Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte

The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5363 - 12
Main Authors Chen, Zhigang, Gong, Wenbin, Wang, Juan, Hou, Shuang, Yang, Guang, Zhu, Chengfeng, Fan, Xiyue, Li, Yifan, Gao, Rui, Cui, Yi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO 2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm 2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm 2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO 2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO 2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction.
AbstractList The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO 2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm 2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm 2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO 2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO 2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.
The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of -35 mV at -10 mA/cm2 and a small Tafel slope (-34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of -10 and -50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.
Abstract The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.
The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte.The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction.
The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently accelerated by tuning the coverage and chemical environment of protons on catalyst surface. However, the cycling of active sites by proton transfer is largely dependent on the utilization of noble metal catalysts because of the appealing electronic interaction between noble metal atoms and protons. Herein, an all-non-noble W/WO 2 metallic heterostructure serving as an efficient solid-acid catalyst exhibits remarkable hydrogen evolution reaction performance with an ultra-low overpotential of −35 mV at −10 mA/cm 2 and a small Tafel slope (−34 mV/dec), as well as long-term durability of hydrogen production (>50 h) at current densities of −10 and −50 mA/cm 2 in alkaline electrolyte. Multiple in situ and ex situ spectroscopy characterizations combining with first-principle density functional theory calculations discover that a dynamic proton-concentrated surface can be constructed on W/WO 2 solid-acid catalyst under ultra-low overpotentials, which enables W/WO 2 catalyzing alkaline hydrogen production to follow a kinetically fast Volmer-Tafel pathway with two neighboring protons recombining into a hydrogen molecule. Our strategy of solid-acid catalyst and utilization of multiple spectroscopy characterizations may provide an interesting route for designing advanced all-non-noble catalytic system towards boosting hydrogen evolution reaction performance in alkaline electrolyte. The high cost and low abundance of noble metals largely restrict practical applications for electrochemical hydrogen production. Here, the authors prepare ultrasmall tungsten nanoparticles on metallic tungsten dioxide nanorods and demonstrate excellent activities for the alkaline hydrogen evolution reaction.
ArticleNumber 5363
Author Hou, Shuang
Li, Yifan
Chen, Zhigang
Yang, Guang
Gong, Wenbin
Gao, Rui
Fan, Xiyue
Zhu, Chengfeng
Wang, Juan
Cui, Yi
Author_xml – sequence: 1
  givenname: Zhigang
  orcidid: 0009-0001-9064-3653
  surname: Chen
  fullname: Chen, Zhigang
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, School of Materials Science and Engineering, Chongqing University of Technology
– sequence: 2
  givenname: Wenbin
  surname: Gong
  fullname: Gong, Wenbin
  organization: School of Physics and Energy, Xuzhou University of Technology, Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology
– sequence: 3
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 4
  givenname: Shuang
  surname: Hou
  fullname: Hou, Shuang
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 5
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 6
  givenname: Chengfeng
  surname: Zhu
  fullname: Zhu, Chengfeng
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 7
  givenname: Xiyue
  surname: Fan
  fullname: Fan, Xiyue
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 8
  givenname: Yifan
  surname: Li
  fullname: Li, Yifan
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
– sequence: 9
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  organization: Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo
– sequence: 10
  givenname: Yi
  orcidid: 0000-0002-9182-9038
  surname: Cui
  fullname: Cui, Yi
  email: ycui2015@sinano.ac.cn
  organization: i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
BookMark eNp9kj1vFDEQhlcoiIQjf4BqJRqaJf7-qBCKAkQKSgNKhaxZ7-zFh28d7L1E9-9x7oIgKeLGI8_7Ph6P53VzMKUJm-YtJR8o4eakCCqU7gjjnaDE6u7uRXPEiKAd1Ywf_BcfNselrEhd3FIjxKvmkGulCJXqqPn5DWeIMfj26uTqkrUlxTB04MPQeqiZbZnbPqUyl_Z6O-S0xKnF2xQ3c0hTmxH8LghTC_EXxDBhixH9nFPczvimeTlCLHj8sC-aH5_Pvp9-7S4uv5yffrrovKRm7tAQIi0y2TOQloy6t6OUA_KB9nJEPnrwgwZrtAI9agCve-NHqwCtGTnwRXO-5w4JVu4mhzXkrUsQ3O4g5aWDPAcf0YGypqeScY8gFLPGaik5BzGMEhjByvq4Z91s-jUOHqc5Q3wEfZyZwrVbpltHidCSKFMJ7x8IOf3eYJndOhSPMcKEaVMcM4oIIqRWVfruiXSVNnmqvaoqaa3ltP7wojF7lc-plIyj82GG-8bXAkKsN7v7mXD7mXDV4XYz4e6qlT2x_n3Isya-N5UqnpaY_1X1jOsPOk_MKw
CitedBy_id crossref_primary_10_1002_adma_202405386
crossref_primary_10_1016_j_cej_2024_149987
crossref_primary_10_1002_adma_202414138
crossref_primary_10_1007_s40843_024_3190_7
crossref_primary_10_1016_j_apsusc_2024_159540
crossref_primary_10_1021_acsanm_5c00408
crossref_primary_10_1016_j_apsusc_2024_161466
crossref_primary_10_1002_aenm_202402825
crossref_primary_10_1016_j_cej_2024_157378
crossref_primary_10_1016_j_jcis_2024_01_142
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1016_j_apcatb_2024_123912
crossref_primary_10_1002_chem_202403043
crossref_primary_10_1021_acsami_4c14140
crossref_primary_10_1016_j_apsusc_2024_159536
crossref_primary_10_1016_j_apsusc_2024_160667
crossref_primary_10_1016_j_colsurfa_2025_136117
crossref_primary_10_1002_adfm_202419328
crossref_primary_10_1016_j_ijhydene_2024_12_061
crossref_primary_10_1016_j_jechem_2024_03_057
crossref_primary_10_1088_1674_1056_ad8074
crossref_primary_10_1016_j_jcis_2025_137400
crossref_primary_10_1016_j_ijrmhm_2025_107122
crossref_primary_10_1016_j_cej_2024_159131
crossref_primary_10_1016_j_elecom_2025_107890
crossref_primary_10_1039_D4EY00252K
crossref_primary_10_1002_smll_202402421
crossref_primary_10_1002_adfm_202409324
crossref_primary_10_1039_D4TA02110J
crossref_primary_10_1073_pnas_2405846121
crossref_primary_10_1016_j_jallcom_2024_177371
crossref_primary_10_1002_smtd_202400572
crossref_primary_10_1038_s41467_024_50117_2
crossref_primary_10_1002_anie_202411721
crossref_primary_10_1002_pssa_202300555
crossref_primary_10_1016_j_ijhydene_2024_02_032
crossref_primary_10_1016_j_jpowsour_2024_235321
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1016_j_apcatb_2024_124857
crossref_primary_10_1021_acsami_3c17535
crossref_primary_10_1021_acsami_3c15117
crossref_primary_10_1038_s41467_025_55854_6
crossref_primary_10_1002_smll_202503294
crossref_primary_10_1016_j_nanoen_2024_109613
crossref_primary_10_1021_acsnano_4c13743
crossref_primary_10_1016_j_ijhydene_2025_03_129
crossref_primary_10_1016_j_ensm_2023_103093
crossref_primary_10_1002_adfm_202401452
crossref_primary_10_1039_D4CC00265B
crossref_primary_10_1016_j_seppur_2024_128909
crossref_primary_10_1039_D4CY01449A
crossref_primary_10_1002_ange_202315633
crossref_primary_10_1002_adfm_202400767
crossref_primary_10_1016_j_jallcom_2024_175549
crossref_primary_10_1016_j_jcis_2024_10_158
crossref_primary_10_1021_jacs_4c11234
crossref_primary_10_1039_D4TA06958G
crossref_primary_10_1016_j_cej_2024_155833
crossref_primary_10_1016_j_jallcom_2024_173888
crossref_primary_10_1016_j_jallcom_2024_177725
crossref_primary_10_1016_j_nanoen_2025_110707
crossref_primary_10_1038_s41467_024_52825_1
crossref_primary_10_1039_D4CC04767B
crossref_primary_10_1016_j_jechem_2025_01_073
crossref_primary_10_1016_j_diamond_2024_111349
crossref_primary_10_1002_smll_202311667
crossref_primary_10_1039_D4QI02128B
crossref_primary_10_1038_s41467_024_51034_0
crossref_primary_10_1016_j_seppur_2024_130531
crossref_primary_10_1039_D4EE04867A
crossref_primary_10_1002_ange_202411721
crossref_primary_10_1002_smll_202407339
crossref_primary_10_1021_jacs_4c08100
crossref_primary_10_1021_acscatal_4c05602
crossref_primary_10_1002_ece2_63
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1002_smll_202411790
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_jechem_2024_07_035
crossref_primary_10_1016_j_cej_2025_161683
crossref_primary_10_1039_D4TA07747D
crossref_primary_10_1016_j_apsusc_2024_159605
crossref_primary_10_1016_j_ssc_2024_115807
crossref_primary_10_1002_ange_202400888
crossref_primary_10_1002_smll_202411061
crossref_primary_10_1021_acs_langmuir_4c03248
crossref_primary_10_1016_j_cej_2024_157271
crossref_primary_10_1002_smll_202407881
crossref_primary_10_1039_D4EE05356G
crossref_primary_10_1016_j_cej_2024_152820
crossref_primary_10_1016_j_ijhydene_2024_04_174
crossref_primary_10_1021_acs_inorgchem_4c03822
crossref_primary_10_1021_acscatal_4c01173
crossref_primary_10_1016_j_apcatb_2024_124269
crossref_primary_10_1016_j_cej_2024_149486
crossref_primary_10_1007_s12598_024_02806_6
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1002_anie_202315633
crossref_primary_10_1016_j_apcatb_2024_124929
crossref_primary_10_1002_celc_202400154
crossref_primary_10_3390_catal14090608
crossref_primary_10_1149_2754_2734_ad10fa
crossref_primary_10_1039_D4NR01472C
crossref_primary_10_1002_adfm_202416678
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1002_adfm_202500351
crossref_primary_10_1002_anie_202400888
crossref_primary_10_1016_j_jallcom_2025_178445
crossref_primary_10_1002_smtd_202301419
crossref_primary_10_1016_j_jechem_2024_11_017
Cites_doi 10.3390/catal11060703
10.1002/adma.201900699
10.1126/science.1211934
10.1039/C9TA03051D
10.1016/j.apsusc.2015.10.067
10.1016/j.solmat.2019.110337
10.1002/adma.202108133
10.1016/j.nanoen.2019.104335
10.1038/s41563-021-01006-2
10.1016/j.nanoen.2019.03.045
10.1038/s41929-022-00745-y
10.1016/j.nanoen.2020.105636
10.1126/sciadv.abd6647
10.1038/s41560-018-0296-8
10.1002/adma.202202743
10.1021/acs.nanolett.7b04430
10.1002/anie.202014411
10.1016/j.electacta.2019.02.088
10.1021/acscatal.0c03831
10.1039/C7CY01850A
10.1002/anie.201813481
10.1038/nmat1752
10.1021/acsaem.9b01965
10.1021/jacs.5b01330
10.1038/nchem.1014
10.1002/adma.202007100
10.1021/acs.chemrev.9b00248
10.1002/adma.201705979
10.1002/adma.201605838
10.1039/D0EE02485F
10.1002/anie.201908122
10.1107/S0021889811038970
10.1016/j.nanoen.2020.104455
10.1016/j.jpowsour.2005.09.007
10.1002/anie.202007221
10.1002/aenm.202103301
10.1039/C8TC00573G
10.1039/C9EE01647C
10.1016/j.diamond.2006.04.002
10.1021/jacs.6b04629
10.1063/1.3202402
10.1016/j.mtnano.2019.100038
10.1039/D1EE01395E
10.1002/advs.202106029
10.1039/C9EE00752K
10.1039/C9CY02240F
10.1002/anie.201906109
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41097-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_a698b1523cea46298975533a4df5a20e
PMC10475068
10_1038_s41467_023_41097_w
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22172190
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 22172190
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-e80059e25b2a590f7b9f55de3d1b5fe3fcacd7a9876a7f7aac7b8cf96ae98f3a3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 18:36:48 EDT 2025
Thu Jul 10 22:51:07 EDT 2025
Wed Aug 13 06:04:28 EDT 2025
Tue Jul 01 02:10:33 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e80059e25b2a590f7b9f55de3d1b5fe3fcacd7a9876a7f7aac7b8cf96ae98f3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9182-9038
0009-0001-9064-3653
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41097-w
PMID 37660156
PQID 2859993102
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a698b1523cea46298975533a4df5a20e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10475068
proquest_miscellaneous_2860404576
proquest_journals_2859993102
crossref_citationtrail_10_1038_s41467_023_41097_w
crossref_primary_10_1038_s41467_023_41097_w
springer_journals_10_1038_s41467_023_41097_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chen (CR11) 2019; 60
Chen (CR53) 2021; 81
Greeley (CR22) 2006; 5
Yubero (CR48) 2009; 95
Pan (CR16) 2020; 207
Li (CR20) 2021; 20
Wu (CR12) 2015; 137
Mehdad (CR27) 2018; 8
Fu (CR26) 2022; 5
Li (CR40) 2022; 34
Rasmussen (CR24) 2020; 10
Can (CR17) 2021; 11
Zhu (CR6) 2020; 120
Yuan (CR42) 2020; 10
Wang (CR51) 2022; 13
Zhu (CR9) 2020; 13
Lu (CR31) 2019; 31
Zhang (CR34) 2016; 138
Ren (CR49) 2016; 388
Li (CR36) 2019; 12
Chen (CR30) 2022; 13
Li (CR13) 2015; 6
Qian (CR45) 2019; 7
Rico (CR47) 2006; 16
Alexandria (CR39) 2020; 3
Zheng (CR15) 2017; 17
Wei (CR32) 2020; 59
Damian (CR37) 2006; 158
Chen (CR35) 2020; 68
Wang (CR28) 2022; 9
Yan (CR46) 2019; 10
Momma (CR54) 2011; 44
Dinh (CR8) 2019; 4
Park (CR25) 2019; 58
Yu (CR2) 2021; 33
Subbaraman (CR7) 2011; 334
Luo (CR3) 2022; 34
Chen (CR18) 2022; 13
Li (CR52) 2019; 58
Tan (CR21) 2022; 13
Jing (CR14) 2018; 30
Minamimoto (CR44) 2019; 304
Zhang (CR50) 2017; 7
Ma (CR41) 2020; 69
Jiang (CR23) 2021; 60
Wang (CR4) 2017; 29
Zhang (CR1) 2017; 8
Chen (CR38) 2021; 14
Liu (CR19) 2022; 12
Zhang (CR5) 2019; 12
Goya (CR10) 2011; 3
Wang (CR33) 2019; 58
He (CR29) 2018; 6
Zeng (CR43) 2019; 6
KC Qian (41097_CR45) 2019; 7
YT Luo (41097_CR3) 2022; 34
H Tan (41097_CR21) 2022; 13
P Goya (41097_CR10) 2011; 3
VJ Rico (41097_CR47) 2006; 16
JD Chen (41097_CR18) 2022; 13
JY Park (41097_CR25) 2019; 58
K Momma (41097_CR54) 2011; 44
ZG Chen (41097_CR11) 2019; 60
TT Zheng (41097_CR15) 2017; 17
J Zhang (41097_CR1) 2017; 8
ZG Chen (41097_CR35) 2020; 68
R Subbaraman (41097_CR7) 2011; 334
Z Ma (41097_CR41) 2020; 69
JY Fu (41097_CR26) 2022; 5
LP Yuan (41097_CR42) 2020; 10
J Wang (41097_CR4) 2017; 29
YS Wei (41097_CR32) 2020; 59
JQ Yan (41097_CR46) 2019; 10
ZY Yu (41097_CR2) 2021; 33
R Wu (41097_CR12) 2015; 137
L Zhang (41097_CR5) 2019; 12
J Greeley (41097_CR22) 2006; 5
JB Pan (41097_CR16) 2020; 207
ZG Chen (41097_CR30) 2022; 13
A Damian (41097_CR37) 2006; 158
J Zhu (41097_CR6) 2020; 120
XY Wang (41097_CR33) 2019; 58
JY Li (41097_CR36) 2019; 12
XL Jiang (41097_CR23) 2021; 60
ZC Li (41097_CR40) 2022; 34
CT Dinh (41097_CR8) 2019; 4
H Minamimoto (41097_CR44) 2019; 304
ZC Zhang (41097_CR50) 2017; 7
LW Chen (41097_CR53) 2021; 81
N Zhang (41097_CR34) 2016; 138
W Chen (41097_CR38) 2021; 14
GW Li (41097_CR52) 2019; 58
B Ren (41097_CR49) 2016; 388
A Mehdad (41097_CR27) 2018; 8
YH Li (41097_CR13) 2015; 6
F Can (41097_CR17) 2021; 11
YL Zhu (41097_CR9) 2020; 13
XF Lu (41097_CR31) 2019; 31
RC Alexandria (41097_CR39) 2020; 3
X Zeng (41097_CR43) 2019; 6
S Li (41097_CR20) 2021; 20
SY Jing (41097_CR14) 2018; 30
FH Wang (41097_CR28) 2022; 9
CY He (41097_CR29) 2018; 6
JC Liu (41097_CR19) 2022; 12
MJ Rasmussen (41097_CR24) 2020; 10
F Yubero (41097_CR48) 2009; 95
LQ Wang (41097_CR51) 2022; 13
References_xml – volume: 58
  start-page: 13107
  year: 2019
  end-page: 13112
  ident: CR52
  article-title: Dirac nodal arc semimetal PtSn : An ideal platform for understanding surface properties and catalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 4110
  year: 2021
  end-page: 4116
  ident: CR23
  article-title: The heterostructure of Ru P/WO /NPC synergistically promotes H O dissociation for improved hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 16038
  year: 2019
  end-page: 16042
  ident: CR25
  article-title: Investigation of the support effect in atomically dispersed Pt on WO for utilization of Pt in the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: eabd6647
  year: 2017
  ident: CR50
  article-title: Evoking ordered vacancies in metallic nanostructures toward a vacated barlow packing for high-performance hydrogen evolution
  publication-title: Sci. Adv.
– volume: 31
  start-page: 1900699
  year: 2019
  ident: CR31
  article-title: Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 138
  start-page: 8928
  year: 2016
  end-page: 8935
  ident: CR34
  article-title: Oxide defect engineering enables to couple solar energy into oxygen activation
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1240
  year: 2021
  end-page: 1247
  ident: CR20
  article-title: Oxygen-evolving catalytic atoms on metal carbides
  publication-title: Nat. Mater.
– volume: 95
  start-page: 084101
  year: 2009
  ident: CR48
  article-title: Identification of hydrogen and deuterium at the surface of water ice by reflection electron energy loss spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: CR6
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem. Rev.
– volume: 3
  start-page: 336
  year: 2011
  ident: CR10
  article-title: W for tungsten and wolfram
  publication-title: Nat. Chem.
– volume: 207
  start-page: 110337
  year: 2020
  ident: CR16
  article-title: A high-performance electrochromic device assembled with hexagonal WO and NiO/PB composite nanosheet electrodes towards energy storage smart window
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 17
  start-page: 7968
  year: 2017
  end-page: 7973
  ident: CR15
  article-title: Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution
  publication-title: Nano Lett.
– volume: 5
  start-page: 909
  year: 2006
  end-page: 913
  ident: CR22
  article-title: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
  publication-title: Nat. Mater.
– volume: 158
  start-page: 464
  year: 2006
  end-page: 476
  ident: CR37
  article-title: Ni and Ni Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix
  publication-title: J. Power Sources
– volume: 10
  start-page: 13227
  year: 2020
  end-page: 13235
  ident: CR42
  article-title: Molecularly engineered strong metal oxide-support interaction enables highly efficient and stable CO electroreduction
  publication-title: ACS Catal.
– volume: 12
  start-page: 2569
  year: 2019
  end-page: 2580
  ident: CR5
  article-title: Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis
  publication-title: Energy Environ. Sci.
– volume: 34
  start-page: 2202743
  year: 2022
  ident: CR40
  article-title: Native Ligand carbonization renders common platinum nanoparticles highly durable for electrocatalytic oxygen reduction: annealing temperature matters
  publication-title: Adv. Mater.
– volume: 16
  start-page: 107
  year: 2006
  end-page: 111
  ident: CR47
  article-title: Determination of the hydrogen content in diamond-like carbon and polymeric thin films by reflection electron energy loss spectroscopy
  publication-title: Diam. Relat. Mater.
– volume: 29
  start-page: 1605838
  year: 2017
  ident: CR4
  article-title: Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
– volume: 8
  start-page: 358
  year: 2018
  end-page: 366
  ident: CR27
  article-title: Effect of steam and CO on ethane activation over Zn-ZSM-5
  publication-title: Catal. Sci. Technol.
– volume: 60
  start-page: 394
  year: 2019
  end-page: 403
  ident: CR11
  article-title: Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity
  publication-title: Nano Energy
– volume: 7
  start-page: 14592
  year: 2019
  end-page: 14601
  ident: CR45
  article-title: Directional oxygen activation by oxygen-vacancy-rich WO nanorods for superb hydrogen evolution via formaldehyde reforming
  publication-title: J. Mater. Chem. A
– volume: 68
  start-page: 104335
  year: 2020
  ident: CR35
  article-title: Eutectoid-structured WC/W C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials
  publication-title: Nano Energy
– volume: 13
  year: 2022
  ident: CR21
  article-title: Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 5
  start-page: 144
  year: 2022
  end-page: 153
  ident: CR26
  article-title: Modulating the dynamics of Brønsted acid sites on PtWO inverse catalyst
  publication-title: Nat. Catal.
– volume: 59
  start-page: 16013
  year: 2020
  end-page: 16022
  ident: CR32
  article-title: Fabricating dual-atom Iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach
  publication-title: Angew. Chem. Int. Ed.
– volume: 69
  start-page: 104455
  year: 2020
  ident: CR41
  article-title: NbO nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst
  publication-title: Nano Energy
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  ident: CR54
  article-title: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J.  Appl.  Crystallogr.
– volume: 34
  start-page: 2108133
  year: 2022
  ident: CR3
  article-title: Recent advances in design of electrocatalysts for high-current-density water splitting
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3200
  year: 2018
  end-page: 3205
  ident: CR29
  article-title: A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2022
  ident: CR30
  article-title: Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 13
  year: 2022
  ident: CR18
  article-title: Reversible hydrogen spillover in Ru-WO enhances hydrogen evolution activity in neutral pH water splitting
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2298
  year: 2019
  end-page: 2304
  ident: CR36
  article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2017
  ident: CR1
  article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
– volume: 58
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR33
  article-title: Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co O /La Sr CoO
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 703
  year: 2021
  ident: CR17
  article-title: Tungsten-based catalysts for environmental applications
  publication-title: Catalysts
– volume: 6
  start-page: 100038
  year: 2019
  ident: CR43
  article-title: Mesoporous TiO nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction
  publication-title: Mater. Today Nano
– volume: 6
  year: 2015
  ident: CR13
  article-title: Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water
  publication-title: Nat. Commun.
– volume: 33
  start-page: 2007100
  year: 2021
  ident: CR2
  article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects
  publication-title: Adv. Mater.
– volume: 10
  year: 2019
  ident: CR46
  article-title: Single atom tungsten doped ultrathin α-Ni(OH) for enhanced electrocatalytic water oxidation
  publication-title: Nat. Commun.
– volume: 81
  start-page: 105636
  year: 2021
  ident: CR53
  article-title: Structurally ordered intermetallic Ir V electrocatalysts for alkaline hydrogen evolution reaction
  publication-title: Nano Energy
– volume: 14
  start-page: 6428
  year: 2021
  end-page: 6440
  ident: CR38
  article-title: Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1705979
  year: 2018
  ident: CR14
  article-title: Carbon-encapsulated WO hybrids as efficient catalysts for hydrogen evolution
  publication-title: Adv. Mater.
– volume: 137
  start-page: 6983
  year: 2015
  end-page: 6986
  ident: CR12
  article-title: Metallic WO -carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 414
  year: 2020
  end-page: 423
  ident: CR24
  article-title: Role of tungsten modifiers in bimetallic catalysts for enhanced hydrodeoxygenation activity and selectivity
  publication-title: Catal. Sci. Technol.
– volume: 12
  start-page: 2103301
  year: 2022
  ident: CR19
  article-title: Optimizing hydrogen adsorption by d-d orbital modulation for efficient hydrogen evolution catalysis
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 3361
  year: 2020
  end-page: 3392
  ident: CR9
  article-title: Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts
  publication-title: Energy Environ. Sci.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: CR7
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces
  publication-title: Science
– volume: 388
  start-page: 565
  year: 2016
  end-page: 570
  ident: CR49
  article-title: Thermal stability of hydrogenated diamond films in nitrogen ambience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy
  publication-title: Appl. Surf. Sci.
– volume: 13
  year: 2022
  ident: CR51
  article-title: Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 304
  start-page: 87
  year: 2019
  end-page: 93
  ident: CR44
  article-title: In-situ observation of isotopic hydrogen evolution reactions using electrochemical mass spectroscopy to evaluate surface morphological effect
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 107
  year: 2019
  end-page: 114
  ident: CR8
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
– volume: 3
  start-page: 66
  year: 2020
  end-page: 98
  ident: CR39
  article-title: Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 2106029
  year: 2022
  ident: CR28
  article-title: Robust porous WC-based self-supported ceramic electrodes for high current density hydrogen evolution reaction
  publication-title: Adv. Sci.
– volume: 11
  start-page: 703
  year: 2021
  ident: 41097_CR17
  publication-title: Catalysts
  doi: 10.3390/catal11060703
– volume: 31
  start-page: 1900699
  year: 2019
  ident: 41097_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900699
– volume: 334
  start-page: 1256
  year: 2011
  ident: 41097_CR7
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 7
  start-page: 14592
  year: 2019
  ident: 41097_CR45
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03051D
– volume: 388
  start-page: 565
  year: 2016
  ident: 41097_CR49
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.10.067
– volume: 207
  start-page: 110337
  year: 2020
  ident: 41097_CR16
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110337
– volume: 34
  start-page: 2108133
  year: 2022
  ident: 41097_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108133
– volume: 68
  start-page: 104335
  year: 2020
  ident: 41097_CR35
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104335
– volume: 6
  year: 2015
  ident: 41097_CR13
  publication-title: Nat. Commun.
– volume: 20
  start-page: 1240
  year: 2021
  ident: 41097_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 60
  start-page: 394
  year: 2019
  ident: 41097_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.045
– volume: 5
  start-page: 144
  year: 2022
  ident: 41097_CR26
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00745-y
– volume: 81
  start-page: 105636
  year: 2021
  ident: 41097_CR53
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105636
– volume: 7
  start-page: eabd6647
  year: 2017
  ident: 41097_CR50
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd6647
– volume: 4
  start-page: 107
  year: 2019
  ident: 41097_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 34
  start-page: 2202743
  year: 2022
  ident: 41097_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202743
– volume: 17
  start-page: 7968
  year: 2017
  ident: 41097_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04430
– volume: 60
  start-page: 4110
  year: 2021
  ident: 41097_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014411
– volume: 13
  year: 2022
  ident: 41097_CR30
  publication-title: Nat. Commun.
– volume: 304
  start-page: 87
  year: 2019
  ident: 41097_CR44
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.02.088
– volume: 10
  start-page: 13227
  year: 2020
  ident: 41097_CR42
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03831
– volume: 10
  year: 2019
  ident: 41097_CR46
  publication-title: Nat. Commun.
– volume: 8
  start-page: 358
  year: 2018
  ident: 41097_CR27
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01850A
– volume: 58
  start-page: 1
  year: 2019
  ident: 41097_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813481
– volume: 5
  start-page: 909
  year: 2006
  ident: 41097_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 3
  start-page: 66
  year: 2020
  ident: 41097_CR39
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01965
– volume: 137
  start-page: 6983
  year: 2015
  ident: 41097_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01330
– volume: 3
  start-page: 336
  year: 2011
  ident: 41097_CR10
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1014
– volume: 33
  start-page: 2007100
  year: 2021
  ident: 41097_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007100
– volume: 120
  start-page: 851
  year: 2020
  ident: 41097_CR6
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 8
  year: 2017
  ident: 41097_CR1
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1705979
  year: 2018
  ident: 41097_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705979
– volume: 29
  start-page: 1605838
  year: 2017
  ident: 41097_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605838
– volume: 13
  year: 2022
  ident: 41097_CR21
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3361
  year: 2020
  ident: 41097_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02485F
– volume: 58
  start-page: 16038
  year: 2019
  ident: 41097_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908122
– volume: 44
  start-page: 1272
  year: 2011
  ident: 41097_CR54
  publication-title: J.  Appl.  Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 69
  start-page: 104455
  year: 2020
  ident: 41097_CR41
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104455
– volume: 158
  start-page: 464
  year: 2006
  ident: 41097_CR37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.09.007
– volume: 59
  start-page: 16013
  year: 2020
  ident: 41097_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007221
– volume: 12
  start-page: 2103301
  year: 2022
  ident: 41097_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103301
– volume: 6
  start-page: 3200
  year: 2018
  ident: 41097_CR29
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00573G
– volume: 12
  start-page: 2569
  year: 2019
  ident: 41097_CR5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01647C
– volume: 16
  start-page: 107
  year: 2006
  ident: 41097_CR47
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2006.04.002
– volume: 13
  year: 2022
  ident: 41097_CR18
  publication-title: Nat. Commun.
– volume: 138
  start-page: 8928
  year: 2016
  ident: 41097_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04629
– volume: 95
  start-page: 084101
  year: 2009
  ident: 41097_CR48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3202402
– volume: 13
  year: 2022
  ident: 41097_CR51
  publication-title: Nat. Commun.
– volume: 6
  start-page: 100038
  year: 2019
  ident: 41097_CR43
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2019.100038
– volume: 14
  start-page: 6428
  year: 2021
  ident: 41097_CR38
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01395E
– volume: 9
  start-page: 2106029
  year: 2022
  ident: 41097_CR28
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202106029
– volume: 12
  start-page: 2298
  year: 2019
  ident: 41097_CR36
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00752K
– volume: 10
  start-page: 414
  year: 2020
  ident: 41097_CR24
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02240F
– volume: 58
  start-page: 13107
  year: 2019
  ident: 41097_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906109
SSID ssj0000391844
Score 2.6834757
Snippet The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be efficiently...
Abstract The lack of available protons severely lowers the activity of alkaline hydrogen evolution reaction process than that in acids, which can be...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5363
SubjectTerms 140/131
140/146
140/58
639/301/299/161/886
639/301/357/537
639/638/161/886
639/638/77/885
Acids
Catalysts
Density functional theory
Electrochemistry
Electrolytes
Evolution
First principles
Heavy metals
Heterostructures
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Hydrogen production
multidisciplinary
Nanoparticles
Nanorods
Nickel
Noble metals
Protons
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Tungsten
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEHwRf2J1kwi-abj9kbTJ4xTHEKYvju1Fwmlywi5eesfaOe5_70nae10H6ouvTUqTky85X3qS7zD21nlTy6JpBTa5FtLnUhjy5CKgUqho-pki3kY--VIfn8rP5-r8VqqveCZslAceDbeA2uiWnEzlEGQd9cIbRRQFpA8Kyhzj6ks-79ZmKq3BlaGti5xuyeSVXvQyrQnkooSMUVdxM_NESbB_xjLvnpG8EyhN_ufoEXs4EUd-ODb4MbuH3RN2f0wluXnKvp8g0ejV0vGzxdnXkhOkll6AW3qe_tBs-oEToe6Hnl9s_NWacMPx54Q7Tswx3W_gy47D6gdE7smnDDmrzYDP2OnRp28fj8WUOkE4VehBoI63SrFUbQnK5KFpTVDKY-WLVgWsggPnGzA0GNCEBsA1rXbB1IBGhwqq52yvW3f4gvGYiAw8SijBSwUBlKwd0cgCiZkA-IwVWzNaN-mKx_QWK5vi25W2o-ktmd4m09ubjL3bvXM5qmr8tfaHODq7mlEROz0gnNgJJ_ZfOMnY_nZs7TRNexvV-4igEcnK2JtdMU2wGDWBDtfXsU5NC52kfVnG9AwTswbNS7rlRZLqjkIYKq91xt5v4fP763_u8cv_0eNX7EEZ4R6jX-U-2xuurvGAGNTQvk6T5RehGxhh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7A2DztxTggQS4VUuFC1F2RNbIdGrJKySVvtv2fG691qK9Fr7CjJPL947G8Ye2tdXcqsaoSvUi2kS6WoMZOL1ivlFbpfndFp5KPv5eGx_HaqTuOC2xi3VW5iYgjUbrC0Rj4jojXMpZgPP5z_FdQ1iqqrsYXGXXYvw0xDW7r0_Ot2jYXYz7WU8axMWujZKENkwEQlJNVexdVOPgq0_TtY8-ZOyRvl0pCF5o_Ywwgf-ce1vh-zO75_wu6vG0qunrJfRx7B9KKz_GR28iPnaFidE2A7x8M6zWqcOMLqcRr52cotB7Qe7i-j9XHEj-GUA-96Dos_QAiUxz45i9Xkn7Hj-Zefnw9FbKAgrMr0JLyms6U-V00Oqk7bqqlbpZwvXNao1hetBesqqFElULUVgK0abdu6BF_rtoDiOdvrh96_YJzakYHzEnJwUkELSpYWwWTmEZ8AuIRlGzEaG9nFqcnFwoQqd6HNWvQGRW-C6M1Vwt5t7zlfc2vcOvsTaWc7k3ixw4Vh-dtENzNQ1rpBSFJYD7IkdvlKIaAF6VoFeeoTdrDRrYnOOppr00rYm-0wuhnVTqD3wwXNKTHcSfw7S5jesYmdF9od6buzQNhNdBgqLXXC3m_M5_rp___il7e_7D57kJMhU3UrP2B70_LCv0KENDWvgxv8AyLgEIs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEE8RKMhI3MBqHnbiHBdEVa1UOEDVXpA18YNGXWXRbkq1_56xN1mUCpC4xrbijGc8XzyebwDeGFuXIqsa7qpUcWFTwWvy5Nw7KZ0k86uzkI18-qk8ORPzC3mxB_mYCxMv7UdKy7hNj7fDjtYimjR5GC5C0JTf3IGDQNVOun0wm82_zHcnK4HzXAkxZMikhfrD4IkXimT9E4R5-37krSBp9D3HD-D-ABrZbDvNh7Dnukdwd1tGcvMYvp06gtCL1rDzo_PPOSN1ai1H01oWT2c2654RmF73a3a5sasl6QxzPwedY4QaY24DazuGiysMuJMN1XEWm949gbPjj18_nPChbAI3MlM9dypklLpcNjnKOvVVU3sprSts1kjvCm_Q2AprWgisfIVoqkYZX5foauULLJ7Cfrfs3DNgoQgZWicwRyskepSiNAQhM0eoBNEmkI1i1GbgFA-lLRY6xrYLpbei1yR6HUWvbxJ4uxvzY8uo8c_e78Pq7HoGNuz4YLn6rgft0FjWqiEgUhiHogyc8pUkGIvCeol56hI4HNdWDya61oG5j8AZAawEXu-aybhCxAQ7t7wOfUra5AT9kyWgJjoxmdC0pWsvI013IMGQaakSeDeqz--3__2Ln_9f9xdwLw-KHWJc-SHs96tr95JwUt-8GgzjF_4lECw
  priority: 102
  providerName: Springer Nature
Title Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte
URI https://link.springer.com/article/10.1038/s41467-023-41097-w
https://www.proquest.com/docview/2859993102
https://www.proquest.com/docview/2860404576
https://pubmed.ncbi.nlm.nih.gov/PMC10475068
https://doaj.org/article/a698b1523cea46298975533a4df5a20e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEJ8iMCpP4g3M8mHHzgNCXbVuqtSBgGp9QdHFdlhFlUKTMfrfc3bSok4D8ZJItpPY5zvfz77cHSEvtclSHsmCWRkqxk3IWYaanJVWCCtQ_LLIeSOPz9OzCR9NxXSHrNMddQSsb93auXxSk-X8za8fq3co8G9bl3F1VHMv7qh9GHcGVXa9S_ZRM0mX0WDcwX2_MicZbmicoTkOecSwQdL50dz-mi1d5UP6b-HQm39R3jCleg01vE_uddCS9lteeEB2bPWQ3GmTTa4ekS9ji2OczzS9OLp4H1NkuplhoGeG-jOcVd1QhNx1U9PLlVkukLOo_dlxJkVs6T0g6KyiMP8GDp3SLofOfNXYx2QyPPk8OGNdcgWmRaQaZpXzO7WxKGIQWVjKIiuFMDYxUSFKm5QatJGQ4XSBLCWAloXSZZaCzVSZQPKE7FWLyj4l1KUqA2M5xGC4gBIETzUCzcgidgEwAYnWZMx1F3ncJcCY594Cnqi8JX2OpM896fPrgLzaPPO9jbvxz9bHbnY2LV3MbF-wWH7NOxHMIc1UgXAl0RZ46iLPS4FgF7gpBcShDcjBem7zNR_mLr4fQjiEYQE53FSjCDq7ClR2ceXapLgUcty5BURt8cRWh7ZrqtmlD-btQmWIMFUBeb1mnz9f__uIn_1Hb56Tu7HjZmf-ig_IXrO8si8QQjVFj-zKqcSrGp72yH6_P_o0wvvxyfmHj1g6SAc9fzjR8_LzG5NfHpA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmBtHnbiHBDitWxpt1xatRdkJrZDV11lyyZllT_Fb2TsTbbaSvTWa-K8xt_MfPZkZgh5pU2e8igrmM1CybgJOcvRk7PSCmEFql8euWzk8X46OuTfjsXxBvnb58K43yp7m-gNtZlpt0c-cIXW0JeiP3x_9pu5rlEuutq30FjCYte2C1yy1e92PuP8vo7j4ZeDTyPWdRVgWkSyYVa6hEsbiyIGkYdlVuSlEMYmJipEaZNSgzYZ4Fo8hazMAHRWSF3mKdhclgkkeN8b5CZP0JO7zPTh19Wejqu2LjnvcnPCRA5q7i0ROkbGXayXLdb8n28TsMZtL_-ZeSk8673e8B6529FV-mGJr_tkw1YPyK1lA8v2IfkxtkjepxNNjwZH32OKQJ4YBnpiqN8XauuGIo2vm5qetGY-Q7RS-6dDO0W-6rMq6KSiMD0Fx3hp15dn2jb2ETm8FtE-JpvVrLJPCHXtz8BYDjEYLqAEwVON5DWyyIcATECiXoxKd9XMXVONqfJR9USqpegVil550atFQN6srjlb1vK4cvRHNzurka4Otz8wm_9SnVorSHNZIAVKtAWeumr2mUACDdyUAuLQBmS7n1vVGYdaXUA5IC9Xp1GtXawGKjs7d2NSNK8cV4MBkWuYWHuh9TPV5MQXCHflN0SYyoC87eFz8fT_f_HW1S_7gtweHYz31N7O_u5Tcid2oHaRtXibbDbzc_sM2VlTPPcqQcnP69bBf97QUBc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviE8RNsBI8ARW82EnzgNCjK3aGCsTYtpekLn4g1Wr0tFkVP3X-Os4p0mnTmJve03cJjn_7u5nn--OkNfa5CmPsoLZLJSMm5CzHD05c1YIK1D98shnIx8M090j_vlEnKyRv10ujD9W2dnExlCbifZ75H1faA19KfrDvmuPRRxuDz6c_2a-g5SPtHbtNBYQ2bfzGS7fqvd72zjXb-J4sPP90y5rOwwwLSJZMyt98qWNRRGDyEOXFbkTwtjERIVwNnEatMkA1-UpZC4D0FkhtctTsLl0CST4v7fIeuZXRT2yvrUzPPy23OHxtdcl522mTpjIfsUbu4RuknEf-WWzFW_YNA1YYbpXz2leCdY2PnBwn9xrySv9uEDbA7Jmy4fk9qKd5fwR-XFgkcqPR5oe94-_xhRhPTIM9MjQZpdoXtUUSX1VV_R0bqYTxC61f1rsU2SvTY4FHZUUxmfg-S9tu_SM57V9TI5uRLhPSK-clPYpob4ZGhjLIQbDBTgQPNVIZSOL7AjABCTqxKh0W9vct9gYqybGnki1EL1C0atG9GoWkLfL35wvKntcO3rLz85ypK_K3VyYTH-pVskVpLkskBAl2gJPfW37TCCdBm6cgDi0Adns5la1pqJSl8AOyKvlbVRyH7mB0k4u_JgUjS3HtWFA5AomVl5o9U45Om3KhftiHCJMZUDedfC5fPr_v_jZ9S_7ktxB_VNf9ob7G-Ru7DHtw2zxJunV0wv7HKlaXbxodYKSnzethv8A4CxVqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallic+W%2FWO2+solid-acid+catalyst+boosts+hydrogen+evolution+reaction+in+alkaline+electrolyte&rft.jtitle=Nature+communications&rft.au=Chen%2C+Zhigang&rft.au=Gong%2C+Wenbin&rft.au=Wang%2C+Juan&rft.au=Hou%2C+Shuang&rft.date=2023-09-02&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=5363&rft_id=info:doi/10.1038%2Fs41467-023-41097-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon