Systematic quantitative analysis of ribosome inventory during nutrient stress

Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems 1 , 2 . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal t...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 583; no. 7815; pp. 303 - 309
Main Authors An, Heeseon, Ordureau, Alban, Körner, Maria, Paulo, Joao A., Harper, J. Wade
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.07.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems 1 , 2 . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress 3 – 5 . The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10 7 copies per cell) 6 , 7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy 4 , 7 . However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited 7 . Here, we integrate quantitative global translatome and degradome proteomics 8 with genetically encoded Ribo–Keima 5 and Ribo–Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. During nutrient stress, ribosomal protein abundance is regulated primarily by translational and non-autophagic degradative mechanisms, but ribosome density per cell is largely maintained by reductions in cell volume and rates of cell division.
AbstractList Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress . The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10 copies per cell) and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy . However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited . Here, we integrate quantitative global translatome and degradome proteomics with genetically encoded Ribo-Keima and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.
Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems 1 , 2 . Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress 3 – 5 . The abundance of ribosomal (r)-proteins (around 6% of the proteome; 10 7 copies per cell) 6 , 7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy 4 , 7 . However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited 7 . Here, we integrate quantitative global translatome and degradome proteomics 8 with genetically encoded Ribo–Keima 5 and Ribo–Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress. During nutrient stress, ribosomal protein abundance is regulated primarily by translational and non-autophagic degradative mechanisms, but ribosome density per cell is largely maintained by reductions in cell volume and rates of cell division.
Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.
Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and autophagy systems1,2. Ribosomes are central targets of this response, as they are responsible for translation and subject to lysosomal turnover during nutrient stress3-5. The abundance of ribosomal (r)-proteins (around 6% of the proteome; 107 copies per cell)6,7 and their high arginine and lysine content has led to the hypothesis that they are selectively used as a source of basic amino acids during nutrient stress through autophagy4,7. However, the relative contributions of translational and degradative mechanisms to the control of r-protein abundance during acute stress responses is poorly understood, as is the extent to which r-proteins are used to generate amino acids when specific building blocks are limited7. Here, we integrate quantitative global translatome and degradome proteomics8 with genetically encoded Ribo-Keima5 and Ribo-Halo reporters to interrogate r-protein homeostasis with and without active autophagy. In conditions of acute nutrient stress, cells strongly suppress the translation of r-proteins, but, notably, r-protein degradation occurs largely through non-autophagic pathways. Simultaneously, the decrease in r-protein abundance is compensated for by a reduced dilution of pre-existing ribosomes and a reduction in cell volume, thereby maintaining the density of ribosomes within single cells. Withdrawal of basic or hydrophobic amino acids induces translational repression without differential induction of ribophagy, indicating that ribophagy is not used to selectively produce basic amino acids during acute nutrient stress. We present a quantitative framework that describes the contributions of biosynthetic and degradative mechanisms to r-protein abundance and proteome remodelling in conditions of nutrient stress.
Author Ordureau, Alban
Körner, Maria
Paulo, Joao A.
An, Heeseon
Harper, J. Wade
Author_xml – sequence: 1
  givenname: Heeseon
  orcidid: 0000-0002-8518-4077
  surname: An
  fullname: An, Heeseon
  organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School
– sequence: 2
  givenname: Alban
  orcidid: 0000-0002-4924-8520
  surname: Ordureau
  fullname: Ordureau, Alban
  organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School
– sequence: 3
  givenname: Maria
  surname: Körner
  fullname: Körner, Maria
  organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Department of Biochemistry, University of Würzburg
– sequence: 4
  givenname: Joao A.
  orcidid: 0000-0002-4291-413X
  surname: Paulo
  fullname: Paulo, Joao A.
  organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School
– sequence: 5
  givenname: J. Wade
  orcidid: 0000-0002-6944-7236
  surname: Harper
  fullname: Harper, J. Wade
  email: wade_harper@hms.harvard.edu
  organization: Department of Cell Biology, Blavatnik Institute, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32612236$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LHTEUxUOx6NP6B7gpA27cTHvzMcm8pUi_QHGhXYe8JCORmeSZmxHmv2-eTykI7SqX8DuHe885JgcxRU_IGYUvFHj_FQXtetkCg5YJIdvlA1lRoWQrZK8OyAqA9S30XB6RY8RHAOioEofkiDNJGeNyRW7uFix-MiXY5mk2sYRS52ffmGjGBQM2aWhy2CRMk29CfPaxpLw0bs4hPjRxLjnUrwZL9oifyMfBjOhPX98T8vv7t_urn-317Y9fV5fXre1oX9qBi46rDSjqaQdmkIJZB066QfCewuAEGMElcGvXYDbSOukpXQunjHRr1vETcrH33eb0NHssegpo_Tia6NOMmgm6VrR6s4qev0Mf05zrcTuKdTUS1fFKfX6l5s3knd7mMJm86LegKqD2gM0JMftB25ekUizZhFFT0LtK9L4SXSvRu0r0UpX0nfLN_H8attfgdhezz3-X_rfoD5i0nkc
CitedBy_id crossref_primary_10_1093_jxb_erac498
crossref_primary_10_3389_fcell_2022_1017499
crossref_primary_10_1038_s41580_022_00542_2
crossref_primary_10_1016_j_molcel_2020_12_016
crossref_primary_10_1021_acs_analchem_1c02939
crossref_primary_10_1073_pnas_2306152120
crossref_primary_10_1016_j_molcel_2025_01_013
crossref_primary_10_1038_s41392_024_01749_9
crossref_primary_10_1038_s41467_021_22574_6
crossref_primary_10_1038_s41594_023_01119_z
crossref_primary_10_1021_acs_jproteome_2c00673
crossref_primary_10_1016_j_neuron_2021_12_029
crossref_primary_10_1038_s41556_024_01594_6
crossref_primary_10_1038_s41556_024_01598_2
crossref_primary_10_3389_fcimb_2023_1289170
crossref_primary_10_1016_j_celrep_2025_115371
crossref_primary_10_1016_j_cmet_2024_05_014
crossref_primary_10_1038_s41418_020_00682_y
crossref_primary_10_1016_j_celrep_2024_115179
crossref_primary_10_1038_s41467_023_39482_6
crossref_primary_10_1038_s41556_023_01253_2
crossref_primary_10_3389_fcell_2022_838402
crossref_primary_10_1016_j_molcel_2024_04_026
crossref_primary_10_1146_annurev_cellbio_120420_091943
crossref_primary_10_1073_pnas_2417390121
crossref_primary_10_1038_s41467_023_43751_9
crossref_primary_10_1016_j_semcdb_2023_03_004
crossref_primary_10_1016_j_molcel_2021_11_004
crossref_primary_10_1093_nar_gkae139
crossref_primary_10_1016_j_celrep_2021_109642
crossref_primary_10_15252_embj_2022112344
crossref_primary_10_1080_15548627_2021_1933742
crossref_primary_10_1021_acs_biochem_1c00792
crossref_primary_10_1016_j_cell_2021_10_017
crossref_primary_10_1016_j_molcel_2021_10_001
crossref_primary_10_1146_annurev_anchem_061020_111722
crossref_primary_10_1021_acs_chemrev_2c00659
crossref_primary_10_1038_s41586_024_07073_0
crossref_primary_10_1039_D0CS00913J
crossref_primary_10_1080_15548627_2020_1847461
crossref_primary_10_1038_s41392_022_01285_4
crossref_primary_10_1016_j_jmb_2024_168574
crossref_primary_10_1038_s41586_023_06657_6
crossref_primary_10_1016_j_molcel_2024_02_031
crossref_primary_10_1111_tpj_15779
crossref_primary_10_1371_journal_pone_0304453
crossref_primary_10_1002_advs_202411914
crossref_primary_10_1016_j_tcb_2023_05_012
crossref_primary_10_1007_s00203_025_04293_4
crossref_primary_10_1111_tra_12957
crossref_primary_10_1186_s11658_024_00597_3
crossref_primary_10_1002_cbic_202300108
crossref_primary_10_3390_bios14080359
crossref_primary_10_1007_s11357_023_00758_w
crossref_primary_10_1016_j_algal_2024_103848
crossref_primary_10_1172_JCI173280
crossref_primary_10_1039_D3CS00195D
crossref_primary_10_7554_eLife_59974
crossref_primary_10_1093_nar_gkab244
crossref_primary_10_1016_j_biomaterials_2022_121812
crossref_primary_10_1038_s41467_024_49797_7
crossref_primary_10_3390_cells9112349
crossref_primary_10_1016_j_semcdb_2022_03_043
crossref_primary_10_1016_j_cell_2024_05_018
crossref_primary_10_1016_j_molcel_2022_03_023
crossref_primary_10_1038_s41557_024_01485_1
crossref_primary_10_1126_science_abq5209
crossref_primary_10_3390_stresses4040061
crossref_primary_10_1016_j_matbio_2021_02_001
crossref_primary_10_1146_annurev_cellbio_111822_113326
crossref_primary_10_1021_acs_analchem_0c04293
crossref_primary_10_1038_s41467_022_35763_8
crossref_primary_10_1016_j_devcel_2024_10_008
crossref_primary_10_1016_j_jbc_2021_100780
crossref_primary_10_15252_embr_202256399
crossref_primary_10_1038_s43018_022_00426_6
crossref_primary_10_1016_j_celrep_2022_110597
crossref_primary_10_1038_s41556_024_01356_4
crossref_primary_10_1039_D2SC04087E
Cites_doi 10.1080/15548627.2019.1662584
10.1016/j.jmb.2019.06.001
10.1038/nmeth.3901
10.1126/science.aan0218
10.1021/acs.analchem.8b05399
10.1016/j.celrep.2015.11.045
10.1016/j.cell.2010.12.001
10.1016/j.molcel.2019.09.005
10.1016/j.bbamcr.2011.08.016
10.1016/j.molcel.2019.03.034
10.1126/science.1204592
10.1016/j.molcel.2018.06.041
10.1038/nprot.2013.143
10.1042/BST20160072
10.1038/ncb1723
10.1146/annurev-biochem-060614-033917
10.1038/nature11083
10.1016/j.cell.2017.02.004
10.1073/pnas.012583299
10.1186/1756-0500-3-294
10.1126/science.aar2663
10.1073/pnas.0601637103
10.1074/mcp.M114.046995
10.1038/s41586-018-0697-7
10.1021/acs.jproteome.9b00860
10.1038/nbt1240
10.1126/science.aao3265
10.1021/ac502040v
10.1016/j.cell.2016.09.015
10.1016/j.pep.2009.05.010
10.1016/j.jprot.2016.07.005
10.1074/mcp.M113.037309
10.1073/pnas.1521919112
10.1016/j.molcel.2019.03.033
10.1016/j.celrep.2017.10.029
10.1002/pmic.201200439
10.7554/eLife.16950
10.1016/j.devcel.2017.09.022
10.1016/j.celrep.2016.01.043
10.1021/acs.jproteome.8b00899
10.1038/s41556-017-0007-x
10.1126/science.aan0178
10.1016/j.cmet.2017.07.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
Copyright Nature Publishing Group Jul 9, 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: Copyright Nature Publishing Group Jul 9, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-020-2446-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 309
ExternalDocumentID 32612236
10_1038_s41586_020_2446_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM132129
– fundername: NINDS NIH HHS
  grantid: R37 NS083524
– fundername: NIGMS NIH HHS
  grantid: R01 GM095567
– fundername: NIA NIH HHS
  grantid: R01 AG011085
– fundername: NCI NIH HHS
  grantid: P30 CA016087
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c518t-f34537b071e150af642cd0d6df43810fd40a43603cc90ab6cd6e1194d7a6d9253
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 07:30:34 EDT 2025
Fri Jul 25 08:57:43 EDT 2025
Mon Jul 21 05:59:45 EDT 2025
Tue Jul 01 02:32:13 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 21 02:37:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7815
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-f34537b071e150af642cd0d6df43810fd40a43603cc90ab6cd6e1194d7a6d9253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4924-8520
0000-0002-8518-4077
0000-0002-4291-413X
0000-0002-6944-7236
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7351614
PMID 32612236
PQID 2425005753
PQPubID 40569
PageCount 7
ParticipantIDs proquest_miscellaneous_2419711502
proquest_journals_2425005753
pubmed_primary_32612236
crossref_citationtrail_10_1038_s41586_020_2446_y
crossref_primary_10_1038_s41586_020_2446_y
springer_journals_10_1038_s41586_020_2446_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-09
PublicationDateYYYYMMDD 2020-07-09
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References McAlister (CR34) 2014; 86
Chino, Hatta, Natsume, Mizushima (CR27) 2019; 74
de la Cruz, Karbstein, Woolford (CR20) 2015; 84
Paulo (CR33) 2016; 148
Kakihara, Houry (CR21) 2012; 1823
Thoreen (CR15) 2017; 45
Ran (CR29) 2013; 8
Suzuki, Bose, Leong-Quong, Fujita, Riabowol (CR32) 2010; 3
An (CR12) 2019; 74
Huttlin (CR38) 2010; 143
Eng, Jahan, Hoopmann (CR39) 2013; 13
Ohana (CR30) 2009; 68
Wiśniewski, Hein, Cox, Mann (CR6) 2014; 13
Yanagitani, Juszkiewicz, Hegde (CR11) 2017; 357
Hoxhaj (CR25) 2017; 21
Thoreen (CR1) 2012; 485
Kirkin, Rogov (CR16) 2019; 76
McShane (CR43) 2016; 167
Wyant (CR4) 2018; 360
Savitski, Wilhelm, Hahne, Kuster, Bantscheff (CR40) 2015; 14
Kraft, Deplazes, Sohrmann, Peter (CR3) 2008; 10
Zhao, Zhai, Gygi, Goldberg (CR17) 2015; 112
Settembre (CR18) 2011; 332
Sung (CR9) 2016; 5
Poillet-Perez (CR28) 2018; 563
Beausoleil, Villén, Gerber, Rush, Gygi (CR41) 2006; 24
Nguyen (CR10) 2017; 357
Weinberg (CR26) 2016; 14
Darnell, Subramaniam, O’Shea (CR24) 2018; 71
Saxton, Sabatini (CR2) 2017; 168
An, Harper (CR5) 2018; 20
An, Harper (CR7) 2020; 432
Liu (CR19) 2017; 43
Schweppe (CR37) 2019; 91
Wolfson, Sabatini (CR23) 2017; 26
Kiick, Saxon, Tirrell, Bertozzi (CR14) 2002; 99
Shim, Nettesheim, Hirt, Liton (CR22) 2019
Itzhak, Tyanova, Cox, Borner (CR44) 2016; 5
Schweppe (CR36) 2020; 19
Gu (CR31) 2017; 358
Dieterich, Link, Graumann, Tirrell, Schuman (CR8) 2006; 103
Erickson (CR35) 2019; 18
Miettinen, Björklund (CR13) 2015; 13
Tyanova (CR42) 2016; 13
JR Wiśniewski (2446_CR6) 2014; 13
DN Itzhak (2446_CR44) 2016; 5
JK Eng (2446_CR39) 2013; 13
V Kirkin (2446_CR16) 2019; 76
CC Thoreen (2446_CR15) 2017; 45
K Suzuki (2446_CR32) 2010; 3
KL Kiick (2446_CR14) 2002; 99
AT Nguyen (2446_CR10) 2017; 357
CC Thoreen (2446_CR1) 2012; 485
C Settembre (2446_CR18) 2011; 332
H Chino (2446_CR27) 2019; 74
AM Darnell (2446_CR24) 2018; 71
S Tyanova (2446_CR42) 2016; 13
JA Paulo (2446_CR33) 2016; 148
RL Wolfson (2446_CR23) 2017; 26
FA Ran (2446_CR29) 2013; 8
RF Ohana (2446_CR30) 2009; 68
BK Erickson (2446_CR35) 2019; 18
TP Miettinen (2446_CR13) 2015; 13
DE Weinberg (2446_CR26) 2016; 14
MM Savitski (2446_CR40) 2015; 14
EL Huttlin (2446_CR38) 2010; 143
G Hoxhaj (2446_CR25) 2017; 21
MK Sung (2446_CR9) 2016; 5
C Kraft (2446_CR3) 2008; 10
DK Schweppe (2446_CR36) 2020; 19
GA Wyant (2446_CR4) 2018; 360
H An (2446_CR5) 2018; 20
H An (2446_CR12) 2019; 74
MS Shim (2446_CR22) 2019
L Poillet-Perez (2446_CR28) 2018; 563
SA Beausoleil (2446_CR41) 2006; 24
RA Saxton (2446_CR2) 2017; 168
GC McAlister (2446_CR34) 2014; 86
J de la Cruz (2446_CR20) 2015; 84
DK Schweppe (2446_CR37) 2019; 91
Y Liu (2446_CR19) 2017; 43
Y Kakihara (2446_CR21) 2012; 1823
J Zhao (2446_CR17) 2015; 112
DC Dieterich (2446_CR8) 2006; 103
K Yanagitani (2446_CR11) 2017; 357
H An (2446_CR7) 2020; 432
E McShane (2446_CR43) 2016; 167
X Gu (2446_CR31) 2017; 358
References_xml – volume: 26
  start-page: 301
  year: 2017
  end-page: 309
  ident: CR23
  article-title: The dawn of the age of amino acid sensors for the mTORC1 pathway
  publication-title: Cell Metab.
– volume: 332
  start-page: 1429
  year: 2011
  end-page: 1433
  ident: CR18
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science
– volume: 74
  start-page: 909
  year: 2019
  end-page: 921
  ident: CR27
  article-title: Intrinsically disordered protein TEX264 mediates ER-phagy
  publication-title: Mol. Cell
– volume: 68
  start-page: 110
  year: 2009
  end-page: 120
  ident: CR30
  article-title: HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification
  publication-title: Protein Expr. Purif.
– volume: 148
  start-page: 85
  year: 2016
  end-page: 93
  ident: CR33
  article-title: Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 proteins across 10 carbon sources
  publication-title: J. Proteomics
– volume: 167
  start-page: 803
  year: 2016
  end-page: 815
  ident: CR43
  article-title: Kinetic analysis of protein stability reveals age-dependent degradation
  publication-title: Cell
– volume: 5
  year: 2016
  ident: CR44
  article-title: Global, quantitative and dynamic mapping of protein subcellular localization
  publication-title: eLife
– volume: 3
  year: 2010
  ident: CR32
  article-title: REAP: a two minute cell fractionation method
  publication-title: BMC Res. Notes
– volume: 143
  start-page: 1174
  year: 2010
  end-page: 1189
  ident: CR38
  article-title: A tissue-specific atlas of mouse protein phosphorylation and expression
  publication-title: Cell
– volume: 71
  start-page: 229
  year: 2018
  end-page: 243
  ident: CR24
  article-title: Translational control through differential ribosome pausing during amino acid limitation in mammalian cells
  publication-title: Mol. Cell
– volume: 360
  start-page: 751
  year: 2018
  end-page: 758
  ident: CR4
  article-title: NUFIP1 is a ribosome receptor for starvation-induced ribophagy
  publication-title: Science
– volume: 86
  start-page: 7150
  year: 2014
  end-page: 7158
  ident: CR34
  article-title: MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes
  publication-title: Anal. Chem.
– volume: 14
  start-page: 2394
  year: 2015
  end-page: 2404
  ident: CR40
  article-title: A scalable approach for protein false discovery rate estimation in large proteomic data sets
  publication-title: Mol. Cell. Proteomics
– volume: 103
  start-page: 9482
  year: 2006
  end-page: 9487
  ident: CR8
  article-title: Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT)
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 112
  start-page: 15790
  year: 2015
  end-page: 15797
  ident: CR17
  article-title: mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 21
  start-page: 1331
  year: 2017
  end-page: 1346
  ident: CR25
  article-title: The mTORC1 signaling network senses changes in cellular purine nucleotide levels
  publication-title: Cell Rep.
– volume: 74
  start-page: 891
  year: 2019
  end-page: 908
  ident: CR12
  article-title: TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress
  publication-title: Mol. Cell
– volume: 43
  start-page: 240
  year: 2017
  end-page: 252
  ident: CR19
  article-title: PWP1 mediates nutrient-dependent growth control through nucleolar regulation of ribosomal gene expression
  publication-title: Dev. Cell
– volume: 99
  start-page: 19
  year: 2002
  end-page: 24
  ident: CR14
  article-title: Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 563
  start-page: 569
  year: 2018
  end-page: 573
  ident: CR28
  article-title: Autophagy maintains tumour growth through circulating arginine
  publication-title: Nature
– year: 2019
  ident: CR22
  article-title: The autophagic protein LC3 translocates to the nucleus and localizes in the nucleolus associated to NUFIP1 in response to cyclic mechanical stress
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1662584
– volume: 485
  start-page: 109
  year: 2012
  end-page: 113
  ident: CR1
  article-title: A unifying model for mTORC1-mediated regulation of mRNA translation
  publication-title: Nature
– volume: 45
  start-page: 213
  year: 2017
  end-page: 221
  ident: CR15
  article-title: The molecular basis of mTORC1-regulated translation
  publication-title: Biochem. Soc. Trans.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: CR29
  article-title: Genome engineering using the CRISPR–Cas9 system
  publication-title: Nat. Protocols
– volume: 358
  start-page: 813
  year: 2017
  end-page: 818
  ident: CR31
  article-title: SAMTOR is an -adenosylmethionine sensor for the mTORC1 pathway
  publication-title: Science
– volume: 24
  start-page: 1285
  year: 2006
  end-page: 1292
  ident: CR41
  article-title: A probability-based approach for high-throughput protein phosphorylation analysis and site localization
  publication-title: Nat. Biotechnol.
– volume: 91
  start-page: 4010
  year: 2019
  end-page: 4016
  ident: CR37
  article-title: Characterization and optimization of multiplexed quantitative analyses using high-field asymmetric-waveform ion mobility mass spectrometry
  publication-title: Anal. Chem.
– volume: 168
  start-page: 960
  year: 2017
  end-page: 976
  ident: CR2
  article-title: mTOR signaling in growth, metabolism, and disease
  publication-title: Cell
– volume: 357
  start-page: 472
  year: 2017
  end-page: 475
  ident: CR11
  article-title: UBE2O is a quality control factor for orphans of multiprotein complexes
  publication-title: Science
– volume: 13
  start-page: 2610
  year: 2015
  end-page: 2620
  ident: CR13
  article-title: Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy
  publication-title: Cell Rep.
– volume: 5
  year: 2016
  ident: CR9
  article-title: A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins
  publication-title: eLife
– volume: 18
  start-page: 1299
  year: 2019
  end-page: 1306
  ident: CR35
  article-title: Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows
  publication-title: J. Proteome Res.
– volume: 432
  start-page: 170
  year: 2020
  end-page: 184
  ident: CR7
  article-title: Ribosome abundance control via the ubiquitin-proteasome system and autophagy
  publication-title: J. Mol. Biol.
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: CR42
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
– volume: 13
  start-page: 3497
  year: 2014
  end-page: 3506
  ident: CR6
  article-title: A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards
  publication-title: Mol. Cell. Proteomics
– volume: 19
  start-page: 2026
  year: 2020
  end-page: 2034
  ident: CR36
  article-title: Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics
  publication-title: J. Proteome Res.
– volume: 76
  start-page: 268
  year: 2019
  end-page: 285
  ident: CR16
  article-title: A diversity of selective autophagy receptors determines the specificity of the autophagy pathway
  publication-title: Mol. Cell
– volume: 84
  start-page: 93
  year: 2015
  end-page: 129
  ident: CR20
  article-title: Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo
  publication-title: Annu. Rev. Biochem.
– volume: 357
  start-page: eaan0218
  year: 2017
  ident: CR10
  article-title: UBE2O remodels the proteome during terminal erythroid differentiation
  publication-title: Science
– volume: 20
  start-page: 135
  year: 2018
  end-page: 143
  ident: CR5
  article-title: Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy
  publication-title: Nat. Cell Biol.
– volume: 1823
  start-page: 101
  year: 2012
  end-page: 107
  ident: CR21
  article-title: The R2TP complex: discovery and functions
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 602
  year: 2008
  end-page: 610
  ident: CR3
  article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
  publication-title: Nat. Cell Biol.
– volume: 13
  start-page: 22
  year: 2013
  end-page: 24
  ident: CR39
  article-title: Comet: an open-source MS/MS sequence database search tool
  publication-title: Proteomics
– volume: 14
  start-page: 1787
  year: 2016
  end-page: 1799
  ident: CR26
  article-title: Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation
  publication-title: Cell Rep.
– volume: 432
  start-page: 170
  year: 2020
  ident: 2446_CR7
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.06.001
– volume: 13
  start-page: 731
  year: 2016
  ident: 2446_CR42
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
– volume: 357
  start-page: eaan0218
  year: 2017
  ident: 2446_CR10
  publication-title: Science
  doi: 10.1126/science.aan0218
– volume: 91
  start-page: 4010
  year: 2019
  ident: 2446_CR37
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05399
– volume: 13
  start-page: 2610
  year: 2015
  ident: 2446_CR13
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.11.045
– volume: 143
  start-page: 1174
  year: 2010
  ident: 2446_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.001
– volume: 76
  start-page: 268
  year: 2019
  ident: 2446_CR16
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.005
– volume: 1823
  start-page: 101
  year: 2012
  ident: 2446_CR21
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2011.08.016
– volume: 74
  start-page: 891
  year: 2019
  ident: 2446_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.034
– volume: 332
  start-page: 1429
  year: 2011
  ident: 2446_CR18
  publication-title: Science
  doi: 10.1126/science.1204592
– volume: 71
  start-page: 229
  year: 2018
  ident: 2446_CR24
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.041
– volume: 8
  start-page: 2281
  year: 2013
  ident: 2446_CR29
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2013.143
– volume: 45
  start-page: 213
  year: 2017
  ident: 2446_CR15
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20160072
– volume: 10
  start-page: 602
  year: 2008
  ident: 2446_CR3
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1723
– volume: 84
  start-page: 93
  year: 2015
  ident: 2446_CR20
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060614-033917
– volume: 485
  start-page: 109
  year: 2012
  ident: 2446_CR1
  publication-title: Nature
  doi: 10.1038/nature11083
– volume: 168
  start-page: 960
  year: 2017
  ident: 2446_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.004
– volume: 99
  start-page: 19
  year: 2002
  ident: 2446_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.012583299
– volume: 3
  year: 2010
  ident: 2446_CR32
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-3-294
– volume: 360
  start-page: 751
  year: 2018
  ident: 2446_CR4
  publication-title: Science
  doi: 10.1126/science.aar2663
– volume: 103
  start-page: 9482
  year: 2006
  ident: 2446_CR8
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0601637103
– volume: 14
  start-page: 2394
  year: 2015
  ident: 2446_CR40
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.046995
– volume: 563
  start-page: 569
  year: 2018
  ident: 2446_CR28
  publication-title: Nature
  doi: 10.1038/s41586-018-0697-7
– volume: 19
  start-page: 2026
  year: 2020
  ident: 2446_CR36
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.9b00860
– volume: 5
  year: 2016
  ident: 2446_CR9
  publication-title: eLife
– volume: 24
  start-page: 1285
  year: 2006
  ident: 2446_CR41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1240
– volume: 358
  start-page: 813
  year: 2017
  ident: 2446_CR31
  publication-title: Science
  doi: 10.1126/science.aao3265
– volume: 86
  start-page: 7150
  year: 2014
  ident: 2446_CR34
  publication-title: Anal. Chem.
  doi: 10.1021/ac502040v
– volume: 167
  start-page: 803
  year: 2016
  ident: 2446_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2016.09.015
– volume: 68
  start-page: 110
  year: 2009
  ident: 2446_CR30
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2009.05.010
– volume: 148
  start-page: 85
  year: 2016
  ident: 2446_CR33
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2016.07.005
– volume: 13
  start-page: 3497
  year: 2014
  ident: 2446_CR6
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.037309
– volume: 112
  start-page: 15790
  year: 2015
  ident: 2446_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1521919112
– volume: 74
  start-page: 909
  year: 2019
  ident: 2446_CR27
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.03.033
– volume: 21
  start-page: 1331
  year: 2017
  ident: 2446_CR25
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.029
– volume: 13
  start-page: 22
  year: 2013
  ident: 2446_CR39
  publication-title: Proteomics
  doi: 10.1002/pmic.201200439
– volume: 5
  year: 2016
  ident: 2446_CR44
  publication-title: eLife
  doi: 10.7554/eLife.16950
– volume: 43
  start-page: 240
  year: 2017
  ident: 2446_CR19
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.09.022
– volume: 14
  start-page: 1787
  year: 2016
  ident: 2446_CR26
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.043
– volume: 18
  start-page: 1299
  year: 2019
  ident: 2446_CR35
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00899
– volume: 20
  start-page: 135
  year: 2018
  ident: 2446_CR5
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-017-0007-x
– year: 2019
  ident: 2446_CR22
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1662584
– volume: 357
  start-page: 472
  year: 2017
  ident: 2446_CR11
  publication-title: Science
  doi: 10.1126/science.aan0178
– volume: 26
  start-page: 301
  year: 2017
  ident: 2446_CR23
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.07.001
SSID ssj0005174
Score 2.5998635
Snippet Mammalian cells reorganize their proteomes in response to nutrient stress through translational suppression and degradative mechanisms using the proteasome and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 303
SubjectTerms 13/95
14/34
14/63
631/45/475
631/45/612/1249
631/80/39/2349
631/80/474/1768
82/58
Amino acids
Amino Acids - deficiency
Amino Acids - metabolism
Arginine
Autophagy
Biodegradation
Cell cycle
Cell division
Cell growth
Cell Line
Cell size
Degradation
Dilution
Flow cytometry
Genetic code
Homeostasis
Humanities and Social Sciences
Humans
Hydrophobicity
Labeling
Ligands
Lysine
Mammalian cells
multidisciplinary
Nutrients
Nutrients - metabolism
Phagocytosis
Proteasomes
Protein Biosynthesis
Proteins
Proteolysis
Proteome - biosynthesis
Proteome - metabolism
Proteomes
Proteomics
Purines - metabolism
Quantitative analysis
Ribosomes
Ribosomes - metabolism
Science
Science (multidisciplinary)
Single-Cell Analysis
Stress response
Stress, Physiological - genetics
Translation
Title Systematic quantitative analysis of ribosome inventory during nutrient stress
URI https://link.springer.com/article/10.1038/s41586-020-2446-y
https://www.ncbi.nlm.nih.gov/pubmed/32612236
https://www.proquest.com/docview/2425005753
https://www.proquest.com/docview/2419711502
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61oEq9VEBfaQG5Ug99yCKJHcc5IUBsUSVQ1RZpb1FiOxISTWCze9h_3xnH2RUguOSQOIk1Y48_z4y_AfhM0UxEEbhTlZnm0sUFL-pEcdcQeNdZZbxD__xCnV3Kn9NsGhxufUirHG2iN9S2M-QjPyBoTCcnM3F4c8upahRFV0MJjeewSdRllNKVT_N1isc9FuYxqin0QU89ofTbmOMCp_jy7rr0AGw-CJT69WeyBa8CcGRHg6a34Zlrd-CFT-A0_Q5sh0nasy-BSfrrazj_s-JpZreLqvUHytC8sSpQkbCuYbOruuu7f45d-fzzbrZkw9lF1hJTP95iw4GSN3A5Of17csZD_QRuskTPeSNkJvIaQYRD2Fc1uNUwNrbKNp7Xq7EyrqRQsTCmiKtaGascilHavFK2SDPxFjbarnXvgSGITFLcrula59K5WFPANLEoQzSPTjYRxKP0ShPIxanGxXXpg9xCl4PASxR4SQIvlxF8W71yMzBrPNV4d1RJGSZZX66HRASfVo9xelDMo2pdt6A2SZET6k0jeDeocvU3QfRpqVARfB91u_74o1358HRXPsLLlEYVeYCLXdiYzxZuD3HLvN73gxOv-iSh6-THPmwen178-v0fWiHpzQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcUFteaQsYCSQesurEiZMcqgoB1ZZ2e6GV9mYS25EqQdJudoX2T_EbmXGSXUFFb70mTuKMxzPfeF4Ar8mbiSgCLdU4yXjsRM7zMlTcVQTes6Qw_kB_fKZGF_HXSTJZg99DLgyFVQ4y0Qtq2xg6I98naEyZk4k8vLrm1DWKvKtDC42OLU7c4heabO3B8Wdc3zdRdPTl_NOI910FuEnCbMYrGScyLVG1OgRDRYUA3Fhhla18tavKxqKIpRLSmFwUpTJWuRBNfZsWyuYRdYlAkb-BilfQjkon6Sqk5J-qz4MXVWb7Lf05hfsKjgpV8cXfevAGuL3hmPX67mgTHvZAlX3sOGsL1ly9Dfd8wKhpt2GrFwote9tXrn73CMbflnWh2fW8qH0CG4pTVvSlT1hTsell2bTNT8cufbx7M12wLleS1dQZAC-xLoHlMVzcCWWfwHrd1O4ZMAStYYTmYVZmaeycyMhBG1qkIYpjF1cBiIF62vTFzKmnxg_tneoy0x3BNRJcE8H1IoD3y0euukoetw3eG5ZE95u61SsWDODV8jZuR_KxFLVr5jQmzFNC2VEAT7ulXH5NUrm2SKoAPgxru3r5f6eyc_tUXsL90fn4VJ8en53swoOIOIxOn_M9WJ9N5-45YqZZ-cIzKoPvd70z_gDBfyKi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD6I0tIXUXuLWjsFC70wbJJJJslDEaldvFQptMK-TZOZCQia6GYX2b_WX9dzJskuVuqbr8nkwrl-M-cGsEvRTEQRuFON4pRH1s94VgSS25LAexrn2h3on57Jw_PoeBSPluBPXwtDaZW9TXSG2tSazsgHBI2pcjIWg7JLi_hxMNy7vuE0QYoirf04jVZETuzsFrdvzZejA-T1-zAcfvv19ZB3Ewa4joN0wksRxSIp0M1aBEZ5iWBcG99IU7rOV6WJ_DwS0hdaZ35eSG2kDXDbb5JcmiykiRFo_lcSEQekY8koWaSX_NMBuo-oinTQEBUo9dfn6Fwln931ifeA7r0grfN9wzVY7UAr22-lbB2WbLUBT1zyqG42YL0zEA370HWx_vgcTn_Oe0Szm2leuWI2NK0s79qgsLpk44uibuoryy5c7ns9nrG2bpJVNCUAL7G2mOUFnD8KZV_CclVX9jUwBLBBiFvFtEiTyFo_pWBtYJCGaJptVHrg99RTumtsTvM1LpULsItUtQRXSHBFBFczDz7NH7luu3o8tHi7Z4nqFLxRC3H04N38NqomxVvyytZTWhNkCSHu0INXLSvnXxPUui0U0oPPPW8XL__vr2w-_Ctv4SnqhPp-dHayBc9CEjA6iM62YXkynto3CJ8mxY6TUwa_H1sx_gJshibY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+quantitative+analysis+of+ribosome+inventory+during+nutrient+stress&rft.jtitle=Nature+%28London%29&rft.au=An%2C+Heeseon&rft.au=Ordureau%2C+Alban&rft.au=K%C3%B6rner%2C+Maria&rft.au=Paulo%2C+Joao+A.&rft.date=2020-07-09&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=583&rft.issue=7815&rft.spage=303&rft.epage=309&rft_id=info:doi/10.1038%2Fs41586-020-2446-y&rft.externalDocID=10_1038_s41586_020_2446_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon