LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing
Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 13; no. 9; p. 1518 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10−11 M and 10−9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. |
---|---|
AbstractList | Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10−11 M and 10−9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al 2 O 3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10 −11 M and 10 −9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10-11 M and 10-9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10-11 M and 10-9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al O as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10 M and 10 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al[sub.2] O[sub.3] as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10[sup.−11] M and 10[sup.−9] M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production. |
Audience | Academic |
Author | Si, Haipeng Xie, Shuqi Yue, Weiwei Liu, Weihao Liu, Cong Shafi, Muhammad Jiang, Shouzhen |
AuthorAffiliation | 3 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China 2 Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China; 13065092736@163.com 1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2021020626@stu.sdnu.edu.cn (S.X.); lucky123018@163.com (C.L.); lwh990309@gmail.com (W.L.); shafiicp@gmail.com (M.S.) |
AuthorAffiliation_xml | – name: 3 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China – name: 1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2021020626@stu.sdnu.edu.cn (S.X.); lucky123018@163.com (C.L.); lwh990309@gmail.com (W.L.); shafiicp@gmail.com (M.S.) – name: 2 Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China; 13065092736@163.com |
Author_xml | – sequence: 1 givenname: Shuqi surname: Xie fullname: Xie, Shuqi – sequence: 2 givenname: Haipeng surname: Si fullname: Si, Haipeng – sequence: 3 givenname: Cong surname: Liu fullname: Liu, Cong – sequence: 4 givenname: Weihao surname: Liu fullname: Liu, Weihao – sequence: 5 givenname: Muhammad orcidid: 0000-0002-0381-4646 surname: Shafi fullname: Shafi, Muhammad – sequence: 6 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen – sequence: 7 givenname: Weiwei orcidid: 0000-0002-6042-0467 surname: Yue fullname: Yue, Weiwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37177063$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstv1DAQxiNUREvpjTOKxIUDKX4kcXxCZSlQaSVWpJwtx49dV4m9tR0kbvzpTHdLta2wD3795psZ-XtZHPngTVG8xuicUo4-eOkDpojjBnfPihOCGK9qzvHRwf64OEvpBsHgmHYNfVEcU4YZQy09Kf4s-1XVr1blIszb0fl12ec4qzxHU36Syegy-PJ6E42pPrvJ-OSCl2O5kjmb6OG5l9vtxgHdz0PKUWZT2hDhFK1Uprz0G-kVcD_kJH3Zq13gLs-dmF-_Kp5bOSZzdr-eFj-_XF4vvlXL71-vFhfLSkFrubIDRgoPFiuEu8G2raZGD4ipAXW6VaRTzNKBcIQa1ulB8840spG4Q7bmjbX0tLja6-ogb8Q2uknG3yJIJ3YXIa6FjNmp0QjJuUVYtqQxukaUdNTa2jJSG00ZrTVofdxrbedhMloZD42Pj0Qfv3i3EevwS2AoHpGGgcK7e4UYbmeTsphcUmYcpTdhToJ0mDYNfFYL6Nsn6E2YI3zCjiIN4oRRoM731FpCB87bAIkVTG0mp8A01sH9Bas5oeAXAgFvDnt4KP6fNQB4vwdUDClFYx8QjMSd-cSh-QAnT3DlssxgFyjEjf8P-gtm092j |
CitedBy_id | crossref_primary_10_1002_adem_202401177 crossref_primary_10_3390_mi14061197 crossref_primary_10_1016_j_saa_2023_123331 crossref_primary_10_1117_1_OE_63_3_037103 crossref_primary_10_1016_j_apsusc_2024_160002 crossref_primary_10_1016_j_microc_2024_112078 crossref_primary_10_1007_s11082_024_07524_y |
Cites_doi | 10.1016/0009-2614(87)80423-2 10.1016/0378-4371(87)90260-3 10.1021/jp0687908 10.1021/acsanm.1c00841 10.1016/j.talanta.2015.08.050 10.1007/s10334-013-0378-3 10.1002/jrs.2557 10.1063/1.2031935 10.1016/j.microc.2022.108023 10.3390/bios12030158 10.1002/admi.201500031 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0 10.1016/j.saa.2011.05.049 10.1039/C6NR09592E 10.3390/nano11092176 10.1063/1.4816344 10.1007/s10853-018-3184-5 10.1146/annurev.physchem.58.032806.104607 10.1016/j.physrep.2004.11.001 10.1038/lsa.2016.3 10.1364/OE.27.003000 10.1016/j.vibspec.2012.01.011 10.1021/acs.est.0c02317 10.1364/OE.23.024811 10.1002/smll.201805516 10.1039/C3CC49030K 10.1016/j.apsusc.2015.04.170 10.4103/0973-029X.99081 10.1063/1.4952576 10.1366/000370208783575492 10.1016/j.snb.2022.131360 10.1007/s13206-019-3105-y 10.1103/PhysRevLett.96.097401 10.1039/a827241z 10.1016/j.bios.2018.06.042 10.1103/PhysRevLett.93.137404 10.1002/jrs.4190 10.1039/D0NR07344J 10.1515/nanoph-2020-0454 10.1364/OE.14.009971 10.1364/OE.419133 10.1002/admi.201400034 10.1039/C7NR09276H |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano13091518 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d PMC10180257 A749233092 37177063 10_3390_nano13091518 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12074226;11674199 – fundername: National Natural Science Foundation of China grantid: 12074226; 11674199 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-fb10c1bf1c018bf66d3edb07cb08d6c28c7f3b2900578dbd98e5a5a180f495ff3 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Thu Aug 21 18:37:28 EDT 2025 Thu Jul 10 22:31:43 EDT 2025 Fri Jul 25 09:28:05 EDT 2025 Tue Jun 10 21:09:24 EDT 2025 Wed Feb 19 02:23:25 EST 2025 Thu Apr 24 22:56:47 EDT 2025 Tue Jul 01 00:51:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 3D coupling photolithography hydrophobicity SERS reproducibility light-capturing |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-fb10c1bf1c018bf66d3edb07cb08d6c28c7f3b2900578dbd98e5a5a180f495ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0381-4646 0000-0002-6042-0467 |
OpenAccessLink | https://doaj.org/article/a99f01a625ed403283ff4f724ed3734d |
PMID | 37177063 |
PQID | 2812509273 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180257 proquest_miscellaneous_2813558536 proquest_journals_2812509273 gale_infotracacademiconefile_A749233092 pubmed_primary_37177063 crossref_primary_10_3390_nano13091518 crossref_citationtrail_10_3390_nano13091518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-29 |
PublicationDateYYYYMMDD | 2023-04-29 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Jiang (ref_7) 1987; 140 Zhang (ref_14) 2017; 9 Gross (ref_35) 2016; 1 Rai (ref_44) 2021; 4 Itoh (ref_8) 2021; 13 Sun (ref_33) 2016; 5 Liu (ref_17) 2005; 87 Zhang (ref_31) 2016; 146 Zhang (ref_15) 2019; 15 Lee (ref_13) 2019; 13 Stewart (ref_19) 2000; 12 Zhou (ref_1) 2022; 183 Murugan (ref_39) 2019; 54 Liu (ref_5) 2011; 79 Wind (ref_29) 1987; 141 Miyazaki (ref_34) 2006; 96 Li (ref_32) 2018; 10 Zhang (ref_21) 2015; 347 Zhang (ref_41) 2015; 2 Yuan (ref_30) 2018; 117 Garrido (ref_6) 2012; 61 Schulte (ref_3) 2013; 44 Dai (ref_16) 2013; 103 Shafi (ref_26) 2022; 356 Xin (ref_20) 2013; 26 Zhao (ref_25) 2020; 9 Campion (ref_9) 1998; 27 Zhang (ref_22) 2015; 23 ref_42 Xu (ref_24) 2020; 54 Negri (ref_2) 2014; 50 Zayats (ref_12) 2005; 408 Yang (ref_10) 2019; 27 Zha (ref_18) 2021; 29 Blackie (ref_37) 2007; 111 Vernon (ref_23) 2010; 41 Martin (ref_28) 2006; 14 ref_27 Stockman (ref_36) 2004; 93 Olson (ref_4) 2008; 62 Willets (ref_11) 2007; 58 Uddin (ref_43) 2016; 119 Sridharan (ref_38) 2012; 16 McLane (ref_40) 2015; 2 |
References_xml | – volume: 140 start-page: 95 year: 1987 ident: ref_7 article-title: Chemical effects in surface-enhanced raman scattering: Pyridine chemisorbed on silver adatoms on Rh (100) publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)80423-2 – volume: 141 start-page: 33 year: 1987 ident: ref_29 article-title: The polarizability of a truncated sphere on a substrate I publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/0378-4371(87)90260-3 – volume: 111 start-page: 13794 year: 2007 ident: ref_37 article-title: Surface enhanced Raman scattering enhancement factors: A comprehensive study publication-title: J. Phys. Chem. C doi: 10.1021/jp0687908 – volume: 4 start-page: 5940 year: 2021 ident: ref_44 article-title: Plasmon-Coupled Directional Emission from Soluplus-Mediated AgAu Nanoparticles for Attomolar Sensing Using a Smartphone publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00841 – volume: 146 start-page: 364 year: 2016 ident: ref_31 article-title: Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG publication-title: Talanta doi: 10.1016/j.talanta.2015.08.050 – volume: 26 start-page: 549 year: 2013 ident: ref_20 article-title: Single spin-echo T2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain publication-title: Magn. Reson. Mater. Phys. Biol. Med. doi: 10.1007/s10334-013-0378-3 – volume: 41 start-page: 1106 year: 2010 ident: ref_23 article-title: Physical mechanisms behind the SERS enhancement of pyramidal pit substrates publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2557 – volume: 87 start-page: 074101 year: 2005 ident: ref_17 article-title: Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics publication-title: Appl. Phys. Lett. doi: 10.1063/1.2031935 – volume: 183 start-page: 108023 year: 2022 ident: ref_1 article-title: Differentiation and identification structural similar chemicals using SERS coupled with different chemometric methods: The example of fluoroquinolones publication-title: Microchem. J. doi: 10.1016/j.microc.2022.108023 – ident: ref_27 doi: 10.3390/bios12030158 – volume: 2 start-page: 1500031 year: 2015 ident: ref_41 article-title: Spherical Nanoparticle Arrays with Tunable Nanogaps and Their Hydrophobicity Enhanced Rapid SERS Detection by Localized Concentration of Droplet Evaporation publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500031 – volume: 12 start-page: 859 year: 2000 ident: ref_19 article-title: Chemical and Biological Applications of Porous Silicon Technology publication-title: Adv. Mater. doi: 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0 – volume: 1 start-page: 297 year: 2016 ident: ref_35 article-title: Plasmonic nanofocusing—grey holes for light publication-title: Adv. Phys.—X – volume: 79 start-page: 1739 year: 2011 ident: ref_5 article-title: Raman spectral study of metal–cytosine complexes: A density functional theoretical (DFT) approach publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2011.05.049 – volume: 9 start-page: 3114 year: 2017 ident: ref_14 article-title: Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles publication-title: Nanoscale doi: 10.1039/C6NR09592E – ident: ref_42 doi: 10.3390/nano11092176 – volume: 103 start-page: 041903 year: 2013 ident: ref_16 article-title: Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816344 – volume: 54 start-page: 5294 year: 2019 ident: ref_39 article-title: Highly sensitive, stable g-CN decorated with AgNPs for SERS sensing of toluidine blue and catalytic reduction of crystal violet publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-3184-5 – volume: 58 start-page: 267 year: 2007 ident: ref_11 article-title: Localized Surface Plasmon Resonance Spectroscopy and Sensing publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104607 – volume: 408 start-page: 131 year: 2005 ident: ref_12 article-title: Nano-optics of surface plasmon polaritons publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.11.001 – volume: 5 start-page: e16003 year: 2016 ident: ref_33 article-title: High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.3 – volume: 27 start-page: 3000 year: 2019 ident: ref_10 article-title: Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection publication-title: Opt. Express doi: 10.1364/OE.27.003000 – volume: 61 start-page: 94 year: 2012 ident: ref_6 article-title: Interaction of the C-terminal peptide from pigeon cytochrome C with silver nanoparticles. A Raman, SERS and theoretical study publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2012.01.011 – volume: 54 start-page: 15594 year: 2020 ident: ref_24 article-title: Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02317 – volume: 23 start-page: 24811 year: 2015 ident: ref_22 article-title: SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure publication-title: Opt. Express doi: 10.1364/OE.23.024811 – volume: 15 start-page: 1805516 year: 2019 ident: ref_15 article-title: Volume-Enhanced Raman Scattering Detection of Viruses publication-title: Small doi: 10.1002/smll.201805516 – volume: 50 start-page: 2707 year: 2014 ident: ref_2 article-title: Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis publication-title: Chem. Commun. doi: 10.1039/C3CC49030K – volume: 347 start-page: 668 year: 2015 ident: ref_21 article-title: SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.170 – volume: 16 start-page: 251 year: 2012 ident: ref_38 article-title: Toluidine blue: A review of its chemistry and clinical utility publication-title: J. Oral Maxillofac. Pathol. JOMFP doi: 10.4103/0973-029X.99081 – volume: 119 start-page: 204701 year: 2016 ident: ref_43 article-title: A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection publication-title: J. Appl. Phys. doi: 10.1063/1.4952576 – volume: 62 start-page: 149 year: 2008 ident: ref_4 article-title: Surface-Enhanced Raman Spectroscopy Studies of Surfactant Adsorption to a Hydrophobic Interface publication-title: Appl. Spectrosc. doi: 10.1366/000370208783575492 – volume: 356 start-page: 131360 year: 2022 ident: ref_26 article-title: Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2022.131360 – volume: 13 start-page: 30 year: 2019 ident: ref_13 article-title: Fabrication Strategies of 3D Plasmonic Structures for SERS publication-title: BioChip J. doi: 10.1007/s13206-019-3105-y – volume: 96 start-page: 097401 year: 2006 ident: ref_34 article-title: Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.097401 – volume: 27 start-page: 241 year: 1998 ident: ref_9 article-title: Surface-enhanced Raman scattering publication-title: Chem. Soc. Rev. doi: 10.1039/a827241z – volume: 117 start-page: 637 year: 2018 ident: ref_30 article-title: Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.06.042 – volume: 93 start-page: 137404 year: 2004 ident: ref_36 article-title: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.137404 – volume: 44 start-page: 247 year: 2013 ident: ref_3 article-title: Adsorption of dicarboxylic acids onto nano-structured silver surfaces—surface-enhanced Raman scattering studies of pH-dependent adsorption geometries publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4190 – volume: 13 start-page: 1566 year: 2021 ident: ref_8 article-title: Between plasmonics and surface-enhanced resonant Raman spectroscopy: Toward single-molecule strong coupling at a hotspot publication-title: Nanoscale doi: 10.1039/D0NR07344J – volume: 9 start-page: 4761 year: 2020 ident: ref_25 article-title: Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0454 – volume: 14 start-page: 9971 year: 2006 ident: ref_28 article-title: Optical interactions in a plasmonic particle coupled to a metallic film publication-title: Opt. Express doi: 10.1364/OE.14.009971 – volume: 29 start-page: 8890 year: 2021 ident: ref_18 article-title: Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al2O3 publication-title: Opt. Express doi: 10.1364/OE.419133 – volume: 2 start-page: 1400034 year: 2015 ident: ref_40 article-title: Enhanced Detection of Protein in Urine by Droplet Evaporation on a Superhydrophobic Plastic publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400034 – volume: 10 start-page: 5897 year: 2018 ident: ref_32 article-title: 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis publication-title: Nanoscale doi: 10.1039/C7NR09276H |
SSID | ssj0000913853 |
Score | 2.271757 |
Snippet | Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1518 |
SubjectTerms | Aluminum oxide Analysis Controllability Coupling Coupling (molecular) Detection limits Electric fields Ethanol Fabrication Finite element method Hydrophobicity Identification and classification light-capturing Manufacturability Mass production Morphology Nanoparticles Photolithography Plasmons Polaritons Properties Raman effect Raman spectra Reproducibility Rhodamine 6G Sapphire SERS Silver Structure Substrates Toluidine Toluidine blue |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4t1AQUYCcUBR8_Am9gl1y1YVgipqWqm3yM8tEnWWbffOT2fG8YZdITgmcRIn8_hmxvZnQt4pLgUXdQaRm1EpY4VMheJ5al0lNJNS16He8e2sOr1kX64mV7HgdhunVa59YnDUptdYIz8sAIkA3ABtPy1-prhrFI6uxi007pNdcMEckq_d6eysOR-rLMh6CYA0zHgvIb8_9NL34LcFIB3fwqJA2f-3Y95Apu1ZkxswdPKI7MX4kR4NAn9M7ln_hDzcYBV8Sn59bZu0bRp63K9wve2ctoEkdrW0dAqgZWjv6QXI0Kafkdt_4OWgTWDaBK9LW7lYYM2aolcJ7LUUQls4WjqpLZ356zBtgJ7LG-lpq8ON4T34MD9_Ri5PZhfHp2ncaCHV8BfuUqfyTOfK5TrLuXJVZUprVFZrlXFT6YLr2pWqELhylRtlBLcTOZE5zxzkV86Vz8mO773dJ1TkXDCuwU8wxyC64hAuOSG0wVsqKRPycf3LOx1ZyHEzjB8dZCMooG5TQAl5P7ZeDOwb_2g3RemNbZAzO5zol_MummAnhXBZLiHhs4YhjWDpHHN1wawp65KZhHxA2Xdo2dAlLeMCBfgw5Mjqjmoks4M3Fgk5WKtHF03-tvujoAl5O14GY8URGOltvwptkM5-UlYJeTFo09jnEhLrGgLGhPAtPdv6qO0r_vt1IAQPLGzge1_-v1-vyIMCQjQcCyvEAdkB3bOvIaS6U2-i3fwGtzIjmQ priority: 102 providerName: ProQuest |
Title | LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37177063 https://www.proquest.com/docview/2812509273 https://www.proquest.com/docview/2813558536 https://pubmed.ncbi.nlm.nih.gov/PMC10180257 https://doaj.org/article/a99f01a625ed403283ff4f724ed3734d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ8W6grIwE4oCiJrE3sY_dskuFoIqaVuot8rNFos6qdO_8dGacdJUIIS4cE9uJ7RnPfOPHZ0LeaaGkkFUGyM3qlPNCpVKLPHW-lIYrZao43_HtpDw-518u5hejq75wT1hPD9x33IGS0me5ApjuLEfyN-Y991XBnWUV4xatL_i8UTAVbbDMGTiifqc7g7j-IKjQgb2W4OHExAdFqv4_DfLII013S47cz-ox2R1wIz3s6_uE3HPhKXk0YhN8Rn59beq0qWt61G3wnO0lbSI57ObG0QU4K0u7QM9Adi79hJz-PR8HrSPDJlhb2qj1GueqKVqTyFpLAdLC041XxtFluIrbBeipulaBNiYWjP_Bj4XL5-R8tTw7Ok6HCxZSA71wm3qdZybXPjdZLrQvS8uc1VlldCZsaQphKs90IfHEqrDaSuHmaq5ykXmIq7xnL8hO6ILbI1TmQnJhwD5wzwFVCYBJXkpjsUipVEI-3nV5awb2cbwE40cLUQgKqB0LKCHvt7nXPevGX_ItUHrbPMiVHV-ABrWDBrX_0qCEfEDZtziioUpGDQcToGHIjdUeVkhiB38sErJ_px7tMNR_tgVAJEBdAAMT8nabDIMUV15UcN0m5kEa-zkrE_Ky16ZtnRkE1BUAxYSIiZ5NGjVNCd-vIhF4ZF8Dm_vqf3TDa_KwAACHK2WF3Cc7oKHuDQCuWz0j98Xq84w8WCxP6tNZHGm_AVX5LPo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcgAOiB1DgUGi4oCsepnYMweEuoWUplVEUqk3M2taqYxD2ghx4xfxG3lv7IRECG49JjO2x37L994s3yPkjeJScFEmELkZFTOWyVgonsbWFUIzKXUZ5juOjoveCft02jldI7_mZ2FwW-XcJwZHbWqNc-RbGSARgBug7YfJtxirRuHq6ryERqMWh_bHd0jZLt8f7IF8N7Osuz_a7cVtVYFYd1J-FTuVJjpVLtVJypUrCpNbo5JSq4SbQmdcly5XmcBjmtwoI7jtyI5MeeIgmXAuh_veIDdZngu0KN79uJjTQY5NgL9mfz20J1te-hpQQgCu8hXkCwUC_oaBJRxc3aO5BHrde-RuG63S7Ua97pM16x-QO0schg_Jz_5wEA8HA7pbz_B075gOAyXtbGrpDkCkobWnI9AYG-9hJYGGBYQOAq8n-Hg6lJMJzpBT9GGBK5dCIA2_pk5qS_f9WdikQD_Lr9LToQ4Xhufgzfz4ETm5FgE8Juu-9vYpoSLlgnENXok5BrEch-DMCaENXlJIGZF3809e6ZbzHEtvXFSQ-6CAqmUBRWRz0XvScH38o98OSm_RBxm6wx_1dFy1Bl9JIVySSkgvrWFIWpg7x1yZMWvyMmcmIm9R9hX6ERiSlu1xCHgxZOSqtkukzoMnZhHZmKtH1TqYy-qPOUTk9aIZXAOu90hv61nog-T5nbyIyJNGmxZjziGNLyE8jQhf0bOVl1pt8edngX48cL6Bp3_2_3G9Ird6o6N-1T84PnxObmcQHOIqXCY2yDrooX0BwdyVehksiJIv122yvwEUF2BZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkKg7Iil-xdw8INU2ilpbIalqpN7PeR4oEdkgbIW78Ln4dM2snJEJw69H22l57Zueb2Z39BuB1yaXgIgvQc9OlnySR9EXJQ9_YVKhESpW5-Y6P4_TgLPlw3jvfgl_LvTCUVrm0ic5Q61rRHHk3QiRCcEO07do2LSIfjN7PvvlUQYpWWpflNBoVOTI_vmP4dvnucICy3o2i0fB0_8BvKwz4qhfyK9-WYaDC0oYqCHlp01THRpdBpsqA61RFXGU2LiNBWza5LrXgpid7MuSBxcDC2hifewO2M4yKgg5s94fj_GQ1w0OMmwiGTbZ9HIugW8mqRswQiLJ8AwdduYC_QWENFTczNtcgcHQX7rS-K9trlO0ebJnqPtxeYzR8AD-PJ7k_yXO2Xy9or--UTRxB7WJuWB8BU7O6YqeoP8YfUF2BhhOE5Y7lEy0-m8jZjObLGVk0x5zL0K3Go7mVyrBhdeFSFtiJ_CorNlHuRvceelg1fQhn1yKCR9Cp6so8ASZCLhKu0EYlNkHPjqOrZoVQmm5JpfTg7fKXF6plQKdCHF8KjIRIQMW6gDzYXbWeNcwf_2jXJ-mt2hBftztRz6dFO_wLKYQNQonBptEJURjG1iY2ixKj4yxOtAdvSPYFWRXskpLt5gj8MOLnKvYyItLDN0Ye7CzVo2jNzWXxZ3B48Gp1GQ0Frf7IytQL14ao9Htx6sHjRptWfY4xqM_QWfWAb-jZxkdtXqk-XzgycscAh3b_6f_79RJu4nAtjg_HR8_gVoSeIi3JRWIHOqiG5jl6dlfli3YIMfh03aP2NyGrZes |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSP-SPP+Coupling+Structure+Based+on+Three-Dimensional+Patterned+Sapphire+Substrate+for+Surface+Enhanced+Raman+Scattering+Sensing&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Shuqi+Xie&rft.au=Haipeng+Si&rft.au=Cong+Liu&rft.au=Weihao+Liu&rft.date=2023-04-29&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=13&rft.issue=9&rft.spage=1518&rft_id=info:doi/10.3390%2Fnano13091518&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |