Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in hospital settings

Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for support...

Full description

Saved in:
Bibliographic Details
Published inPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Vol. 118; no. 37; pp. 1 - 8
Main Authors Pei, Sen, Liljeros, Fredrik, Shaman, Jeffrey
Format Journal Article Publication
LanguageEnglish
Published United States National Academy of Sciences 14.09.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2111190118

Cover

Abstract Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.
AbstractList Healthcare-associated infections caused by antimicrobial-resistant agents are hard to eliminate in hospitals partly because of the existence of asymptomatic spreaders who unwittingly transmit these pathogens to others. In practice, identifying asymptomatic patients colonized with antimicrobial-resistant agents is challenging, as only a limited number of carriers are typically observed. Here, we develop an efficient, individual-level inference method capable of estimating the colonization probability for each individual in a hospital network. Using real-world patient-to-patient contact networks and sparse observations of colonization, the proposed method identifies carriers of methicillin-resistant Staphylococcus aureus , a prevalent antimicrobial-resistant pathogen, more accurately than competing approaches informed by hospitalization history and contact tracing. In in silica control experiments, the individual-level inference supports improved, targeted interventions against healthcare-associated infections. Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.
Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.
Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.
Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.
Author Shaman, Jeffrey
Pei, Sen
Liljeros, Fredrik
Author_xml – sequence: 1
  givenname: Sen
  surname: Pei
  fullname: Pei, Sen
– sequence: 2
  givenname: Fredrik
  surname: Liljeros
  fullname: Liljeros, Fredrik
– sequence: 3
  givenname: Jeffrey
  surname: Shaman
  fullname: Shaman, Jeffrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34493678$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198865$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index
BookMark eNp9kstv1DAQhy1URLeFMydQJC4cSOtHEtsXpKq8KlXiApyQLCexd70kdvA4oP3vcbTLQiuBLx6Nv994XmfoxAdvEHpK8AXBnF1OXsMFJflITIh4gFYES1I2lcQnaIUx5aWoaHWKzgC2GGNZC_wInbKqkqzhYoW-3vTGJ2d3zq8LDbtxSmHUyXUFTNHo3kQogi10ZkbXxdA6PZTRgIOUfcWk0yasjYfC-WITYHJJDwWYlHI8eIweWj2AeXK4z9Hnd28_XX8obz--v7m-ui27mohU2kZK0zW16dtKNLZqOkGy0dKOdJrgWmJsDSVWSEvrXkvSY9YyZg0hXBAu2Tkq93Hhp5nmVk3RjTruVNBOHVzfsmVUwyVmNPOv_sm_cV-uVIhrBbMiUoimzvjrPZ7Z0fRdbljUwx3V3RfvNmodfiixtJnyHODlIUAM32cDSY0OOjMM2pswg6I1x4wzXomMvriHbsMcfe7eQjEhJMUsU8__zuiYyu-5ZuByD-SRAURjjwjBatkctWyO-rM5WVHfU3R5lsmFpSQ3_Ef3bK_bQgrx-A3lmOeqGvYL8a_UfA
CitedBy_id crossref_primary_10_1093_pnasnexus_pgae050
crossref_primary_10_3201_eid2904_221552
crossref_primary_10_1016_j_ajic_2023_12_011
crossref_primary_10_1016_j_epidem_2025_100817
crossref_primary_10_1038_s41746_025_01529_x
crossref_primary_10_1016_j_jocs_2023_102030
crossref_primary_10_3389_fphy_2022_882314
crossref_primary_10_3390_app14010077
crossref_primary_10_1186_s12879_022_07636_4
crossref_primary_10_1017_ice_2024_23
crossref_primary_10_1371_journal_pone_0290821
crossref_primary_10_1007_s40121_023_00820_2
crossref_primary_10_3390_microorganisms12030505
crossref_primary_10_1371_journal_pcbi_1011355
crossref_primary_10_1038_s41598_023_32542_3
crossref_primary_10_1371_journal_pcbi_1010352
crossref_primary_10_1140_epjs_s11734_023_00801_z
Cites_doi 10.1111/j.1469-0691.2010.03202.x
10.7554/eLife.40977
10.1093/aje/kwn176
10.1093/imammb/dqt021
10.20411/pai.v4i2.291
10.1103/PhysRevE.90.012801
10.1126/sciadv.abd6370
10.1093/biostatistics/kxl017
10.15585/mmwr.mm6430a4
10.1016/S2214-109X(21)00141-8
10.1017/ice.2016.174
10.1038/s41467-020-20399-3
10.1103/PhysRevE.83.036112
10.1086/323761
10.1093/imammb/dqx010
10.1103/PhysRevE.85.026106
10.1007/s00134-007-0671-6
10.1186/1471-2334-6-30
10.1073/pnas.0401324101
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1073/pnas.1208772109
10.1038/s41598-020-66270-9
10.1016/j.jinf.2010.01.008
10.1136/bmjgh-2019-002104
10.1098/rsif.2009.0151
10.1086/320151
10.1093/aje/kws380
10.1371/journal.pone.0080671
10.1086/514695
10.1186/1471-2334-13-294
10.1093/aje/kws273
10.1073/pnas.1708856115
10.1111/ajt.13893
10.1179/2047773215Y.0000000030
10.1016/S0195-6701(07)60015-2
10.1073/pnas.0510077103
10.1016/j.jhin.2009.07.022
10.4310/CMS.2003.v1.n4.a5
10.1111/j.1469-0691.2012.03888.x
10.3201/eid1602.081655
10.1086/660014
10.1103/PhysRevLett.112.118701
10.1371/journal.pone.0078445
10.15620/cdc:82532
10.1073/pnas.0603181103
10.1086/430910
10.1017/S0950268802007148
10.1056/NEJMoa1306801
10.1038/nrmicro1660
10.1073/pnas.0400456101
10.1017/S0950268819000505
10.1103/PhysRevLett.109.068702
10.1016/S1473-3099(05)70325-X
10.1016/j.ajic.2012.09.020
10.1016/S0195-6701(00)90807-7
10.1073/pnas.0409523102
10.1016/j.amjmed.2005.04.042
10.1038/s41467-017-01033-1
10.1016/j.ecolmodel.2010.08.019
10.1086/678596
10.1093/cid/cix370
10.1016/S1473-3099(06)70636-3
10.1038/nature07084
10.1126/science.abb3221
10.3201/eid1312.070629
10.1056/NEJM199808203390806
10.1086/595844
ContentType Journal Article
Publication
Copyright Copyright National Academy of Sciences Sep 14, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Sep 14, 2021
– notice: 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
DG7
BZJLE
D8T
STUKM
DOI 10.1073/pnas.2111190118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
SwePub Other
SWEPUB Freely available online
SwePub Other full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
EISSN 1091-6490
EndPage 8
ExternalDocumentID oai_swepub_ki_se_679032
oai_DiVA_org_su_198865
PMC8449327
34493678
10_1073_pnas_2111190118
27075706
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: NCEZID CDC HHS
  grantid: U01 CK000592
– fundername: NIGMS NIH HHS
  grantid: U01 GM110748
– fundername: ACL HHS
  grantid: U01CK000592
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM110748
– fundername: HHS | Centers for Disease Control and Prevention (CDC)
  grantid: CK000592
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACHIC
ACKIV
ADQXQ
ADTPV
ADULT
ADXHL
AFHIN
AFQQW
AOWAS
AQVQM
AS~
DG7
EJD
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
BZJLE
D8T
STUKM
ID FETCH-LOGICAL-c518t-f699ec65edb486f46c81486b2c1ca105900fe21f89f25da91d03b33fe11781793
ISSN 0027-8424
1091-6490
IngestDate Mon Sep 01 03:23:06 EDT 2025
Thu Aug 21 07:11:56 EDT 2025
Thu Aug 21 18:33:05 EDT 2025
Fri Sep 05 04:26:44 EDT 2025
Mon Jun 30 08:38:34 EDT 2025
Sat May 31 02:10:19 EDT 2025
Tue Jul 01 01:03:02 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Thu May 29 08:51:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords mathematical model
asymptomatic colonization
infection control
antimicrobial resistance
healthcare-associated infections
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-f699ec65edb486f46c81486b2c1ca105900fe21f89f25da91d03b33fe11781793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: S.P. and J.S. designed research; S.P. performed research; S.P. contributed new analytic tools; F.L. curated data; S.P., F.L., and J.S. analyzed data; and S.P., F.L., and J.S. wrote the paper.
Edited by Simon Asher Levin, Princeton University, Princeton, NJ, and approved August 3, 2021 (received for review June 22, 2021)
ORCID 0000-0002-7216-7809
0000-0002-7072-2995
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id
PMID 34493678
PQID 2573889203
PQPubID 42026
PageCount 8
ParticipantIDs swepub_primary_oai_swepub_ki_se_679032
swepub_primary_oai_DiVA_org_su_198865
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449327
proquest_miscellaneous_2570373748
proquest_journals_2573889203
pubmed_primary_34493678
crossref_primary_10_1073_pnas_2111190118
crossref_citationtrail_10_1073_pnas_2111190118
jstor_primary_27075706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-14
PublicationDateYYYYMMDD 2021-09-14
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
Centers for Disease Control and Prevention (e_1_3_4_7_2) 2020
Paul P. (e_1_3_4_38_2) 2020; 70
e_1_3_4_72_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
Dantes R. (e_1_3_4_11_2) 2013; 173
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_60_2
  doi: 10.1111/j.1469-0691.2010.03202.x
– volume-title: What Exactly is Antibiotic Resistance?
  year: 2020
  ident: e_1_3_4_7_2
– ident: e_1_3_4_46_2
  doi: 10.7554/eLife.40977
– ident: e_1_3_4_43_2
  doi: 10.1093/aje/kwn176
– ident: e_1_3_4_44_2
  doi: 10.1093/imammb/dqt021
– volume: 173
  start-page: 1970
  year: 2013
  ident: e_1_3_4_11_2
  article-title: National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011
  publication-title: JAMA Intern. Med.
– ident: e_1_3_4_28_2
  doi: 10.20411/pai.v4i2.291
– ident: e_1_3_4_49_2
  doi: 10.1103/PhysRevE.90.012801
– ident: e_1_3_4_71_2
  doi: 10.1126/sciadv.abd6370
– ident: e_1_3_4_6_2
– ident: e_1_3_4_59_2
  doi: 10.1093/biostatistics/kxl017
– ident: e_1_3_4_39_2
  doi: 10.15585/mmwr.mm6430a4
– ident: e_1_3_4_57_2
  doi: 10.1016/S2214-109X(21)00141-8
– ident: e_1_3_4_3_2
  doi: 10.1017/ice.2016.174
– ident: e_1_3_4_72_2
  doi: 10.1038/s41467-020-20399-3
– ident: e_1_3_4_53_2
  doi: 10.1103/PhysRevE.83.036112
– ident: e_1_3_4_33_2
  doi: 10.1086/323761
– ident: e_1_3_4_45_2
  doi: 10.1093/imammb/dqx010
– ident: e_1_3_4_52_2
  doi: 10.1103/PhysRevE.85.026106
– ident: e_1_3_4_16_2
  doi: 10.1007/s00134-007-0671-6
– ident: e_1_3_4_54_2
  doi: 10.1186/1471-2334-6-30
– ident: e_1_3_4_22_2
  doi: 10.1073/pnas.0401324101
– ident: e_1_3_4_8_2
– ident: e_1_3_4_64_2
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– ident: e_1_3_4_68_2
  doi: 10.1073/pnas.1208772109
– ident: e_1_3_4_50_2
  doi: 10.1038/s41598-020-66270-9
– ident: e_1_3_4_61_2
  doi: 10.1016/j.jinf.2010.01.008
– ident: e_1_3_4_9_2
  doi: 10.1136/bmjgh-2019-002104
– ident: e_1_3_4_66_2
  doi: 10.1098/rsif.2009.0151
– ident: e_1_3_4_19_2
  doi: 10.1086/320151
– ident: e_1_3_4_21_2
  doi: 10.1093/aje/kws380
– ident: e_1_3_4_42_2
  doi: 10.1371/journal.pone.0080671
– ident: e_1_3_4_30_2
  doi: 10.1086/514695
– ident: e_1_3_4_34_2
  doi: 10.1186/1471-2334-13-294
– ident: e_1_3_4_26_2
  doi: 10.1093/aje/kws273
– ident: e_1_3_4_70_2
  doi: 10.1073/pnas.1708856115
– ident: e_1_3_4_4_2
  doi: 10.1111/ajt.13893
– ident: e_1_3_4_5_2
  doi: 10.1179/2047773215Y.0000000030
– ident: e_1_3_4_27_2
  doi: 10.1016/S0195-6701(07)60015-2
– ident: e_1_3_4_23_2
  doi: 10.1073/pnas.0510077103
– ident: e_1_3_4_18_2
  doi: 10.1016/j.jhin.2009.07.022
– ident: e_1_3_4_63_2
  doi: 10.4310/CMS.2003.v1.n4.a5
– ident: e_1_3_4_15_2
  doi: 10.1111/j.1469-0691.2012.03888.x
– ident: e_1_3_4_55_2
  doi: 10.3201/eid1602.081655
– ident: e_1_3_4_37_2
  doi: 10.1086/660014
– ident: e_1_3_4_47_2
  doi: 10.1103/PhysRevLett.112.118701
– ident: e_1_3_4_14_2
  doi: 10.1371/journal.pone.0078445
– volume: 70
  start-page: 388
  year: 2020
  ident: e_1_3_4_38_2
  article-title: Modeling regional transmission and containment of a healthcare-associated multidrug-resistant organism
  publication-title: Clin. Infect. Dis.
– ident: e_1_3_4_2_2
  doi: 10.15620/cdc:82532
– ident: e_1_3_4_65_2
  doi: 10.1073/pnas.0603181103
– ident: e_1_3_4_29_2
  doi: 10.1086/430910
– ident: e_1_3_4_62_2
  doi: 10.1017/S0950268802007148
– ident: e_1_3_4_1_2
  doi: 10.1056/NEJMoa1306801
– ident: e_1_3_4_36_2
  doi: 10.1038/nrmicro1660
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.0400456101
– ident: e_1_3_4_58_2
  doi: 10.1017/S0950268819000505
– ident: e_1_3_4_48_2
  doi: 10.1103/PhysRevLett.109.068702
– ident: e_1_3_4_32_2
  doi: 10.1016/S1473-3099(05)70325-X
– ident: e_1_3_4_17_2
  doi: 10.1016/j.ajic.2012.09.020
– ident: e_1_3_4_13_2
  doi: 10.1016/S0195-6701(00)90807-7
– ident: e_1_3_4_41_2
  doi: 10.1073/pnas.0409523102
– ident: e_1_3_4_31_2
  doi: 10.1016/j.amjmed.2005.04.042
– ident: e_1_3_4_69_2
  doi: 10.1038/s41467-017-01033-1
– ident: e_1_3_4_51_2
  doi: 10.1016/j.ecolmodel.2010.08.019
– ident: e_1_3_4_35_2
  doi: 10.1086/678596
– ident: e_1_3_4_40_2
  doi: 10.1093/cid/cix370
– ident: e_1_3_4_24_2
  doi: 10.1016/S1473-3099(06)70636-3
– ident: e_1_3_4_67_2
  doi: 10.1038/nature07084
– ident: e_1_3_4_56_2
  doi: 10.1126/science.abb3221
– ident: e_1_3_4_12_2
  doi: 10.3201/eid1312.070629
– ident: e_1_3_4_10_2
  doi: 10.1056/NEJM199808203390806
– ident: e_1_3_4_25_2
  doi: 10.1086/595844
SSID ssj0009580
Score 2.4797637
SecondaryResourceType review_article
Snippet Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to...
Healthcare-associated infections caused by antimicrobial-resistant agents are hard to eliminate in hospitals partly because of the existence of asymptomatic...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Anti-Infective Agents - pharmacology
Antiinfectives and antibacterials
antimicrobial resistance
Asymptomatic
asymptomatic colonization
Biological Sciences
Carrier State - diagnosis
Carrier State - drug therapy
Carrier State - epidemiology
Carrier State - microbiology
Colonization
Contact tracing
Cross Infection - diagnosis
Cross Infection - drug therapy
Cross Infection - epidemiology
Cross Infection - microbiology
Disease Outbreaks - prevention & control
Drug resistance
Health care
Health care facilities
healthcare associated infections
Hospitals
Hospitals - standards
Humans
infection control
mathematical model
Methicillin
Methicillin-Resistant Staphylococcus aureus - physiology
Patients
Physical Sciences
Public health
Silica
Silicon dioxide
Spreaders
Staphylococcal Infections - diagnosis
Staphylococcal Infections - drug therapy
Staphylococcal Infections - epidemiology
Staphylococcal Infections - microbiology
Staphylococcus aureus
Staphylococcus infections
Sweden - epidemiology
Title Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in hospital settings
URI https://www.jstor.org/stable/27075706
https://www.ncbi.nlm.nih.gov/pubmed/34493678
https://www.proquest.com/docview/2573889203
https://www.proquest.com/docview/2570373748
https://pubmed.ncbi.nlm.nih.gov/PMC8449327
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198865
http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSGgviAGDwEBBAjQ0pYvtJHYeK2BMCKpK21AfkCInsWmgTaokfYC_Hn_kq1srAS9RZJ_dqr_z9Wzf_Q6AV54yfT4nDkqlCfSEFzsxjJkTCy_ELE2Yz9VG8cskOL_yPs38WZ9CoLNL6niU_N6aV_I_qMo2iavKkv0HZLtJZYN8l_jKp0RYPv8KY5NlazKVWPVruaoLw8BarUoToqyv-aXMMtOES2zhyO21chnzWlGqzgs5t46InTf1Q04qriOhq6HXOu3-5ao2pmDSHiKO-5SUxk5UJ87JdNIXOJ5yHTFw0Sedfc4WP3hpAvzOSp6WWZcvdDFnzZlsk2M2PJZAUMVQmHTQETemVHoiTuCZYqCdre2N7bqle7lhxKXVUZWHc1aNkLLoOjt2KClRWC01ptiTKhWYIkDXeLPbrtvgDiJEX-F_nMEBITN1W6ongk-vfdo-uNuO33BYTMzqtt3IzaDaDepZ7a5c3gf3mn2GPTZKcwBu8fwBOGgRso8buvG3D8G3gRbZQy2yOy2yC2Hv0CK70yI7y-1Wi-xWix6Bq7MPl-_OnabmhpP4kNaOCMKQJ4HP09ijgfCChMoNcxCjBCYM6hqzgiMoaCiQn7IQpi6OMRYcQkKVsT8Ee3mR8yfA9kNOEPZFIPzY85GIKU-o3KG6IsGcQWaBUfvDRklDSK_qoiwiHRhBcKRAiXpQLHDcDVgZLpbdoocaqU4OEekbEzewwFELXdSsZDnOJ5jSELnYAi-7bmln1eUZy3mx1jIuJoqsyQKPDdLd5K2qWIBs6EAnoDjcN3vybK653KkaiogFXhtt2RjyPvs6jorye1StIxhSGvgWeLNFrmn6Kd94FJDQxejpzi_5DOz36_UI7NXlmj-XjnUdv9Ar5A_LZNRk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+asymptomatic+spreaders+of+antimicrobial-resistant+pathogens+in+hospital+settings&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pei%2C+Sen&rft.au=Liljeros%2C+Fredrik&rft.au=Shaman%2C+Jeffrey&rft.date=2021-09-14&rft.eissn=1091-6490&rft.volume=118&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.2111190118&rft_id=info%3Apmid%2F34493678&rft.externalDocID=34493678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon