Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte
The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5363 - 12 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO
2
metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm
2
and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm
2
in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO
2
solid-acid catalyst under ultra-low overpotentials, which enables W/WO
2
catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.
The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction. |
---|---|
AbstractList | The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO
2
metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm
2
and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm
2
in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO
2
solid-acid catalyst under ultra-low overpotentials, which enables W/WO
2
catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. Abstract The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction. The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO 2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm 2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm 2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO 2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO 2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction. |
ArticleNumber | 5363 |
Author | Hou, Shuang Li, Yifan Chen, Zhigang Yang, Guang Gong, Wenbin Gao, Rui Fan, Xiyue Zhu, Chengfeng Wang, Juan Cui, Yi |
Author_xml | – sequence: 1 givenname: Zhigang orcidid: 0009-0001-9064-3653 surname: Chen fullname: Chen, Zhigang organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, School of Materials Science and Engineering, Chongqing University of Technology – sequence: 2 givenname: Wenbin surname: Gong fullname: Gong, Wenbin organization: School of Physics and Energy, Xuzhou University of Technology, Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology – sequence: 3 givenname: Juan surname: Wang fullname: Wang, Juan organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 4 givenname: Shuang surname: Hou fullname: Hou, Shuang organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences – sequence: 5 givenname: Guang surname: Yang fullname: Yang, Guang organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences – sequence: 6 givenname: Chengfeng surname: Zhu fullname: Zhu, Chengfeng organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences – sequence: 7 givenname: Xiyue surname: Fan fullname: Fan, Xiyue organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences – sequence: 8 givenname: Yifan surname: Li fullname: Li, Yifan organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences – sequence: 9 givenname: Rui surname: Gao fullname: Gao, Rui organization: Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo – sequence: 10 givenname: Yi orcidid: 0000-0002-9182-9038 surname: Cui fullname: Cui, Yi email: ycui2015@sinano.ac.cn organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences |
BookMark | eNp9kj1vFDEQhlcoiIQjf4BqJRqaJf7-qBCKAkQKSgNKhaxZ7-zFh28d7L1E9-9x7oIgKeLGI8_7Ph6P53VzMKUJm-YtJR8o4eakCCqU7gjjnaDE6u7uRXPEiKAd1Ywf_BcfNselrEhd3FIjxKvmkGulCJXqqPn5DWeIMfj26uTqkrUlxTB04MPQeqiZbZnbPqUyl_Z6O-S0xKnF2xQ3c0hTmxH8LghTC_EXxDBhixH9nFPczvimeTlCLHj8sC-aH5_Pvp9-7S4uv5yffrrovKRm7tAQIi0y2TOQloy6t6OUA_KB9nJEPnrwgwZrtAI9agCve-NHqwCtGTnwRXO-5w4JVu4mhzXkrUsQ3O4g5aWDPAcf0YGypqeScY8gFLPGaik5BzGMEhjByvq4Z91s-jUOHqc5Q3wEfZyZwrVbpltHidCSKFMJ7x8IOf3eYJndOhSPMcKEaVMcM4oIIqRWVfruiXSVNnmqvaoqaa3ltP7wojF7lc-plIyj82GG-8bXAkKsN7v7mXD7mXDV4XYz4e6qlT2x_n3Isya-N5UqnpaY_1X1jOsPOk_MKw |
CitedBy_id | crossref_primary_10_1002_adma_202405386 crossref_primary_10_1016_j_cej_2024_149987 crossref_primary_10_1002_adma_202414138 crossref_primary_10_1007_s40843_024_3190_7 crossref_primary_10_1016_j_apsusc_2024_159540 crossref_primary_10_1021_acsanm_5c00408 crossref_primary_10_1016_j_apsusc_2024_161466 crossref_primary_10_1002_aenm_202402825 crossref_primary_10_1016_j_cej_2024_157378 crossref_primary_10_1016_j_jcis_2024_01_142 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1016_j_apcatb_2024_123912 crossref_primary_10_1002_chem_202403043 crossref_primary_10_1021_acsami_4c14140 crossref_primary_10_1016_j_apsusc_2024_159536 crossref_primary_10_1016_j_apsusc_2024_160667 crossref_primary_10_1016_j_colsurfa_2025_136117 crossref_primary_10_1002_adfm_202419328 crossref_primary_10_1016_j_ijhydene_2024_12_061 crossref_primary_10_1016_j_jechem_2024_03_057 crossref_primary_10_1088_1674_1056_ad8074 crossref_primary_10_1016_j_jcis_2025_137400 crossref_primary_10_1016_j_ijrmhm_2025_107122 crossref_primary_10_1016_j_cej_2024_159131 crossref_primary_10_1016_j_elecom_2025_107890 crossref_primary_10_1039_D4EY00252K crossref_primary_10_1002_smll_202402421 crossref_primary_10_1002_adfm_202409324 crossref_primary_10_1039_D4TA02110J crossref_primary_10_1073_pnas_2405846121 crossref_primary_10_1016_j_jallcom_2024_177371 crossref_primary_10_1002_smtd_202400572 crossref_primary_10_1038_s41467_024_50117_2 crossref_primary_10_1002_anie_202411721 crossref_primary_10_1002_pssa_202300555 crossref_primary_10_1016_j_ijhydene_2024_02_032 crossref_primary_10_1016_j_jpowsour_2024_235321 crossref_primary_10_1002_adma_202417516 crossref_primary_10_1016_j_apcatb_2024_124857 crossref_primary_10_1021_acsami_3c17535 crossref_primary_10_1021_acsami_3c15117 crossref_primary_10_1038_s41467_025_55854_6 crossref_primary_10_1002_smll_202503294 crossref_primary_10_1016_j_nanoen_2024_109613 crossref_primary_10_1021_acsnano_4c13743 crossref_primary_10_1016_j_ijhydene_2025_03_129 crossref_primary_10_1016_j_ensm_2023_103093 crossref_primary_10_1002_adfm_202401452 crossref_primary_10_1039_D4CC00265B crossref_primary_10_1016_j_seppur_2024_128909 crossref_primary_10_1039_D4CY01449A crossref_primary_10_1002_ange_202315633 crossref_primary_10_1002_adfm_202400767 crossref_primary_10_1016_j_jallcom_2024_175549 crossref_primary_10_1016_j_jcis_2024_10_158 crossref_primary_10_1021_jacs_4c11234 crossref_primary_10_1039_D4TA06958G crossref_primary_10_1016_j_cej_2024_155833 crossref_primary_10_1016_j_jallcom_2024_173888 crossref_primary_10_1016_j_jallcom_2024_177725 crossref_primary_10_1016_j_nanoen_2025_110707 crossref_primary_10_1038_s41467_024_52825_1 crossref_primary_10_1039_D4CC04767B crossref_primary_10_1016_j_jechem_2025_01_073 crossref_primary_10_1016_j_diamond_2024_111349 crossref_primary_10_1002_smll_202311667 crossref_primary_10_1039_D4QI02128B crossref_primary_10_1038_s41467_024_51034_0 crossref_primary_10_1016_j_seppur_2024_130531 crossref_primary_10_1039_D4EE04867A crossref_primary_10_1002_ange_202411721 crossref_primary_10_1002_smll_202407339 crossref_primary_10_1021_jacs_4c08100 crossref_primary_10_1021_acscatal_4c05602 crossref_primary_10_1002_ece2_63 crossref_primary_10_1039_D4CS00370E crossref_primary_10_1002_smll_202411790 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_jechem_2024_07_035 crossref_primary_10_1016_j_cej_2025_161683 crossref_primary_10_1039_D4TA07747D crossref_primary_10_1016_j_apsusc_2024_159605 crossref_primary_10_1016_j_ssc_2024_115807 crossref_primary_10_1002_ange_202400888 crossref_primary_10_1002_smll_202411061 crossref_primary_10_1021_acs_langmuir_4c03248 crossref_primary_10_1016_j_cej_2024_157271 crossref_primary_10_1002_smll_202407881 crossref_primary_10_1039_D4EE05356G crossref_primary_10_1016_j_cej_2024_152820 crossref_primary_10_1016_j_ijhydene_2024_04_174 crossref_primary_10_1021_acs_inorgchem_4c03822 crossref_primary_10_1021_acscatal_4c01173 crossref_primary_10_1016_j_apcatb_2024_124269 crossref_primary_10_1016_j_cej_2024_149486 crossref_primary_10_1007_s12598_024_02806_6 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1002_anie_202315633 crossref_primary_10_1016_j_apcatb_2024_124929 crossref_primary_10_1002_celc_202400154 crossref_primary_10_3390_catal14090608 crossref_primary_10_1149_2754_2734_ad10fa crossref_primary_10_1039_D4NR01472C crossref_primary_10_1002_adfm_202416678 crossref_primary_10_1039_D4EE03970J crossref_primary_10_1002_adfm_202500351 crossref_primary_10_1002_anie_202400888 crossref_primary_10_1016_j_jallcom_2025_178445 crossref_primary_10_1002_smtd_202301419 crossref_primary_10_1016_j_jechem_2024_11_017 |
Cites_doi | 10.3390/catal11060703 10.1002/adma.201900699 10.1126/science.1211934 10.1039/C9TA03051D 10.1016/j.apsusc.2015.10.067 10.1016/j.solmat.2019.110337 10.1002/adma.202108133 10.1016/j.nanoen.2019.104335 10.1038/s41563-021-01006-2 10.1016/j.nanoen.2019.03.045 10.1038/s41929-022-00745-y 10.1016/j.nanoen.2020.105636 10.1126/sciadv.abd6647 10.1038/s41560-018-0296-8 10.1002/adma.202202743 10.1021/acs.nanolett.7b04430 10.1002/anie.202014411 10.1016/j.electacta.2019.02.088 10.1021/acscatal.0c03831 10.1039/C7CY01850A 10.1002/anie.201813481 10.1038/nmat1752 10.1021/acsaem.9b01965 10.1021/jacs.5b01330 10.1038/nchem.1014 10.1002/adma.202007100 10.1021/acs.chemrev.9b00248 10.1002/adma.201705979 10.1002/adma.201605838 10.1039/D0EE02485F 10.1002/anie.201908122 10.1107/S0021889811038970 10.1016/j.nanoen.2020.104455 10.1016/j.jpowsour.2005.09.007 10.1002/anie.202007221 10.1002/aenm.202103301 10.1039/C8TC00573G 10.1039/C9EE01647C 10.1016/j.diamond.2006.04.002 10.1021/jacs.6b04629 10.1063/1.3202402 10.1016/j.mtnano.2019.100038 10.1039/D1EE01395E 10.1002/advs.202106029 10.1039/C9EE00752K 10.1039/C9CY02240F 10.1002/anie.201906109 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-41097-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_a698b1523cea46298975533a4df5a20e PMC10475068 10_1038_s41467_023_41097_w |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22172190 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 22172190 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-e80059e25b2a590f7b9f55de3d1b5fe3fcacd7a9876a7f7aac7b8cf96ae98f3a3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:51 EDT 2025 Thu Aug 21 18:36:48 EDT 2025 Thu Jul 10 22:51:07 EDT 2025 Wed Aug 13 06:04:28 EDT 2025 Tue Jul 01 02:10:33 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-e80059e25b2a590f7b9f55de3d1b5fe3fcacd7a9876a7f7aac7b8cf96ae98f3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9182-9038 0009-0001-9064-3653 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41097-w |
PMID | 37660156 |
PQID | 2859993102 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a698b1523cea46298975533a4df5a20e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10475068 proquest_miscellaneous_2860404576 proquest_journals_2859993102 crossref_citationtrail_10_1038_s41467_023_41097_w crossref_primary_10_1038_s41467_023_41097_w springer_journals_10_1038_s41467_023_41097_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-02 |
PublicationDateYYYYMMDD | 2023-09-02 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chen (CR11) 2019; 60 Chen (CR53) 2021; 81 Greeley (CR22) 2006; 5 Yubero (CR48) 2009; 95 Pan (CR16) 2020; 207 Li (CR20) 2021; 20 Wu (CR12) 2015; 137 Mehdad (CR27) 2018; 8 Fu (CR26) 2022; 5 Li (CR40) 2022; 34 Rasmussen (CR24) 2020; 10 Can (CR17) 2021; 11 Zhu (CR6) 2020; 120 Yuan (CR42) 2020; 10 Wang (CR51) 2022; 13 Zhu (CR9) 2020; 13 Lu (CR31) 2019; 31 Zhang (CR34) 2016; 138 Ren (CR49) 2016; 388 Li (CR36) 2019; 12 Chen (CR30) 2022; 13 Li (CR13) 2015; 6 Qian (CR45) 2019; 7 Rico (CR47) 2006; 16 Alexandria (CR39) 2020; 3 Zheng (CR15) 2017; 17 Wei (CR32) 2020; 59 Damian (CR37) 2006; 158 Chen (CR35) 2020; 68 Wang (CR28) 2022; 9 Yan (CR46) 2019; 10 Momma (CR54) 2011; 44 Dinh (CR8) 2019; 4 Park (CR25) 2019; 58 Yu (CR2) 2021; 33 Subbaraman (CR7) 2011; 334 Luo (CR3) 2022; 34 Chen (CR18) 2022; 13 Li (CR52) 2019; 58 Tan (CR21) 2022; 13 Jing (CR14) 2018; 30 Minamimoto (CR44) 2019; 304 Zhang (CR50) 2017; 7 Ma (CR41) 2020; 69 Jiang (CR23) 2021; 60 Wang (CR4) 2017; 29 Zhang (CR1) 2017; 8 Chen (CR38) 2021; 14 Liu (CR19) 2022; 12 Zhang (CR5) 2019; 12 Goya (CR10) 2011; 3 Wang (CR33) 2019; 58 He (CR29) 2018; 6 Zeng (CR43) 2019; 6 KC Qian (41097_CR45) 2019; 7 YT Luo (41097_CR3) 2022; 34 H Tan (41097_CR21) 2022; 13 P Goya (41097_CR10) 2011; 3 VJ Rico (41097_CR47) 2006; 16 JD Chen (41097_CR18) 2022; 13 JY Park (41097_CR25) 2019; 58 K Momma (41097_CR54) 2011; 44 ZG Chen (41097_CR11) 2019; 60 TT Zheng (41097_CR15) 2017; 17 J Zhang (41097_CR1) 2017; 8 ZG Chen (41097_CR35) 2020; 68 R Subbaraman (41097_CR7) 2011; 334 Z Ma (41097_CR41) 2020; 69 JY Fu (41097_CR26) 2022; 5 LP Yuan (41097_CR42) 2020; 10 J Wang (41097_CR4) 2017; 29 YS Wei (41097_CR32) 2020; 59 JQ Yan (41097_CR46) 2019; 10 ZY Yu (41097_CR2) 2021; 33 R Wu (41097_CR12) 2015; 137 L Zhang (41097_CR5) 2019; 12 J Greeley (41097_CR22) 2006; 5 JB Pan (41097_CR16) 2020; 207 ZG Chen (41097_CR30) 2022; 13 A Damian (41097_CR37) 2006; 158 J Zhu (41097_CR6) 2020; 120 XY Wang (41097_CR33) 2019; 58 JY Li (41097_CR36) 2019; 12 XL Jiang (41097_CR23) 2021; 60 ZC Li (41097_CR40) 2022; 34 CT Dinh (41097_CR8) 2019; 4 H Minamimoto (41097_CR44) 2019; 304 ZC Zhang (41097_CR50) 2017; 7 LW Chen (41097_CR53) 2021; 81 N Zhang (41097_CR34) 2016; 138 W Chen (41097_CR38) 2021; 14 GW Li (41097_CR52) 2019; 58 B Ren (41097_CR49) 2016; 388 A Mehdad (41097_CR27) 2018; 8 YH Li (41097_CR13) 2015; 6 F Can (41097_CR17) 2021; 11 YL Zhu (41097_CR9) 2020; 13 XF Lu (41097_CR31) 2019; 31 RC Alexandria (41097_CR39) 2020; 3 X Zeng (41097_CR43) 2019; 6 S Li (41097_CR20) 2021; 20 SY Jing (41097_CR14) 2018; 30 FH Wang (41097_CR28) 2022; 9 CY He (41097_CR29) 2018; 6 JC Liu (41097_CR19) 2022; 12 MJ Rasmussen (41097_CR24) 2020; 10 F Yubero (41097_CR48) 2009; 95 LQ Wang (41097_CR51) 2022; 13 |
References_xml | – volume: 58 start-page: 13107 year: 2019 end-page: 13112 ident: CR52 article-title: Dirac nodal arc semimetal PtSn : An ideal platform for understanding surface properties and catalysis publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 4110 year: 2021 end-page: 4116 ident: CR23 article-title: The heterostructure of Ru P/WO /NPC synergistically promotes H O dissociation for improved hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 16038 year: 2019 end-page: 16042 ident: CR25 article-title: Investigation of the support effect in atomically dispersed Pt on WO for utilization of Pt in the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: eabd6647 year: 2017 ident: CR50 article-title: Evoking ordered vacancies in metallic nanostructures toward a vacated barlow packing for high-performance hydrogen evolution publication-title: Sci. Adv. – volume: 31 start-page: 1900699 year: 2019 ident: CR31 article-title: Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction publication-title: Adv. Mater. – volume: 138 start-page: 8928 year: 2016 end-page: 8935 ident: CR34 article-title: Oxide defect engineering enables to couple solar energy into oxygen activation publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 1240 year: 2021 end-page: 1247 ident: CR20 article-title: Oxygen-evolving catalytic atoms on metal carbides publication-title: Nat. Mater. – volume: 95 start-page: 084101 year: 2009 ident: CR48 article-title: Identification of hydrogen and deuterium at the surface of water ice by reflection electron energy loss spectroscopy publication-title: Appl. Phys. Lett. – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: CR6 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. – volume: 3 start-page: 336 year: 2011 ident: CR10 article-title: W for tungsten and wolfram publication-title: Nat. Chem. – volume: 207 start-page: 110337 year: 2020 ident: CR16 article-title: A high-performance electrochromic device assembled with hexagonal WO and NiO/PB composite nanosheet electrodes towards energy storage smart window publication-title: Sol. Energy Mater. Sol. Cells – volume: 17 start-page: 7968 year: 2017 end-page: 7973 ident: CR15 article-title: Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution publication-title: Nano Lett. – volume: 5 start-page: 909 year: 2006 end-page: 913 ident: CR22 article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution publication-title: Nat. Mater. – volume: 158 start-page: 464 year: 2006 end-page: 476 ident: CR37 article-title: Ni and Ni Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix publication-title: J. Power Sources – volume: 10 start-page: 13227 year: 2020 end-page: 13235 ident: CR42 article-title: Molecularly engineered strong metal oxide-support interaction enables highly efficient and stable CO electroreduction publication-title: ACS Catal. – volume: 12 start-page: 2569 year: 2019 end-page: 2580 ident: CR5 article-title: Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis publication-title: Energy Environ. Sci. – volume: 34 start-page: 2202743 year: 2022 ident: CR40 article-title: Native Ligand carbonization renders common platinum nanoparticles highly durable for electrocatalytic oxygen reduction: annealing temperature matters publication-title: Adv. Mater. – volume: 16 start-page: 107 year: 2006 end-page: 111 ident: CR47 article-title: Determination of the hydrogen content in diamond-like carbon and polymeric thin films by reflection electron energy loss spectroscopy publication-title: Diam. Relat. Mater. – volume: 29 start-page: 1605838 year: 2017 ident: CR4 article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. – volume: 8 start-page: 358 year: 2018 end-page: 366 ident: CR27 article-title: Effect of steam and CO on ethane activation over Zn-ZSM-5 publication-title: Catal. Sci. Technol. – volume: 60 start-page: 394 year: 2019 end-page: 403 ident: CR11 article-title: Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity publication-title: Nano Energy – volume: 7 start-page: 14592 year: 2019 end-page: 14601 ident: CR45 article-title: Directional oxygen activation by oxygen-vacancy-rich WO nanorods for superb hydrogen evolution via formaldehyde reforming publication-title: J. Mater. Chem. A – volume: 68 start-page: 104335 year: 2020 ident: CR35 article-title: Eutectoid-structured WC/W C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials publication-title: Nano Energy – volume: 13 year: 2022 ident: CR21 article-title: Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction publication-title: Nat. Commun. – volume: 5 start-page: 144 year: 2022 end-page: 153 ident: CR26 article-title: Modulating the dynamics of Brønsted acid sites on PtWO inverse catalyst publication-title: Nat. Catal. – volume: 59 start-page: 16013 year: 2020 end-page: 16022 ident: CR32 article-title: Fabricating dual-atom Iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach publication-title: Angew. Chem. Int. Ed. – volume: 69 start-page: 104455 year: 2020 ident: CR41 article-title: NbO nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst publication-title: Nano Energy – volume: 44 start-page: 1272 year: 2011 end-page: 1276 ident: CR54 article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. – volume: 34 start-page: 2108133 year: 2022 ident: CR3 article-title: Recent advances in design of electrocatalysts for high-current-density water splitting publication-title: Adv. Mater. – volume: 6 start-page: 3200 year: 2018 end-page: 3205 ident: CR29 article-title: A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams publication-title: J. Mater. Chem. C – volume: 13 year: 2022 ident: CR30 article-title: Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction publication-title: Nat. Commun. – volume: 13 year: 2022 ident: CR18 article-title: Reversible hydrogen spillover in Ru-WO enhances hydrogen evolution activity in neutral pH water splitting publication-title: Nat. Commun. – volume: 12 start-page: 2298 year: 2019 end-page: 2304 ident: CR36 article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover publication-title: Energy Environ. Sci. – volume: 8 year: 2017 ident: CR1 article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. – volume: 58 start-page: 1 year: 2019 end-page: 7 ident: CR33 article-title: Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co O /La Sr CoO publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 703 year: 2021 ident: CR17 article-title: Tungsten-based catalysts for environmental applications publication-title: Catalysts – volume: 6 start-page: 100038 year: 2019 ident: CR43 article-title: Mesoporous TiO nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction publication-title: Mater. Today Nano – volume: 6 year: 2015 ident: CR13 article-title: Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water publication-title: Nat. Commun. – volume: 33 start-page: 2007100 year: 2021 ident: CR2 article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects publication-title: Adv. Mater. – volume: 10 year: 2019 ident: CR46 article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation publication-title: Nat. Commun. – volume: 81 start-page: 105636 year: 2021 ident: CR53 article-title: Structurally ordered intermetallic Ir V electrocatalysts for alkaline hydrogen evolution reaction publication-title: Nano Energy – volume: 14 start-page: 6428 year: 2021 end-page: 6440 ident: CR38 article-title: Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting publication-title: Energy Environ. Sci. – volume: 30 start-page: 1705979 year: 2018 ident: CR14 article-title: Carbon-encapsulated WO hybrids as efficient catalysts for hydrogen evolution publication-title: Adv. Mater. – volume: 137 start-page: 6983 year: 2015 end-page: 6986 ident: CR12 article-title: Metallic WO -carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 414 year: 2020 end-page: 423 ident: CR24 article-title: Role of tungsten modifiers in bimetallic catalysts for enhanced hydrodeoxygenation activity and selectivity publication-title: Catal. Sci. Technol. – volume: 12 start-page: 2103301 year: 2022 ident: CR19 article-title: Optimizing hydrogen adsorption by d-d orbital modulation for efficient hydrogen evolution catalysis publication-title: Adv. Energy Mater. – volume: 13 start-page: 3361 year: 2020 end-page: 3392 ident: CR9 article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts publication-title: Energy Environ. Sci. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: CR7 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces publication-title: Science – volume: 388 start-page: 565 year: 2016 end-page: 570 ident: CR49 article-title: Thermal stability of hydrogenated diamond films in nitrogen ambience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy publication-title: Appl. Surf. Sci. – volume: 13 year: 2022 ident: CR51 article-title: Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction publication-title: Nat. Commun. – volume: 304 start-page: 87 year: 2019 end-page: 93 ident: CR44 article-title: In-situ observation of isotopic hydrogen evolution reactions using electrochemical mass spectroscopy to evaluate surface morphological effect publication-title: Electrochim. Acta – volume: 4 start-page: 107 year: 2019 end-page: 114 ident: CR8 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy – volume: 3 start-page: 66 year: 2020 end-page: 98 ident: CR39 article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 2106029 year: 2022 ident: CR28 article-title: Robust porous WC-based self-supported ceramic electrodes for high current density hydrogen evolution reaction publication-title: Adv. Sci. – volume: 11 start-page: 703 year: 2021 ident: 41097_CR17 publication-title: Catalysts doi: 10.3390/catal11060703 – volume: 31 start-page: 1900699 year: 2019 ident: 41097_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201900699 – volume: 334 start-page: 1256 year: 2011 ident: 41097_CR7 publication-title: Science doi: 10.1126/science.1211934 – volume: 7 start-page: 14592 year: 2019 ident: 41097_CR45 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03051D – volume: 388 start-page: 565 year: 2016 ident: 41097_CR49 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.10.067 – volume: 207 start-page: 110337 year: 2020 ident: 41097_CR16 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110337 – volume: 34 start-page: 2108133 year: 2022 ident: 41097_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202108133 – volume: 68 start-page: 104335 year: 2020 ident: 41097_CR35 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104335 – volume: 6 year: 2015 ident: 41097_CR13 publication-title: Nat. Commun. – volume: 20 start-page: 1240 year: 2021 ident: 41097_CR20 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01006-2 – volume: 60 start-page: 394 year: 2019 ident: 41097_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.045 – volume: 5 start-page: 144 year: 2022 ident: 41097_CR26 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00745-y – volume: 81 start-page: 105636 year: 2021 ident: 41097_CR53 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105636 – volume: 7 start-page: eabd6647 year: 2017 ident: 41097_CR50 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd6647 – volume: 4 start-page: 107 year: 2019 ident: 41097_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 34 start-page: 2202743 year: 2022 ident: 41097_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.202202743 – volume: 17 start-page: 7968 year: 2017 ident: 41097_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04430 – volume: 60 start-page: 4110 year: 2021 ident: 41097_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014411 – volume: 13 year: 2022 ident: 41097_CR30 publication-title: Nat. Commun. – volume: 304 start-page: 87 year: 2019 ident: 41097_CR44 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.02.088 – volume: 10 start-page: 13227 year: 2020 ident: 41097_CR42 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03831 – volume: 10 year: 2019 ident: 41097_CR46 publication-title: Nat. Commun. – volume: 8 start-page: 358 year: 2018 ident: 41097_CR27 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01850A – volume: 58 start-page: 1 year: 2019 ident: 41097_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813481 – volume: 5 start-page: 909 year: 2006 ident: 41097_CR22 publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 3 start-page: 66 year: 2020 ident: 41097_CR39 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01965 – volume: 137 start-page: 6983 year: 2015 ident: 41097_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01330 – volume: 3 start-page: 336 year: 2011 ident: 41097_CR10 publication-title: Nat. Chem. doi: 10.1038/nchem.1014 – volume: 33 start-page: 2007100 year: 2021 ident: 41097_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202007100 – volume: 120 start-page: 851 year: 2020 ident: 41097_CR6 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 8 year: 2017 ident: 41097_CR1 publication-title: Nat. Commun. – volume: 30 start-page: 1705979 year: 2018 ident: 41097_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201705979 – volume: 29 start-page: 1605838 year: 2017 ident: 41097_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201605838 – volume: 13 year: 2022 ident: 41097_CR21 publication-title: Nat. Commun. – volume: 13 start-page: 3361 year: 2020 ident: 41097_CR9 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02485F – volume: 58 start-page: 16038 year: 2019 ident: 41097_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908122 – volume: 44 start-page: 1272 year: 2011 ident: 41097_CR54 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 69 start-page: 104455 year: 2020 ident: 41097_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104455 – volume: 158 start-page: 464 year: 2006 ident: 41097_CR37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.007 – volume: 59 start-page: 16013 year: 2020 ident: 41097_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007221 – volume: 12 start-page: 2103301 year: 2022 ident: 41097_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103301 – volume: 6 start-page: 3200 year: 2018 ident: 41097_CR29 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00573G – volume: 12 start-page: 2569 year: 2019 ident: 41097_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01647C – volume: 16 start-page: 107 year: 2006 ident: 41097_CR47 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2006.04.002 – volume: 13 year: 2022 ident: 41097_CR18 publication-title: Nat. Commun. – volume: 138 start-page: 8928 year: 2016 ident: 41097_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04629 – volume: 95 start-page: 084101 year: 2009 ident: 41097_CR48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3202402 – volume: 13 year: 2022 ident: 41097_CR51 publication-title: Nat. Commun. – volume: 6 start-page: 100038 year: 2019 ident: 41097_CR43 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2019.100038 – volume: 14 start-page: 6428 year: 2021 ident: 41097_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01395E – volume: 9 start-page: 2106029 year: 2022 ident: 41097_CR28 publication-title: Adv. Sci. doi: 10.1002/advs.202106029 – volume: 12 start-page: 2298 year: 2019 ident: 41097_CR36 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00752K – volume: 10 start-page: 414 year: 2020 ident: 41097_CR24 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02240F – volume: 58 start-page: 13107 year: 2019 ident: 41097_CR52 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906109 |
SSID | ssj0000391844 |
Score | 2.6834757 |
Snippet | The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently... Abstract The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5363 |
SubjectTerms | 140/131 140/146 140/58 639/301/299/161/886 639/301/357/537 639/638/161/886 639/638/77/885 Acids Catalysts Density functional theory Electrochemistry Electrolytes Evolution First principles Heavy metals Heterostructures Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Hydrogen production multidisciplinary Nanoparticles Nanorods Nickel Noble metals Protons Science Science (multidisciplinary) Spectroscopy Spectrum analysis Tungsten |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEHwRf2J1kwi-abj9kbTJ4xTHEKYvju1Fwmlywi5eesfaOe5_70nae10H6ouvTUqTky85X3qS7zD21nlTy6JpBTa5FtLnUhjy5CKgUqho-pki3kY--VIfn8rP5-r8VqqveCZslAceDbeA2uiWnEzlEGQd9cIbRRQFpA8Kyhzj6ks-79ZmKq3BlaGti5xuyeSVXvQyrQnkooSMUVdxM_NESbB_xjLvnpG8EyhN_ufoEXs4EUd-ODb4MbuH3RN2f0wluXnKvp8g0ejV0vGzxdnXkhOkll6AW3qe_tBs-oEToe6Hnl9s_NWacMPx54Q7Tswx3W_gy47D6gdE7smnDDmrzYDP2OnRp28fj8WUOkE4VehBoI63SrFUbQnK5KFpTVDKY-WLVgWsggPnGzA0GNCEBsA1rXbB1IBGhwqq52yvW3f4gvGYiAw8SijBSwUBlKwd0cgCiZkA-IwVWzNaN-mKx_QWK5vi25W2o-ktmd4m09ubjL3bvXM5qmr8tfaHODq7mlEROz0gnNgJJ_ZfOMnY_nZs7TRNexvV-4igEcnK2JtdMU2wGDWBDtfXsU5NC52kfVnG9AwTswbNS7rlRZLqjkIYKq91xt5v4fP763_u8cv_0eNX7EEZ4R6jX-U-2xuurvGAGNTQvk6T5RehGxhh priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7A2DztxTggQS4VUuFC1F2RNbIdGrJKySVvtv2fG691qK9Fr7CjJPL947G8Ye2tdXcqsaoSvUi2kS6WoMZOL1ivlFbpfndFp5KPv5eGx_HaqTuOC2xi3VW5iYgjUbrC0Rj4jojXMpZgPP5z_FdQ1iqqrsYXGXXYvw0xDW7r0_Ot2jYXYz7WU8axMWujZKENkwEQlJNVexdVOPgq0_TtY8-ZOyRvl0pCF5o_Ywwgf-ce1vh-zO75_wu6vG0qunrJfRx7B9KKz_GR28iPnaFidE2A7x8M6zWqcOMLqcRr52cotB7Qe7i-j9XHEj-GUA-96Dos_QAiUxz45i9Xkn7Hj-Zefnw9FbKAgrMr0JLyms6U-V00Oqk7bqqlbpZwvXNao1hetBesqqFElULUVgK0abdu6BF_rtoDiOdvrh96_YJzakYHzEnJwUkELSpYWwWTmEZ8AuIRlGzEaG9nFqcnFwoQqd6HNWvQGRW-C6M1Vwt5t7zlfc2vcOvsTaWc7k3ixw4Vh-dtENzNQ1rpBSFJYD7IkdvlKIaAF6VoFeeoTdrDRrYnOOppr00rYm-0wuhnVTqD3wwXNKTHcSfw7S5jesYmdF9od6buzQNhNdBgqLXXC3m_M5_rp___il7e_7D57kJMhU3UrP2B70_LCv0KENDWvgxv8AyLgEIs priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEE8RKMhI3MBqHnbiHBdEVa1UOEDVXpA18YNGXWXRbkq1_56xN1mUCpC4xrbijGc8XzyebwDeGFuXIqsa7qpUcWFTwWvy5Nw7KZ0k86uzkI18-qk8ORPzC3mxB_mYCxMv7UdKy7hNj7fDjtYimjR5GC5C0JTf3IGDQNVOun0wm82_zHcnK4HzXAkxZMikhfrD4IkXimT9E4R5-37krSBp9D3HD-D-ABrZbDvNh7Dnukdwd1tGcvMYvp06gtCL1rDzo_PPOSN1ai1H01oWT2c2654RmF73a3a5sasl6QxzPwedY4QaY24DazuGiysMuJMN1XEWm949gbPjj18_nPChbAI3MlM9dypklLpcNjnKOvVVU3sprSts1kjvCm_Q2AprWgisfIVoqkYZX5foauULLJ7Cfrfs3DNgoQgZWicwRyskepSiNAQhM0eoBNEmkI1i1GbgFA-lLRY6xrYLpbei1yR6HUWvbxJ4uxvzY8uo8c_e78Pq7HoGNuz4YLn6rgft0FjWqiEgUhiHogyc8pUkGIvCeol56hI4HNdWDya61oG5j8AZAawEXu-aybhCxAQ7t7wOfUra5AT9kyWgJjoxmdC0pWsvI013IMGQaakSeDeqz--3__2Ln_9f9xdwLw-KHWJc-SHs96tr95JwUt-8GgzjF_4lECw priority: 102 providerName: Springer Nature |
Title | Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte |
URI | https://link.springer.com/article/10.1038/s41467-023-41097-w https://www.proquest.com/docview/2859993102 https://www.proquest.com/docview/2860404576 https://pubmed.ncbi.nlm.nih.gov/PMC10475068 https://doaj.org/article/a698b1523cea46298975533a4df5a20e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEJ8iMCpP4g3M8mHHzgNCXbVuqtSBgGp9QdHFdlhFlUKTMfrfc3bSok4D8ZJItpPY5zvfz77cHSEvtclSHsmCWRkqxk3IWYaanJVWCCtQ_LLIeSOPz9OzCR9NxXSHrNMddQSsb93auXxSk-X8za8fq3co8G9bl3F1VHMv7qh9GHcGVXa9S_ZRM0mX0WDcwX2_MicZbmicoTkOecSwQdL50dz-mi1d5UP6b-HQm39R3jCleg01vE_uddCS9lteeEB2bPWQ3GmTTa4ekS9ji2OczzS9OLp4H1NkuplhoGeG-jOcVd1QhNx1U9PLlVkukLOo_dlxJkVs6T0g6KyiMP8GDp3SLofOfNXYx2QyPPk8OGNdcgWmRaQaZpXzO7WxKGIQWVjKIiuFMDYxUSFKm5QatJGQ4XSBLCWAloXSZZaCzVSZQPKE7FWLyj4l1KUqA2M5xGC4gBIETzUCzcgidgEwAYnWZMx1F3ncJcCY594Cnqi8JX2OpM896fPrgLzaPPO9jbvxz9bHbnY2LV3MbF-wWH7NOxHMIc1UgXAl0RZ46iLPS4FgF7gpBcShDcjBem7zNR_mLr4fQjiEYQE53FSjCDq7ClR2ceXapLgUcty5BURt8cRWh7ZrqtmlD-btQmWIMFUBeb1mnz9f__uIn_1Hb56Tu7HjZmf-ig_IXrO8si8QQjVFj-zKqcSrGp72yH6_P_o0wvvxyfmHj1g6SAc9fzjR8_LzG5NfHpA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmBtHnbiHBDitWxpt1xatRdkJrZDV11lyyZllT_Fb2TsTbbaSvTWa-K8xt_MfPZkZgh5pU2e8igrmM1CybgJOcvRk7PSCmEFql8euWzk8X46OuTfjsXxBvnb58K43yp7m-gNtZlpt0c-cIXW0JeiP3x_9pu5rlEuutq30FjCYte2C1yy1e92PuP8vo7j4ZeDTyPWdRVgWkSyYVa6hEsbiyIGkYdlVuSlEMYmJipEaZNSgzYZ4Fo8hazMAHRWSF3mKdhclgkkeN8b5CZP0JO7zPTh19Wejqu2LjnvcnPCRA5q7i0ROkbGXayXLdb8n28TsMZtL_-ZeSk8673e8B6529FV-mGJr_tkw1YPyK1lA8v2IfkxtkjepxNNjwZH32OKQJ4YBnpiqN8XauuGIo2vm5qetGY-Q7RS-6dDO0W-6rMq6KSiMD0Fx3hp15dn2jb2ETm8FtE-JpvVrLJPCHXtz8BYDjEYLqAEwVON5DWyyIcATECiXoxKd9XMXVONqfJR9USqpegVil550atFQN6srjlb1vK4cvRHNzurka4Otz8wm_9SnVorSHNZIAVKtAWeumr2mUACDdyUAuLQBmS7n1vVGYdaXUA5IC9Xp1GtXawGKjs7d2NSNK8cV4MBkWuYWHuh9TPV5MQXCHflN0SYyoC87eFz8fT_f_HW1S_7gtweHYz31N7O_u5Tcid2oHaRtXibbDbzc_sM2VlTPPcqQcnP69bBf97QUBc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviE8RNsBI8ARW82EnzgNCjK3aGCsTYtpekLn4g1Wr0tFkVP3X-Os4p0mnTmJve03cJjn_7u5nn--OkNfa5CmPsoLZLJSMm5CzHD05c1YIK1D98shnIx8M090j_vlEnKyRv10ujD9W2dnExlCbifZ75H1faA19KfrDvmuPRRxuDz6c_2a-g5SPtHbtNBYQ2bfzGS7fqvd72zjXb-J4sPP90y5rOwwwLSJZMyt98qWNRRGDyEOXFbkTwtjERIVwNnEatMkA1-UpZC4D0FkhtctTsLl0CST4v7fIeuZXRT2yvrUzPPy23OHxtdcl522mTpjIfsUbu4RuknEf-WWzFW_YNA1YYbpXz2leCdY2PnBwn9xrySv9uEDbA7Jmy4fk9qKd5fwR-XFgkcqPR5oe94-_xhRhPTIM9MjQZpdoXtUUSX1VV_R0bqYTxC61f1rsU2SvTY4FHZUUxmfg-S9tu_SM57V9TI5uRLhPSK-clPYpob4ZGhjLIQbDBTgQPNVIZSOL7AjABCTqxKh0W9vct9gYqybGnki1EL1C0atG9GoWkLfL35wvKntcO3rLz85ypK_K3VyYTH-pVskVpLkskBAl2gJPfW37TCCdBm6cgDi0Adns5la1pqJSl8AOyKvlbVRyH7mB0k4u_JgUjS3HtWFA5AomVl5o9U45Om3KhftiHCJMZUDedfC5fPr_v_jZ9S_7ktxB_VNf9ob7G-Ru7DHtw2zxJunV0wv7HKlaXbxodYKSnzethv8A4CxVqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallic+W%2FWO2+solid-acid+catalyst+boosts+hydrogen+evolution+reaction+in+alkaline+electrolyte&rft.jtitle=Nature+communications&rft.au=Chen%2C+Zhigang&rft.au=Gong%2C+Wenbin&rft.au=Wang%2C+Juan&rft.au=Hou%2C+Shuang&rft.date=2023-09-02&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=5363&rft_id=info:doi/10.1038%2Fs41467-023-41097-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |