BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model
Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such...
Saved in:
Published in | Bioinformatics Vol. 28; no. 15; pp. 2088 - 2090 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.
Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.
Availability and implementation: http://www1.imperial.ac.uk/medicine/people/t.ebbels/
Contact: t.ebbels@imperial.ac.uk |
---|---|
AbstractList | Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.
Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.
Availability and implementation: http://www1.imperial.ac.uk/medicine/people/t.ebbels/
Contact: t.ebbels@imperial.ac.uk Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.Availability and implementation: http://www1.imperial.ac.uk/medicine/people/t.ebbels/Contact: t.ebbelsmperial.ac.uk Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.MOTIVATIONNuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.RESULTSWe present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.http://www1.imperial.ac.uk/medicine/people/t.ebbels/AVAILABILITY AND IMPLEMENTATIONhttp://www1.imperial.ac.uk/medicine/people/t.ebbels/t.ebbels@imperial.ac.uk.CONTACTt.ebbels@imperial.ac.uk. Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk. |
Author | Hao, Jie De Iorio, Maria Astle, William Ebbels, Timothy M D |
Author_xml | – sequence: 1 givenname: Jie surname: Hao fullname: Hao, Jie – sequence: 2 givenname: William surname: Astle fullname: Astle, William – sequence: 3 givenname: Maria surname: De Iorio fullname: De Iorio, Maria – sequence: 4 givenname: Timothy M D surname: Ebbels fullname: Ebbels, Timothy M D |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26131736$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22635605$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkr1uFDEUhS0URH7gEUBukGiW2OOxPSuqTUQAKYCEQj269lwvhhl7Y3uKdBQ8Qp6QJ8FhlyBotvItvnOO7XuOyUGIAQl5ytlLzpbi1Pjog4tpguJtPjUlC9Y9IEdcKL1oO84P7mcmDslxzl8ZY5JJ9YgcNo0SUjF5RH6cra7erz78_H4LgX6iG7DfYI20GtPyBSnMJdYEHOj1DKF4523Ni4FGRycsYOLoC2bqUpxomO2IkOgE64D1VjRhjgGCRZo3aEsCOmcf1hToGdxg9jVyigOOj8lDB2PGJ7vzhHy-eH11_nZx-fHNu_PV5cJK3pUF2g7QGcMbh0a2DFuJna7PVo1yZpBmWIIGFLZxzhnRIXSthaZOnUDLhTghL7a-mxSvZ8yln3y2OI4QMM6550pzybUWej_aipY1qlny_ShrtNJLJu9cn-3Q2Uw49JvkJ0g3_Z99VOD5DoBsYXSp_p7PfznFBddCVU5uOZtizgndPcJZf9eP_t9-9Nt-VN2r_3TWl98brdvx4x71L-DIy3o |
CitedBy_id | crossref_primary_10_1016_j_jmr_2018_11_010 crossref_primary_10_3390_metabo13050614 crossref_primary_10_1007_s11101_024_10028_y crossref_primary_10_1007_s11306_015_0812_9 crossref_primary_10_1016_j_trac_2013_03_009 crossref_primary_10_1214_20_BA1208 crossref_primary_10_1021_acs_analchem_7b02795 crossref_primary_10_1021_acs_jpca_4c05056 crossref_primary_10_7717_peerj_cs_232 crossref_primary_10_1093_bioinformatics_btad593 crossref_primary_10_1080_10408347_2024_2375314 crossref_primary_10_1016_j_pnmrs_2017_05_001 crossref_primary_10_1016_j_lfs_2023_122137 crossref_primary_10_1007_s11222_020_09924_y crossref_primary_10_1093_bioinformatics_btz248 crossref_primary_10_3390_metabo11050285 crossref_primary_10_1007_s11306_017_1273_0 crossref_primary_10_1021_acs_jafc_5b05878 crossref_primary_10_1038_s41598_019_56809_w crossref_primary_10_1016_j_pnmrs_2017_11_003 crossref_primary_10_1586_14737159_2015_974562 crossref_primary_10_1021_acs_analchem_4c05104 crossref_primary_10_1007_s00216_013_6852_y crossref_primary_10_1016_j_aquaculture_2022_738028 crossref_primary_10_1007_s11306_018_1319_y crossref_primary_10_1007_s00216_014_8225_6 crossref_primary_10_1007_s11306_017_1244_5 crossref_primary_10_1029_2023JG007768 crossref_primary_10_1021_acs_analchem_4c00563 crossref_primary_10_3390_metabo11070452 crossref_primary_10_1021_acs_analchem_4c01532 crossref_primary_10_4155_bio_2016_0090 crossref_primary_10_1016_j_pnmrs_2014_09_001 crossref_primary_10_1111_1749_4877_12326 crossref_primary_10_3945_an_115_009928 crossref_primary_10_1093_bib_bbv042 crossref_primary_10_1007_s11306_017_1286_8 crossref_primary_10_3390_molecules25215128 crossref_primary_10_3390_metabo12030227 crossref_primary_10_1007_s11306_016_1101_y crossref_primary_10_1111_1541_4337_12700 crossref_primary_10_1097_CCM_0000000000000982 crossref_primary_10_1038_s41596_021_00579_1 crossref_primary_10_1093_bioinformatics_btaa022 crossref_primary_10_1002_cpps_98 crossref_primary_10_1017_S0029665116002974 crossref_primary_10_1021_ac400237w crossref_primary_10_1080_01621459_2012_695661 crossref_primary_10_1098_rsob_200092 crossref_primary_10_1007_s11306_013_0503_3 crossref_primary_10_1038_s41598_018_30351_7 crossref_primary_10_3390_metabo11070460 crossref_primary_10_1016_j_aca_2017_04_013 crossref_primary_10_1016_j_aca_2018_02_045 crossref_primary_10_1007_s11101_024_10048_8 crossref_primary_10_1371_journal_pone_0073076 crossref_primary_10_1080_17460441_2022_2113774 crossref_primary_10_1146_annurev_food_030212_182612 crossref_primary_10_1016_j_crmeth_2023_100643 crossref_primary_10_1186_1475_2859_12_69 crossref_primary_10_1016_j_aca_2017_02_010 crossref_primary_10_1038_s41598_018_20121_w crossref_primary_10_1021_acs_analchem_8b01196 crossref_primary_10_1002_mrc_5371 crossref_primary_10_1039_c2mb25167a crossref_primary_10_1016_j_aca_2018_07_070 crossref_primary_10_1016_j_cofs_2015_06_008 crossref_primary_10_1021_ac500161k crossref_primary_10_2217_ijr_14_25 crossref_primary_10_1007_s11306_023_02073_z crossref_primary_10_1007_s11306_021_01772_9 crossref_primary_10_3389_fmolb_2021_698337 crossref_primary_10_3389_fbioe_2015_00023 crossref_primary_10_1021_acs_jproteome_5b00885 crossref_primary_10_1371_journal_pone_0124219 crossref_primary_10_2478_ebtj_2018_0012 crossref_primary_10_1074_jbc_M112_442814 crossref_primary_10_1002_jms_3782 crossref_primary_10_1021_acs_analchem_7b03795 crossref_primary_10_3390_metabo12080679 crossref_primary_10_1007_s11306_015_0810_y crossref_primary_10_1007_s00216_020_02693_7 crossref_primary_10_1021_acs_analchem_5b02311 crossref_primary_10_1021_acs_jnatprod_6b00923 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1021_acs_analchem_9b01235 crossref_primary_10_1371_journal_pcbi_1006018 crossref_primary_10_1021_acs_analchem_3c03078 crossref_primary_10_1007_s11306_017_1242_7 crossref_primary_10_1038_nprot_2014_090 crossref_primary_10_1039_C7AN01019B crossref_primary_10_3390_app12031235 crossref_primary_10_1021_ac4004776 crossref_primary_10_1021_acs_jproteome_9b00295 crossref_primary_10_1016_j_jmr_2018_11_004 crossref_primary_10_1021_acs_analchem_7b04148 crossref_primary_10_1038_s43586_021_00075_6 crossref_primary_10_1186_1471_2105_15_S1_S11 crossref_primary_10_1021_acs_jproteome_6b00814 crossref_primary_10_1021_acs_jproteome_7b00921 |
Cites_doi | 10.1007/s10858-011-9480-x 10.1021/ac202123k 10.1021/ac060209g 10.1093/bioinformatics/btr118 10.1080/01621459.2012.695661 10.1093/nar/gkn810 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1093/bioinformatics/bts308 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Engineering Research Database MEDLINE - Academic MEDLINE Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 1460-2059 |
EndPage | 2090 |
ExternalDocumentID | 22635605 26131736 10_1093_bioinformatics_bts308 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E020372/1 – fundername: Medical Research Council grantid: MC_UP_0801/1 |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM .-4 .GJ ABEFU ABNGD ACUKT AFFNX AGQPQ AI. AQDSO ATTQO AZFZN CAG ELUNK HVGLF IQODW NTWIH O~Y PB- RIG RNI RZF RZO VH1 ZGI CGR CUY CVF ECM EIF NPM 7X8 482 7QO 8FD ABJNI FR3 P64 ROZ TN5 WH7 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c518t-ec8aefbb12feb540e45e87308626fbd5bd9a7ae3c2fffb38ea84ca2b3883ec133 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 01:22:04 EDT 2025 Fri Jul 11 04:40:01 EDT 2025 Fri Jul 11 12:26:39 EDT 2025 Mon Jul 21 05:20:29 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Tue Jul 01 03:27:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Automation Models Nuclear magnetic resonance Metabolite Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c518t-ec8aefbb12feb540e45e87308626fbd5bd9a7ae3c2fffb38ea84ca2b3883ec133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/28/15/2088/648225/bts308.pdf |
PMID | 22635605 |
PQID | 1027679057 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_1671517737 proquest_miscellaneous_1434026291 proquest_miscellaneous_1027679057 pubmed_primary_22635605 pascalfrancis_primary_26131736 crossref_primary_10_1093_bioinformatics_bts308 crossref_citationtrail_10_1093_bioinformatics_bts308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Weljie (2023012512541113400_B4) 2006; 78 Astle (2023012512541113400_B1) 2012 Mercier (2023012512541113400_B2) 2011; 49 Wishart (2023012512541113400_B5) 2009; 37 Zheng (2023012512541113400_B6) 2011; 27 Tredwell (2023012512541113400_B3) 2011; 83 |
References_xml | – volume: 49 start-page: 307 year: 2011 ident: 2023012512541113400_B2 article-title: Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra publication-title: J. Biomol. NMR. doi: 10.1007/s10858-011-9480-x – volume: 83 start-page: 8683 year: 2011 ident: 2023012512541113400_B3 article-title: Between-Person comparison of metabolite fitting for NMR-based quantitative metabolomics publication-title: Anal. Chem. doi: 10.1021/ac202123k – volume: 78 start-page: 4430 year: 2006 ident: 2023012512541113400_B4 article-title: Targeted profiling: quantitative analysis of1H NMR metabolomics data publication-title: Anal. Chem. doi: 10.1021/ac060209g – volume: 27 start-page: 1637 year: 2011 ident: 2023012512541113400_B6 article-title: Identification and quantification of metabolites in1H NMR spectra by Bayesian model selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr118 – year: 2012 ident: 2023012512541113400_B1 article-title: A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.695661 – volume: 37 start-page: D603 year: 2009 ident: 2023012512541113400_B5 article-title: HMDB: a knowledgebase for the human metabolome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn810 |
SSID | ssj0005056 ssj0051444 |
Score | 2.4260147 |
Snippet | Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common... Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2088 |
SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Biological Biological and medical sciences Computational Biology - methods Estimates Fittings Fundamental and applied biological sciences. Psychology General aspects Magnetic Resonance Spectroscopy - methods Markov Chains Mathematical models Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Metabolites Metabolomics - methods Monte Carlo Method Nuclear magnetic resonance Software Spectra |
Title | BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22635605 https://www.proquest.com/docview/1027679057 https://www.proquest.com/docview/1434026291 https://www.proquest.com/docview/1671517737 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBISQvxTfiYjcRdlS2MncS5bVNRN6yqNTupd5aT2NMHS0SYS44oLHoHX4iV4Eo5_4ibANuAmiqzYcXK-2OecfOcchF5LWPUE6cU-4zz3KajsPqcR9Rege1NCUp7qOO7xYTw6pvuzaNbpfG-wlqoy28k__zGu5H-kCm0gVxUl-w-SdYNCA5yDfOEIEobjX8l40J-O-4c1X4Eqb7wHNvB7xcOp6YO8KpeglYJe-bHihhnktMQzUQIGVBTy2sSZFCq7MV95Z_ykECa7s1LVdR5aFZK54l6lnQvcG_ALoQMwdS2d1r_h06VNx6pTQKt8pp9qCr2tGdLwP-zvDb1Rf-KA9256oAma1hHkFO2hdzA52pvY-KJTt5sMB4Oh5R8a2HnjHUtjts4MxQphTWfGJUGSjfWZqDTtLCDNBTxkTaBGzeU4MDUD7dYeBqY06W_bhkmplbVej2oo1yRgm52yZgf8soE6WiNYo6COkfgGuhmC1aKW3elktmEcBbqYsHuGOqAsJbvtW--aG7dUpTvnfA1frTTlVi63h7ReNL2H7lqDBvcNOu-jjigeoFumxOnFQ_TVYPTHl2-8wEfYohPDJDCgEzt04jY68VLiBjqxQie26MQ1OrFDJ7boxBqdmOManVij8xE6fjucvhn5tvKHn0c9VvoiZ1zILOuFUmRgUwgaCQZ7kTK_ZbaIskXKEy5IHkopM8IEZzTnIZwxIvIeIY_RVrEsxFOElYOD51EiaMDoIkqZFEkmuAwTmVAuRRfR-iXPc5sWX1Vn-TA39Awyb8tmbmTTRTuu27nJC3Ndh-2WBF2vGjRd9KoW6RyWePXfjhdiWa1h0DCJVSK95IprKKFBGIdp74pr4gT0-yQhMM4Tg5nNLFRSqjiInl03zefo9ubDfYG2ylUlXoJeXmbbGu0_AQL17iY |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BATMAN%E2%80%94an+R+package+for+the+automated+quantification+of+metabolites+from+nuclear+magnetic+resonance+spectra+using+a+Bayesian+model&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=JIE+HAO&rft.au=ASTLE%2C+William&rft.au=DE+LORIO%2C+Maria&rft.au=EBBELS%2C+Timothy+M.+D&rft.date=2012-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.volume=28&rft.issue=15&rft.spage=2088&rft.epage=2090&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts308&rft.externalDBID=n%2Fa&rft.externalDocID=26131736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |