Systematic quantitative analysis of ribosome inventory during nutrient stress
Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems 1 , 2 . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal t...
Saved in:
Published in | Nature (London) Vol. 583; no. 7815; pp. 303 - 309 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems
1
,
2
. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress
3
–
5
. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10
7
copies per cell)
6
,
7
and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy
4
,
7
. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited
7
. Here, we integrate quantitative global translatome and degradome proteomics
8
with genetically encoded Ribo–Keima
5
and Ribo–Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.
During nutrient stress, ribosomal protein abundance is regulated primarily by translational and non-autophagic degradative mechanisms, but ribosome density per cell is largely maintained by reductions in cell volume and rates of cell division. |
---|---|
AbstractList | Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems
. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress
. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10
copies per cell)
and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy
. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited
. Here, we integrate quantitative global translatome and degradome proteomics
with genetically encoded Ribo-Keima
and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems 1 , 2 . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress 3 – 5 . The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10 7 copies per cell) 6 , 7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy 4 , 7 . However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited 7 . Here, we integrate quantitative global translatome and degradome proteomics 8 with genetically encoded Ribo–Keima 5 and Ribo–Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. During nutrient stress, ribosomal protein abundance is regulated primarily by translational and non-autophagic degradative mechanisms, but ribosome density per cell is largely maintained by reductions in cell volume and rates of cell division. Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. |
Author | Ordureau, Alban Körner, Maria Paulo, Joao A. An, Heeseon Harper, J. Wade |
Author_xml | – sequence: 1 givenname: Heeseon orcidid: 0000-0002-8518-4077 surname: An fullname: An, Heeseon organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School – sequence: 2 givenname: Alban orcidid: 0000-0002-4924-8520 surname: Ordureau fullname: Ordureau, Alban organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School – sequence: 3 givenname: Maria surname: Körner fullname: Körner, Maria organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Department of Biochemistry, University of Würzburg – sequence: 4 givenname: Joao A. orcidid: 0000-0002-4291-413X surname: Paulo fullname: Paulo, Joao A. organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School – sequence: 5 givenname: J. Wade orcidid: 0000-0002-6944-7236 surname: Harper fullname: Harper, J. Wade email: wade_harper@hms.harvard.edu organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32612236$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LHTEUxUOx6NP6B7gpA27cTHvzMcm8pUi_QHGhXYe8JCORmeSZmxHmv2-eTykI7SqX8DuHe885JgcxRU_IGYUvFHj_FQXtetkCg5YJIdvlA1lRoWQrZK8OyAqA9S30XB6RY8RHAOioEofkiDNJGeNyRW7uFix-MiXY5mk2sYRS52ffmGjGBQM2aWhy2CRMk29CfPaxpLw0bs4hPjRxLjnUrwZL9oifyMfBjOhPX98T8vv7t_urn-317Y9fV5fXre1oX9qBi46rDSjqaQdmkIJZB066QfCewuAEGMElcGvXYDbSOukpXQunjHRr1vETcrH33eb0NHssegpo_Tia6NOMmgm6VrR6s4qev0Mf05zrcTuKdTUS1fFKfX6l5s3knd7mMJm86LegKqD2gM0JMftB25ekUizZhFFT0LtK9L4SXSvRu0r0UpX0nfLN_H8attfgdhezz3-X_rfoD5i0nkc |
CitedBy_id | crossref_primary_10_1093_jxb_erac498 crossref_primary_10_3389_fcell_2022_1017499 crossref_primary_10_1038_s41580_022_00542_2 crossref_primary_10_1016_j_molcel_2020_12_016 crossref_primary_10_1021_acs_analchem_1c02939 crossref_primary_10_1073_pnas_2306152120 crossref_primary_10_1016_j_molcel_2025_01_013 crossref_primary_10_1038_s41392_024_01749_9 crossref_primary_10_1038_s41467_021_22574_6 crossref_primary_10_1038_s41594_023_01119_z crossref_primary_10_1021_acs_jproteome_2c00673 crossref_primary_10_1016_j_neuron_2021_12_029 crossref_primary_10_1038_s41556_024_01594_6 crossref_primary_10_1038_s41556_024_01598_2 crossref_primary_10_3389_fcimb_2023_1289170 crossref_primary_10_1016_j_celrep_2025_115371 crossref_primary_10_1016_j_cmet_2024_05_014 crossref_primary_10_1038_s41418_020_00682_y crossref_primary_10_1016_j_celrep_2024_115179 crossref_primary_10_1038_s41467_023_39482_6 crossref_primary_10_1038_s41556_023_01253_2 crossref_primary_10_3389_fcell_2022_838402 crossref_primary_10_1016_j_molcel_2024_04_026 crossref_primary_10_1146_annurev_cellbio_120420_091943 crossref_primary_10_1073_pnas_2417390121 crossref_primary_10_1038_s41467_023_43751_9 crossref_primary_10_1016_j_semcdb_2023_03_004 crossref_primary_10_1016_j_molcel_2021_11_004 crossref_primary_10_1093_nar_gkae139 crossref_primary_10_1016_j_celrep_2021_109642 crossref_primary_10_15252_embj_2022112344 crossref_primary_10_1080_15548627_2021_1933742 crossref_primary_10_1021_acs_biochem_1c00792 crossref_primary_10_1016_j_cell_2021_10_017 crossref_primary_10_1016_j_molcel_2021_10_001 crossref_primary_10_1146_annurev_anchem_061020_111722 crossref_primary_10_1021_acs_chemrev_2c00659 crossref_primary_10_1038_s41586_024_07073_0 crossref_primary_10_1039_D0CS00913J crossref_primary_10_1080_15548627_2020_1847461 crossref_primary_10_1038_s41392_022_01285_4 crossref_primary_10_1016_j_jmb_2024_168574 crossref_primary_10_1038_s41586_023_06657_6 crossref_primary_10_1016_j_molcel_2024_02_031 crossref_primary_10_1111_tpj_15779 crossref_primary_10_1371_journal_pone_0304453 crossref_primary_10_1002_advs_202411914 crossref_primary_10_1016_j_tcb_2023_05_012 crossref_primary_10_1007_s00203_025_04293_4 crossref_primary_10_1111_tra_12957 crossref_primary_10_1186_s11658_024_00597_3 crossref_primary_10_1002_cbic_202300108 crossref_primary_10_3390_bios14080359 crossref_primary_10_1007_s11357_023_00758_w crossref_primary_10_1016_j_algal_2024_103848 crossref_primary_10_1172_JCI173280 crossref_primary_10_1039_D3CS00195D crossref_primary_10_7554_eLife_59974 crossref_primary_10_1093_nar_gkab244 crossref_primary_10_1016_j_biomaterials_2022_121812 crossref_primary_10_1038_s41467_024_49797_7 crossref_primary_10_3390_cells9112349 crossref_primary_10_1016_j_semcdb_2022_03_043 crossref_primary_10_1016_j_cell_2024_05_018 crossref_primary_10_1016_j_molcel_2022_03_023 crossref_primary_10_1038_s41557_024_01485_1 crossref_primary_10_1126_science_abq5209 crossref_primary_10_3390_stresses4040061 crossref_primary_10_1016_j_matbio_2021_02_001 crossref_primary_10_1146_annurev_cellbio_111822_113326 crossref_primary_10_1021_acs_analchem_0c04293 crossref_primary_10_1038_s41467_022_35763_8 crossref_primary_10_1016_j_devcel_2024_10_008 crossref_primary_10_1016_j_jbc_2021_100780 crossref_primary_10_15252_embr_202256399 crossref_primary_10_1038_s43018_022_00426_6 crossref_primary_10_1016_j_celrep_2022_110597 crossref_primary_10_1038_s41556_024_01356_4 crossref_primary_10_1039_D2SC04087E |
Cites_doi | 10.1080/15548627.2019.1662584 10.1016/j.jmb.2019.06.001 10.1038/nmeth.3901 10.1126/science.aan0218 10.1021/acs.analchem.8b05399 10.1016/j.celrep.2015.11.045 10.1016/j.cell.2010.12.001 10.1016/j.molcel.2019.09.005 10.1016/j.bbamcr.2011.08.016 10.1016/j.molcel.2019.03.034 10.1126/science.1204592 10.1016/j.molcel.2018.06.041 10.1038/nprot.2013.143 10.1042/BST20160072 10.1038/ncb1723 10.1146/annurev-biochem-060614-033917 10.1038/nature11083 10.1016/j.cell.2017.02.004 10.1073/pnas.012583299 10.1186/1756-0500-3-294 10.1126/science.aar2663 10.1073/pnas.0601637103 10.1074/mcp.M114.046995 10.1038/s41586-018-0697-7 10.1021/acs.jproteome.9b00860 10.1038/nbt1240 10.1126/science.aao3265 10.1021/ac502040v 10.1016/j.cell.2016.09.015 10.1016/j.pep.2009.05.010 10.1016/j.jprot.2016.07.005 10.1074/mcp.M113.037309 10.1073/pnas.1521919112 10.1016/j.molcel.2019.03.033 10.1016/j.celrep.2017.10.029 10.1002/pmic.201200439 10.7554/eLife.16950 10.1016/j.devcel.2017.09.022 10.1016/j.celrep.2016.01.043 10.1021/acs.jproteome.8b00899 10.1038/s41556-017-0007-x 10.1126/science.aan0178 10.1016/j.cmet.2017.07.001 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 Copyright Nature Publishing Group Jul 9, 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: Copyright Nature Publishing Group Jul 9, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-020-2446-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 309 |
ExternalDocumentID | 32612236 10_1038_s41586_020_2446_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM132129 – fundername: NINDS NIH HHS grantid: R37 NS083524 – fundername: NIGMS NIH HHS grantid: R01 GM095567 – fundername: NIA NIH HHS grantid: R01 AG011085 – fundername: NCI NIH HHS grantid: P30 CA016087 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c518t-f34537b071e150af642cd0d6df43810fd40a43603cc90ab6cd6e1194d7a6d9253 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 07:30:34 EDT 2025 Fri Jul 25 08:57:43 EDT 2025 Mon Jul 21 05:59:45 EDT 2025 Tue Jul 01 02:32:13 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7815 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-f34537b071e150af642cd0d6df43810fd40a43603cc90ab6cd6e1194d7a6d9253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4924-8520 0000-0002-8518-4077 0000-0002-4291-413X 0000-0002-6944-7236 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7351614 |
PMID | 32612236 |
PQID | 2425005753 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2419711502 proquest_journals_2425005753 pubmed_primary_32612236 crossref_citationtrail_10_1038_s41586_020_2446_y crossref_primary_10_1038_s41586_020_2446_y springer_journals_10_1038_s41586_020_2446_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-09 |
PublicationDateYYYYMMDD | 2020-07-09 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | McAlister (CR34) 2014; 86 Chino, Hatta, Natsume, Mizushima (CR27) 2019; 74 de la Cruz, Karbstein, Woolford (CR20) 2015; 84 Paulo (CR33) 2016; 148 Kakihara, Houry (CR21) 2012; 1823 Thoreen (CR15) 2017; 45 Ran (CR29) 2013; 8 Suzuki, Bose, Leong-Quong, Fujita, Riabowol (CR32) 2010; 3 An (CR12) 2019; 74 Huttlin (CR38) 2010; 143 Eng, Jahan, Hoopmann (CR39) 2013; 13 Ohana (CR30) 2009; 68 Wiśniewski, Hein, Cox, Mann (CR6) 2014; 13 Yanagitani, Juszkiewicz, Hegde (CR11) 2017; 357 Hoxhaj (CR25) 2017; 21 Thoreen (CR1) 2012; 485 Kirkin, Rogov (CR16) 2019; 76 McShane (CR43) 2016; 167 Wyant (CR4) 2018; 360 Savitski, Wilhelm, Hahne, Kuster, Bantscheff (CR40) 2015; 14 Kraft, Deplazes, Sohrmann, Peter (CR3) 2008; 10 Zhao, Zhai, Gygi, Goldberg (CR17) 2015; 112 Settembre (CR18) 2011; 332 Sung (CR9) 2016; 5 Poillet-Perez (CR28) 2018; 563 Beausoleil, Villén, Gerber, Rush, Gygi (CR41) 2006; 24 Nguyen (CR10) 2017; 357 Weinberg (CR26) 2016; 14 Darnell, Subramaniam, O’Shea (CR24) 2018; 71 Saxton, Sabatini (CR2) 2017; 168 An, Harper (CR5) 2018; 20 An, Harper (CR7) 2020; 432 Liu (CR19) 2017; 43 Schweppe (CR37) 2019; 91 Wolfson, Sabatini (CR23) 2017; 26 Kiick, Saxon, Tirrell, Bertozzi (CR14) 2002; 99 Shim, Nettesheim, Hirt, Liton (CR22) 2019 Itzhak, Tyanova, Cox, Borner (CR44) 2016; 5 Schweppe (CR36) 2020; 19 Gu (CR31) 2017; 358 Dieterich, Link, Graumann, Tirrell, Schuman (CR8) 2006; 103 Erickson (CR35) 2019; 18 Miettinen, Björklund (CR13) 2015; 13 Tyanova (CR42) 2016; 13 JR Wiśniewski (2446_CR6) 2014; 13 DN Itzhak (2446_CR44) 2016; 5 JK Eng (2446_CR39) 2013; 13 V Kirkin (2446_CR16) 2019; 76 CC Thoreen (2446_CR15) 2017; 45 K Suzuki (2446_CR32) 2010; 3 KL Kiick (2446_CR14) 2002; 99 AT Nguyen (2446_CR10) 2017; 357 CC Thoreen (2446_CR1) 2012; 485 C Settembre (2446_CR18) 2011; 332 H Chino (2446_CR27) 2019; 74 AM Darnell (2446_CR24) 2018; 71 S Tyanova (2446_CR42) 2016; 13 JA Paulo (2446_CR33) 2016; 148 RL Wolfson (2446_CR23) 2017; 26 FA Ran (2446_CR29) 2013; 8 RF Ohana (2446_CR30) 2009; 68 BK Erickson (2446_CR35) 2019; 18 TP Miettinen (2446_CR13) 2015; 13 DE Weinberg (2446_CR26) 2016; 14 MM Savitski (2446_CR40) 2015; 14 EL Huttlin (2446_CR38) 2010; 143 G Hoxhaj (2446_CR25) 2017; 21 MK Sung (2446_CR9) 2016; 5 C Kraft (2446_CR3) 2008; 10 DK Schweppe (2446_CR36) 2020; 19 GA Wyant (2446_CR4) 2018; 360 H An (2446_CR5) 2018; 20 H An (2446_CR12) 2019; 74 MS Shim (2446_CR22) 2019 L Poillet-Perez (2446_CR28) 2018; 563 SA Beausoleil (2446_CR41) 2006; 24 RA Saxton (2446_CR2) 2017; 168 GC McAlister (2446_CR34) 2014; 86 J de la Cruz (2446_CR20) 2015; 84 DK Schweppe (2446_CR37) 2019; 91 Y Liu (2446_CR19) 2017; 43 Y Kakihara (2446_CR21) 2012; 1823 J Zhao (2446_CR17) 2015; 112 DC Dieterich (2446_CR8) 2006; 103 K Yanagitani (2446_CR11) 2017; 357 H An (2446_CR7) 2020; 432 E McShane (2446_CR43) 2016; 167 X Gu (2446_CR31) 2017; 358 |
References_xml | – volume: 26 start-page: 301 year: 2017 end-page: 309 ident: CR23 article-title: The dawn of the age of amino acid sensors for the mTORC1 pathway publication-title: Cell Metab. – volume: 332 start-page: 1429 year: 2011 end-page: 1433 ident: CR18 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science – volume: 74 start-page: 909 year: 2019 end-page: 921 ident: CR27 article-title: Intrinsically disordered protein TEX264 mediates ER-phagy publication-title: Mol. Cell – volume: 68 start-page: 110 year: 2009 end-page: 120 ident: CR30 article-title: HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification publication-title: Protein Expr. Purif. – volume: 148 start-page: 85 year: 2016 end-page: 93 ident: CR33 article-title: Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 proteins across 10 carbon sources publication-title: J. Proteomics – volume: 167 start-page: 803 year: 2016 end-page: 815 ident: CR43 article-title: Kinetic analysis of protein stability reveals age-dependent degradation publication-title: Cell – volume: 5 year: 2016 ident: CR44 article-title: Global, quantitative and dynamic mapping of protein subcellular localization publication-title: eLife – volume: 3 year: 2010 ident: CR32 article-title: REAP: a two minute cell fractionation method publication-title: BMC Res. Notes – volume: 143 start-page: 1174 year: 2010 end-page: 1189 ident: CR38 article-title: A tissue-specific atlas of mouse protein phosphorylation and expression publication-title: Cell – volume: 71 start-page: 229 year: 2018 end-page: 243 ident: CR24 article-title: Translational control through differential ribosome pausing during amino acid limitation in mammalian cells publication-title: Mol. Cell – volume: 360 start-page: 751 year: 2018 end-page: 758 ident: CR4 article-title: NUFIP1 is a ribosome receptor for starvation-induced ribophagy publication-title: Science – volume: 86 start-page: 7150 year: 2014 end-page: 7158 ident: CR34 article-title: MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes publication-title: Anal. Chem. – volume: 14 start-page: 2394 year: 2015 end-page: 2404 ident: CR40 article-title: A scalable approach for protein false discovery rate estimation in large proteomic data sets publication-title: Mol. Cell. Proteomics – volume: 103 start-page: 9482 year: 2006 end-page: 9487 ident: CR8 article-title: Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT) publication-title: Proc. Natl Acad. Sci. USA – volume: 112 start-page: 15790 year: 2015 end-page: 15797 ident: CR17 article-title: mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy publication-title: Proc. Natl Acad. Sci. USA – volume: 21 start-page: 1331 year: 2017 end-page: 1346 ident: CR25 article-title: The mTORC1 signaling network senses changes in cellular purine nucleotide levels publication-title: Cell Rep. – volume: 74 start-page: 891 year: 2019 end-page: 908 ident: CR12 article-title: TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress publication-title: Mol. Cell – volume: 43 start-page: 240 year: 2017 end-page: 252 ident: CR19 article-title: PWP1 mediates nutrient-dependent growth control through nucleolar regulation of ribosomal gene expression publication-title: Dev. Cell – volume: 99 start-page: 19 year: 2002 end-page: 24 ident: CR14 article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation publication-title: Proc. Natl Acad. Sci. USA – volume: 563 start-page: 569 year: 2018 end-page: 573 ident: CR28 article-title: Autophagy maintains tumour growth through circulating arginine publication-title: Nature – year: 2019 ident: CR22 article-title: The autophagic protein LC3 translocates to the nucleus and localizes in the nucleolus associated to NUFIP1 in response to cyclic mechanical stress publication-title: Autophagy doi: 10.1080/15548627.2019.1662584 – volume: 485 start-page: 109 year: 2012 end-page: 113 ident: CR1 article-title: A unifying model for mTORC1-mediated regulation of mRNA translation publication-title: Nature – volume: 45 start-page: 213 year: 2017 end-page: 221 ident: CR15 article-title: The molecular basis of mTORC1-regulated translation publication-title: Biochem. Soc. Trans. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: CR29 article-title: Genome engineering using the CRISPR–Cas9 system publication-title: Nat. Protocols – volume: 358 start-page: 813 year: 2017 end-page: 818 ident: CR31 article-title: SAMTOR is an -adenosylmethionine sensor for the mTORC1 pathway publication-title: Science – volume: 24 start-page: 1285 year: 2006 end-page: 1292 ident: CR41 article-title: A probability-based approach for high-throughput protein phosphorylation analysis and site localization publication-title: Nat. Biotechnol. – volume: 91 start-page: 4010 year: 2019 end-page: 4016 ident: CR37 article-title: Characterization and optimization of multiplexed quantitative analyses using high-field asymmetric-waveform ion mobility mass spectrometry publication-title: Anal. Chem. – volume: 168 start-page: 960 year: 2017 end-page: 976 ident: CR2 article-title: mTOR signaling in growth, metabolism, and disease publication-title: Cell – volume: 357 start-page: 472 year: 2017 end-page: 475 ident: CR11 article-title: UBE2O is a quality control factor for orphans of multiprotein complexes publication-title: Science – volume: 13 start-page: 2610 year: 2015 end-page: 2620 ident: CR13 article-title: Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy publication-title: Cell Rep. – volume: 5 year: 2016 ident: CR9 article-title: A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins publication-title: eLife – volume: 18 start-page: 1299 year: 2019 end-page: 1306 ident: CR35 article-title: Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows publication-title: J. Proteome Res. – volume: 432 start-page: 170 year: 2020 end-page: 184 ident: CR7 article-title: Ribosome abundance control via the ubiquitin-proteasome system and autophagy publication-title: J. Mol. Biol. – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: CR42 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods – volume: 13 start-page: 3497 year: 2014 end-page: 3506 ident: CR6 article-title: A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards publication-title: Mol. Cell. Proteomics – volume: 19 start-page: 2026 year: 2020 end-page: 2034 ident: CR36 article-title: Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics publication-title: J. Proteome Res. – volume: 76 start-page: 268 year: 2019 end-page: 285 ident: CR16 article-title: A diversity of selective autophagy receptors determines the specificity of the autophagy pathway publication-title: Mol. Cell – volume: 84 start-page: 93 year: 2015 end-page: 129 ident: CR20 article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo publication-title: Annu. Rev. Biochem. – volume: 357 start-page: eaan0218 year: 2017 ident: CR10 article-title: UBE2O remodels the proteome during terminal erythroid differentiation publication-title: Science – volume: 20 start-page: 135 year: 2018 end-page: 143 ident: CR5 article-title: Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy publication-title: Nat. Cell Biol. – volume: 1823 start-page: 101 year: 2012 end-page: 107 ident: CR21 article-title: The R2TP complex: discovery and functions publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 602 year: 2008 end-page: 610 ident: CR3 article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease publication-title: Nat. Cell Biol. – volume: 13 start-page: 22 year: 2013 end-page: 24 ident: CR39 article-title: Comet: an open-source MS/MS sequence database search tool publication-title: Proteomics – volume: 14 start-page: 1787 year: 2016 end-page: 1799 ident: CR26 article-title: Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation publication-title: Cell Rep. – volume: 432 start-page: 170 year: 2020 ident: 2446_CR7 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.06.001 – volume: 13 start-page: 731 year: 2016 ident: 2446_CR42 publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 357 start-page: eaan0218 year: 2017 ident: 2446_CR10 publication-title: Science doi: 10.1126/science.aan0218 – volume: 91 start-page: 4010 year: 2019 ident: 2446_CR37 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05399 – volume: 13 start-page: 2610 year: 2015 ident: 2446_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.11.045 – volume: 143 start-page: 1174 year: 2010 ident: 2446_CR38 publication-title: Cell doi: 10.1016/j.cell.2010.12.001 – volume: 76 start-page: 268 year: 2019 ident: 2446_CR16 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.005 – volume: 1823 start-page: 101 year: 2012 ident: 2446_CR21 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.08.016 – volume: 74 start-page: 891 year: 2019 ident: 2446_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.034 – volume: 332 start-page: 1429 year: 2011 ident: 2446_CR18 publication-title: Science doi: 10.1126/science.1204592 – volume: 71 start-page: 229 year: 2018 ident: 2446_CR24 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.041 – volume: 8 start-page: 2281 year: 2013 ident: 2446_CR29 publication-title: Nat. Protocols doi: 10.1038/nprot.2013.143 – volume: 45 start-page: 213 year: 2017 ident: 2446_CR15 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20160072 – volume: 10 start-page: 602 year: 2008 ident: 2446_CR3 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1723 – volume: 84 start-page: 93 year: 2015 ident: 2446_CR20 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060614-033917 – volume: 485 start-page: 109 year: 2012 ident: 2446_CR1 publication-title: Nature doi: 10.1038/nature11083 – volume: 168 start-page: 960 year: 2017 ident: 2446_CR2 publication-title: Cell doi: 10.1016/j.cell.2017.02.004 – volume: 99 start-page: 19 year: 2002 ident: 2446_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.012583299 – volume: 3 year: 2010 ident: 2446_CR32 publication-title: BMC Res. Notes doi: 10.1186/1756-0500-3-294 – volume: 360 start-page: 751 year: 2018 ident: 2446_CR4 publication-title: Science doi: 10.1126/science.aar2663 – volume: 103 start-page: 9482 year: 2006 ident: 2446_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0601637103 – volume: 14 start-page: 2394 year: 2015 ident: 2446_CR40 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.046995 – volume: 563 start-page: 569 year: 2018 ident: 2446_CR28 publication-title: Nature doi: 10.1038/s41586-018-0697-7 – volume: 19 start-page: 2026 year: 2020 ident: 2446_CR36 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.9b00860 – volume: 5 year: 2016 ident: 2446_CR9 publication-title: eLife – volume: 24 start-page: 1285 year: 2006 ident: 2446_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1240 – volume: 358 start-page: 813 year: 2017 ident: 2446_CR31 publication-title: Science doi: 10.1126/science.aao3265 – volume: 86 start-page: 7150 year: 2014 ident: 2446_CR34 publication-title: Anal. Chem. doi: 10.1021/ac502040v – volume: 167 start-page: 803 year: 2016 ident: 2446_CR43 publication-title: Cell doi: 10.1016/j.cell.2016.09.015 – volume: 68 start-page: 110 year: 2009 ident: 2446_CR30 publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2009.05.010 – volume: 148 start-page: 85 year: 2016 ident: 2446_CR33 publication-title: J. Proteomics doi: 10.1016/j.jprot.2016.07.005 – volume: 13 start-page: 3497 year: 2014 ident: 2446_CR6 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.037309 – volume: 112 start-page: 15790 year: 2015 ident: 2446_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1521919112 – volume: 74 start-page: 909 year: 2019 ident: 2446_CR27 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.03.033 – volume: 21 start-page: 1331 year: 2017 ident: 2446_CR25 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.029 – volume: 13 start-page: 22 year: 2013 ident: 2446_CR39 publication-title: Proteomics doi: 10.1002/pmic.201200439 – volume: 5 year: 2016 ident: 2446_CR44 publication-title: eLife doi: 10.7554/eLife.16950 – volume: 43 start-page: 240 year: 2017 ident: 2446_CR19 publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.09.022 – volume: 14 start-page: 1787 year: 2016 ident: 2446_CR26 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.043 – volume: 18 start-page: 1299 year: 2019 ident: 2446_CR35 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00899 – volume: 20 start-page: 135 year: 2018 ident: 2446_CR5 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-017-0007-x – year: 2019 ident: 2446_CR22 publication-title: Autophagy doi: 10.1080/15548627.2019.1662584 – volume: 357 start-page: 472 year: 2017 ident: 2446_CR11 publication-title: Science doi: 10.1126/science.aan0178 – volume: 26 start-page: 301 year: 2017 ident: 2446_CR23 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.07.001 |
SSID | ssj0005174 |
Score | 2.5998635 |
Snippet | Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 303 |
SubjectTerms | 13/95 14/34 14/63 631/45/475 631/45/612/1249 631/80/39/2349 631/80/474/1768 82/58 Amino acids Amino Acids - deficiency Amino Acids - metabolism Arginine Autophagy Biodegradation Cell cycle Cell division Cell growth Cell Line Cell size Degradation Dilution Flow cytometry Genetic code Homeostasis Humanities and Social Sciences Humans Hydrophobicity Labeling Ligands Lysine Mammalian cells multidisciplinary Nutrients Nutrients - metabolism Phagocytosis Proteasomes Protein Biosynthesis Proteins Proteolysis Proteome - biosynthesis Proteome - metabolism Proteomes Proteomics Purines - metabolism Quantitative analysis Ribosomes Ribosomes - metabolism Science Science (multidisciplinary) Single-Cell Analysis Stress response Stress, Physiological - genetics Translation |
Title | Systematic quantitative analysis of ribosome inventory during nutrient stress |
URI | https://link.springer.com/article/10.1038/s41586-020-2446-y https://www.ncbi.nlm.nih.gov/pubmed/32612236 https://www.proquest.com/docview/2425005753 https://www.proquest.com/docview/2419711502 |
Volume | 583 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61oEq9VEBfaQG5Ug99yCKJHcc5IUBsUSVQ1RZpb1FiOxISTWCze9h_3xnH2RUguOSQOIk1Y48_z4y_AfhM0UxEEbhTlZnm0sUFL-pEcdcQeNdZZbxD__xCnV3Kn9NsGhxufUirHG2iN9S2M-QjPyBoTCcnM3F4c8upahRFV0MJjeewSdRllNKVT_N1isc9FuYxqin0QU89ofTbmOMCp_jy7rr0AGw-CJT69WeyBa8CcGRHg6a34Zlrd-CFT-A0_Q5sh0nasy-BSfrrazj_s-JpZreLqvUHytC8sSpQkbCuYbOruuu7f45d-fzzbrZkw9lF1hJTP95iw4GSN3A5Of17csZD_QRuskTPeSNkJvIaQYRD2Fc1uNUwNrbKNp7Xq7EyrqRQsTCmiKtaGascilHavFK2SDPxFjbarnXvgSGITFLcrula59K5WFPANLEoQzSPTjYRxKP0ShPIxanGxXXpg9xCl4PASxR4SQIvlxF8W71yMzBrPNV4d1RJGSZZX66HRASfVo9xelDMo2pdt6A2SZET6k0jeDeocvU3QfRpqVARfB91u_74o1358HRXPsLLlEYVeYCLXdiYzxZuD3HLvN73gxOv-iSh6-THPmwen178-v0fWiHpzQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcUFteaQsYCSQesurEiZMcqgoB1ZZ2e6GV9mYS25EqQdJudoX2T_EbmXGSXUFFb70mTuKMxzPfeF4Ar8mbiSgCLdU4yXjsRM7zMlTcVQTes6Qw_kB_fKZGF_HXSTJZg99DLgyFVQ4y0Qtq2xg6I98naEyZk4k8vLrm1DWKvKtDC42OLU7c4heabO3B8Wdc3zdRdPTl_NOI910FuEnCbMYrGScyLVG1OgRDRYUA3Fhhla18tavKxqKIpRLSmFwUpTJWuRBNfZsWyuYRdYlAkb-BilfQjkon6Sqk5J-qz4MXVWb7Lf05hfsKjgpV8cXfevAGuL3hmPX67mgTHvZAlX3sOGsL1ly9Dfd8wKhpt2GrFwote9tXrn73CMbflnWh2fW8qH0CG4pTVvSlT1hTsell2bTNT8cufbx7M12wLleS1dQZAC-xLoHlMVzcCWWfwHrd1O4ZMAStYYTmYVZmaeycyMhBG1qkIYpjF1cBiIF62vTFzKmnxg_tneoy0x3BNRJcE8H1IoD3y0euukoetw3eG5ZE95u61SsWDODV8jZuR_KxFLVr5jQmzFNC2VEAT7ulXH5NUrm2SKoAPgxru3r5f6eyc_tUXsL90fn4VJ8en53swoOIOIxOn_M9WJ9N5-45YqZZ-cIzKoPvd70z_gDBfyKi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD6I0tIXUXuLWjsFC70wbJJJJslDEaldvFQptMK-TZOZCQia6GYX2b_WX9dzJskuVuqbr8nkwrl-M-cGsEvRTEQRuFON4pRH1s94VgSS25LAexrn2h3on57Jw_PoeBSPluBPXwtDaZW9TXSG2tSazsgHBI2pcjIWg7JLi_hxMNy7vuE0QYoirf04jVZETuzsFrdvzZejA-T1-zAcfvv19ZB3Ewa4joN0wksRxSIp0M1aBEZ5iWBcG99IU7rOV6WJ_DwS0hdaZ35eSG2kDXDbb5JcmiykiRFo_lcSEQekY8koWaSX_NMBuo-oinTQEBUo9dfn6Fwln931ifeA7r0grfN9wzVY7UAr22-lbB2WbLUBT1zyqG42YL0zEA370HWx_vgcTn_Oe0Szm2leuWI2NK0s79qgsLpk44uibuoryy5c7ns9nrG2bpJVNCUAL7G2mOUFnD8KZV_CclVX9jUwBLBBiFvFtEiTyFo_pWBtYJCGaJptVHrg99RTumtsTvM1LpULsItUtQRXSHBFBFczDz7NH7luu3o8tHi7Z4nqFLxRC3H04N38NqomxVvyytZTWhNkCSHu0INXLSvnXxPUui0U0oPPPW8XL__vr2w-_Ctv4SnqhPp-dHayBc9CEjA6iM62YXkynto3CJ8mxY6TUwa_H1sx_gJshibY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+quantitative+analysis+of+ribosome+inventory+during+nutrient+stress&rft.jtitle=Nature+%28London%29&rft.au=An%2C+Heeseon&rft.au=Ordureau%2C+Alban&rft.au=K%C3%B6rner%2C+Maria&rft.au=Paulo%2C+Joao+A.&rft.date=2020-07-09&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=583&rft.issue=7815&rft.spage=303&rft.epage=309&rft_id=info:doi/10.1038%2Fs41586-020-2446-y&rft.externalDocID=10_1038_s41586_020_2446_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |