Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in hospital settings
Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for support...
Saved in:
Published in | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Vol. 118; no. 37; pp. 1 - 8 |
---|---|
Main Authors | , , |
Format | Journal Article Publication |
Language | English |
Published |
United States
National Academy of Sciences
14.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2111190118 |
Cover
Abstract | Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing. |
---|---|
AbstractList | Healthcare-associated infections caused by antimicrobial-resistant agents are hard to eliminate in hospitals partly because of the existence of asymptomatic spreaders who unwittingly transmit these pathogens to others. In practice, identifying asymptomatic patients colonized with antimicrobial-resistant agents is challenging, as only a limited number of carriers are typically observed. Here, we develop an efficient, individual-level inference method capable of estimating the colonization probability for each individual in a hospital network. Using real-world patient-to-patient contact networks and sparse observations of colonization, the proposed method identifies carriers of methicillin-resistant
Staphylococcus aureus
, a prevalent antimicrobial-resistant pathogen, more accurately than competing approaches informed by hospitalization history and contact tracing. In in silica control experiments, the individual-level inference supports improved, targeted interventions against healthcare-associated infections.
Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant
Staphylococcus aureus
(MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing. Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing. Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing. Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing.Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to other patients in healthcare systems. The accurate identification of asymptomatic spreaders of AMRO in hospital settings is essential for supporting the design of interventions against healthcare-associated infections (HAIs). However, this task remains challenging because of limited observations of colonization and the complicated transmission dynamics occurring within hospitals and the broader community. Here, we study the transmission of methicillin-resistant Staphylococcus aureus (MRSA), a prevalent AMRO, in 66 Swedish hospitals and healthcare facilities with inpatients using a data-driven, agent-based model informed by deidentified real-world hospitalization records. Combining the transmission model, patient-to-patient contact networks, and sparse observations of colonization, we develop and validate an individual-level inference approach that estimates the colonization probability of individual hospitalized patients. For both model-simulated and historical outbreaks, the proposed method supports the more accurate identification of asymptomatic MRSA carriers than other traditional approaches. In addition, in silica control experiments indicate that interventions targeted to inpatients with a high-colonization probability outperform heuristic strategies informed by hospitalization history and contact tracing. |
Author | Shaman, Jeffrey Pei, Sen Liljeros, Fredrik |
Author_xml | – sequence: 1 givenname: Sen surname: Pei fullname: Pei, Sen – sequence: 2 givenname: Fredrik surname: Liljeros fullname: Liljeros, Fredrik – sequence: 3 givenname: Jeffrey surname: Shaman fullname: Shaman, Jeffrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34493678$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198865$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
BookMark | eNp9kstv1DAQhy1URLeFMydQJC4cSOtHEtsXpKq8KlXiApyQLCexd70kdvA4oP3vcbTLQiuBLx6Nv994XmfoxAdvEHpK8AXBnF1OXsMFJflITIh4gFYES1I2lcQnaIUx5aWoaHWKzgC2GGNZC_wInbKqkqzhYoW-3vTGJ2d3zq8LDbtxSmHUyXUFTNHo3kQogi10ZkbXxdA6PZTRgIOUfcWk0yasjYfC-WITYHJJDwWYlHI8eIweWj2AeXK4z9Hnd28_XX8obz--v7m-ui27mohU2kZK0zW16dtKNLZqOkGy0dKOdJrgWmJsDSVWSEvrXkvSY9YyZg0hXBAu2Tkq93Hhp5nmVk3RjTruVNBOHVzfsmVUwyVmNPOv_sm_cV-uVIhrBbMiUoimzvjrPZ7Z0fRdbljUwx3V3RfvNmodfiixtJnyHODlIUAM32cDSY0OOjMM2pswg6I1x4wzXomMvriHbsMcfe7eQjEhJMUsU8__zuiYyu-5ZuByD-SRAURjjwjBatkctWyO-rM5WVHfU3R5lsmFpSQ3_Ef3bK_bQgrx-A3lmOeqGvYL8a_UfA |
CitedBy_id | crossref_primary_10_1093_pnasnexus_pgae050 crossref_primary_10_3201_eid2904_221552 crossref_primary_10_1016_j_ajic_2023_12_011 crossref_primary_10_1016_j_epidem_2025_100817 crossref_primary_10_1038_s41746_025_01529_x crossref_primary_10_1016_j_jocs_2023_102030 crossref_primary_10_3389_fphy_2022_882314 crossref_primary_10_3390_app14010077 crossref_primary_10_1186_s12879_022_07636_4 crossref_primary_10_1017_ice_2024_23 crossref_primary_10_1371_journal_pone_0290821 crossref_primary_10_1007_s40121_023_00820_2 crossref_primary_10_3390_microorganisms12030505 crossref_primary_10_1371_journal_pcbi_1011355 crossref_primary_10_1038_s41598_023_32542_3 crossref_primary_10_1371_journal_pcbi_1010352 crossref_primary_10_1140_epjs_s11734_023_00801_z |
Cites_doi | 10.1111/j.1469-0691.2010.03202.x 10.7554/eLife.40977 10.1093/aje/kwn176 10.1093/imammb/dqt021 10.20411/pai.v4i2.291 10.1103/PhysRevE.90.012801 10.1126/sciadv.abd6370 10.1093/biostatistics/kxl017 10.15585/mmwr.mm6430a4 10.1016/S2214-109X(21)00141-8 10.1017/ice.2016.174 10.1038/s41467-020-20399-3 10.1103/PhysRevE.83.036112 10.1086/323761 10.1093/imammb/dqx010 10.1103/PhysRevE.85.026106 10.1007/s00134-007-0671-6 10.1186/1471-2334-6-30 10.1073/pnas.0401324101 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1073/pnas.1208772109 10.1038/s41598-020-66270-9 10.1016/j.jinf.2010.01.008 10.1136/bmjgh-2019-002104 10.1098/rsif.2009.0151 10.1086/320151 10.1093/aje/kws380 10.1371/journal.pone.0080671 10.1086/514695 10.1186/1471-2334-13-294 10.1093/aje/kws273 10.1073/pnas.1708856115 10.1111/ajt.13893 10.1179/2047773215Y.0000000030 10.1016/S0195-6701(07)60015-2 10.1073/pnas.0510077103 10.1016/j.jhin.2009.07.022 10.4310/CMS.2003.v1.n4.a5 10.1111/j.1469-0691.2012.03888.x 10.3201/eid1602.081655 10.1086/660014 10.1103/PhysRevLett.112.118701 10.1371/journal.pone.0078445 10.15620/cdc:82532 10.1073/pnas.0603181103 10.1086/430910 10.1017/S0950268802007148 10.1056/NEJMoa1306801 10.1038/nrmicro1660 10.1073/pnas.0400456101 10.1017/S0950268819000505 10.1103/PhysRevLett.109.068702 10.1016/S1473-3099(05)70325-X 10.1016/j.ajic.2012.09.020 10.1016/S0195-6701(00)90807-7 10.1073/pnas.0409523102 10.1016/j.amjmed.2005.04.042 10.1038/s41467-017-01033-1 10.1016/j.ecolmodel.2010.08.019 10.1086/678596 10.1093/cid/cix370 10.1016/S1473-3099(06)70636-3 10.1038/nature07084 10.1126/science.abb3221 10.3201/eid1312.070629 10.1056/NEJM199808203390806 10.1086/595844 |
ContentType | Journal Article Publication |
Copyright | Copyright National Academy of Sciences Sep 14, 2021 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 14, 2021 – notice: 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTPV AOWAS DG7 BZJLE D8T STUKM |
DOI | 10.1073/pnas.2111190118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Stockholms universitet SwePub Other SWEPUB Freely available online SwePub Other full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Public Health |
EISSN | 1091-6490 |
EndPage | 8 |
ExternalDocumentID | oai_swepub_ki_se_679032 oai_DiVA_org_su_198865 PMC8449327 34493678 10_1073_pnas_2111190118 27075706 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GrantInformation_xml | – fundername: NCEZID CDC HHS grantid: U01 CK000592 – fundername: NIGMS NIH HHS grantid: U01 GM110748 – fundername: ACL HHS grantid: U01CK000592 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM110748 – fundername: HHS | Centers for Disease Control and Prevention (CDC) grantid: CK000592 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACHIC ACKIV ADQXQ ADTPV ADULT ADXHL AFHIN AFQQW AOWAS AQVQM AS~ DG7 EJD HGD HQ3 HTVGU MVM NEJ NHB P-O VOH WHG ZCG BZJLE D8T STUKM |
ID | FETCH-LOGICAL-c518t-f699ec65edb486f46c81486b2c1ca105900fe21f89f25da91d03b33fe11781793 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Mon Sep 01 03:23:06 EDT 2025 Thu Aug 21 07:11:56 EDT 2025 Thu Aug 21 18:33:05 EDT 2025 Fri Sep 05 04:26:44 EDT 2025 Mon Jun 30 08:38:34 EDT 2025 Sat May 31 02:10:19 EDT 2025 Tue Jul 01 01:03:02 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Thu May 29 08:51:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | mathematical model asymptomatic colonization infection control antimicrobial resistance healthcare-associated infections |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c518t-f699ec65edb486f46c81486b2c1ca105900fe21f89f25da91d03b33fe11781793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: S.P. and J.S. designed research; S.P. performed research; S.P. contributed new analytic tools; F.L. curated data; S.P., F.L., and J.S. analyzed data; and S.P., F.L., and J.S. wrote the paper. Edited by Simon Asher Levin, Princeton University, Princeton, NJ, and approved August 3, 2021 (received for review June 22, 2021) |
ORCID | 0000-0002-7216-7809 0000-0002-7072-2995 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id |
PMID | 34493678 |
PQID | 2573889203 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_679032 swepub_primary_oai_DiVA_org_su_198865 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449327 proquest_miscellaneous_2570373748 proquest_journals_2573889203 pubmed_primary_34493678 crossref_primary_10_1073_pnas_2111190118 crossref_citationtrail_10_1073_pnas_2111190118 jstor_primary_27075706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-14 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 Centers for Disease Control and Prevention (e_1_3_4_7_2) 2020 Paul P. (e_1_3_4_38_2) 2020; 70 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 Dantes R. (e_1_3_4_11_2) 2013; 173 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_60_2 doi: 10.1111/j.1469-0691.2010.03202.x – volume-title: What Exactly is Antibiotic Resistance? year: 2020 ident: e_1_3_4_7_2 – ident: e_1_3_4_46_2 doi: 10.7554/eLife.40977 – ident: e_1_3_4_43_2 doi: 10.1093/aje/kwn176 – ident: e_1_3_4_44_2 doi: 10.1093/imammb/dqt021 – volume: 173 start-page: 1970 year: 2013 ident: e_1_3_4_11_2 article-title: National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011 publication-title: JAMA Intern. Med. – ident: e_1_3_4_28_2 doi: 10.20411/pai.v4i2.291 – ident: e_1_3_4_49_2 doi: 10.1103/PhysRevE.90.012801 – ident: e_1_3_4_71_2 doi: 10.1126/sciadv.abd6370 – ident: e_1_3_4_6_2 – ident: e_1_3_4_59_2 doi: 10.1093/biostatistics/kxl017 – ident: e_1_3_4_39_2 doi: 10.15585/mmwr.mm6430a4 – ident: e_1_3_4_57_2 doi: 10.1016/S2214-109X(21)00141-8 – ident: e_1_3_4_3_2 doi: 10.1017/ice.2016.174 – ident: e_1_3_4_72_2 doi: 10.1038/s41467-020-20399-3 – ident: e_1_3_4_53_2 doi: 10.1103/PhysRevE.83.036112 – ident: e_1_3_4_33_2 doi: 10.1086/323761 – ident: e_1_3_4_45_2 doi: 10.1093/imammb/dqx010 – ident: e_1_3_4_52_2 doi: 10.1103/PhysRevE.85.026106 – ident: e_1_3_4_16_2 doi: 10.1007/s00134-007-0671-6 – ident: e_1_3_4_54_2 doi: 10.1186/1471-2334-6-30 – ident: e_1_3_4_22_2 doi: 10.1073/pnas.0401324101 – ident: e_1_3_4_8_2 – ident: e_1_3_4_64_2 doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – ident: e_1_3_4_68_2 doi: 10.1073/pnas.1208772109 – ident: e_1_3_4_50_2 doi: 10.1038/s41598-020-66270-9 – ident: e_1_3_4_61_2 doi: 10.1016/j.jinf.2010.01.008 – ident: e_1_3_4_9_2 doi: 10.1136/bmjgh-2019-002104 – ident: e_1_3_4_66_2 doi: 10.1098/rsif.2009.0151 – ident: e_1_3_4_19_2 doi: 10.1086/320151 – ident: e_1_3_4_21_2 doi: 10.1093/aje/kws380 – ident: e_1_3_4_42_2 doi: 10.1371/journal.pone.0080671 – ident: e_1_3_4_30_2 doi: 10.1086/514695 – ident: e_1_3_4_34_2 doi: 10.1186/1471-2334-13-294 – ident: e_1_3_4_26_2 doi: 10.1093/aje/kws273 – ident: e_1_3_4_70_2 doi: 10.1073/pnas.1708856115 – ident: e_1_3_4_4_2 doi: 10.1111/ajt.13893 – ident: e_1_3_4_5_2 doi: 10.1179/2047773215Y.0000000030 – ident: e_1_3_4_27_2 doi: 10.1016/S0195-6701(07)60015-2 – ident: e_1_3_4_23_2 doi: 10.1073/pnas.0510077103 – ident: e_1_3_4_18_2 doi: 10.1016/j.jhin.2009.07.022 – ident: e_1_3_4_63_2 doi: 10.4310/CMS.2003.v1.n4.a5 – ident: e_1_3_4_15_2 doi: 10.1111/j.1469-0691.2012.03888.x – ident: e_1_3_4_55_2 doi: 10.3201/eid1602.081655 – ident: e_1_3_4_37_2 doi: 10.1086/660014 – ident: e_1_3_4_47_2 doi: 10.1103/PhysRevLett.112.118701 – ident: e_1_3_4_14_2 doi: 10.1371/journal.pone.0078445 – volume: 70 start-page: 388 year: 2020 ident: e_1_3_4_38_2 article-title: Modeling regional transmission and containment of a healthcare-associated multidrug-resistant organism publication-title: Clin. Infect. Dis. – ident: e_1_3_4_2_2 doi: 10.15620/cdc:82532 – ident: e_1_3_4_65_2 doi: 10.1073/pnas.0603181103 – ident: e_1_3_4_29_2 doi: 10.1086/430910 – ident: e_1_3_4_62_2 doi: 10.1017/S0950268802007148 – ident: e_1_3_4_1_2 doi: 10.1056/NEJMoa1306801 – ident: e_1_3_4_36_2 doi: 10.1038/nrmicro1660 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.0400456101 – ident: e_1_3_4_58_2 doi: 10.1017/S0950268819000505 – ident: e_1_3_4_48_2 doi: 10.1103/PhysRevLett.109.068702 – ident: e_1_3_4_32_2 doi: 10.1016/S1473-3099(05)70325-X – ident: e_1_3_4_17_2 doi: 10.1016/j.ajic.2012.09.020 – ident: e_1_3_4_13_2 doi: 10.1016/S0195-6701(00)90807-7 – ident: e_1_3_4_41_2 doi: 10.1073/pnas.0409523102 – ident: e_1_3_4_31_2 doi: 10.1016/j.amjmed.2005.04.042 – ident: e_1_3_4_69_2 doi: 10.1038/s41467-017-01033-1 – ident: e_1_3_4_51_2 doi: 10.1016/j.ecolmodel.2010.08.019 – ident: e_1_3_4_35_2 doi: 10.1086/678596 – ident: e_1_3_4_40_2 doi: 10.1093/cid/cix370 – ident: e_1_3_4_24_2 doi: 10.1016/S1473-3099(06)70636-3 – ident: e_1_3_4_67_2 doi: 10.1038/nature07084 – ident: e_1_3_4_56_2 doi: 10.1126/science.abb3221 – ident: e_1_3_4_12_2 doi: 10.3201/eid1312.070629 – ident: e_1_3_4_10_2 doi: 10.1056/NEJM199808203390806 – ident: e_1_3_4_25_2 doi: 10.1086/595844 |
SSID | ssj0009580 |
Score | 2.4797637 |
SecondaryResourceType | review_article |
Snippet | Antimicrobial-resistant organisms (AMROs) can colonize people without symptoms for long periods of time, during which these agents can spread unnoticed to... Healthcare-associated infections caused by antimicrobial-resistant agents are hard to eliminate in hospitals partly because of the existence of asymptomatic... |
SourceID | swepub pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Anti-Infective Agents - pharmacology Antiinfectives and antibacterials antimicrobial resistance Asymptomatic asymptomatic colonization Biological Sciences Carrier State - diagnosis Carrier State - drug therapy Carrier State - epidemiology Carrier State - microbiology Colonization Contact tracing Cross Infection - diagnosis Cross Infection - drug therapy Cross Infection - epidemiology Cross Infection - microbiology Disease Outbreaks - prevention & control Drug resistance Health care Health care facilities healthcare associated infections Hospitals Hospitals - standards Humans infection control mathematical model Methicillin Methicillin-Resistant Staphylococcus aureus - physiology Patients Physical Sciences Public health Silica Silicon dioxide Spreaders Staphylococcal Infections - diagnosis Staphylococcal Infections - drug therapy Staphylococcal Infections - epidemiology Staphylococcal Infections - microbiology Staphylococcus aureus Staphylococcus infections Sweden - epidemiology |
Title | Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in hospital settings |
URI | https://www.jstor.org/stable/27075706 https://www.ncbi.nlm.nih.gov/pubmed/34493678 https://www.proquest.com/docview/2573889203 https://www.proquest.com/docview/2570373748 https://pubmed.ncbi.nlm.nih.gov/PMC8449327 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-198865 http://kipublications.ki.se/Default.aspx?queryparsed=id |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSGgviAGDwEBBAjQ0pYvtJHYeK2BMCKpK21AfkCInsWmgTaokfYC_Hn_kq1srAS9RZJ_dqr_z9Wzf_Q6AV54yfT4nDkqlCfSEFzsxjJkTCy_ELE2Yz9VG8cskOL_yPs38WZ9CoLNL6niU_N6aV_I_qMo2iavKkv0HZLtJZYN8l_jKp0RYPv8KY5NlazKVWPVruaoLw8BarUoToqyv-aXMMtOES2zhyO21chnzWlGqzgs5t46InTf1Q04qriOhq6HXOu3-5ao2pmDSHiKO-5SUxk5UJ87JdNIXOJ5yHTFw0Sedfc4WP3hpAvzOSp6WWZcvdDFnzZlsk2M2PJZAUMVQmHTQETemVHoiTuCZYqCdre2N7bqle7lhxKXVUZWHc1aNkLLoOjt2KClRWC01ptiTKhWYIkDXeLPbrtvgDiJEX-F_nMEBITN1W6ongk-vfdo-uNuO33BYTMzqtt3IzaDaDepZ7a5c3gf3mn2GPTZKcwBu8fwBOGgRso8buvG3D8G3gRbZQy2yOy2yC2Hv0CK70yI7y-1Wi-xWix6Bq7MPl-_OnabmhpP4kNaOCMKQJ4HP09ijgfCChMoNcxCjBCYM6hqzgiMoaCiQn7IQpi6OMRYcQkKVsT8Ee3mR8yfA9kNOEPZFIPzY85GIKU-o3KG6IsGcQWaBUfvDRklDSK_qoiwiHRhBcKRAiXpQLHDcDVgZLpbdoocaqU4OEekbEzewwFELXdSsZDnOJ5jSELnYAi-7bmln1eUZy3mx1jIuJoqsyQKPDdLd5K2qWIBs6EAnoDjcN3vybK653KkaiogFXhtt2RjyPvs6jorye1StIxhSGvgWeLNFrmn6Kd94FJDQxejpzi_5DOz36_UI7NXlmj-XjnUdv9Ar5A_LZNRk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+asymptomatic+spreaders+of+antimicrobial-resistant+pathogens+in+hospital+settings&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pei%2C+Sen&rft.au=Liljeros%2C+Fredrik&rft.au=Shaman%2C+Jeffrey&rft.date=2021-09-14&rft.eissn=1091-6490&rft.volume=118&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.2111190118&rft_id=info%3Apmid%2F34493678&rft.externalDocID=34493678 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |