LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing

Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 13; no. 9; p. 1518
Main Authors Xie, Shuqi, Si, Haipeng, Liu, Cong, Liu, Weihao, Shafi, Muhammad, Jiang, Shouzhen, Yue, Weiwei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10−11 M and 10−9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
AbstractList Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10−11 M and 10−9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al 2 O 3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10 −11 M and 10 −9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10-11 M and 10-9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al2O3 as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10-11 M and 10-9 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al O as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10 M and 10 M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there remains a gap in the detection and manufacturability of 3D substrates with high performance. In this study, photolithography is adopted to obtain a pyramid-like array on a patterned sapphire substrate (PSS), with Al[sub.2] O[sub.3] as the dielectric layer. In addition, silver nanoparticles (AgNPs) are used to decorate Au films to obtain mass-producible 3D SRES substrates. In the case of low fluorescence, the substrate realizes the coupling of localized surface plasmon polaritons (LSPs) and surface plasmon polaritons (SPPs), which is consistent with the simulation results obtained using the finite element method. The performance of the SERS substrate is evaluated using rhodamine 6G (R6G) and toluidine blue (TB) as probe molecules with detection limits of 10[sup.−11] M and 10[sup.−9] M, respectively. The substrate exhibits high hydrophobicity and excellent light-capturing capability. Moreover, it shows self-cleaning ability and long-term stability in practical applications. Allowing for the consistency of the composite substrate in the preparation process and the high reproducibility of the test results, it is considered to be promising for mass production.
Audience Academic
Author Si, Haipeng
Xie, Shuqi
Yue, Weiwei
Liu, Weihao
Liu, Cong
Shafi, Muhammad
Jiang, Shouzhen
AuthorAffiliation 3 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
2 Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China; 13065092736@163.com
1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2021020626@stu.sdnu.edu.cn (S.X.); lucky123018@163.com (C.L.); lwh990309@gmail.com (W.L.); shafiicp@gmail.com (M.S.)
AuthorAffiliation_xml – name: 3 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
– name: 1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2021020626@stu.sdnu.edu.cn (S.X.); lucky123018@163.com (C.L.); lwh990309@gmail.com (W.L.); shafiicp@gmail.com (M.S.)
– name: 2 Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China; 13065092736@163.com
Author_xml – sequence: 1
  givenname: Shuqi
  surname: Xie
  fullname: Xie, Shuqi
– sequence: 2
  givenname: Haipeng
  surname: Si
  fullname: Si, Haipeng
– sequence: 3
  givenname: Cong
  surname: Liu
  fullname: Liu, Cong
– sequence: 4
  givenname: Weihao
  surname: Liu
  fullname: Liu, Weihao
– sequence: 5
  givenname: Muhammad
  orcidid: 0000-0002-0381-4646
  surname: Shafi
  fullname: Shafi, Muhammad
– sequence: 6
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
– sequence: 7
  givenname: Weiwei
  orcidid: 0000-0002-6042-0467
  surname: Yue
  fullname: Yue, Weiwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37177063$$D View this record in MEDLINE/PubMed
BookMark eNptkstv1DAQxiNUREvpjTOKxIUDKX4kcXxCZSlQaSVWpJwtx49dV4m9tR0kbvzpTHdLta2wD3795psZ-XtZHPngTVG8xuicUo4-eOkDpojjBnfPihOCGK9qzvHRwf64OEvpBsHgmHYNfVEcU4YZQy09Kf4s-1XVr1blIszb0fl12ec4qzxHU36Syegy-PJ6E42pPrvJ-OSCl2O5kjmb6OG5l9vtxgHdz0PKUWZT2hDhFK1Uprz0G-kVcD_kJH3Zq13gLs-dmF-_Kp5bOSZzdr-eFj-_XF4vvlXL71-vFhfLSkFrubIDRgoPFiuEu8G2raZGD4ipAXW6VaRTzNKBcIQa1ulB8840spG4Q7bmjbX0tLja6-ogb8Q2uknG3yJIJ3YXIa6FjNmp0QjJuUVYtqQxukaUdNTa2jJSG00ZrTVofdxrbedhMloZD42Pj0Qfv3i3EevwS2AoHpGGgcK7e4UYbmeTsphcUmYcpTdhToJ0mDYNfFYL6Nsn6E2YI3zCjiIN4oRRoM731FpCB87bAIkVTG0mp8A01sH9Bas5oeAXAgFvDnt4KP6fNQB4vwdUDClFYx8QjMSd-cSh-QAnT3DlssxgFyjEjf8P-gtm092j
CitedBy_id crossref_primary_10_1002_adem_202401177
crossref_primary_10_3390_mi14061197
crossref_primary_10_1016_j_saa_2023_123331
crossref_primary_10_1117_1_OE_63_3_037103
crossref_primary_10_1016_j_apsusc_2024_160002
crossref_primary_10_1016_j_microc_2024_112078
crossref_primary_10_1007_s11082_024_07524_y
Cites_doi 10.1016/0009-2614(87)80423-2
10.1016/0378-4371(87)90260-3
10.1021/jp0687908
10.1021/acsanm.1c00841
10.1016/j.talanta.2015.08.050
10.1007/s10334-013-0378-3
10.1002/jrs.2557
10.1063/1.2031935
10.1016/j.microc.2022.108023
10.3390/bios12030158
10.1002/admi.201500031
10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
10.1016/j.saa.2011.05.049
10.1039/C6NR09592E
10.3390/nano11092176
10.1063/1.4816344
10.1007/s10853-018-3184-5
10.1146/annurev.physchem.58.032806.104607
10.1016/j.physrep.2004.11.001
10.1038/lsa.2016.3
10.1364/OE.27.003000
10.1016/j.vibspec.2012.01.011
10.1021/acs.est.0c02317
10.1364/OE.23.024811
10.1002/smll.201805516
10.1039/C3CC49030K
10.1016/j.apsusc.2015.04.170
10.4103/0973-029X.99081
10.1063/1.4952576
10.1366/000370208783575492
10.1016/j.snb.2022.131360
10.1007/s13206-019-3105-y
10.1103/PhysRevLett.96.097401
10.1039/a827241z
10.1016/j.bios.2018.06.042
10.1103/PhysRevLett.93.137404
10.1002/jrs.4190
10.1039/D0NR07344J
10.1515/nanoph-2020-0454
10.1364/OE.14.009971
10.1364/OE.419133
10.1002/admi.201400034
10.1039/C7NR09276H
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano13091518
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d
PMC10180257
A749233092
37177063
10_3390_nano13091518
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12074226;11674199
– fundername: National Natural Science Foundation of China
  grantid: 12074226; 11674199
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-fb10c1bf1c018bf66d3edb07cb08d6c28c7f3b2900578dbd98e5a5a180f495ff3
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:28:06 EDT 2025
Thu Aug 21 18:37:28 EDT 2025
Thu Jul 10 22:31:43 EDT 2025
Fri Jul 25 09:28:05 EDT 2025
Tue Jun 10 21:09:24 EDT 2025
Wed Feb 19 02:23:25 EST 2025
Thu Apr 24 22:56:47 EDT 2025
Tue Jul 01 00:51:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 3D
coupling
photolithography
hydrophobicity
SERS
reproducibility
light-capturing
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-fb10c1bf1c018bf66d3edb07cb08d6c28c7f3b2900578dbd98e5a5a180f495ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0381-4646
0000-0002-6042-0467
OpenAccessLink https://doaj.org/article/a99f01a625ed403283ff4f724ed3734d
PMID 37177063
PQID 2812509273
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180257
proquest_miscellaneous_2813558536
proquest_journals_2812509273
gale_infotracacademiconefile_A749233092
pubmed_primary_37177063
crossref_primary_10_3390_nano13091518
crossref_citationtrail_10_3390_nano13091518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-29
PublicationDateYYYYMMDD 2023-04-29
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jiang (ref_7) 1987; 140
Zhang (ref_14) 2017; 9
Gross (ref_35) 2016; 1
Rai (ref_44) 2021; 4
Itoh (ref_8) 2021; 13
Sun (ref_33) 2016; 5
Liu (ref_17) 2005; 87
Zhang (ref_31) 2016; 146
Zhang (ref_15) 2019; 15
Lee (ref_13) 2019; 13
Stewart (ref_19) 2000; 12
Zhou (ref_1) 2022; 183
Murugan (ref_39) 2019; 54
Liu (ref_5) 2011; 79
Wind (ref_29) 1987; 141
Miyazaki (ref_34) 2006; 96
Li (ref_32) 2018; 10
Zhang (ref_21) 2015; 347
Zhang (ref_41) 2015; 2
Yuan (ref_30) 2018; 117
Garrido (ref_6) 2012; 61
Schulte (ref_3) 2013; 44
Dai (ref_16) 2013; 103
Shafi (ref_26) 2022; 356
Xin (ref_20) 2013; 26
Zhao (ref_25) 2020; 9
Campion (ref_9) 1998; 27
Zhang (ref_22) 2015; 23
ref_42
Xu (ref_24) 2020; 54
Negri (ref_2) 2014; 50
Zayats (ref_12) 2005; 408
Yang (ref_10) 2019; 27
Zha (ref_18) 2021; 29
Blackie (ref_37) 2007; 111
Vernon (ref_23) 2010; 41
Martin (ref_28) 2006; 14
ref_27
Stockman (ref_36) 2004; 93
Olson (ref_4) 2008; 62
Willets (ref_11) 2007; 58
Uddin (ref_43) 2016; 119
Sridharan (ref_38) 2012; 16
McLane (ref_40) 2015; 2
References_xml – volume: 140
  start-page: 95
  year: 1987
  ident: ref_7
  article-title: Chemical effects in surface-enhanced raman scattering: Pyridine chemisorbed on silver adatoms on Rh (100)
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)80423-2
– volume: 141
  start-page: 33
  year: 1987
  ident: ref_29
  article-title: The polarizability of a truncated sphere on a substrate I
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/0378-4371(87)90260-3
– volume: 111
  start-page: 13794
  year: 2007
  ident: ref_37
  article-title: Surface enhanced Raman scattering enhancement factors: A comprehensive study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0687908
– volume: 4
  start-page: 5940
  year: 2021
  ident: ref_44
  article-title: Plasmon-Coupled Directional Emission from Soluplus-Mediated AgAu Nanoparticles for Attomolar Sensing Using a Smartphone
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00841
– volume: 146
  start-page: 364
  year: 2016
  ident: ref_31
  article-title: Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG
  publication-title: Talanta
  doi: 10.1016/j.talanta.2015.08.050
– volume: 26
  start-page: 549
  year: 2013
  ident: ref_20
  article-title: Single spin-echo T2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
  doi: 10.1007/s10334-013-0378-3
– volume: 41
  start-page: 1106
  year: 2010
  ident: ref_23
  article-title: Physical mechanisms behind the SERS enhancement of pyramidal pit substrates
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2557
– volume: 87
  start-page: 074101
  year: 2005
  ident: ref_17
  article-title: Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2031935
– volume: 183
  start-page: 108023
  year: 2022
  ident: ref_1
  article-title: Differentiation and identification structural similar chemicals using SERS coupled with different chemometric methods: The example of fluoroquinolones
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.108023
– ident: ref_27
  doi: 10.3390/bios12030158
– volume: 2
  start-page: 1500031
  year: 2015
  ident: ref_41
  article-title: Spherical Nanoparticle Arrays with Tunable Nanogaps and Their Hydrophobicity Enhanced Rapid SERS Detection by Localized Concentration of Droplet Evaporation
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500031
– volume: 12
  start-page: 859
  year: 2000
  ident: ref_19
  article-title: Chemical and Biological Applications of Porous Silicon Technology
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
– volume: 1
  start-page: 297
  year: 2016
  ident: ref_35
  article-title: Plasmonic nanofocusing—grey holes for light
  publication-title: Adv. Phys.—X
– volume: 79
  start-page: 1739
  year: 2011
  ident: ref_5
  article-title: Raman spectral study of metal–cytosine complexes: A density functional theoretical (DFT) approach
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2011.05.049
– volume: 9
  start-page: 3114
  year: 2017
  ident: ref_14
  article-title: Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C6NR09592E
– ident: ref_42
  doi: 10.3390/nano11092176
– volume: 103
  start-page: 041903
  year: 2013
  ident: ref_16
  article-title: Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816344
– volume: 54
  start-page: 5294
  year: 2019
  ident: ref_39
  article-title: Highly sensitive, stable g-CN decorated with AgNPs for SERS sensing of toluidine blue and catalytic reduction of crystal violet
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-3184-5
– volume: 58
  start-page: 267
  year: 2007
  ident: ref_11
  article-title: Localized Surface Plasmon Resonance Spectroscopy and Sensing
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104607
– volume: 408
  start-page: 131
  year: 2005
  ident: ref_12
  article-title: Nano-optics of surface plasmon polaritons
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.11.001
– volume: 5
  start-page: e16003
  year: 2016
  ident: ref_33
  article-title: High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.3
– volume: 27
  start-page: 3000
  year: 2019
  ident: ref_10
  article-title: Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection
  publication-title: Opt. Express
  doi: 10.1364/OE.27.003000
– volume: 61
  start-page: 94
  year: 2012
  ident: ref_6
  article-title: Interaction of the C-terminal peptide from pigeon cytochrome C with silver nanoparticles. A Raman, SERS and theoretical study
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2012.01.011
– volume: 54
  start-page: 15594
  year: 2020
  ident: ref_24
  article-title: Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02317
– volume: 23
  start-page: 24811
  year: 2015
  ident: ref_22
  article-title: SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure
  publication-title: Opt. Express
  doi: 10.1364/OE.23.024811
– volume: 15
  start-page: 1805516
  year: 2019
  ident: ref_15
  article-title: Volume-Enhanced Raman Scattering Detection of Viruses
  publication-title: Small
  doi: 10.1002/smll.201805516
– volume: 50
  start-page: 2707
  year: 2014
  ident: ref_2
  article-title: Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49030K
– volume: 347
  start-page: 668
  year: 2015
  ident: ref_21
  article-title: SERS detection of low-concentration adenosine by silver nanoparticles on silicon nanoporous pyramid arrays structure
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.170
– volume: 16
  start-page: 251
  year: 2012
  ident: ref_38
  article-title: Toluidine blue: A review of its chemistry and clinical utility
  publication-title: J. Oral Maxillofac. Pathol. JOMFP
  doi: 10.4103/0973-029X.99081
– volume: 119
  start-page: 204701
  year: 2016
  ident: ref_43
  article-title: A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4952576
– volume: 62
  start-page: 149
  year: 2008
  ident: ref_4
  article-title: Surface-Enhanced Raman Spectroscopy Studies of Surfactant Adsorption to a Hydrophobic Interface
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370208783575492
– volume: 356
  start-page: 131360
  year: 2022
  ident: ref_26
  article-title: Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2022.131360
– volume: 13
  start-page: 30
  year: 2019
  ident: ref_13
  article-title: Fabrication Strategies of 3D Plasmonic Structures for SERS
  publication-title: BioChip J.
  doi: 10.1007/s13206-019-3105-y
– volume: 96
  start-page: 097401
  year: 2006
  ident: ref_34
  article-title: Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.097401
– volume: 27
  start-page: 241
  year: 1998
  ident: ref_9
  article-title: Surface-enhanced Raman scattering
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a827241z
– volume: 117
  start-page: 637
  year: 2018
  ident: ref_30
  article-title: Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.06.042
– volume: 93
  start-page: 137404
  year: 2004
  ident: ref_36
  article-title: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.137404
– volume: 44
  start-page: 247
  year: 2013
  ident: ref_3
  article-title: Adsorption of dicarboxylic acids onto nano-structured silver surfaces—surface-enhanced Raman scattering studies of pH-dependent adsorption geometries
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4190
– volume: 13
  start-page: 1566
  year: 2021
  ident: ref_8
  article-title: Between plasmonics and surface-enhanced resonant Raman spectroscopy: Toward single-molecule strong coupling at a hotspot
  publication-title: Nanoscale
  doi: 10.1039/D0NR07344J
– volume: 9
  start-page: 4761
  year: 2020
  ident: ref_25
  article-title: Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0454
– volume: 14
  start-page: 9971
  year: 2006
  ident: ref_28
  article-title: Optical interactions in a plasmonic particle coupled to a metallic film
  publication-title: Opt. Express
  doi: 10.1364/OE.14.009971
– volume: 29
  start-page: 8890
  year: 2021
  ident: ref_18
  article-title: Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al2O3
  publication-title: Opt. Express
  doi: 10.1364/OE.419133
– volume: 2
  start-page: 1400034
  year: 2015
  ident: ref_40
  article-title: Enhanced Detection of Protein in Urine by Droplet Evaporation on a Superhydrophobic Plastic
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400034
– volume: 10
  start-page: 5897
  year: 2018
  ident: ref_32
  article-title: 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis
  publication-title: Nanoscale
  doi: 10.1039/C7NR09276H
SSID ssj0000913853
Score 2.271757
Snippet Although the fabrication of controllable three-dimensional (3D) microstructures on substrates has been proposed as an effective solution for SERS, there...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1518
SubjectTerms Aluminum oxide
Analysis
Controllability
Coupling
Coupling (molecular)
Detection limits
Electric fields
Ethanol
Fabrication
Finite element method
Hydrophobicity
Identification and classification
light-capturing
Manufacturability
Mass production
Morphology
Nanoparticles
Photolithography
Plasmons
Polaritons
Properties
Raman effect
Raman spectra
Reproducibility
Rhodamine 6G
Sapphire
SERS
Silver
Structure
Substrates
Toluidine
Toluidine blue
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcCh4t1AQUYCcUBR8_Am9gl1y1YVgipqWqm3yM8tEnWWbffOT2fG8YZdITgmcRIn8_hmxvZnQt4pLgUXdQaRm1EpY4VMheJ5al0lNJNS16He8e2sOr1kX64mV7HgdhunVa59YnDUptdYIz8sAIkA3ABtPy1-prhrFI6uxi007pNdcMEckq_d6eysOR-rLMh6CYA0zHgvIb8_9NL34LcFIB3fwqJA2f-3Y95Apu1ZkxswdPKI7MX4kR4NAn9M7ln_hDzcYBV8Sn59bZu0bRp63K9wve2ctoEkdrW0dAqgZWjv6QXI0Kafkdt_4OWgTWDaBK9LW7lYYM2aolcJ7LUUQls4WjqpLZ356zBtgJ7LG-lpq8ON4T34MD9_Ri5PZhfHp2ncaCHV8BfuUqfyTOfK5TrLuXJVZUprVFZrlXFT6YLr2pWqELhylRtlBLcTOZE5zxzkV86Vz8mO773dJ1TkXDCuwU8wxyC64hAuOSG0wVsqKRPycf3LOx1ZyHEzjB8dZCMooG5TQAl5P7ZeDOwb_2g3RemNbZAzO5zol_MummAnhXBZLiHhs4YhjWDpHHN1wawp65KZhHxA2Xdo2dAlLeMCBfgw5Mjqjmoks4M3Fgk5WKtHF03-tvujoAl5O14GY8URGOltvwptkM5-UlYJeTFo09jnEhLrGgLGhPAtPdv6qO0r_vt1IAQPLGzge1_-v1-vyIMCQjQcCyvEAdkB3bOvIaS6U2-i3fwGtzIjmQ
  priority: 102
  providerName: ProQuest
Title LSP-SPP Coupling Structure Based on Three-Dimensional Patterned Sapphire Substrate for Surface Enhanced Raman Scattering Sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/37177063
https://www.proquest.com/docview/2812509273
https://www.proquest.com/docview/2813558536
https://pubmed.ncbi.nlm.nih.gov/PMC10180257
https://doaj.org/article/a99f01a625ed403283ff4f724ed3734d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ8W6grIwE4oCiJrE3sY_dskuFoIqaVuot8rNFos6qdO_8dGacdJUIIS4cE9uJ7RnPfOPHZ0LeaaGkkFUGyM3qlPNCpVKLPHW-lIYrZao43_HtpDw-518u5hejq75wT1hPD9x33IGS0me5ApjuLEfyN-Y991XBnWUV4xatL_i8UTAVbbDMGTiifqc7g7j-IKjQgb2W4OHExAdFqv4_DfLII013S47cz-ox2R1wIz3s6_uE3HPhKXk0YhN8Rn59beq0qWt61G3wnO0lbSI57ObG0QU4K0u7QM9Adi79hJz-PR8HrSPDJlhb2qj1GueqKVqTyFpLAdLC041XxtFluIrbBeipulaBNiYWjP_Bj4XL5-R8tTw7Ok6HCxZSA71wm3qdZybXPjdZLrQvS8uc1VlldCZsaQphKs90IfHEqrDaSuHmaq5ykXmIq7xnL8hO6ILbI1TmQnJhwD5wzwFVCYBJXkpjsUipVEI-3nV5awb2cbwE40cLUQgKqB0LKCHvt7nXPevGX_ItUHrbPMiVHV-ABrWDBrX_0qCEfEDZtziioUpGDQcToGHIjdUeVkhiB38sErJ_px7tMNR_tgVAJEBdAAMT8nabDIMUV15UcN0m5kEa-zkrE_Ky16ZtnRkE1BUAxYSIiZ5NGjVNCd-vIhF4ZF8Dm_vqf3TDa_KwAACHK2WF3Cc7oKHuDQCuWz0j98Xq84w8WCxP6tNZHGm_AVX5LPo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcgAOiB1DgUGi4oCsepnYMweEuoWUplVEUqk3M2taqYxD2ghx4xfxG3lv7IRECG49JjO2x37L994s3yPkjeJScFEmELkZFTOWyVgonsbWFUIzKXUZ5juOjoveCft02jldI7_mZ2FwW-XcJwZHbWqNc-RbGSARgBug7YfJtxirRuHq6ryERqMWh_bHd0jZLt8f7IF8N7Osuz_a7cVtVYFYd1J-FTuVJjpVLtVJypUrCpNbo5JSq4SbQmdcly5XmcBjmtwoI7jtyI5MeeIgmXAuh_veIDdZngu0KN79uJjTQY5NgL9mfz20J1te-hpQQgCu8hXkCwUC_oaBJRxc3aO5BHrde-RuG63S7Ua97pM16x-QO0schg_Jz_5wEA8HA7pbz_B075gOAyXtbGrpDkCkobWnI9AYG-9hJYGGBYQOAq8n-Hg6lJMJzpBT9GGBK5dCIA2_pk5qS_f9WdikQD_Lr9LToQ4Xhufgzfz4ETm5FgE8Juu-9vYpoSLlgnENXok5BrEch-DMCaENXlJIGZF3809e6ZbzHEtvXFSQ-6CAqmUBRWRz0XvScH38o98OSm_RBxm6wx_1dFy1Bl9JIVySSkgvrWFIWpg7x1yZMWvyMmcmIm9R9hX6ERiSlu1xCHgxZOSqtkukzoMnZhHZmKtH1TqYy-qPOUTk9aIZXAOu90hv61nog-T5nbyIyJNGmxZjziGNLyE8jQhf0bOVl1pt8edngX48cL6Bp3_2_3G9Ird6o6N-1T84PnxObmcQHOIqXCY2yDrooX0BwdyVehksiJIv122yvwEUF2BZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkKg7Iil-xdw8INU2ilpbIalqpN7PeR4oEdkgbIW78Ln4dM2snJEJw69H22l57Zueb2Z39BuB1yaXgIgvQc9OlnySR9EXJQ9_YVKhESpW5-Y6P4_TgLPlw3jvfgl_LvTCUVrm0ic5Q61rRHHk3QiRCcEO07do2LSIfjN7PvvlUQYpWWpflNBoVOTI_vmP4dvnucICy3o2i0fB0_8BvKwz4qhfyK9-WYaDC0oYqCHlp01THRpdBpsqA61RFXGU2LiNBWza5LrXgpid7MuSBxcDC2hifewO2M4yKgg5s94fj_GQ1w0OMmwiGTbZ9HIugW8mqRswQiLJ8AwdduYC_QWENFTczNtcgcHQX7rS-K9trlO0ebJnqPtxeYzR8AD-PJ7k_yXO2Xy9or--UTRxB7WJuWB8BU7O6YqeoP8YfUF2BhhOE5Y7lEy0-m8jZjObLGVk0x5zL0K3Go7mVyrBhdeFSFtiJ_CorNlHuRvceelg1fQhn1yKCR9Cp6so8ASZCLhKu0EYlNkHPjqOrZoVQmm5JpfTg7fKXF6plQKdCHF8KjIRIQMW6gDzYXbWeNcwf_2jXJ-mt2hBftztRz6dFO_wLKYQNQonBptEJURjG1iY2ixKj4yxOtAdvSPYFWRXskpLt5gj8MOLnKvYyItLDN0Ye7CzVo2jNzWXxZ3B48Gp1GQ0Frf7IytQL14ao9Htx6sHjRptWfY4xqM_QWfWAb-jZxkdtXqk-XzgycscAh3b_6f_79RJu4nAtjg_HR8_gVoSeIi3JRWIHOqiG5jl6dlfli3YIMfh03aP2NyGrZes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSP-SPP+Coupling+Structure+Based+on+Three-Dimensional+Patterned+Sapphire+Substrate+for+Surface+Enhanced+Raman+Scattering+Sensing&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Shuqi+Xie&rft.au=Haipeng+Si&rft.au=Cong+Liu&rft.au=Weihao+Liu&rft.date=2023-04-29&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=13&rft.issue=9&rft.spage=1518&rft_id=info:doi/10.3390%2Fnano13091518&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a99f01a625ed403283ff4f724ed3734d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon