGu_MT-Emac7NJUAi4c4kPsJLZnJn62x28I2bFRlrUWIZcA7iFRda6Vt7kISobaKllHXNCfHpWHx_LTyeTkVqgv9Anr6IG7jtv1oCOyYNFHQO4-ytqF0lfWcyvKGFK8WgFj3q3JVMfqLbTkuj8lwwq1O4eRCk-TQY0mvITfwPVgJEqE_QOUeddH8s5GaRp_Dh6SBz1wpB-6Cj8i90KzRTa7UJLLx6SdomddxwZ7NQvUNp6eLv2sBQWh6AEJ_w16gSvvM6RQpW2kAP3o9Ku4-f5z8WVxdMbGeq-FZtA3i5tvP97DxUaUjQUmxSi9kI3lW4o79cv5E3J8sP957zDvgynkbsLVZR5DqBz0hOOlVpXSngWAbrWfwEw02hAKG1nkzNpaVdZp6WworXXRVqGUVsbiKdlo2iY8I9QjySCIMlSAP5hmVghX-MCFE9pWXGSErzrWuJ5pHANenJu0410o0wnDgDBMEoa5zsi79TMXHc_GX0t_RHmtSyJHdroBmmN6zTH_0pyMbK-kbXrDnRuhuUAIidmv19lgcriPYpvQXqUyBcYrKVVG1EBLBhUa5jRnp4m8myN_Ekw6MzJaKdTvr_-5xc__R4tfkPsCDQBXkPQ22QCdDC8BU13Wr5L5_AI6DB8p
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISBxCbrV-b2AeEoKKqkLYnKi2nyPGjrYSSZbdVd289wpWf2F_CjJPdaivRQ3yIncTOjGfGM_Y3hLy1URW1ESFXYNxDoevcaG9zEbQKtdWqjujQHx8WB0fq22Q06R1u835b5UomJkHtW4c-8l1huEDdzuWn6a8cs0ZhdLVPoXGX3EPoMuTqclKufSwYxVLc9GdlmNS7c9BXeKYM-jXiBQiDiw19lGD7N2zNmzslb4RLkxbaf0Qe9uYj_dzR-zG5E5on5H6XUHL5lLRj3F_XYcKezwK1jacnSz9rgU0o7oME6UGn6H-fIZAqbSMFA5COj8XV77-LH4vDUzY0ey0Mg75bXF3--QgXG1A2FFjIQXohG6r3FOP1y_kzcrT_9fveQd6nVMjdiOuzPIZQOvgTjhdGl9p4FsCAq_0I1qPRhiBtZJEza2tdWmeUs6Gw1kVbhkJZFeVzstW0TXhBqEeoQSBoKMEKYYZZIZz0gQsnjC25yAhf_djK9XjjmPbiZ5Xi3lJXHTEqIEaViFFdZOTD-plph7Zxa-svSK91S0TKTjfa2XHVT7zKg4xRkkUfYeXno6pdKHxpPbeiiIHLjOysqF3103deXTNbRt6sq2HiYTTFNqE9T20kZi0pdEb0BpdsdGizpjk9SRDeHFGUYOmZkcGKoa6__v8Rv7y9s9vkgUDWRg-R2SFbwG3hFdhMZ_XrNDH-ARXMFXk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQuiF8RKMhIHEBsFtvxJvaBw1JRVSttL1CpnCwntttKVVLtFnX3xhGuPGKfhBknWZQKkDjEh9hObM-MPfaMvyHklQ0yL7XwqQTlHhJVplo5mwqvpC-tkmXAA_35YX5wJGfHk-MtIvq7MNFpP0Jaxmm69w57t4SFBi-DwQcnPAcpvrpFdhCqHXh7ZzqdfZptTlbQdiW57m7IsEz9ofJgFYpg_QMN86Z_5A0jaVx79u-Ru53SSKdtM--TLV8_ILfbMJLrh6SZo1ddiwQLXaK2dvR07RYNMAdF70eYM-gFnrovED6VNoGC2kfnJ-L6-8_Vl9XhGRvrvQa6QV-vrr_9eA8PG1E2Fphko_hBNpZvKFrp18tH5Gj_4-e9g7QLpJBWE64u0-B9UcFIVDzXqlDaMQ9qW-kmsAsN1vvMBhY4s7ZUha20rKzPra2CLXwurQzZY7JdN7V_QqhDgEEgoy9A92CaWSGqzHkuKqFtwUVCeD-wpupQxjHYxbmJ1u5MmZYYBohhIjHMVULebupctBgb_yz9Aem1KYn42PFFszgxHb8YBzOLzFhwAfZ7Lsiy8rkrrONW5MHzLCG7PbVNJ7RLIzQXqD5i9stNNogb2lBs7ZuvsUyGsUpylRA14JJBg4Y59dlpBO7miJ0EG86EjHqG-v33v_f46f8Vf0buCGR1PCfSu2QbuM8_B83psnzRicovD4gVNg
  priority: 102
  providerName: Springer Nature
Title Microstructure and hydrogen storage properties of the Mg2−xYxNi0.9Co0.1 (x = 0, 0.2, 0.3, and 0.4) alloys
URI https://link.springer.com/article/10.1038/s41598-024-51602-w
https://www.proquest.com/docview/2912143513
https://www.proquest.com/docview/2913081668
https://pubmed.ncbi.nlm.nih.gov/PMC10776625
https://doaj.org/article/d319430fdf114df4bce6d7ad1a26fe13
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBf9YLDL6L6Y2y5osMPG4sySFVs6lJGGlhJIGNsC2cnIltQWit0lLU1uO27X_Yn9S_ae7GSkdIMdbIMly7bee3o_ff0eIa-1E0muuA0FgHs4yTxU0uiQWylsrqXIHQ7oD0fJyVgMJt3JBlmGO2oqcHZv1w7jSY2nF535t8UHMPiDesu4fD8DJ4QbxeBlXZaAhd9skm3wTClGNBg2cL_m-uZK-FgfSMIeApjgzT6a-4tZ81We0n8Nh95dRXlnKtV7qOMd8qiBlrRX68JjsmHLJ-RBHWxy8ZRUQ1x7V_PFXk8t1aWhZwszrUCFKK6RhJaFXuLY_BRJVmnlKIBDOjzltz9-zb_OR-dRR_Ur-A36Zn77_ecBHFGbRh2Op7jtC4w64i3FufzF7BkZHx996Z-ETbiFsOgyeRU6a9MCaqJgiZKpVCayAO5y04W-qtPWxtpFjkVa5zLVhRKFtonWhdOpTYQWLn5OtsqqtC8INUhDCMK2KSCUSEWa8yI2lvGCK50yHhC2rNisaLjIMSTGRebnxGOZ1cLIQBiZF0Z2E5B3q2cuayaOf-Y-RHmtciKLtr9RTU-zxigzA-2PiCNnHPQKjRN5YROTasM0T5xlcUD2l9LOlpqZccU4gkxMfrVKBqPEmRZd2ura54kxokkiAyLXtGTtg9ZTyvMzT-_NkGEJuqUBaS8V6s_b__7Hu_9VP3vkIUdNx8EktU-2QPnsS4BXV3mLbKaTtEW2e73B5wFcD49GHz_B3X7Sb_khi5a3qt-ewyS6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxFMYCiwSSCDqdHe9sdeHCkGhSmmTUyuFk7veR1sJ2SFpleTGEa78EH5UfwkzfqRKJXrrwT7YG8fe-XbeO0PIa-1lnKfChRKUezipPEyV1aFwSrpcK5l7dOj3B3HvQH4ddocr5G-7FwbTKlueWDFqWxr0kW-IlAuU7Tz6MPoRYtcojK62LTRqWOy6-RRMtsnmzmeg7xshtr_sb_XCpqtAaLpcnYbeucRwFhkeg72tUssc6DC57YJJ5rVzkfbMc6Z1rhJtUmm0i7U2Xicullr6CJ57g9wEwcvQ2EuGycKng1EzydNmbw6L1MYE5CPuYYN56PIYmM90Sf5VbQKWdNvLmZmXwrOV1Nu-R-426ir9WOPrPllxxQNyq25gOX9Iyj7m89U1aM_GjurC0uO5HZcAS4p5l8Ct6Aj9_WMs3EpLT0HhpP0jcf7rz-zbbHDCOulWCZ9B387Of_7ehIOtU9YReIrWqweyjnxHMT9gPnlEDq5lsh-T1aIs3BNCLZY2BAC5BLQeljIthIms48KIVCdcBIS3E5uZpr45ttn4nlVx9khlNTEyIEZWESObBuT94jejurrHlaM_Ib0WI7Eyd3WhHB9lzULPLPA0GTFvPVia1svcuNgm2nItYu94FJC1ltpZwy4m2QW4A_JqcRsWOkZvdOHKs2pMhF1SYhUQtYSSpRdavlOcHFclwzlWbQJTNyDrLaAu_v3_X_z06pd9SW739vt72d7OYPcZuSMQ5uidStfIKiDPPQd97TR_US0SSg6ve1X-A5VTVRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiKcwFFgkkEDEye5648ehQvQRtZREFaJSOZn1PtpKyA5JqyQ3jnDl5_Bz-kuY8SNVKtFbD_bB3jj2zjez89oZQl4pJ8MsEdaXoNzDKc78JDbKFzaWNlOxzBw69AfDcOdAfjzsHa6Qv81eGEyrbGRiKahNodFH3hUJF7i286Dr6rSI_a3--9EPHztIYaS1aadRQWTPzqdgvk3Wd7eA1q-F6G9_2dzx6w4Dvu7x-NR31kaas0DzEGzvODHMgj6TmR6YZ05ZGyjHHGdKZXGkdCK1sqFS2qnIhlJJF8Bzb5DVCK2iFlnd2B7uf154eDCGJnlS79RhQdydwGqJO9pgVno8BFE0XVoNy6YBS5ru5TzNS8Hacg3s3yV3auWVfqjQdo-s2Pw-uVm1s5w_IMUAs_uqirRnY0tVbujx3IwLACnFLEyQXXSE3v8xlnGlhaOgftLBkTj_9Wf2dTY8YZ1ks4DPoG9m5z9_r8PB2pR1BJ6CdvlA1pFvKWYLzCcPycG1TPcj0sqL3D4m1GChQ4CTjUAHYglTQujAWC60SFTEhUd4M7GprqudY9ON72kZdQ_itCJGCsRIS2KkU4-8W_xmVNX6uHL0BtJrMRLrdJcXivFRWrN9akDCyYA548DuNE5m2oYmUoYrETrLA4-sNdROa-ExSS-g7pGXi9vA9hjLUbktzsoxAfZMCWOPxEsoWXqh5Tv5yXFZQJxjDScwfD3SbgB18e___-InV7_sC3ILODL9tDvce0puC0Q5uqqSNdIC4NlnoLydZs9rLqHk23Uz5j8mNVqr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+hydrogen+storage+properties+of+the+Mg2%E2%88%92xYxNi0.9Co0.1+%28x%E2%80%89%3D%E2%80%890%2C+0.2%2C+0.3%2C+and+0.4%29+alloys&rft.jtitle=Scientific+reports&rft.au=Li%2C+Defa&rft.au=Huang%2C+Feng&rft.au=Ren%2C+Bingzhi&rft.au=Wang%2C+Shujie&rft.date=2024-01-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-51602-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_51602_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon