Identification of the trade-off between speed and efficiency in undulatory swimming using a bio-inspired robot

Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure the...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 15032 - 12
Main Authors Anastasiadis, Alexandros, Paez, Laura, Melo, Kamilo, Tytell, Eric D., Ijspeert, Auke J., Mulleners, Karen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
AbstractList Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.
ArticleNumber 15032
Author Paez, Laura
Tytell, Eric D.
Mulleners, Karen
Melo, Kamilo
Ijspeert, Auke J.
Anastasiadis, Alexandros
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Anastasiadis
  fullname: Anastasiadis, Alexandros
  organization: Unsteady Flow Diagnostics Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Laura
  surname: Paez
  fullname: Paez, Laura
  organization: Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Kamilo
  surname: Melo
  fullname: Melo, Kamilo
  organization: KM-RoBoTa
– sequence: 4
  givenname: Eric D.
  surname: Tytell
  fullname: Tytell, Eric D.
  organization: Department of Biology, Tufts University
– sequence: 5
  givenname: Auke J.
  surname: Ijspeert
  fullname: Ijspeert, Auke J.
  organization: Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Karen
  surname: Mulleners
  fullname: Mulleners, Karen
  email: karen.mulleners@epfl.ch
  organization: Unsteady Flow Diagnostics Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
BookMark eNp9UsluHCEQbUWO4iX-gZyQcsmlHbbuhlMUWVlGspRLckYsxZhRD0yAjjV_bzzjKLEP5gCl4r1HUfXOu5OYInTdO4KvCGbiY-FkkKLHlPWc4In38lV3RjEfesooPfkvPu0uS9ngtgYqOZFvulM2jVJKJs-6uHIQa_DB6hpSRMmjeguoZu2gT94jA_UOIKKyA3BIR4fAN3SAaPcoRLREt8y6prxH5S5styGu0VIedo1MSH2IZRdyo-ZkUn3bvfZ6LnD5eF50v75--Xn9vb_58W11_fmmtwMRtfeYGWMmIjUIRrgxHg_e-YENbGIcj5aYkU-TEc62LkjDGJOaC040OBCWsYtuddR1SW_ULoetznuVdFCHRMprpXMNdgY1gobRSnDGU441MXzgLYWNhmFigjStT0et3WK24GzrV9bzE9GnNzHcqnX6owjmchoYbQofHhVy-r1AqWobioV51hHSUhQVIx-JbPNp0PfPoJu05Nh6dUBhIqkUDSWOKJtTKRm8sqEeBtgKCHN7WT2YRB1NoppJ1MEkSjYqfUb9-5EXSexIKg0c15D_VfUC6x7GW9FC
CitedBy_id crossref_primary_10_1098_rsif_2024_0036
crossref_primary_10_1038_s41598_025_94408_0
crossref_primary_10_3389_felec_2025_1507644
crossref_primary_10_1089_soro_2024_0030
crossref_primary_10_1109_JSEN_2024_3464633
crossref_primary_10_1063_5_0202361
crossref_primary_10_1371_journal_pcbi_1012101
crossref_primary_10_1103_PhysRevE_110_055104
crossref_primary_10_1016_j_ijmecsci_2024_109150
crossref_primary_10_1103_PhysRevFluids_9_110509
crossref_primary_10_1111_brv_13116
Cites_doi 10.1242/jeb.02526
10.1088/1748-3190/abb86d
10.1103/PhysRevFluids.7.074403
10.1086/510637
10.1098/rsif.2013.0667
10.1017/jfm.2015.35
10.1098/rspb.2021.1601
10.1371/journal.pone.0179727
10.1242/jeb.143.1.559
10.1242/jeb.00968
10.1093/icb/icy042
10.1242/jeb.202.11.1511
10.1017/jfm.2022.470
10.1093/icb/42.5.1018
10.1007/978-3-642-11633-9_5
10.1242/jeb.144642
10.1242/jeb.10.1.88
10.1242/jeb.01524
10.1016/j.jsv.2007.07.047
10.1038/ncomms9790
10.1242/jeb.201.23.3245
10.1242/jeb.204.16.2751
10.1371/journal.pbio.1002123
10.1242/jeb.138438
10.1063/5.0040473
10.1016/j.cbpa.2008.05.011
10.1242/jeb.35.1.109
10.1017/jfm.2013.384
10.1038/scientificamerican0395-64
10.1016/j.wavemoti.2018.01.001
10.1242/jeb.204.7.1369
10.1242/jeb.202.17.2303
10.1088/1748-3182/6/2/026004
10.1242/jeb.198.8.1629
10.1038/35003110
10.1038/srep07329
10.1098/rspb.1971.0085
10.1242/jeb.01139
10.1242/jeb.025007
10.1088/1748-3190/abd013
10.1242/jeb.00209
10.1177/0278364914525811
10.1115/1.4023056
10.1017/jfm.2019.284
10.1088/1748-3182/5/3/035004
10.1017/jfm.2022.624
10.1007/s00348-007-0343-x
10.1126/scirobotics.aax4615
10.1111/j.0022-1112.2004.00447.x
10.1007/978-94-011-1580-3
10.1073/pnas.2113206118
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-41074-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_6eae6c9edbf240a1b454eae0bae57381
PMC10497532
10_1038_s41598_023_41074_9
GrantInformation_xml – fundername: STI eSeed programme at EPFL
– fundername: National Science Foundation
  grantid: NSF IOS 1652582
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: IZSEZ0_194755
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: ;
– fundername: ;
  grantid: NSF IOS 1652582
– fundername: ;
  grantid: IZSEZ0_194755
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-f03bbb719ae8314bbf05fdf535373406c1b6477b8dc1599b3339a4841aede8c33
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:34:28 EDT 2025
Thu Aug 21 18:36:28 EDT 2025
Mon Jul 21 11:28:11 EDT 2025
Wed Aug 13 04:19:22 EDT 2025
Tue Jul 01 03:57:25 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Fri Feb 21 02:39:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-f03bbb719ae8314bbf05fdf535373406c1b6477b8dc1599b3339a4841aede8c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2864019298?pq-origsite=%requestingapplication%
PMID 37699939
PQID 2864019298
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6eae6c9edbf240a1b454eae0bae57381
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497532
proquest_miscellaneous_2864619052
proquest_journals_2864019298
crossref_citationtrail_10_1038_s41598_023_41074_9
crossref_primary_10_1038_s41598_023_41074_9
springer_journals_10_1038_s41598_023_41074_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Videler (CR21) 1993
Tytell, Lauder (CR11) 2004; 207
Van Den Thillart (CR3) 2004; 65
Ellerby, Spierts, Altringham (CR13) 2001; 204
Chao, Mahbub, Cheng (CR24) 2022; 947
Feeny, Feeny (CR47) 2013; 135
Gravish, Lauder (CR52) 2018; 221
Shadwick, Lauder (CR33) 2006
Cui, Yang, Shen, Jiang (CR45) 2018; 78
Schultz, Webb (CR39) 2002; 42
Berlinger, Saadat, Haj-Hariri, Lauder, Nagpal (CR9) 2021; 16
Zhu (CR31) 2019; 4
Borazjani, Sotiropoulos (CR26) 2009; 212
Bale (CR40) 2014; 4
Palstra, van Ginneken, van den Thillart (CR38) 2008; 151
Quinn, Lauder, Smits (CR18) 2015; 767
Gillis (CR50) 1998; 201
Nangia, Bale, Chen, Hanna, Patankar (CR28) 2017; 12
Blank, Farwell, Morrissette, Schallert, Block (CR30) 2007; 80
Porez, Boyer, Ijspeert (CR34) 2014; 33
Dewey, Boschitsch, Moored, Stone, Smits (CR42) 2013; 732
Gemmell (CR17) 2016; 219
Li, Liu, Müller, Voesenek, Van Leeuwen (CR37) 2021; 288
Wolfgang, Anderson, Grosenbaugh, Yue, Triantafyllou (CR15) 1999; 202
Santo (CR12) 2021; 118
White, Lauder, Bart-Smith (CR5) 2021; 16
van Ginneken (CR2) 2005; 208
Lighthill (CR43) 1971; 179
van Ginneken, van den Thillart (CR1) 2000; 403
Demirer, Oshinowo, Erturk, Alexeev (CR48) 2022; 944
D’Août, Aerts (CR35) 1999; 202
Tytell (CR4) 2007; 43
Gray (CR10) 1933; 10
Tytell (CR51) 2018; 58
Hultmark, Leftwich, Smits (CR8) 2010; 43
Curet, Patankar, Lauder, MacIver (CR27) 2011; 6
Khalid (CR25) 2021
Ramananarivo, Godoy-Diana, Thiria (CR41) 2013; 10
Tytell (CR22) 2004; 207
Smits (CR36) 2019
Liao, Beal, Lauder, Triantafyllou (CR23) 2003; 206
Kern, Koumoutsakos (CR19) 2006; 209
Bale, Neveln, Bhalla, MacIver, Patankar (CR29) 2015
Müller, Smit, Stamhuis, Videler (CR14) 2001; 204
Leroy-Calatayud, Pezzulla, Keiser, Mulleners, Reis (CR44) 2022; 7
Wardle, Videler, Altringham (CR32) 1995; 198
Feeny (CR46) 2008; 310
Triantafyllou, T.G (CR7) 1995; 272
Bainbridge (CR20) 1958; 35
Conte, Modarres-Sadeghi, Watts, Hover, Triantafyllou (CR6) 2010; 5
Williams (CR49) 1989; 143
Gemmell, Colin, Costello, Dabiri (CR16) 2015; 6
C Wardle (41074_CR32) 1995; 198
PA Dewey (41074_CR42) 2013; 732
RE Shadwick (41074_CR33) 2006
ED Tytell (41074_CR11) 2004; 207
G Van Den Thillart (41074_CR3) 2004; 65
MJ Wolfgang (41074_CR15) 1999; 202
VD Santo (41074_CR12) 2021; 118
M Porez (41074_CR34) 2014; 33
J Conte (41074_CR6) 2010; 5
BJ Gray (41074_CR10) 1933; 10
ED Tytell (41074_CR4) 2007; 43
P Leroy-Calatayud (41074_CR44) 2022; 7
DJ Ellerby (41074_CR13) 2001; 204
UK Müller (41074_CR14) 2001; 204
R Bale (41074_CR29) 2015
F Berlinger (41074_CR9) 2021; 16
BF Feeny (41074_CR47) 2013; 135
G Li (41074_CR37) 2021; 288
BJ Gemmell (41074_CR17) 2016; 219
CH White (41074_CR5) 2021; 16
TL Williams (41074_CR49) 1989; 143
K D’Août (41074_CR35) 1999; 202
N Nangia (41074_CR28) 2017; 12
J Zhu (41074_CR31) 2019; 4
A Palstra (41074_CR38) 2008; 151
N Gravish (41074_CR52) 2018; 221
JJ Videler (41074_CR21) 1993
M Hultmark (41074_CR8) 2010; 43
R Bale (41074_CR40) 2014; 4
ED Tytell (41074_CR22) 2004; 207
S Ramananarivo (41074_CR41) 2013; 10
AJ Smits (41074_CR36) 2019
Z Cui (41074_CR45) 2018; 78
LM Chao (41074_CR24) 2022; 947
JM Blank (41074_CR30) 2007; 80
BJ Gemmell (41074_CR16) 2015; 6
MSU Khalid (41074_CR25) 2021
MS Triantafyllou (41074_CR7) 1995; 272
V van Ginneken (41074_CR2) 2005; 208
OM Curet (41074_CR27) 2011; 6
WW Schultz (41074_CR39) 2002; 42
MJ Lighthill (41074_CR43) 1971; 179
V van Ginneken (41074_CR1) 2000; 403
JC Liao (41074_CR23) 2003; 206
DB Quinn (41074_CR18) 2015; 767
S Kern (41074_CR19) 2006; 209
E Demirer (41074_CR48) 2022; 944
ED Tytell (41074_CR51) 2018; 58
R Bainbridge (41074_CR20) 1958; 35
BF Feeny (41074_CR46) 2008; 310
GB Gillis (41074_CR50) 1998; 201
I Borazjani (41074_CR26) 2009; 212
References_xml – volume: 209
  start-page: 4841
  year: 2006
  end-page: 4857
  ident: CR19
  article-title: Simulations of optimized anguilliform swimming
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02526
– year: 2006
  ident: CR33
  publication-title: Fish Biomechanics
– volume: 16
  year: 2021
  ident: CR5
  article-title: Tunabot Flex: A tuna-inspired robot with body flexibility improves high-performance swimming
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3190/abb86d
– volume: 7
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR44
  article-title: Tapered foils favor traveling-wave kinematics to enhance the performance of flapping propulsion
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.7.074403
– volume: 80
  start-page: 167
  year: 2007
  end-page: 177
  ident: CR30
  article-title: Influence of swimming speed on metabolic rates of juvenile Pacific bluefin tuna and yellowfin tuna
  publication-title: Physiol. Biochem. Zool.
  doi: 10.1086/510637
– volume: 10
  start-page: 20130667
  year: 2013
  ident: CR41
  article-title: Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0667
– volume: 767
  start-page: 430
  year: 2015
  end-page: 448
  ident: CR18
  article-title: Maximizing the efficiency of a flexible propulsor using experimental optimization
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.35
– volume: 288
  start-page: 20211601
  year: 2021
  ident: CR37
  article-title: Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2021.1601
– volume: 12
  start-page: 1
  year: 2017
  end-page: 23
  ident: CR28
  article-title: Optimal specific wavelength for maximum thrust production in undulatory propulsion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179727
– volume: 143
  start-page: 559
  year: 1989
  end-page: 566
  ident: CR49
  article-title: Locomotion in lamprey and trout: The relative timing of activation and movement
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.143.1.559
– volume: 207
  start-page: 1825
  year: 2004
  end-page: 1841
  ident: CR11
  article-title: The hydrodynamics of eel swimming: I. Wake structure
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00968
– volume: 58
  start-page: 860
  year: 2018
  end-page: 873
  ident: CR51
  article-title: Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icy042
– volume: 202
  start-page: 1511
  year: 1999
  end-page: 1521
  ident: CR35
  article-title: A kinematic comparison of forward and backward swimming in the eel
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.11.1511
– volume: 944
  start-page: A19
  year: 2022
  ident: CR48
  article-title: Hydrodynamic performance of oscillating elastic propulsors with tapered thickness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.470
– volume: 42
  start-page: 1018
  year: 2002
  end-page: 1025
  ident: CR39
  article-title: Power requirements of swimming: Do new methods resolve old questions?
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/42.5.1018
– volume: 43
  start-page: 683
  year: 2010
  end-page: 690
  ident: CR8
  article-title: Flowfield measurements in the wake of a robotic lamprey
  publication-title: Exp. fluids
  doi: 10.1007/978-3-642-11633-9_5
– volume: 219
  start-page: 3884
  year: 2016
  end-page: 3895
  ident: CR17
  article-title: How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.144642
– volume: 10
  start-page: 88
  year: 1933
  end-page: 104
  ident: CR10
  article-title: The movement of fish with special reference to the Eel
  publication-title: Stud. Anim. Locomot.
  doi: 10.1242/jeb.10.1.88
– volume: 208
  start-page: 1329
  year: 2005
  end-page: 1335
  ident: CR2
  article-title: Eel migration to the Sargasso: Remarkably high swimming efficiency and low energy costs
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01524
– volume: 310
  start-page: 77
  year: 2008
  end-page: 90
  ident: CR46
  article-title: A complex orthogonal decomposition for wave motion analysis
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.07.047
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR16
  article-title: Suction-based propulsion as a basis for efficient animal swimming
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9790
– volume: 201
  start-page: 3245
  year: 1998
  end-page: 3256
  ident: CR50
  article-title: Neuromuscular control of anguilliform locomotion: Patterns of red and white muscle activity during swimming in the American eel
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.201.23.3245
– volume: 204
  start-page: 2751
  year: 2001
  end-page: 2762
  ident: CR14
  article-title: How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel ( )
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.16.2751
– year: 2015
  ident: CR29
  publication-title: Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates
  doi: 10.1371/journal.pbio.1002123
– volume: 221
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR52
  article-title: Robotics-inspired biology
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.138438
– year: 2021
  ident: CR25
  article-title: Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths?
  publication-title: Phys. Fluids
  doi: 10.1063/5.0040473
– volume: 151
  start-page: 37
  year: 2008
  end-page: 44
  ident: CR38
  article-title: Cost of transport and optimal swimming speed in farmed and wild European silver eels ( )
  publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol.
  doi: 10.1016/j.cbpa.2008.05.011
– volume: 35
  start-page: 109
  year: 1958
  end-page: 133
  ident: CR20
  article-title: The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.35.1.109
– volume: 732
  start-page: 29
  year: 2013
  end-page: 46
  ident: CR42
  article-title: Scaling laws for the thrust production of flexible pitching panels
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.384
– volume: 272
  start-page: 64
  year: 1995
  end-page: 70
  ident: CR7
  article-title: An effcient swimming machine
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0395-64
– volume: 78
  start-page: 83
  year: 2018
  end-page: 97
  ident: CR45
  article-title: Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2018.01.001
– volume: 204
  start-page: 1369
  year: 2001
  end-page: 1379
  ident: CR13
  article-title: Slow muscle power output of yellow- and silver-phase European eels ( L.): Changes in muscle performance prior to migration
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.7.1369
– volume: 202
  start-page: 2303
  year: 1999
  end-page: 2327
  ident: CR15
  article-title: Near-body flow dynamics in swimming fish
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.17.2303
– volume: 6
  year: 2011
  ident: CR27
  article-title: Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3182/6/2/026004
– volume: 198
  start-page: 1629
  year: 1995
  end-page: 1636
  ident: CR32
  article-title: Tuning in to fish swimming waves: Body form, swimming mode and muscle function
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.198.8.1629
– volume: 403
  start-page: 156
  year: 2000
  end-page: 157
  ident: CR1
  article-title: Physiology: Eel fat stores are enough to reach the Sargasso
  publication-title: Nature
  doi: 10.1038/35003110
– volume: 4
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR40
  article-title: Separability of drag and thrust in undulatory animals and machines
  publication-title: Sci. Rep.
  doi: 10.1038/srep07329
– volume: 179
  start-page: 125
  year: 1971
  end-page: 138
  ident: CR43
  article-title: Large-amplitude elongated-body theory of fish locomotion
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1971.0085
– volume: 207
  start-page: 3265
  year: 2004
  end-page: 3279
  ident: CR22
  article-title: The hydrodynamics of eel swimming II. Effect of swimming speed
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01139
– volume: 212
  start-page: 576
  year: 2009
  end-page: 592
  ident: CR26
  article-title: Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.025007
– volume: 16
  year: 2021
  ident: CR9
  article-title: Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3190/abd013
– volume: 206
  start-page: 1059
  year: 2003
  end-page: 1073
  ident: CR23
  article-title: The Kármán gait: Novel body kinematics of rainbow trout swimming in a vortex street
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00209
– volume: 33
  start-page: 1322
  year: 2014
  end-page: 1341
  ident: CR34
  article-title: Improved lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914525811
– volume: 135
  start-page: 1
  year: 2013
  end-page: 8
  ident: CR47
  article-title: Complex modal analysis of the swimming motion of a whiting
  publication-title: J. Vib. Acoust. Trans. ASME
  doi: 10.1115/1.4023056
– year: 2019
  ident: CR36
  article-title: Undulatory and oscillatory swimming
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.284
– volume: 5
  year: 2010
  ident: CR6
  article-title: A fast-starting mechanical fish that accelerates at 40 m s
  publication-title: Bioinspira. Biomimet.
  doi: 10.1088/1748-3182/5/3/035004
– volume: 947
  start-page: 1
  year: 2022
  end-page: 40
  ident: CR24
  article-title: Hydrodynamic performance of slender swimmer: Effect of travelling wavelength
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.624
– volume: 43
  start-page: 701
  year: 2007
  end-page: 712
  ident: CR4
  article-title: Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-007-0343-x
– volume: 4
  start-page: eaax4615
  year: 2019
  ident: CR31
  article-title: Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax4615
– volume: 65
  start-page: 312
  year: 2004
  end-page: 318
  ident: CR3
  article-title: Endurance swimming of European Eel
  publication-title: J. Fish Biol.
  doi: 10.1111/j.0022-1112.2004.00447.x
– year: 1993
  ident: CR21
  publication-title: Fish Swimming
  doi: 10.1007/978-94-011-1580-3
– volume: 118
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR12
  article-title: Convergence of undulatory swimming kinematics across a diversity of fishes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2113206118
– volume: 43
  start-page: 683
  year: 2010
  ident: 41074_CR8
  publication-title: Exp. fluids
  doi: 10.1007/978-3-642-11633-9_5
– volume: 202
  start-page: 2303
  year: 1999
  ident: 41074_CR15
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.17.2303
– volume: 207
  start-page: 1825
  year: 2004
  ident: 41074_CR11
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00968
– volume: 201
  start-page: 3245
  year: 1998
  ident: 41074_CR50
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.201.23.3245
– volume: 5
  year: 2010
  ident: 41074_CR6
  publication-title: Bioinspira. Biomimet.
  doi: 10.1088/1748-3182/5/3/035004
– volume: 4
  start-page: eaax4615
  year: 2019
  ident: 41074_CR31
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax4615
– volume: 118
  start-page: 1
  year: 2021
  ident: 41074_CR12
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2113206118
– volume: 947
  start-page: 1
  year: 2022
  ident: 41074_CR24
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.624
– volume: 33
  start-page: 1322
  year: 2014
  ident: 41074_CR34
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914525811
– volume: 209
  start-page: 4841
  year: 2006
  ident: 41074_CR19
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02526
– volume: 7
  start-page: 1
  year: 2022
  ident: 41074_CR44
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.7.074403
– volume: 732
  start-page: 29
  year: 2013
  ident: 41074_CR42
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.384
– volume: 12
  start-page: 1
  year: 2017
  ident: 41074_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179727
– volume: 208
  start-page: 1329
  year: 2005
  ident: 41074_CR2
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01524
– volume: 272
  start-page: 64
  year: 1995
  ident: 41074_CR7
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0395-64
– year: 2015
  ident: 41074_CR29
  publication-title: Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates
  doi: 10.1371/journal.pbio.1002123
– year: 2019
  ident: 41074_CR36
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.284
– volume: 78
  start-page: 83
  year: 2018
  ident: 41074_CR45
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2018.01.001
– volume: 310
  start-page: 77
  year: 2008
  ident: 41074_CR46
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.07.047
– volume: 10
  start-page: 88
  year: 1933
  ident: 41074_CR10
  publication-title: Stud. Anim. Locomot.
  doi: 10.1242/jeb.10.1.88
– volume: 10
  start-page: 20130667
  year: 2013
  ident: 41074_CR41
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0667
– volume: 16
  year: 2021
  ident: 41074_CR9
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3190/abd013
– volume: 16
  year: 2021
  ident: 41074_CR5
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3190/abb86d
– volume: 204
  start-page: 2751
  year: 2001
  ident: 41074_CR14
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.16.2751
– volume: 6
  start-page: 1
  year: 2015
  ident: 41074_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9790
– volume: 206
  start-page: 1059
  year: 2003
  ident: 41074_CR23
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.00209
– volume: 43
  start-page: 701
  year: 2007
  ident: 41074_CR4
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-007-0343-x
– volume: 221
  start-page: 1
  year: 2018
  ident: 41074_CR52
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.138438
– volume: 58
  start-page: 860
  year: 2018
  ident: 41074_CR51
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icy042
– volume: 767
  start-page: 430
  year: 2015
  ident: 41074_CR18
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.35
– volume: 6
  year: 2011
  ident: 41074_CR27
  publication-title: Bioinspirat. Biomimet.
  doi: 10.1088/1748-3182/6/2/026004
– year: 2021
  ident: 41074_CR25
  publication-title: Phys. Fluids
  doi: 10.1063/5.0040473
– volume: 219
  start-page: 3884
  year: 2016
  ident: 41074_CR17
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.144642
– volume: 35
  start-page: 109
  year: 1958
  ident: 41074_CR20
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.35.1.109
– volume: 42
  start-page: 1018
  year: 2002
  ident: 41074_CR39
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/42.5.1018
– volume: 179
  start-page: 125
  year: 1971
  ident: 41074_CR43
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1971.0085
– volume: 944
  start-page: A19
  year: 2022
  ident: 41074_CR48
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.470
– volume: 198
  start-page: 1629
  year: 1995
  ident: 41074_CR32
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.198.8.1629
– volume: 143
  start-page: 559
  year: 1989
  ident: 41074_CR49
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.143.1.559
– volume: 202
  start-page: 1511
  year: 1999
  ident: 41074_CR35
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.11.1511
– volume: 151
  start-page: 37
  year: 2008
  ident: 41074_CR38
  publication-title: Comp. Biochem. Physiol. Mol. Integr. Physiol.
  doi: 10.1016/j.cbpa.2008.05.011
– volume-title: Fish Biomechanics
  year: 2006
  ident: 41074_CR33
– volume: 65
  start-page: 312
  year: 2004
  ident: 41074_CR3
  publication-title: J. Fish Biol.
  doi: 10.1111/j.0022-1112.2004.00447.x
– volume: 403
  start-page: 156
  year: 2000
  ident: 41074_CR1
  publication-title: Nature
  doi: 10.1038/35003110
– volume: 212
  start-page: 576
  year: 2009
  ident: 41074_CR26
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.025007
– volume: 80
  start-page: 167
  year: 2007
  ident: 41074_CR30
  publication-title: Physiol. Biochem. Zool.
  doi: 10.1086/510637
– volume: 204
  start-page: 1369
  year: 2001
  ident: 41074_CR13
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.7.1369
– volume-title: Fish Swimming
  year: 1993
  ident: 41074_CR21
  doi: 10.1007/978-94-011-1580-3
– volume: 207
  start-page: 3265
  year: 2004
  ident: 41074_CR22
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01139
– volume: 288
  start-page: 20211601
  year: 2021
  ident: 41074_CR37
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2021.1601
– volume: 4
  start-page: 1
  year: 2014
  ident: 41074_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/srep07329
– volume: 135
  start-page: 1
  year: 2013
  ident: 41074_CR47
  publication-title: J. Vib. Acoust. Trans. ASME
  doi: 10.1115/1.4023056
SSID ssj0000529419
Score 2.473479
Snippet Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s...
Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's...
Abstract Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15032
SubjectTerms 631/601/1332
639/166/988
639/766/189
Efficiency
Humanities and Social Sciences
Kinematics
multidisciplinary
Power consumption
Science
Science (multidisciplinary)
Swimming
Tails
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lIPQiViuurRKht7p0s8m-lxyrWIpgTxZ6C5l86ILNlveB9L93kux7dgvWS69JJptkJszMZn4zhBxbAcIywWrjEySnRV4oFXjtvPDojjRKZoT3t8vZxZX4et1d3yv1lWLCSnrgcnCnM4-zWOUdBFQ-hoHoBDY1YHw35xl03aLOu-dMlazerRJMjSiZhsvTJWqqhCZreS1yEKKaaKKcsH9iZT6MkXzwUJr1z_kL8nw0HOlZWfA-2fHxJXlWSknevSKxIG7D-AuODoGiaUdxUufrIQQ6BmTR5S3qK2qioz5nj0jQS9pHuo4uVfIaFnd0-bu_ucFF0BQU_4MaCv1Q9zG9ySPpYoBhdUCuzr98_3xRj7UUatsxuapDwwFgzpTxkjMBEJouuNDxjs85KnXLIEFSQTqL56SAc66MkIIZ77y0nL8mu3GI_g2hwEToHJuDMQEpOaAXA9AA80xZG3hF2OZctR0Tjad6F790fvDmUhdeaOSFzrzQqiInW5rbkmbj0dGfEru2I1OK7NyAgqNHwdH_E5yKHG2Yrcd7u9StnIlk9CpZkQ_bbrxx6RnFRD-syxh0O1HEKiInQjJZ0LQn9j9z7m70fhOUGUk_buTp79f_veO3T7HjQ7LXJvnPBTCOyO5qsfbv0KRawft8e_4AD0ofrQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwMOiJ4Iv4idVTIvim5ZpNuk2eRMXjEPTJg30LmTQ5C16ybneR-_dO0uwePfBem0ybZiaZ7xlC3lkBwjLBauNSSs4CcaGU53XvhEN1pFEyZ3h__7E8OxffVu2qGNzGEla5vxPzRd1Hm2zkJwu5FEkcUfLj-k-dukYl72ppoXGX3EulyxJVd6vuYGNJXizBVMmVabg8GZFfpZyyBa9FDkVUM36Uy_bPZM2bkZI33KWZC50-Ig-L-Eg_Tfh-TO648ITcnxpKXj0lYcq79cUQR6OnKOBRfGnv6ug9LWFZdFwj16Im9NTlGhIpAZMOge5Cn_p5xc0VHf8Ol5e4CJpC4y-ooTDEegjJM4-gmwhx-4ycn379-eWsLh0Vatsyua19wwGgY8o4yZkA8E3re9_ylnccWbtlkBJTQfYW90kB51wZIQUzrnfScv6cHIUY3AtCgQnf9qwDYzxCckBdBqAB5piy1vOKsP2-alvKjaeuF791dntzqSdcaMSFzrjQqiLvDzDrqdjGrbM_J3QdZqZC2flB3Fzocu700iERWuV68Ci7GAaiFfioAePaDqWVihzvka3L6R31Na1V5O1hGM9dcqaY4OJumoPKJ5JYReSMSGYLmo-E4Veu4I06cEpoRtAPe3q6_vr___jl7Yt9RR4sEmXnBhfH5Gi72bnXKDJt4U0-F_8AWNQVvw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAirR-4tpYI3nRxs8m-lxyfYikP6kULvYVMNqkLNinvA-l_7yS7-2SLCr0mmd1sZrIzycxvhpB3VoCwTLDSuATJqZEXSnletk44PI5USmaE98XX2fmlWF41V3ukHrEwOWg_p7TMv-kxOuzjGhVNAoPVvBQ5hlA9IgcpVTvK9sFisfy23N2sJN-VYGpAyFRc_oV4ooVysv6JhXk_PvKekzTrnrND8nQwGumin-YR2XPhGXncl5G8e05Cj7b1w_UbjZ6iWUfxoa0ro_d0CMai61vUVdSElrqcOSLBLmkX6Da0qYpXXN3R9a_u5gYnQVNA_DU1FLpYdiH545F0FSFuXpDLsy_fP5-XQx2F0jZMbkpfcQCYM2Wc5EwA-KrxrW94w-ccFbplkOCoIFuL66SAc66MkIIZ1zppOX9J9kMM7hWhwIRvWjYHYzxScsATDEAFzDFlrecFYeO6ajskGU-1Ln7q7OzmUve80MgLnXmhVUHe72hu-xQb_x39KbFrNzKlx84NcXWtB3HRM4eiZ5VrwaPFYhiIRmBTBcY1c7RRCnIyMlsPe3atazkTyeBVsiBvd92425ILxQQXt_0YPHKiiBVEToRkMqFpT-h-5LzdePJNMGYk_TDK05-3__uLXz9s-DF5UidJz2UuTsj-ZrV1b9Bw2sDpsFN-A1eMFN4
  priority: 102
  providerName: Springer Nature
Title Identification of the trade-off between speed and efficiency in undulatory swimming using a bio-inspired robot
URI https://link.springer.com/article/10.1038/s41598-023-41074-9
https://www.proquest.com/docview/2864019298
https://www.proquest.com/docview/2864619052
https://pubmed.ncbi.nlm.nih.gov/PMC10497532
https://doaj.org/article/6eae6c9edbf240a1b454eae0bae57381
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBb9wWAvYz-Zty5osLfNW2TJsfQwRhpaSqBlbAvkzehsqTO0cuckbPnvd5LtDJdusKeALDm27sR9Z-m7j5A3hQBRMMFibTwlJ0FbKGV5XBphMB0ZKxkY3ucXk7OFmC_T5R7p5Y66CVzdmdp5PalFc_X-14_tJ1zwH1vKuPywwiDkiWIJj0U4X6j2ySFGpswrGpx3cL-t9Z0oEbQ-fBH2GMFE0vFo7r7NIFaFkv4DHHr7FOWtrdQQoU4fkgcdtKTT1hcekT3jHpN7rdjk9glxLSfXdh_paG0pgj-KNy1NXFtLuyNbdHWDEY1qV1IT6kt4ciatHN240mt91c2Wrn5W19f4ENQfm7-kmkJVx5Xzu_Y4tKmhXj8li9OTb7OzuFNbiIuUyXVsxxwAMqa0kZwJADtObWlTnvKMY9gvGHjSKsiywHlSwDlXWkjBtCmNLDh_Rg5c7cxzQoEJm5YsA60tjuSAeQ7AGJhhqigsjwjr5zUvulLkXhHjKg9b4lzmrS1ytEUebJGriLzdjblpC3H8s_exN9eupy-iHRrq5jLv1mQ-MeighTIlWMQ1moFIBTaNQZs0QyQTkaPe2HnvmHkiJ8LDYiUj8np3Gdek32jRztSbtg8mpuhuEZEDJxk80PCKq76H6t6YH3uyMw591_vTn3__-xu_-K_5eUnuJ97RgxbGETlYNxvzCtHVGkZkP1tmI3I4nc6_zvH3-OTi8xdsnU1mo_DFYhQW1W-yPCRi
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFDASnCBqHDsb-4AQr2pLH6dW2puxHbtdiSbLZlfV_il-IzNOslUq0VuvsZ04nrFnxjPfDCHvnLDCMcES4xGSkwEtlAo8Kb3wYI6kSkaE99HxeHIqfk7z6Rb522NhMKyyPxPjQV3WDu_IdzM5FqiOKPl5_ifBqlHoXe1LaLRsceDXl2CyNZ_2vwN932fZ3o-Tb5OkqyqQuJzJZRJSbq0tmDJeciasDWkeypDznBccxJtjFsGZVpYORL2ynHNlhBTM-NJLhxegcOTfAcGborFXTIvNnQ56zQRTHTYn5XK3AfmIGLaMJyKGPqqB_ItlAga67fXIzGvu2Sj19h6SB526Sr-0_PWIbPnqMbnbFrBcPyFVi_MN3cUfrQMFhZLCS0uf1CHQLgyMNnOQktRUJfUxZwUCPumsoquqxPph9WJNm8vZxQVMgmIo_hk11M7qZFZhJAAMXdS2Xj4lp7ey1s_IdlVX_jmhlomQl6ywxgQYyS3YTtamlnmmnAt8RFi_rtp16c2xysZvHd3sXOqWFhpooSMttBqRD5sx8za5x429vyK5Nj0xMXd8UC_OdLfP9dgD0zvlSxtAVzLMilzAo9QanxegHY3ITk9s3Z0Wjb7i7RF5u2mGfY7OG1P5etX2AWMXWGxE5IBJBhMatlSz85gxHGxuBFDD0I89P119_f9__OLmyb4h9yYnR4f6cP_44CW5nyGXx-IaO2R7uVj5V6CuLe3ruEco-XXbm_If_G9SXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEJ8iMMBI8ARR49hp7QeEGFu1MagmxKS9GZ9jb5VYUvqhqf8afx1nJ-nUSextr4mdOLk7353vfneEvLUChGWCpcYFSE6OtFDK87R0wqE7kikZEd7fx4ODE_H1tDjdIn87LExIq-z2xLhRl7UNZ-T9XA5EMEeU7Ps2LeJ4b_Rp-icNHaRCpLVrp9GwyJFbXaL7Nv94uIe0fpfno_2fXw7StsNAagsmF6nPOAAMmTJOciYAfFb40he84EOOqs4yCEBNkKVFta-Ac66MkIIZVzppw2Eobv_bw-AV9cj27v74-Mf6hCfE0ARTLVIn47I_R20ZEG05T0VMhFQb2jA2DdiwdK_naV4L1kYdOHpA7rfGK_3ccNtDsuWqR-RO085y9ZhUDerXt8eAtPYUzUuKDy1dWntP26QwOp-izqSmKqmLFSwC_JNOKrqsytBNrJ6t6PxycnGBi6AhMf-MGgqTOp1UIS8Ap85qqBdPyMmt_O2npFfVlXtGKDDhi5INwRiPMzmgJwWQAXNMWet5Qlj3X7Vti52Hnhu_dQy6c6kbWmikhY600Coh79dzpk2pjxtH7wZyrUeGMt3xQj07063U64FDEbDKleDRcjIMRCHwUgbGFUO0lRKy0xFbt3vHXF9xekLerG-j1IdQjqlcvWzGoOuLLJYQucEkGwvavFNNzmP9cPTAA5wap37o-Onq7f__4uc3L_Y1uYsCqb8djo9ekHt5YPLYaWOH9BazpXuJttsCXrVCQsmv25bLf3pcV_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+trade-off+between+speed+and+efficiency+in+undulatory+swimming+using+a+bio-inspired+robot&rft.jtitle=Scientific+reports&rft.au=Anastasiadis%2C+Alexandros&rft.au=Paez%2C+Laura&rft.au=Melo%2C+Kamilo&rft.au=Tytell%2C+Eric+D.&rft.date=2023-09-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-41074-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_41074_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon