Identification of the trade-off between speed and efficiency in undulatory swimming using a bio-inspired robot
Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure the...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 15032 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance. |
---|---|
AbstractList | Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance. Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance. Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance. Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance. |
ArticleNumber | 15032 |
Author | Paez, Laura Tytell, Eric D. Mulleners, Karen Melo, Kamilo Ijspeert, Auke J. Anastasiadis, Alexandros |
Author_xml | – sequence: 1 givenname: Alexandros surname: Anastasiadis fullname: Anastasiadis, Alexandros organization: Unsteady Flow Diagnostics Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Laura surname: Paez fullname: Paez, Laura organization: Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Kamilo surname: Melo fullname: Melo, Kamilo organization: KM-RoBoTa – sequence: 4 givenname: Eric D. surname: Tytell fullname: Tytell, Eric D. organization: Department of Biology, Tufts University – sequence: 5 givenname: Auke J. surname: Ijspeert fullname: Ijspeert, Auke J. organization: Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Karen surname: Mulleners fullname: Mulleners, Karen email: karen.mulleners@epfl.ch organization: Unsteady Flow Diagnostics Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL) |
BookMark | eNp9UsluHCEQbUWO4iX-gZyQcsmlHbbuhlMUWVlGspRLckYsxZhRD0yAjjV_bzzjKLEP5gCl4r1HUfXOu5OYInTdO4KvCGbiY-FkkKLHlPWc4In38lV3RjEfesooPfkvPu0uS9ngtgYqOZFvulM2jVJKJs-6uHIQa_DB6hpSRMmjeguoZu2gT94jA_UOIKKyA3BIR4fAN3SAaPcoRLREt8y6prxH5S5styGu0VIedo1MSH2IZRdyo-ZkUn3bvfZ6LnD5eF50v75--Xn9vb_58W11_fmmtwMRtfeYGWMmIjUIRrgxHg_e-YENbGIcj5aYkU-TEc62LkjDGJOaC040OBCWsYtuddR1SW_ULoetznuVdFCHRMprpXMNdgY1gobRSnDGU441MXzgLYWNhmFigjStT0et3WK24GzrV9bzE9GnNzHcqnX6owjmchoYbQofHhVy-r1AqWobioV51hHSUhQVIx-JbPNp0PfPoJu05Nh6dUBhIqkUDSWOKJtTKRm8sqEeBtgKCHN7WT2YRB1NoppJ1MEkSjYqfUb9-5EXSexIKg0c15D_VfUC6x7GW9FC |
CitedBy_id | crossref_primary_10_1098_rsif_2024_0036 crossref_primary_10_1038_s41598_025_94408_0 crossref_primary_10_3389_felec_2025_1507644 crossref_primary_10_1089_soro_2024_0030 crossref_primary_10_1109_JSEN_2024_3464633 crossref_primary_10_1063_5_0202361 crossref_primary_10_1371_journal_pcbi_1012101 crossref_primary_10_1103_PhysRevE_110_055104 crossref_primary_10_1016_j_ijmecsci_2024_109150 crossref_primary_10_1103_PhysRevFluids_9_110509 crossref_primary_10_1111_brv_13116 |
Cites_doi | 10.1242/jeb.02526 10.1088/1748-3190/abb86d 10.1103/PhysRevFluids.7.074403 10.1086/510637 10.1098/rsif.2013.0667 10.1017/jfm.2015.35 10.1098/rspb.2021.1601 10.1371/journal.pone.0179727 10.1242/jeb.143.1.559 10.1242/jeb.00968 10.1093/icb/icy042 10.1242/jeb.202.11.1511 10.1017/jfm.2022.470 10.1093/icb/42.5.1018 10.1007/978-3-642-11633-9_5 10.1242/jeb.144642 10.1242/jeb.10.1.88 10.1242/jeb.01524 10.1016/j.jsv.2007.07.047 10.1038/ncomms9790 10.1242/jeb.201.23.3245 10.1242/jeb.204.16.2751 10.1371/journal.pbio.1002123 10.1242/jeb.138438 10.1063/5.0040473 10.1016/j.cbpa.2008.05.011 10.1242/jeb.35.1.109 10.1017/jfm.2013.384 10.1038/scientificamerican0395-64 10.1016/j.wavemoti.2018.01.001 10.1242/jeb.204.7.1369 10.1242/jeb.202.17.2303 10.1088/1748-3182/6/2/026004 10.1242/jeb.198.8.1629 10.1038/35003110 10.1038/srep07329 10.1098/rspb.1971.0085 10.1242/jeb.01139 10.1242/jeb.025007 10.1088/1748-3190/abd013 10.1242/jeb.00209 10.1177/0278364914525811 10.1115/1.4023056 10.1017/jfm.2019.284 10.1088/1748-3182/5/3/035004 10.1017/jfm.2022.624 10.1007/s00348-007-0343-x 10.1126/scirobotics.aax4615 10.1111/j.0022-1112.2004.00447.x 10.1007/978-94-011-1580-3 10.1073/pnas.2113206118 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-41074-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_6eae6c9edbf240a1b454eae0bae57381 PMC10497532 10_1038_s41598_023_41074_9 |
GrantInformation_xml | – fundername: STI eSeed programme at EPFL – fundername: National Science Foundation grantid: NSF IOS 1652582 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: IZSEZ0_194755 funderid: http://dx.doi.org/10.13039/501100001711 – fundername: ; – fundername: ; grantid: NSF IOS 1652582 – fundername: ; grantid: IZSEZ0_194755 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-f03bbb719ae8314bbf05fdf535373406c1b6477b8dc1599b3339a4841aede8c33 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:34:28 EDT 2025 Thu Aug 21 18:36:28 EDT 2025 Mon Jul 21 11:28:11 EDT 2025 Wed Aug 13 04:19:22 EDT 2025 Tue Jul 01 03:57:25 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Fri Feb 21 02:39:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-f03bbb719ae8314bbf05fdf535373406c1b6477b8dc1599b3339a4841aede8c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2864019298?pq-origsite=%requestingapplication% |
PMID | 37699939 |
PQID | 2864019298 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6eae6c9edbf240a1b454eae0bae57381 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497532 proquest_miscellaneous_2864619052 proquest_journals_2864019298 crossref_citationtrail_10_1038_s41598_023_41074_9 crossref_primary_10_1038_s41598_023_41074_9 springer_journals_10_1038_s41598_023_41074_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-12 |
PublicationDateYYYYMMDD | 2023-09-12 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Videler (CR21) 1993 Tytell, Lauder (CR11) 2004; 207 Van Den Thillart (CR3) 2004; 65 Ellerby, Spierts, Altringham (CR13) 2001; 204 Chao, Mahbub, Cheng (CR24) 2022; 947 Feeny, Feeny (CR47) 2013; 135 Gravish, Lauder (CR52) 2018; 221 Shadwick, Lauder (CR33) 2006 Cui, Yang, Shen, Jiang (CR45) 2018; 78 Schultz, Webb (CR39) 2002; 42 Berlinger, Saadat, Haj-Hariri, Lauder, Nagpal (CR9) 2021; 16 Zhu (CR31) 2019; 4 Borazjani, Sotiropoulos (CR26) 2009; 212 Bale (CR40) 2014; 4 Palstra, van Ginneken, van den Thillart (CR38) 2008; 151 Quinn, Lauder, Smits (CR18) 2015; 767 Gillis (CR50) 1998; 201 Nangia, Bale, Chen, Hanna, Patankar (CR28) 2017; 12 Blank, Farwell, Morrissette, Schallert, Block (CR30) 2007; 80 Porez, Boyer, Ijspeert (CR34) 2014; 33 Dewey, Boschitsch, Moored, Stone, Smits (CR42) 2013; 732 Gemmell (CR17) 2016; 219 Li, Liu, Müller, Voesenek, Van Leeuwen (CR37) 2021; 288 Wolfgang, Anderson, Grosenbaugh, Yue, Triantafyllou (CR15) 1999; 202 Santo (CR12) 2021; 118 White, Lauder, Bart-Smith (CR5) 2021; 16 van Ginneken (CR2) 2005; 208 Lighthill (CR43) 1971; 179 van Ginneken, van den Thillart (CR1) 2000; 403 Demirer, Oshinowo, Erturk, Alexeev (CR48) 2022; 944 D’Août, Aerts (CR35) 1999; 202 Tytell (CR4) 2007; 43 Gray (CR10) 1933; 10 Tytell (CR51) 2018; 58 Hultmark, Leftwich, Smits (CR8) 2010; 43 Curet, Patankar, Lauder, MacIver (CR27) 2011; 6 Khalid (CR25) 2021 Ramananarivo, Godoy-Diana, Thiria (CR41) 2013; 10 Tytell (CR22) 2004; 207 Smits (CR36) 2019 Liao, Beal, Lauder, Triantafyllou (CR23) 2003; 206 Kern, Koumoutsakos (CR19) 2006; 209 Bale, Neveln, Bhalla, MacIver, Patankar (CR29) 2015 Müller, Smit, Stamhuis, Videler (CR14) 2001; 204 Leroy-Calatayud, Pezzulla, Keiser, Mulleners, Reis (CR44) 2022; 7 Wardle, Videler, Altringham (CR32) 1995; 198 Feeny (CR46) 2008; 310 Triantafyllou, T.G (CR7) 1995; 272 Bainbridge (CR20) 1958; 35 Conte, Modarres-Sadeghi, Watts, Hover, Triantafyllou (CR6) 2010; 5 Williams (CR49) 1989; 143 Gemmell, Colin, Costello, Dabiri (CR16) 2015; 6 C Wardle (41074_CR32) 1995; 198 PA Dewey (41074_CR42) 2013; 732 RE Shadwick (41074_CR33) 2006 ED Tytell (41074_CR11) 2004; 207 G Van Den Thillart (41074_CR3) 2004; 65 MJ Wolfgang (41074_CR15) 1999; 202 VD Santo (41074_CR12) 2021; 118 M Porez (41074_CR34) 2014; 33 J Conte (41074_CR6) 2010; 5 BJ Gray (41074_CR10) 1933; 10 ED Tytell (41074_CR4) 2007; 43 P Leroy-Calatayud (41074_CR44) 2022; 7 DJ Ellerby (41074_CR13) 2001; 204 UK Müller (41074_CR14) 2001; 204 R Bale (41074_CR29) 2015 F Berlinger (41074_CR9) 2021; 16 BF Feeny (41074_CR47) 2013; 135 G Li (41074_CR37) 2021; 288 BJ Gemmell (41074_CR17) 2016; 219 CH White (41074_CR5) 2021; 16 TL Williams (41074_CR49) 1989; 143 K D’Août (41074_CR35) 1999; 202 N Nangia (41074_CR28) 2017; 12 J Zhu (41074_CR31) 2019; 4 A Palstra (41074_CR38) 2008; 151 N Gravish (41074_CR52) 2018; 221 JJ Videler (41074_CR21) 1993 M Hultmark (41074_CR8) 2010; 43 R Bale (41074_CR40) 2014; 4 ED Tytell (41074_CR22) 2004; 207 S Ramananarivo (41074_CR41) 2013; 10 AJ Smits (41074_CR36) 2019 Z Cui (41074_CR45) 2018; 78 LM Chao (41074_CR24) 2022; 947 JM Blank (41074_CR30) 2007; 80 BJ Gemmell (41074_CR16) 2015; 6 MSU Khalid (41074_CR25) 2021 MS Triantafyllou (41074_CR7) 1995; 272 V van Ginneken (41074_CR2) 2005; 208 OM Curet (41074_CR27) 2011; 6 WW Schultz (41074_CR39) 2002; 42 MJ Lighthill (41074_CR43) 1971; 179 V van Ginneken (41074_CR1) 2000; 403 JC Liao (41074_CR23) 2003; 206 DB Quinn (41074_CR18) 2015; 767 S Kern (41074_CR19) 2006; 209 E Demirer (41074_CR48) 2022; 944 ED Tytell (41074_CR51) 2018; 58 R Bainbridge (41074_CR20) 1958; 35 BF Feeny (41074_CR46) 2008; 310 GB Gillis (41074_CR50) 1998; 201 I Borazjani (41074_CR26) 2009; 212 |
References_xml | – volume: 209 start-page: 4841 year: 2006 end-page: 4857 ident: CR19 article-title: Simulations of optimized anguilliform swimming publication-title: J. Exp. Biol. doi: 10.1242/jeb.02526 – year: 2006 ident: CR33 publication-title: Fish Biomechanics – volume: 16 year: 2021 ident: CR5 article-title: Tunabot Flex: A tuna-inspired robot with body flexibility improves high-performance swimming publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3190/abb86d – volume: 7 start-page: 1 year: 2022 end-page: 12 ident: CR44 article-title: Tapered foils favor traveling-wave kinematics to enhance the performance of flapping propulsion publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.7.074403 – volume: 80 start-page: 167 year: 2007 end-page: 177 ident: CR30 article-title: Influence of swimming speed on metabolic rates of juvenile Pacific bluefin tuna and yellowfin tuna publication-title: Physiol. Biochem. Zool. doi: 10.1086/510637 – volume: 10 start-page: 20130667 year: 2013 ident: CR41 article-title: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0667 – volume: 767 start-page: 430 year: 2015 end-page: 448 ident: CR18 article-title: Maximizing the efficiency of a flexible propulsor using experimental optimization publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.35 – volume: 288 start-page: 20211601 year: 2021 ident: CR37 article-title: Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2021.1601 – volume: 12 start-page: 1 year: 2017 end-page: 23 ident: CR28 article-title: Optimal specific wavelength for maximum thrust production in undulatory propulsion publication-title: PLoS ONE doi: 10.1371/journal.pone.0179727 – volume: 143 start-page: 559 year: 1989 end-page: 566 ident: CR49 article-title: Locomotion in lamprey and trout: The relative timing of activation and movement publication-title: J. Exp. Biol. doi: 10.1242/jeb.143.1.559 – volume: 207 start-page: 1825 year: 2004 end-page: 1841 ident: CR11 article-title: The hydrodynamics of eel swimming: I. Wake structure publication-title: J. Exp. Biol. doi: 10.1242/jeb.00968 – volume: 58 start-page: 860 year: 2018 end-page: 873 ident: CR51 article-title: Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icy042 – volume: 202 start-page: 1511 year: 1999 end-page: 1521 ident: CR35 article-title: A kinematic comparison of forward and backward swimming in the eel publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.11.1511 – volume: 944 start-page: A19 year: 2022 ident: CR48 article-title: Hydrodynamic performance of oscillating elastic propulsors with tapered thickness publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.470 – volume: 42 start-page: 1018 year: 2002 end-page: 1025 ident: CR39 article-title: Power requirements of swimming: Do new methods resolve old questions? publication-title: Integr. Comp. Biol. doi: 10.1093/icb/42.5.1018 – volume: 43 start-page: 683 year: 2010 end-page: 690 ident: CR8 article-title: Flowfield measurements in the wake of a robotic lamprey publication-title: Exp. fluids doi: 10.1007/978-3-642-11633-9_5 – volume: 219 start-page: 3884 year: 2016 end-page: 3895 ident: CR17 article-title: How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust publication-title: J. Exp. Biol. doi: 10.1242/jeb.144642 – volume: 10 start-page: 88 year: 1933 end-page: 104 ident: CR10 article-title: The movement of fish with special reference to the Eel publication-title: Stud. Anim. Locomot. doi: 10.1242/jeb.10.1.88 – volume: 208 start-page: 1329 year: 2005 end-page: 1335 ident: CR2 article-title: Eel migration to the Sargasso: Remarkably high swimming efficiency and low energy costs publication-title: J. Exp. Biol. doi: 10.1242/jeb.01524 – volume: 310 start-page: 77 year: 2008 end-page: 90 ident: CR46 article-title: A complex orthogonal decomposition for wave motion analysis publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.07.047 – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: CR16 article-title: Suction-based propulsion as a basis for efficient animal swimming publication-title: Nat. Commun. doi: 10.1038/ncomms9790 – volume: 201 start-page: 3245 year: 1998 end-page: 3256 ident: CR50 article-title: Neuromuscular control of anguilliform locomotion: Patterns of red and white muscle activity during swimming in the American eel publication-title: J. Exp. Biol. doi: 10.1242/jeb.201.23.3245 – volume: 204 start-page: 2751 year: 2001 end-page: 2762 ident: CR14 article-title: How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel ( ) publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.16.2751 – year: 2015 ident: CR29 publication-title: Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates doi: 10.1371/journal.pbio.1002123 – volume: 221 start-page: 1 year: 2018 end-page: 8 ident: CR52 article-title: Robotics-inspired biology publication-title: J. Exp. Biol. doi: 10.1242/jeb.138438 – year: 2021 ident: CR25 article-title: Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths? publication-title: Phys. Fluids doi: 10.1063/5.0040473 – volume: 151 start-page: 37 year: 2008 end-page: 44 ident: CR38 article-title: Cost of transport and optimal swimming speed in farmed and wild European silver eels ( ) publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2008.05.011 – volume: 35 start-page: 109 year: 1958 end-page: 133 ident: CR20 article-title: The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat publication-title: J. Exp. Biol. doi: 10.1242/jeb.35.1.109 – volume: 732 start-page: 29 year: 2013 end-page: 46 ident: CR42 article-title: Scaling laws for the thrust production of flexible pitching panels publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.384 – volume: 272 start-page: 64 year: 1995 end-page: 70 ident: CR7 article-title: An effcient swimming machine publication-title: Sci. Am. doi: 10.1038/scientificamerican0395-64 – volume: 78 start-page: 83 year: 2018 end-page: 97 ident: CR45 article-title: Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin publication-title: Wave Motion doi: 10.1016/j.wavemoti.2018.01.001 – volume: 204 start-page: 1369 year: 2001 end-page: 1379 ident: CR13 article-title: Slow muscle power output of yellow- and silver-phase European eels ( L.): Changes in muscle performance prior to migration publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.7.1369 – volume: 202 start-page: 2303 year: 1999 end-page: 2327 ident: CR15 article-title: Near-body flow dynamics in swimming fish publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.17.2303 – volume: 6 year: 2011 ident: CR27 article-title: Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3182/6/2/026004 – volume: 198 start-page: 1629 year: 1995 end-page: 1636 ident: CR32 article-title: Tuning in to fish swimming waves: Body form, swimming mode and muscle function publication-title: J. Exp. Biol. doi: 10.1242/jeb.198.8.1629 – volume: 403 start-page: 156 year: 2000 end-page: 157 ident: CR1 article-title: Physiology: Eel fat stores are enough to reach the Sargasso publication-title: Nature doi: 10.1038/35003110 – volume: 4 start-page: 1 year: 2014 end-page: 11 ident: CR40 article-title: Separability of drag and thrust in undulatory animals and machines publication-title: Sci. Rep. doi: 10.1038/srep07329 – volume: 179 start-page: 125 year: 1971 end-page: 138 ident: CR43 article-title: Large-amplitude elongated-body theory of fish locomotion publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.1971.0085 – volume: 207 start-page: 3265 year: 2004 end-page: 3279 ident: CR22 article-title: The hydrodynamics of eel swimming II. Effect of swimming speed publication-title: J. Exp. Biol. doi: 10.1242/jeb.01139 – volume: 212 start-page: 576 year: 2009 end-page: 592 ident: CR26 article-title: Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes publication-title: J. Exp. Biol. doi: 10.1242/jeb.025007 – volume: 16 year: 2021 ident: CR9 article-title: Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3190/abd013 – volume: 206 start-page: 1059 year: 2003 end-page: 1073 ident: CR23 article-title: The Kármán gait: Novel body kinematics of rainbow trout swimming in a vortex street publication-title: J. Exp. Biol. doi: 10.1242/jeb.00209 – volume: 33 start-page: 1322 year: 2014 end-page: 1341 ident: CR34 article-title: Improved lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914525811 – volume: 135 start-page: 1 year: 2013 end-page: 8 ident: CR47 article-title: Complex modal analysis of the swimming motion of a whiting publication-title: J. Vib. Acoust. Trans. ASME doi: 10.1115/1.4023056 – year: 2019 ident: CR36 article-title: Undulatory and oscillatory swimming publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.284 – volume: 5 year: 2010 ident: CR6 article-title: A fast-starting mechanical fish that accelerates at 40 m s publication-title: Bioinspira. Biomimet. doi: 10.1088/1748-3182/5/3/035004 – volume: 947 start-page: 1 year: 2022 end-page: 40 ident: CR24 article-title: Hydrodynamic performance of slender swimmer: Effect of travelling wavelength publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.624 – volume: 43 start-page: 701 year: 2007 end-page: 712 ident: CR4 article-title: Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies publication-title: Exp. Fluids doi: 10.1007/s00348-007-0343-x – volume: 4 start-page: eaax4615 year: 2019 ident: CR31 article-title: Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax4615 – volume: 65 start-page: 312 year: 2004 end-page: 318 ident: CR3 article-title: Endurance swimming of European Eel publication-title: J. Fish Biol. doi: 10.1111/j.0022-1112.2004.00447.x – year: 1993 ident: CR21 publication-title: Fish Swimming doi: 10.1007/978-94-011-1580-3 – volume: 118 start-page: 1 year: 2021 end-page: 9 ident: CR12 article-title: Convergence of undulatory swimming kinematics across a diversity of fishes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2113206118 – volume: 43 start-page: 683 year: 2010 ident: 41074_CR8 publication-title: Exp. fluids doi: 10.1007/978-3-642-11633-9_5 – volume: 202 start-page: 2303 year: 1999 ident: 41074_CR15 publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.17.2303 – volume: 207 start-page: 1825 year: 2004 ident: 41074_CR11 publication-title: J. Exp. Biol. doi: 10.1242/jeb.00968 – volume: 201 start-page: 3245 year: 1998 ident: 41074_CR50 publication-title: J. Exp. Biol. doi: 10.1242/jeb.201.23.3245 – volume: 5 year: 2010 ident: 41074_CR6 publication-title: Bioinspira. Biomimet. doi: 10.1088/1748-3182/5/3/035004 – volume: 4 start-page: eaax4615 year: 2019 ident: 41074_CR31 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax4615 – volume: 118 start-page: 1 year: 2021 ident: 41074_CR12 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2113206118 – volume: 947 start-page: 1 year: 2022 ident: 41074_CR24 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.624 – volume: 33 start-page: 1322 year: 2014 ident: 41074_CR34 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914525811 – volume: 209 start-page: 4841 year: 2006 ident: 41074_CR19 publication-title: J. Exp. Biol. doi: 10.1242/jeb.02526 – volume: 7 start-page: 1 year: 2022 ident: 41074_CR44 publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.7.074403 – volume: 732 start-page: 29 year: 2013 ident: 41074_CR42 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.384 – volume: 12 start-page: 1 year: 2017 ident: 41074_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0179727 – volume: 208 start-page: 1329 year: 2005 ident: 41074_CR2 publication-title: J. Exp. Biol. doi: 10.1242/jeb.01524 – volume: 272 start-page: 64 year: 1995 ident: 41074_CR7 publication-title: Sci. Am. doi: 10.1038/scientificamerican0395-64 – year: 2015 ident: 41074_CR29 publication-title: Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates doi: 10.1371/journal.pbio.1002123 – year: 2019 ident: 41074_CR36 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.284 – volume: 78 start-page: 83 year: 2018 ident: 41074_CR45 publication-title: Wave Motion doi: 10.1016/j.wavemoti.2018.01.001 – volume: 310 start-page: 77 year: 2008 ident: 41074_CR46 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.07.047 – volume: 10 start-page: 88 year: 1933 ident: 41074_CR10 publication-title: Stud. Anim. Locomot. doi: 10.1242/jeb.10.1.88 – volume: 10 start-page: 20130667 year: 2013 ident: 41074_CR41 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0667 – volume: 16 year: 2021 ident: 41074_CR9 publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3190/abd013 – volume: 16 year: 2021 ident: 41074_CR5 publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3190/abb86d – volume: 204 start-page: 2751 year: 2001 ident: 41074_CR14 publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.16.2751 – volume: 6 start-page: 1 year: 2015 ident: 41074_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms9790 – volume: 206 start-page: 1059 year: 2003 ident: 41074_CR23 publication-title: J. Exp. Biol. doi: 10.1242/jeb.00209 – volume: 43 start-page: 701 year: 2007 ident: 41074_CR4 publication-title: Exp. Fluids doi: 10.1007/s00348-007-0343-x – volume: 221 start-page: 1 year: 2018 ident: 41074_CR52 publication-title: J. Exp. Biol. doi: 10.1242/jeb.138438 – volume: 58 start-page: 860 year: 2018 ident: 41074_CR51 publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icy042 – volume: 767 start-page: 430 year: 2015 ident: 41074_CR18 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.35 – volume: 6 year: 2011 ident: 41074_CR27 publication-title: Bioinspirat. Biomimet. doi: 10.1088/1748-3182/6/2/026004 – year: 2021 ident: 41074_CR25 publication-title: Phys. Fluids doi: 10.1063/5.0040473 – volume: 219 start-page: 3884 year: 2016 ident: 41074_CR17 publication-title: J. Exp. Biol. doi: 10.1242/jeb.144642 – volume: 35 start-page: 109 year: 1958 ident: 41074_CR20 publication-title: J. Exp. Biol. doi: 10.1242/jeb.35.1.109 – volume: 42 start-page: 1018 year: 2002 ident: 41074_CR39 publication-title: Integr. Comp. Biol. doi: 10.1093/icb/42.5.1018 – volume: 179 start-page: 125 year: 1971 ident: 41074_CR43 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.1971.0085 – volume: 944 start-page: A19 year: 2022 ident: 41074_CR48 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.470 – volume: 198 start-page: 1629 year: 1995 ident: 41074_CR32 publication-title: J. Exp. Biol. doi: 10.1242/jeb.198.8.1629 – volume: 143 start-page: 559 year: 1989 ident: 41074_CR49 publication-title: J. Exp. Biol. doi: 10.1242/jeb.143.1.559 – volume: 202 start-page: 1511 year: 1999 ident: 41074_CR35 publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.11.1511 – volume: 151 start-page: 37 year: 2008 ident: 41074_CR38 publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2008.05.011 – volume-title: Fish Biomechanics year: 2006 ident: 41074_CR33 – volume: 65 start-page: 312 year: 2004 ident: 41074_CR3 publication-title: J. Fish Biol. doi: 10.1111/j.0022-1112.2004.00447.x – volume: 403 start-page: 156 year: 2000 ident: 41074_CR1 publication-title: Nature doi: 10.1038/35003110 – volume: 212 start-page: 576 year: 2009 ident: 41074_CR26 publication-title: J. Exp. Biol. doi: 10.1242/jeb.025007 – volume: 80 start-page: 167 year: 2007 ident: 41074_CR30 publication-title: Physiol. Biochem. Zool. doi: 10.1086/510637 – volume: 204 start-page: 1369 year: 2001 ident: 41074_CR13 publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.7.1369 – volume-title: Fish Swimming year: 1993 ident: 41074_CR21 doi: 10.1007/978-94-011-1580-3 – volume: 207 start-page: 3265 year: 2004 ident: 41074_CR22 publication-title: J. Exp. Biol. doi: 10.1242/jeb.01139 – volume: 288 start-page: 20211601 year: 2021 ident: 41074_CR37 publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2021.1601 – volume: 4 start-page: 1 year: 2014 ident: 41074_CR40 publication-title: Sci. Rep. doi: 10.1038/srep07329 – volume: 135 start-page: 1 year: 2013 ident: 41074_CR47 publication-title: J. Vib. Acoust. Trans. ASME doi: 10.1115/1.4023056 |
SSID | ssj0000529419 |
Score | 2.473479 |
Snippet | Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s... Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's... Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15032 |
SubjectTerms | 631/601/1332 639/166/988 639/766/189 Efficiency Humanities and Social Sciences Kinematics multidisciplinary Power consumption Science Science (multidisciplinary) Swimming Tails |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lIPQiViuurRKht7p0s8m-lxyrWIpgTxZ6C5l86ILNlveB9L93kux7dgvWS69JJptkJszMZn4zhBxbAcIywWrjEySnRV4oFXjtvPDojjRKZoT3t8vZxZX4et1d3yv1lWLCSnrgcnCnM4-zWOUdBFQ-hoHoBDY1YHw35xl03aLOu-dMlazerRJMjSiZhsvTJWqqhCZreS1yEKKaaKKcsH9iZT6MkXzwUJr1z_kL8nw0HOlZWfA-2fHxJXlWSknevSKxIG7D-AuODoGiaUdxUufrIQQ6BmTR5S3qK2qioz5nj0jQS9pHuo4uVfIaFnd0-bu_ucFF0BQU_4MaCv1Q9zG9ySPpYoBhdUCuzr98_3xRj7UUatsxuapDwwFgzpTxkjMBEJouuNDxjs85KnXLIEFSQTqL56SAc66MkIIZ77y0nL8mu3GI_g2hwEToHJuDMQEpOaAXA9AA80xZG3hF2OZctR0Tjad6F790fvDmUhdeaOSFzrzQqiInW5rbkmbj0dGfEru2I1OK7NyAgqNHwdH_E5yKHG2Yrcd7u9StnIlk9CpZkQ_bbrxx6RnFRD-syxh0O1HEKiInQjJZ0LQn9j9z7m70fhOUGUk_buTp79f_veO3T7HjQ7LXJvnPBTCOyO5qsfbv0KRawft8e_4AD0ofrQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOiJ4Iv4idVTIvim5ZpNuk2eRMXjEPTJg30LmTQ5C16ybneR-_dO0uwePfBem0ybZiaZ7xlC3lkBwjLBauNSSs4CcaGU53XvhEN1pFEyZ3h__7E8OxffVu2qGNzGEla5vxPzRd1Hm2zkJwu5FEkcUfLj-k-dukYl72ppoXGX3EulyxJVd6vuYGNJXizBVMmVabg8GZFfpZyyBa9FDkVUM36Uy_bPZM2bkZI33KWZC50-Ig-L-Eg_Tfh-TO648ITcnxpKXj0lYcq79cUQR6OnKOBRfGnv6ug9LWFZdFwj16Im9NTlGhIpAZMOge5Cn_p5xc0VHf8Ol5e4CJpC4y-ooTDEegjJM4-gmwhx-4ycn379-eWsLh0Vatsyua19wwGgY8o4yZkA8E3re9_ylnccWbtlkBJTQfYW90kB51wZIQUzrnfScv6cHIUY3AtCgQnf9qwDYzxCckBdBqAB5piy1vOKsP2-alvKjaeuF791dntzqSdcaMSFzrjQqiLvDzDrqdjGrbM_J3QdZqZC2flB3Fzocu700iERWuV68Ci7GAaiFfioAePaDqWVihzvka3L6R31Na1V5O1hGM9dcqaY4OJumoPKJ5JYReSMSGYLmo-E4Veu4I06cEpoRtAPe3q6_vr___jl7Yt9RR4sEmXnBhfH5Gi72bnXKDJt4U0-F_8AWNQVvw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAirR-4tpYI3nRxs8m-lxyfYikP6kULvYVMNqkLNinvA-l_7yS7-2SLCr0mmd1sZrIzycxvhpB3VoCwTLDSuATJqZEXSnletk44PI5USmaE98XX2fmlWF41V3ukHrEwOWg_p7TMv-kxOuzjGhVNAoPVvBQ5hlA9IgcpVTvK9sFisfy23N2sJN-VYGpAyFRc_oV4ooVysv6JhXk_PvKekzTrnrND8nQwGumin-YR2XPhGXncl5G8e05Cj7b1w_UbjZ6iWUfxoa0ro_d0CMai61vUVdSElrqcOSLBLmkX6Da0qYpXXN3R9a_u5gYnQVNA_DU1FLpYdiH545F0FSFuXpDLsy_fP5-XQx2F0jZMbkpfcQCYM2Wc5EwA-KrxrW94w-ccFbplkOCoIFuL66SAc66MkIIZ1zppOX9J9kMM7hWhwIRvWjYHYzxScsATDEAFzDFlrecFYeO6ajskGU-1Ln7q7OzmUve80MgLnXmhVUHe72hu-xQb_x39KbFrNzKlx84NcXWtB3HRM4eiZ5VrwaPFYhiIRmBTBcY1c7RRCnIyMlsPe3atazkTyeBVsiBvd92425ILxQQXt_0YPHKiiBVEToRkMqFpT-h-5LzdePJNMGYk_TDK05-3__uLXz9s-DF5UidJz2UuTsj-ZrV1b9Bw2sDpsFN-A1eMFN4 priority: 102 providerName: Springer Nature |
Title | Identification of the trade-off between speed and efficiency in undulatory swimming using a bio-inspired robot |
URI | https://link.springer.com/article/10.1038/s41598-023-41074-9 https://www.proquest.com/docview/2864019298 https://www.proquest.com/docview/2864619052 https://pubmed.ncbi.nlm.nih.gov/PMC10497532 https://doaj.org/article/6eae6c9edbf240a1b454eae0bae57381 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBb9wWAvYz-Zty5osLfNW2TJsfQwRhpaSqBlbAvkzehsqTO0cuckbPnvd5LtDJdusKeALDm27sR9Z-m7j5A3hQBRMMFibTwlJ0FbKGV5XBphMB0ZKxkY3ucXk7OFmC_T5R7p5Y66CVzdmdp5PalFc_X-14_tJ1zwH1vKuPywwiDkiWIJj0U4X6j2ySFGpswrGpx3cL-t9Z0oEbQ-fBH2GMFE0vFo7r7NIFaFkv4DHHr7FOWtrdQQoU4fkgcdtKTT1hcekT3jHpN7rdjk9glxLSfXdh_paG0pgj-KNy1NXFtLuyNbdHWDEY1qV1IT6kt4ciatHN240mt91c2Wrn5W19f4ENQfm7-kmkJVx5Xzu_Y4tKmhXj8li9OTb7OzuFNbiIuUyXVsxxwAMqa0kZwJADtObWlTnvKMY9gvGHjSKsiywHlSwDlXWkjBtCmNLDh_Rg5c7cxzQoEJm5YsA60tjuSAeQ7AGJhhqigsjwjr5zUvulLkXhHjKg9b4lzmrS1ytEUebJGriLzdjblpC3H8s_exN9eupy-iHRrq5jLv1mQ-MeighTIlWMQ1moFIBTaNQZs0QyQTkaPe2HnvmHkiJ8LDYiUj8np3Gdek32jRztSbtg8mpuhuEZEDJxk80PCKq76H6t6YH3uyMw591_vTn3__-xu_-K_5eUnuJ97RgxbGETlYNxvzCtHVGkZkP1tmI3I4nc6_zvH3-OTi8xdsnU1mo_DFYhQW1W-yPCRi |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFDASnCBqHDsb-4AQr2pLH6dW2puxHbtdiSbLZlfV_il-IzNOslUq0VuvsZ04nrFnxjPfDCHvnLDCMcES4xGSkwEtlAo8Kb3wYI6kSkaE99HxeHIqfk7z6Rb522NhMKyyPxPjQV3WDu_IdzM5FqiOKPl5_ifBqlHoXe1LaLRsceDXl2CyNZ_2vwN932fZ3o-Tb5OkqyqQuJzJZRJSbq0tmDJeciasDWkeypDznBccxJtjFsGZVpYORL2ynHNlhBTM-NJLhxegcOTfAcGborFXTIvNnQ56zQRTHTYn5XK3AfmIGLaMJyKGPqqB_ItlAga67fXIzGvu2Sj19h6SB526Sr-0_PWIbPnqMbnbFrBcPyFVi_MN3cUfrQMFhZLCS0uf1CHQLgyMNnOQktRUJfUxZwUCPumsoquqxPph9WJNm8vZxQVMgmIo_hk11M7qZFZhJAAMXdS2Xj4lp7ey1s_IdlVX_jmhlomQl6ywxgQYyS3YTtamlnmmnAt8RFi_rtp16c2xysZvHd3sXOqWFhpooSMttBqRD5sx8za5x429vyK5Nj0xMXd8UC_OdLfP9dgD0zvlSxtAVzLMilzAo9QanxegHY3ITk9s3Z0Wjb7i7RF5u2mGfY7OG1P5etX2AWMXWGxE5IBJBhMatlSz85gxHGxuBFDD0I89P119_f9__OLmyb4h9yYnR4f6cP_44CW5nyGXx-IaO2R7uVj5V6CuLe3ruEco-XXbm_If_G9SXg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEJ8iMMBI8ARR49hp7QeEGFu1MagmxKS9GZ9jb5VYUvqhqf8afx1nJ-nUSextr4mdOLk7353vfneEvLUChGWCpcYFSE6OtFDK87R0wqE7kikZEd7fx4ODE_H1tDjdIn87LExIq-z2xLhRl7UNZ-T9XA5EMEeU7Ps2LeJ4b_Rp-icNHaRCpLVrp9GwyJFbXaL7Nv94uIe0fpfno_2fXw7StsNAagsmF6nPOAAMmTJOciYAfFb40he84EOOqs4yCEBNkKVFta-Ac66MkIIZVzppw2Eobv_bw-AV9cj27v74-Mf6hCfE0ARTLVIn47I_R20ZEG05T0VMhFQb2jA2DdiwdK_naV4L1kYdOHpA7rfGK_3ccNtDsuWqR-RO085y9ZhUDerXt8eAtPYUzUuKDy1dWntP26QwOp-izqSmKqmLFSwC_JNOKrqsytBNrJ6t6PxycnGBi6AhMf-MGgqTOp1UIS8Ap85qqBdPyMmt_O2npFfVlXtGKDDhi5INwRiPMzmgJwWQAXNMWet5Qlj3X7Vti52Hnhu_dQy6c6kbWmikhY600Coh79dzpk2pjxtH7wZyrUeGMt3xQj07063U64FDEbDKleDRcjIMRCHwUgbGFUO0lRKy0xFbt3vHXF9xekLerG-j1IdQjqlcvWzGoOuLLJYQucEkGwvavFNNzmP9cPTAA5wap37o-Onq7f__4uc3L_Y1uYsCqb8djo9ekHt5YPLYaWOH9BazpXuJttsCXrVCQsmv25bLf3pcV_k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+trade-off+between+speed+and+efficiency+in+undulatory+swimming+using+a+bio-inspired+robot&rft.jtitle=Scientific+reports&rft.au=Anastasiadis%2C+Alexandros&rft.au=Paez%2C+Laura&rft.au=Melo%2C+Kamilo&rft.au=Tytell%2C+Eric+D.&rft.date=2023-09-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-41074-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_41074_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |