BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model

Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 28; no. 15; pp. 2088 - 2090
Main Authors Hao, Jie, Astle, William, De Iorio, Maria, Ebbels, Timothy M D
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. Availability and implementation:  http://www1.imperial.ac.uk/medicine/people/t.ebbels/ Contact:  t.ebbels@imperial.ac.uk
AbstractList Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. Availability and implementation:  http://www1.imperial.ac.uk/medicine/people/t.ebbels/ Contact:  t.ebbels@imperial.ac.uk
Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.Results: We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.Availability and implementation: http://www1.imperial.ac.uk/medicine/people/t.ebbels/Contact: t.ebbelsmperial.ac.uk
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.MOTIVATIONNuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models.We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.RESULTSWe present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists.http://www1.imperial.ac.uk/medicine/people/t.ebbels/AVAILABILITY AND IMPLEMENTATIONhttp://www1.imperial.ac.uk/medicine/people/t.ebbels/t.ebbels@imperial.ac.uk.CONTACTt.ebbels@imperial.ac.uk.
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.
Author Hao, Jie
De Iorio, Maria
Astle, William
Ebbels, Timothy M D
Author_xml – sequence: 1
  givenname: Jie
  surname: Hao
  fullname: Hao, Jie
– sequence: 2
  givenname: William
  surname: Astle
  fullname: Astle, William
– sequence: 3
  givenname: Maria
  surname: De Iorio
  fullname: De Iorio, Maria
– sequence: 4
  givenname: Timothy M D
  surname: Ebbels
  fullname: Ebbels, Timothy M D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26131736$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22635605$$D View this record in MEDLINE/PubMed
BookMark eNqFkr1uFDEUhS0URH7gEUBukGiW2OOxPSuqTUQAKYCEQj269lwvhhl7Y3uKdBQ8Qp6QJ8FhlyBotvItvnOO7XuOyUGIAQl5ytlLzpbi1Pjog4tpguJtPjUlC9Y9IEdcKL1oO84P7mcmDslxzl8ZY5JJ9YgcNo0SUjF5RH6cra7erz78_H4LgX6iG7DfYI20GtPyBSnMJdYEHOj1DKF4523Ni4FGRycsYOLoC2bqUpxomO2IkOgE64D1VjRhjgGCRZo3aEsCOmcf1hToGdxg9jVyigOOj8lDB2PGJ7vzhHy-eH11_nZx-fHNu_PV5cJK3pUF2g7QGcMbh0a2DFuJna7PVo1yZpBmWIIGFLZxzhnRIXSthaZOnUDLhTghL7a-mxSvZ8yln3y2OI4QMM6550pzybUWej_aipY1qlny_ShrtNJLJu9cn-3Q2Uw49JvkJ0g3_Z99VOD5DoBsYXSp_p7PfznFBddCVU5uOZtizgndPcJZf9eP_t9-9Nt-VN2r_3TWl98brdvx4x71L-DIy3o
CitedBy_id crossref_primary_10_1016_j_jmr_2018_11_010
crossref_primary_10_3390_metabo13050614
crossref_primary_10_1007_s11101_024_10028_y
crossref_primary_10_1007_s11306_015_0812_9
crossref_primary_10_1016_j_trac_2013_03_009
crossref_primary_10_1214_20_BA1208
crossref_primary_10_1021_acs_analchem_7b02795
crossref_primary_10_1021_acs_jpca_4c05056
crossref_primary_10_7717_peerj_cs_232
crossref_primary_10_1093_bioinformatics_btad593
crossref_primary_10_1080_10408347_2024_2375314
crossref_primary_10_1016_j_pnmrs_2017_05_001
crossref_primary_10_1016_j_lfs_2023_122137
crossref_primary_10_1007_s11222_020_09924_y
crossref_primary_10_1093_bioinformatics_btz248
crossref_primary_10_3390_metabo11050285
crossref_primary_10_1007_s11306_017_1273_0
crossref_primary_10_1021_acs_jafc_5b05878
crossref_primary_10_1038_s41598_019_56809_w
crossref_primary_10_1016_j_pnmrs_2017_11_003
crossref_primary_10_1586_14737159_2015_974562
crossref_primary_10_1021_acs_analchem_4c05104
crossref_primary_10_1007_s00216_013_6852_y
crossref_primary_10_1016_j_aquaculture_2022_738028
crossref_primary_10_1007_s11306_018_1319_y
crossref_primary_10_1007_s00216_014_8225_6
crossref_primary_10_1007_s11306_017_1244_5
crossref_primary_10_1029_2023JG007768
crossref_primary_10_1021_acs_analchem_4c00563
crossref_primary_10_3390_metabo11070452
crossref_primary_10_1021_acs_analchem_4c01532
crossref_primary_10_4155_bio_2016_0090
crossref_primary_10_1016_j_pnmrs_2014_09_001
crossref_primary_10_1111_1749_4877_12326
crossref_primary_10_3945_an_115_009928
crossref_primary_10_1093_bib_bbv042
crossref_primary_10_1007_s11306_017_1286_8
crossref_primary_10_3390_molecules25215128
crossref_primary_10_3390_metabo12030227
crossref_primary_10_1007_s11306_016_1101_y
crossref_primary_10_1111_1541_4337_12700
crossref_primary_10_1097_CCM_0000000000000982
crossref_primary_10_1038_s41596_021_00579_1
crossref_primary_10_1093_bioinformatics_btaa022
crossref_primary_10_1002_cpps_98
crossref_primary_10_1017_S0029665116002974
crossref_primary_10_1021_ac400237w
crossref_primary_10_1080_01621459_2012_695661
crossref_primary_10_1098_rsob_200092
crossref_primary_10_1007_s11306_013_0503_3
crossref_primary_10_1038_s41598_018_30351_7
crossref_primary_10_3390_metabo11070460
crossref_primary_10_1016_j_aca_2017_04_013
crossref_primary_10_1016_j_aca_2018_02_045
crossref_primary_10_1007_s11101_024_10048_8
crossref_primary_10_1371_journal_pone_0073076
crossref_primary_10_1080_17460441_2022_2113774
crossref_primary_10_1146_annurev_food_030212_182612
crossref_primary_10_1016_j_crmeth_2023_100643
crossref_primary_10_1186_1475_2859_12_69
crossref_primary_10_1016_j_aca_2017_02_010
crossref_primary_10_1038_s41598_018_20121_w
crossref_primary_10_1021_acs_analchem_8b01196
crossref_primary_10_1002_mrc_5371
crossref_primary_10_1039_c2mb25167a
crossref_primary_10_1016_j_aca_2018_07_070
crossref_primary_10_1016_j_cofs_2015_06_008
crossref_primary_10_1021_ac500161k
crossref_primary_10_2217_ijr_14_25
crossref_primary_10_1007_s11306_023_02073_z
crossref_primary_10_1007_s11306_021_01772_9
crossref_primary_10_3389_fmolb_2021_698337
crossref_primary_10_3389_fbioe_2015_00023
crossref_primary_10_1021_acs_jproteome_5b00885
crossref_primary_10_1371_journal_pone_0124219
crossref_primary_10_2478_ebtj_2018_0012
crossref_primary_10_1074_jbc_M112_442814
crossref_primary_10_1002_jms_3782
crossref_primary_10_1021_acs_analchem_7b03795
crossref_primary_10_3390_metabo12080679
crossref_primary_10_1007_s11306_015_0810_y
crossref_primary_10_1007_s00216_020_02693_7
crossref_primary_10_1021_acs_analchem_5b02311
crossref_primary_10_1021_acs_jnatprod_6b00923
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1021_acs_analchem_9b01235
crossref_primary_10_1371_journal_pcbi_1006018
crossref_primary_10_1021_acs_analchem_3c03078
crossref_primary_10_1007_s11306_017_1242_7
crossref_primary_10_1038_nprot_2014_090
crossref_primary_10_1039_C7AN01019B
crossref_primary_10_3390_app12031235
crossref_primary_10_1021_ac4004776
crossref_primary_10_1021_acs_jproteome_9b00295
crossref_primary_10_1016_j_jmr_2018_11_004
crossref_primary_10_1021_acs_analchem_7b04148
crossref_primary_10_1038_s43586_021_00075_6
crossref_primary_10_1186_1471_2105_15_S1_S11
crossref_primary_10_1021_acs_jproteome_6b00814
crossref_primary_10_1021_acs_jproteome_7b00921
Cites_doi 10.1007/s10858-011-9480-x
10.1021/ac202123k
10.1021/ac060209g
10.1093/bioinformatics/btr118
10.1080/01621459.2012.695661
10.1093/nar/gkn810
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1093/bioinformatics/bts308
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Engineering Research Database
MEDLINE - Academic
MEDLINE
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 2090
ExternalDocumentID 22635605
26131736
10_1093_bioinformatics_bts308
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E020372/1
– fundername: Medical Research Council
  grantid: MC_UP_0801/1
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
CAG
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c518t-ec8aefbb12feb540e45e87308626fbd5bd9a7ae3c2fffb38ea84ca2b3883ec133
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 01:22:04 EDT 2025
Fri Jul 11 04:40:01 EDT 2025
Fri Jul 11 12:26:39 EDT 2025
Mon Jul 21 05:20:29 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Tue Jul 01 03:27:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Automation
Models
Nuclear magnetic resonance
Metabolite
Quantitative analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-ec8aefbb12feb540e45e87308626fbd5bd9a7ae3c2fffb38ea84ca2b3883ec133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/28/15/2088/648225/bts308.pdf
PMID 22635605
PQID 1027679057
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_1671517737
proquest_miscellaneous_1434026291
proquest_miscellaneous_1027679057
pubmed_primary_22635605
pascalfrancis_primary_26131736
crossref_primary_10_1093_bioinformatics_bts308
crossref_citationtrail_10_1093_bioinformatics_bts308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Weljie (2023012512541113400_B4) 2006; 78
Astle (2023012512541113400_B1) 2012
Mercier (2023012512541113400_B2) 2011; 49
Wishart (2023012512541113400_B5) 2009; 37
Zheng (2023012512541113400_B6) 2011; 27
Tredwell (2023012512541113400_B3) 2011; 83
References_xml – volume: 49
  start-page: 307
  year: 2011
  ident: 2023012512541113400_B2
  article-title: Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
  publication-title: J. Biomol. NMR.
  doi: 10.1007/s10858-011-9480-x
– volume: 83
  start-page: 8683
  year: 2011
  ident: 2023012512541113400_B3
  article-title: Between-Person comparison of metabolite fitting for NMR-based quantitative metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac202123k
– volume: 78
  start-page: 4430
  year: 2006
  ident: 2023012512541113400_B4
  article-title: Targeted profiling: quantitative analysis of1H NMR metabolomics data
  publication-title: Anal. Chem.
  doi: 10.1021/ac060209g
– volume: 27
  start-page: 1637
  year: 2011
  ident: 2023012512541113400_B6
  article-title: Identification and quantification of metabolites in1H NMR spectra by Bayesian model selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr118
– year: 2012
  ident: 2023012512541113400_B1
  article-title: A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.695661
– volume: 37
  start-page: D603
  year: 2009
  ident: 2023012512541113400_B5
  article-title: HMDB: a knowledgebase for the human metabolome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn810
SSID ssj0005056
ssj0051444
Score 2.4260147
Snippet Motivation: Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common...
Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2088
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Biological
Biological and medical sciences
Computational Biology - methods
Estimates
Fittings
Fundamental and applied biological sciences. Psychology
General aspects
Magnetic Resonance Spectroscopy - methods
Markov Chains
Mathematical models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Metabolites
Metabolomics - methods
Monte Carlo Method
Nuclear magnetic resonance
Software
Spectra
Title BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model
URI https://www.ncbi.nlm.nih.gov/pubmed/22635605
https://www.proquest.com/docview/1027679057
https://www.proquest.com/docview/1434026291
https://www.proquest.com/docview/1671517737
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBISQvxTfiYjcRdlS2MncS5bVNRN6yqNTupd5aT2NMHS0SYS44oLHoHX4iV4Eo5_4ibANuAmiqzYcXK-2OecfOcchF5LWPUE6cU-4zz3KajsPqcR9Rege1NCUp7qOO7xYTw6pvuzaNbpfG-wlqoy28k__zGu5H-kCm0gVxUl-w-SdYNCA5yDfOEIEobjX8l40J-O-4c1X4Eqb7wHNvB7xcOp6YO8KpeglYJe-bHihhnktMQzUQIGVBTy2sSZFCq7MV95Z_ykECa7s1LVdR5aFZK54l6lnQvcG_ALoQMwdS2d1r_h06VNx6pTQKt8pp9qCr2tGdLwP-zvDb1Rf-KA9256oAma1hHkFO2hdzA52pvY-KJTt5sMB4Oh5R8a2HnjHUtjts4MxQphTWfGJUGSjfWZqDTtLCDNBTxkTaBGzeU4MDUD7dYeBqY06W_bhkmplbVej2oo1yRgm52yZgf8soE6WiNYo6COkfgGuhmC1aKW3elktmEcBbqYsHuGOqAsJbvtW--aG7dUpTvnfA1frTTlVi63h7ReNL2H7lqDBvcNOu-jjigeoFumxOnFQ_TVYPTHl2-8wEfYohPDJDCgEzt04jY68VLiBjqxQie26MQ1OrFDJ7boxBqdmOManVij8xE6fjucvhn5tvKHn0c9VvoiZ1zILOuFUmRgUwgaCQZ7kTK_ZbaIskXKEy5IHkopM8IEZzTnIZwxIvIeIY_RVrEsxFOElYOD51EiaMDoIkqZFEkmuAwTmVAuRRfR-iXPc5sWX1Vn-TA39Awyb8tmbmTTRTuu27nJC3Ndh-2WBF2vGjRd9KoW6RyWePXfjhdiWa1h0DCJVSK95IprKKFBGIdp74pr4gT0-yQhMM4Tg5nNLFRSqjiInl03zefo9ubDfYG2ylUlXoJeXmbbGu0_AQL17iY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BATMAN%E2%80%94an+R+package+for+the+automated+quantification+of+metabolites+from+nuclear+magnetic+resonance+spectra+using+a+Bayesian+model&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=JIE+HAO&rft.au=ASTLE%2C+William&rft.au=DE+LORIO%2C+Maria&rft.au=EBBELS%2C+Timothy+M.+D&rft.date=2012-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.volume=28&rft.issue=15&rft.spage=2088&rft.epage=2090&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbts308&rft.externalDBID=n%2Fa&rft.externalDocID=26131736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon