A Large Finer-grained Affective Computing EEG Dataset

Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have prima...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 10; no. 1; pp. 740 - 10
Main Authors Chen, Jingjing, Wang, Xiaobin, Huang, Chen, Hu, Xin, Shen, Xinke, Zhang, Dan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, these datasets usually have a relatively small sample size, limiting exploration of the important issue of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset (FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), providing a fine-grained and balanced categorization on both the positive and negative sides of emotion. The validation results show that emotion categories can be effectively recognized based on EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to contribute to developing EEG-based affective computing algorithms for real-world applications.
AbstractList Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, these datasets usually have a relatively small sample size, limiting exploration of the important issue of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset (FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), providing a fine-grained and balanced categorization on both the positive and negative sides of emotion. The validation results show that emotion categories can be effectively recognized based on EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to contribute to developing EEG-based affective computing algorithms for real-world applications.
Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, these datasets usually have a relatively small sample size, limiting exploration of the important issue of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset (FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), providing a fine-grained and balanced categorization on both the positive and negative sides of emotion. The validation results show that emotion categories can be effectively recognized based on EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to contribute to developing EEG-based affective computing algorithms for real-world applications.Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, these datasets usually have a relatively small sample size, limiting exploration of the important issue of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset (FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), providing a fine-grained and balanced categorization on both the positive and negative sides of emotion. The validation results show that emotion categories can be effectively recognized based on EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to contribute to developing EEG-based affective computing algorithms for real-world applications.
Abstract Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive emotions play a crucial role in various real-world applications, such as human-computer interactions, the state-of-the-art EEG datasets have primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, these datasets usually have a relatively small sample size, limiting exploration of the important issue of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset (FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), providing a fine-grained and balanced categorization on both the positive and negative sides of emotion. The validation results show that emotion categories can be effectively recognized based on EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to contribute to developing EEG-based affective computing algorithms for real-world applications.
ArticleNumber 740
Author Huang, Chen
Chen, Jingjing
Zhang, Dan
Wang, Xiaobin
Shen, Xinke
Hu, Xin
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Chen
  fullname: Chen, Jingjing
  organization: Dept. of Psychology, School of Social Sciences, Tsinghua University, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University
– sequence: 2
  givenname: Xiaobin
  surname: Wang
  fullname: Wang, Xiaobin
  organization: Dept. of Psychology, School of Social Sciences, Tsinghua University, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University
– sequence: 3
  givenname: Chen
  surname: Huang
  fullname: Huang, Chen
  organization: Dept. of Psychology, School of Social Sciences, Tsinghua University, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University
– sequence: 4
  givenname: Xin
  surname: Hu
  fullname: Hu, Xin
  organization: Dept. of Psychology, School of Social Sciences, Tsinghua University, Dept. of Psychiatry, School of Medicine, University of Pittsburgh
– sequence: 5
  givenname: Xinke
  surname: Shen
  fullname: Shen, Xinke
  organization: Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Dept. of Biomedical Engineering, School of Medicine, Tsinghua University
– sequence: 6
  givenname: Dan
  orcidid: 0000-0002-7592-3200
  surname: Zhang
  fullname: Zhang, Dan
  email: dzhang@tsinghua.edu.cn
  organization: Dept. of Psychology, School of Social Sciences, Tsinghua University, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University
BookMark eNp9kU9v3CAQxVGVqvnTfIGeLPXSi9MBjI1P1Wq7SSOt1Et7RiwMLiuv2QJOlG9fNhu1TQ45oEHw3m9G887JyRQmJOQDhSsKXH5ODRV9VwPj5bQC6vs35IyBYHXTtPzkv_spuUxpCwCUNyA6eEdOeSdlcbVnRCyqtY4DVtd-wlgPUZdqq4VzaLK_w2oZdvs5-2moVqub6qvOOmF-T946PSa8fKoX5Of16sfyW73-fnO7XKxrI6jMNXZ9h0yiLW0ZtBw4pdxo6SjvN720yDdgup4KiR2zVoAD43TDnQPr-qbhF-T2yLVBb9U--p2ODyporx4fQhyUjtmbEVUnHUcUbQtImwKXzmljoBeoN7bntrC-HFn7ebNDa3DKUY_PoM9_Jv9LDeFOUWgBWMMK4dMTIYbfM6asdj4ZHEc9YZiTYlIyzjgwWqQfX0i3YY5T2dVBRUXTl40UFTuqTAwpRXR_p6GgDimrY8qqpKweU1b3xSRfmIzPOvtwmNqPr1v50ZpKn2nA-G-qV1x_AC1Duw4
CitedBy_id crossref_primary_10_1016_j_procs_2024_08_032
crossref_primary_10_1016_j_neuroimage_2024_120890
crossref_primary_10_1109_TIM_2024_3398103
crossref_primary_10_1016_j_bspc_2024_106249
crossref_primary_10_1007_s11571_024_10186_x
crossref_primary_10_1016_j_bspc_2025_107536
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1016_j_bspc_2025_107511
crossref_primary_10_1038_s41597_024_04102_5
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1016_j_knosys_2025_113018
crossref_primary_10_1080_10255842_2024_2417212
crossref_primary_10_1109_TIM_2024_3472838
crossref_primary_10_1109_TAFFC_2024_3433470
Cites_doi 10.1371/journal.pone.0256211
10.7551/mitpress/1140.001.0001
10.1109/ACCESS.2019.2891579
10.1109/TAFFC.2017.2660485
10.1080/02699939208411068
10.1109/TAMD.2015.2431497
10.1088/1741-2552/ab260c
10.1109/ACII.2015.7344594
10.1109/TAFFC.2022.3164516
10.1109/ICME.2014.6890166
10.1109/T-AFFC.2011.15
10.1109/NER.2013.6695876
10.1037/1528-3542.7.4.715
10.1016/j.compedu.2019.103649
10.1016/B978-0-12-407236-7.00001-2
10.3389/fnhum.2017.00026
10.1016/j.neuroimage.2021.118819
10.1109/T-AFFC.2011.25
10.1109/TAFFC.2022.3170369
10.1037/0003-066X.56.3.218
10.1088/1741-2560/11/4/046018
10.1037/a0019015
10.3389/fnins.2020.00627
10.1609/aaai.v35i1.16169
10.1007/978-3-319-19387-8_288
10.1109/TITB.2010.2041553
10.3389/fnhum.2019.00120
10.3389/fnins.2018.00162
10.1177/2096595819896200
10.7303/syn50614194
10.1109/TAFFC.2018.2849758
10.1038/s41597-022-01262-0
10.1080/02699931.2018.1530197
10.1080/02699930903274322
10.1145/3232078.3232239
10.3389/fnins.2013.00267
10.1371/journal.pone.0145450
10.1109/TAFFC.2017.2714671
10.1016/j.neuroimage.2018.01.035
10.1016/j.neuroimage.2019.02.057
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-023-02650-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 10
ExternalDocumentID oai_doaj_org_article_78f3ee5660e14b988ffacc095eabd93d
PMC10600242
10_1038_s41597_023_02650_w
GrantInformation_xml – fundername: Tsinghua University Spring Breeze Fund (2021Z99CFY037)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61977041; 62107025
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
– fundername: ;
  grantid: 61977041; 62107025
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-e797e28ed057206303113ca8f139b98de3b0c79158e72dd50f0cfa43ff0df9443
IEDL.DBID M48
ISSN 2052-4463
IngestDate Wed Aug 27 01:32:39 EDT 2025
Thu Aug 21 18:35:47 EDT 2025
Fri Jul 11 00:14:17 EDT 2025
Wed Aug 13 08:19:31 EDT 2025
Tue Jul 01 00:39:00 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e797e28ed057206303113ca8f139b98de3b0c79158e72dd50f0cfa43ff0df9443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-7592-3200
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41597-023-02650-w
PMID 37880266
PQID 2881549572
PQPubID 2041912
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_78f3ee5660e14b988ffacc095eabd93d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10600242
proquest_miscellaneous_2882323021
proquest_journals_2881549572
crossref_primary_10_1038_s41597_023_02650_w
crossref_citationtrail_10_1038_s41597_023_02650_w
springer_journals_10_1038_s41597_023_02650_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-25
PublicationDateYYYYMMDD 2023-10-25
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References de CheveignéAArzounianDRobust detrending, rereferencing, outlier detection, and inpainting for multichannel dataNeuroImage201817290391210.1016/j.neuroimage.2018.01.03529448077
TrampeDQuoidbachJTaquetMEmotions in everyday lifePloS One201510e014545010.1371/journal.pone.0145450266981244689475
Kleiner, M., Brainard, D. & Pelli, D. What’s new in Psychtoolbox-3? (2007).
AlarcaoSMFonsecaMJEmotions recognition using EEG signals: A surveyIEEE Trans. Affect Comput.20171037439310.1109/TAFFC.2017.2714671
KoelstraSDeap: A database for emotion analysis; using physiological signalsIEEE Trans. Affect. Comput.20113183110.1109/T-AFFC.2011.15
Duan, R.-N., Zhu, J.-Y. & Lu, B.-L. Differential entropy feature for EEG-based emotion classification. in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) 81–84 (IEEE, 2013).
Liu B, Huang X, Wang Y, Chen X, Gao X. BETA: A large benchmark database toward SSVEP-BCI application. Front. Neurosci. 14 (2020).
Zheng, W.-L. & Lu, B.-L. Personalizing EEG-based affective models with transfer learning. in Proceedings of the twenty-fifth International Joint Conference on Artificial Intelligence 2732–2738 (2016).
HuXChenJWangFZhangDTen challenges for EEG-based affective computingBrain Sci. Adv.201951202019SciA....5....1H10.1177/2096595819896200
Zhu, J.-Y., Zheng, W.-L. & Lu, B.-L. Cross-subject and Cross-gender Emotion Classification from EEG. in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada (ed. Jaffray, D. A.) vol. 51 1188–1191 (Springer International Publishing, 2015).
HuXWangFZhangDSimilar brains blend emotion in similar ways: Neural representations of individual difference in emotion profilesNeuroimage202224711881910.1016/j.neuroimage.2021.11881934920085
LiXExploring EEG Features in Cross-Subject Emotion RecognitionFront. Neurosci.20181216210.3389/fnins.2018.00162296158535867345
SchaeferANilsFSanchezXPhilippotPAssessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchersCogn. Emot.2010241153117210.1080/02699930903274322
DillenLVKooleSLClearing the mind: A working memory model of distraction fromnegative feelingsEmotion2007771510.1037/1528-3542.7.4.71518039038
RoyYDeep learning-based electroencephalography analysis: a systematic reviewJ. Neural Eng.2019160510012019JNEng..16e1001R10.1088/1741-2552/ab260c31151119
HairstonWDUsability of four commercially-oriented EEG systemsJ. Neural Eng.2014110460182014JNEng..11d6018H10.1088/1741-2560/11/4/046018
ZhaoL-MYanXLuB-LPlug-and-play domain adaptation for cross-subject EEG-based emotion recognitionProceedings of the AAAI Conference on Artificial Intelligence20213586387010.1609/aaai.v35i1.16169
Zhao, G., Zhang, Y., Zhang, G., Zhang, D. & Liu, Y.-J. Multi-target positive emotion recognition from EEG signals. IEEE Trans. Affect Comput. (2020).
ZhengW-LLuB-LInvestigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE TransAuton Ment Dev.2015716217510.1109/TAMD.2015.2431497
SoleymaniMLichtenauerJPunTPanticMA multimodal database for affect recognition and implicit taggingIEEE Trans. Affect Comput.20113425510.1109/T-AFFC.2011.25
FrantzidisCAToward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuliIEEE T INF TECHNOL B.20101458959710.1109/TITB.2010.2041553
SongTMPED: A multi-modal physiological emotion database for discrete emotion recognitionIEEE Access20197121771219110.1109/ACCESS.2019.2891579
HuXfNIRS evidence for recognizably different positive emotionsFront. Hum. Neurosci.20191312010.3389/fnhum.2019.00120310242786465574
GeYZhaoGZhangYHoustonRJSongJA standardised database of Chinese emotional film clipsCogn. Emot.20193397699010.1080/02699931.2018.153019730293475
DingYHuXXiaZLiuY-JZhangDInter-Brain EEG Feature Extraction and Analysis for Continuous Implicit Emotion Tagging During Video WatchingIEEE Trans. Affect Comput.2021129210210.1109/TAFFC.2018.2849758
Fredrickson, B. L. Positive emotions broaden and build. in Advances in Experimental Social Psychology vol. 47 1–53 (Elsevier Press, 2013).
Shen, X., Liu, X., Hu, X., Zhang, D. & Song, S. Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition. IEEE Trans. Affect Comput. (2022).
TianFHuaMZhangWLiYYangXEmotional arousal in 2D versus 3D virtual reality environmentsPloS One202116e02562111:CAS:528:DC%2BB3MXitVekurrE10.1371/journal.pone.0256211344996678428725
EkmanPAn argument for basic emotionsCogn. Emot.1992616920010.1080/02699939208411068
RayRDMcRaeKOchsnerKNGrossJJCognitive reappraisal of negative affect: converging evidence from EMG and self-reportEmotion20101058710.1037/a0019015206778754106258
Nijholt, A. From word play to world play: introducing humor in human-computer interaction. in Proceedings of the 36th European Conference on Cognitive Ergonomics 1–8 (2018).
SaganowskiSEmognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearablesSci. Data.2022911110.1038/s41597-022-01262-0
HuXEEG correlates of ten positive emotionsFront. Hum. Neurosci.2017112610.3389/fnhum.2017.00026281841945266691
ChenJA large finer-grained affective computing EEG dataset202310.7303/syn50614194Synapse
ScheinostDTen simple rules for predictive modeling of individual differences in neuroimagingNeuroImage2019193354510.1016/j.neuroimage.2019.02.05730831310
Zheng, W.-L., Zhu, J.-Y., Peng, Y. & Lu, B.-L. EEG-based emotion classification using deep belief networks. in 2014 IEEE International Conference on Multimedia and Expo (ICME) 1–6 (IEEE, 2014).
FredricksonBLThe role of positive emotions in positive psychology: The broaden-and-build theory of positive emotionsAm Psychol.2001562181:STN:280:DC%2BD3Mzot1ygsg%3D%3D10.1037/0003-066X.56.3.218113152483122271
Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 267 (2013).
YoonJPohlmeyerAEDesmetPWhen’feeling good’is not good enough: seven key opportunities for emotional granularity in product developmentInt. J. Des.201610115
Devillers, L. et al. Multimodal data collection of human-robot humorous interactions in the joker project. in 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) 348–354 (IEEE, 2015).
Picard, R. W. Affective computing. (MIT press, 2000).
YadegaridehkordiENoorNFBMAyubMNBAffalHBHussinNBAffective computing in education: A systematic review and future researchComput. Educ.201914210364910.1016/j.compedu.2019.103649
Zhang, Z., Zhong, S. & Liu, Y. GANSER: A Self-supervised Data Augmentation Framework for EEG-based Emotion Recognition. IEEE Trans. Affect Comput. (2022).
LiuY-JReal-Time Movie-Induced Discrete Emotion Recognition from EEG SignalsIEEE Trans. Affect Comput.2018955056210.1109/TAFFC.2017.2660485
Y Ding (2650_CR5) 2021; 12
Y Ge (2650_CR30) 2019; 33
D Trampe (2650_CR10) 2015; 10
W-L Zheng (2650_CR22) 2015; 7
2650_CR44
2650_CR41
T Song (2650_CR20) 2019; 7
LV Dillen (2650_CR33) 2007; 7
2650_CR4
X Hu (2650_CR31) 2022; 247
M Soleymani (2650_CR35) 2011; 3
2650_CR1
A Schaefer (2650_CR29) 2010; 24
X Hu (2650_CR13) 2019; 13
P Ekman (2650_CR9) 1992; 6
2650_CR25
2650_CR26
CA Frantzidis (2650_CR42) 2010; 14
E Yadegaridehkordi (2650_CR2) 2019; 142
J Chen (2650_CR43) 2023
X Hu (2650_CR6) 2019; 5
2650_CR27
2650_CR28
A de Cheveigné (2650_CR40) 2018; 172
X Hu (2650_CR8) 2017; 11
2650_CR11
RD Ray (2650_CR32) 2010; 10
BL Fredrickson (2650_CR12) 2001; 56
SM Alarcao (2650_CR3) 2017; 10
Y Roy (2650_CR24) 2019; 16
WD Hairston (2650_CR37) 2014; 11
S Koelstra (2650_CR21) 2011; 3
J Yoon (2650_CR7) 2016; 10
L-M Zhao (2650_CR16) 2021; 35
D Scheinost (2650_CR23) 2019; 193
Y-J Liu (2650_CR15) 2018; 9
2650_CR14
F Tian (2650_CR36) 2021; 16
2650_CR34
X Li (2650_CR17) 2018; 12
2650_CR18
S Saganowski (2650_CR19) 2022; 9
2650_CR38
2650_CR39
References_xml – reference: Zhao, G., Zhang, Y., Zhang, G., Zhang, D. & Liu, Y.-J. Multi-target positive emotion recognition from EEG signals. IEEE Trans. Affect Comput. (2020).
– reference: LiuY-JReal-Time Movie-Induced Discrete Emotion Recognition from EEG SignalsIEEE Trans. Affect Comput.2018955056210.1109/TAFFC.2017.2660485
– reference: ZhengW-LLuB-LInvestigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE TransAuton Ment Dev.2015716217510.1109/TAMD.2015.2431497
– reference: ChenJA large finer-grained affective computing EEG dataset202310.7303/syn50614194Synapse
– reference: DingYHuXXiaZLiuY-JZhangDInter-Brain EEG Feature Extraction and Analysis for Continuous Implicit Emotion Tagging During Video WatchingIEEE Trans. Affect Comput.2021129210210.1109/TAFFC.2018.2849758
– reference: Zhang, Z., Zhong, S. & Liu, Y. GANSER: A Self-supervised Data Augmentation Framework for EEG-based Emotion Recognition. IEEE Trans. Affect Comput. (2022).
– reference: AlarcaoSMFonsecaMJEmotions recognition using EEG signals: A surveyIEEE Trans. Affect Comput.20171037439310.1109/TAFFC.2017.2714671
– reference: de CheveignéAArzounianDRobust detrending, rereferencing, outlier detection, and inpainting for multichannel dataNeuroImage201817290391210.1016/j.neuroimage.2018.01.03529448077
– reference: YoonJPohlmeyerAEDesmetPWhen’feeling good’is not good enough: seven key opportunities for emotional granularity in product developmentInt. J. Des.201610115
– reference: FredricksonBLThe role of positive emotions in positive psychology: The broaden-and-build theory of positive emotionsAm Psychol.2001562181:STN:280:DC%2BD3Mzot1ygsg%3D%3D10.1037/0003-066X.56.3.218113152483122271
– reference: TrampeDQuoidbachJTaquetMEmotions in everyday lifePloS One201510e014545010.1371/journal.pone.0145450266981244689475
– reference: Nijholt, A. From word play to world play: introducing humor in human-computer interaction. in Proceedings of the 36th European Conference on Cognitive Ergonomics 1–8 (2018).
– reference: HairstonWDUsability of four commercially-oriented EEG systemsJ. Neural Eng.2014110460182014JNEng..11d6018H10.1088/1741-2560/11/4/046018
– reference: HuXWangFZhangDSimilar brains blend emotion in similar ways: Neural representations of individual difference in emotion profilesNeuroimage202224711881910.1016/j.neuroimage.2021.11881934920085
– reference: Liu B, Huang X, Wang Y, Chen X, Gao X. BETA: A large benchmark database toward SSVEP-BCI application. Front. Neurosci. 14 (2020).
– reference: LiXExploring EEG Features in Cross-Subject Emotion RecognitionFront. Neurosci.20181216210.3389/fnins.2018.00162296158535867345
– reference: Zhu, J.-Y., Zheng, W.-L. & Lu, B.-L. Cross-subject and Cross-gender Emotion Classification from EEG. in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada (ed. Jaffray, D. A.) vol. 51 1188–1191 (Springer International Publishing, 2015).
– reference: EkmanPAn argument for basic emotionsCogn. Emot.1992616920010.1080/02699939208411068
– reference: HuXChenJWangFZhangDTen challenges for EEG-based affective computingBrain Sci. Adv.201951202019SciA....5....1H10.1177/2096595819896200
– reference: ZhaoL-MYanXLuB-LPlug-and-play domain adaptation for cross-subject EEG-based emotion recognitionProceedings of the AAAI Conference on Artificial Intelligence20213586387010.1609/aaai.v35i1.16169
– reference: SoleymaniMLichtenauerJPunTPanticMA multimodal database for affect recognition and implicit taggingIEEE Trans. Affect Comput.20113425510.1109/T-AFFC.2011.25
– reference: GeYZhaoGZhangYHoustonRJSongJA standardised database of Chinese emotional film clipsCogn. Emot.20193397699010.1080/02699931.2018.153019730293475
– reference: Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 267 (2013).
– reference: SongTMPED: A multi-modal physiological emotion database for discrete emotion recognitionIEEE Access20197121771219110.1109/ACCESS.2019.2891579
– reference: HuXfNIRS evidence for recognizably different positive emotionsFront. Hum. Neurosci.20191312010.3389/fnhum.2019.00120310242786465574
– reference: DillenLVKooleSLClearing the mind: A working memory model of distraction fromnegative feelingsEmotion2007771510.1037/1528-3542.7.4.71518039038
– reference: Fredrickson, B. L. Positive emotions broaden and build. in Advances in Experimental Social Psychology vol. 47 1–53 (Elsevier Press, 2013).
– reference: Picard, R. W. Affective computing. (MIT press, 2000).
– reference: Duan, R.-N., Zhu, J.-Y. & Lu, B.-L. Differential entropy feature for EEG-based emotion classification. in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) 81–84 (IEEE, 2013).
– reference: KoelstraSDeap: A database for emotion analysis; using physiological signalsIEEE Trans. Affect. Comput.20113183110.1109/T-AFFC.2011.15
– reference: RoyYDeep learning-based electroencephalography analysis: a systematic reviewJ. Neural Eng.2019160510012019JNEng..16e1001R10.1088/1741-2552/ab260c31151119
– reference: Kleiner, M., Brainard, D. & Pelli, D. What’s new in Psychtoolbox-3? (2007).
– reference: TianFHuaMZhangWLiYYangXEmotional arousal in 2D versus 3D virtual reality environmentsPloS One202116e02562111:CAS:528:DC%2BB3MXitVekurrE10.1371/journal.pone.0256211344996678428725
– reference: Zheng, W.-L., Zhu, J.-Y., Peng, Y. & Lu, B.-L. EEG-based emotion classification using deep belief networks. in 2014 IEEE International Conference on Multimedia and Expo (ICME) 1–6 (IEEE, 2014).
– reference: HuXEEG correlates of ten positive emotionsFront. Hum. Neurosci.2017112610.3389/fnhum.2017.00026281841945266691
– reference: FrantzidisCAToward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuliIEEE T INF TECHNOL B.20101458959710.1109/TITB.2010.2041553
– reference: SaganowskiSEmognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearablesSci. Data.2022911110.1038/s41597-022-01262-0
– reference: SchaeferANilsFSanchezXPhilippotPAssessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchersCogn. Emot.2010241153117210.1080/02699930903274322
– reference: RayRDMcRaeKOchsnerKNGrossJJCognitive reappraisal of negative affect: converging evidence from EMG and self-reportEmotion20101058710.1037/a0019015206778754106258
– reference: ScheinostDTen simple rules for predictive modeling of individual differences in neuroimagingNeuroImage2019193354510.1016/j.neuroimage.2019.02.05730831310
– reference: Devillers, L. et al. Multimodal data collection of human-robot humorous interactions in the joker project. in 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) 348–354 (IEEE, 2015).
– reference: Zheng, W.-L. & Lu, B.-L. Personalizing EEG-based affective models with transfer learning. in Proceedings of the twenty-fifth International Joint Conference on Artificial Intelligence 2732–2738 (2016).
– reference: Shen, X., Liu, X., Hu, X., Zhang, D. & Song, S. Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition. IEEE Trans. Affect Comput. (2022).
– reference: YadegaridehkordiENoorNFBMAyubMNBAffalHBHussinNBAffective computing in education: A systematic review and future researchComput. Educ.201914210364910.1016/j.compedu.2019.103649
– volume: 16
  start-page: e0256211
  year: 2021
  ident: 2650_CR36
  publication-title: PloS One
  doi: 10.1371/journal.pone.0256211
– ident: 2650_CR14
– ident: 2650_CR1
  doi: 10.7551/mitpress/1140.001.0001
– volume: 7
  start-page: 12177
  year: 2019
  ident: 2650_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 9
  start-page: 550
  year: 2018
  ident: 2650_CR15
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2017.2660485
– volume: 6
  start-page: 169
  year: 1992
  ident: 2650_CR9
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– volume: 7
  start-page: 162
  year: 2015
  ident: 2650_CR22
  publication-title: Auton Ment Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 16
  start-page: 051001
  year: 2019
  ident: 2650_CR24
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– ident: 2650_CR28
  doi: 10.1109/ACII.2015.7344594
– ident: 2650_CR4
  doi: 10.1109/TAFFC.2022.3164516
– ident: 2650_CR41
  doi: 10.1109/ICME.2014.6890166
– volume: 10
  start-page: 1
  year: 2016
  ident: 2650_CR7
  publication-title: Int. J. Des.
– volume: 3
  start-page: 18
  year: 2011
  ident: 2650_CR21
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: 2650_CR26
  doi: 10.1109/NER.2013.6695876
– volume: 7
  start-page: 715
  year: 2007
  ident: 2650_CR33
  publication-title: Emotion
  doi: 10.1037/1528-3542.7.4.715
– volume: 142
  start-page: 103649
  year: 2019
  ident: 2650_CR2
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2019.103649
– ident: 2650_CR11
  doi: 10.1016/B978-0-12-407236-7.00001-2
– volume: 11
  start-page: 26
  year: 2017
  ident: 2650_CR8
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00026
– volume: 247
  start-page: 118819
  year: 2022
  ident: 2650_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118819
– volume: 3
  start-page: 42
  year: 2011
  ident: 2650_CR35
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: 2650_CR25
  doi: 10.1109/TAFFC.2022.3170369
– volume: 56
  start-page: 218
  year: 2001
  ident: 2650_CR12
  publication-title: Am Psychol.
  doi: 10.1037/0003-066X.56.3.218
– volume: 11
  start-page: 046018
  year: 2014
  ident: 2650_CR37
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046018
– volume: 10
  start-page: 587
  year: 2010
  ident: 2650_CR32
  publication-title: Emotion
  doi: 10.1037/a0019015
– ident: 2650_CR38
  doi: 10.3389/fnins.2020.00627
– volume: 35
  start-page: 863
  year: 2021
  ident: 2650_CR16
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v35i1.16169
– ident: 2650_CR18
  doi: 10.1007/978-3-319-19387-8_288
– volume: 14
  start-page: 589
  year: 2010
  ident: 2650_CR42
  publication-title: IEEE T INF TECHNOL B.
  doi: 10.1109/TITB.2010.2041553
– ident: 2650_CR34
– volume: 13
  start-page: 120
  year: 2019
  ident: 2650_CR13
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00120
– volume: 12
  start-page: 162
  year: 2018
  ident: 2650_CR17
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– volume: 5
  start-page: 1
  year: 2019
  ident: 2650_CR6
  publication-title: Brain Sci. Adv.
  doi: 10.1177/2096595819896200
– year: 2023
  ident: 2650_CR43
  doi: 10.7303/syn50614194
– volume: 12
  start-page: 92
  year: 2021
  ident: 2650_CR5
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2018.2849758
– volume: 9
  start-page: 1
  year: 2022
  ident: 2650_CR19
  publication-title: Sci. Data.
  doi: 10.1038/s41597-022-01262-0
– volume: 33
  start-page: 976
  year: 2019
  ident: 2650_CR30
  publication-title: Cogn. Emot.
  doi: 10.1080/02699931.2018.1530197
– volume: 24
  start-page: 1153
  year: 2010
  ident: 2650_CR29
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930903274322
– ident: 2650_CR27
  doi: 10.1145/3232078.3232239
– ident: 2650_CR39
  doi: 10.3389/fnins.2013.00267
– ident: 2650_CR44
– volume: 10
  start-page: e0145450
  year: 2015
  ident: 2650_CR10
  publication-title: PloS One
  doi: 10.1371/journal.pone.0145450
– volume: 10
  start-page: 374
  year: 2017
  ident: 2650_CR3
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 172
  start-page: 903
  year: 2018
  ident: 2650_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.01.035
– volume: 193
  start-page: 35
  year: 2019
  ident: 2650_CR23
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.057
SSID ssj0001340570
Score 2.422762
Snippet Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While positive...
Abstract Affective computing based on electroencephalogram (EEG) has gained increasing attention for its objectivity in measuring emotional states. While...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 740
SubjectTerms 631/378/1457
631/477/2811
Data Descriptor
Datasets
EEG
Electroencephalography
Emotions
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9UwDLbQTlwQgyEKY8qkHUBQLW2SNT0-2HtMCDgxabcoTRxAQh3iddrfn532PdZJwIVrkyqNY8dfauczwFGyOiqCoaX29QkdUEwqfZK67HxtyQGhwZYvOH_6fHJ2rj9cmItbpb44J2ykBx4Fd9zYpBAJdEisdNdam5IPgYAB-i62KvLuSz7v1mEq_11RDETkdEtGKnu8Jk_FxKM1hy0JlpTXM0-UCftnKPNujuSdQGn2P6uH8GACjmIxfvAu3MP-EexOprkWLyf-6FePwSzER87vFiu-2Fd-5SIQGMUiZ27Q5ibGSg40ilgu34tTP5AnG_bgfLX88u6snKojlMFUdiixaRusLUaaaM3MWaqqVPA2EaYjOUVUnQxNWxmLTR2jkUmG5LVKScbUaq2ewE5_2eNTEIkrons0OgajdQotqhSM5NQIOj6iKaDaSMqFiTqcK1j8cDmErawbpetIui5L110X8Hr7zs-ROOOvvd_yAmx7Mul1fkCq4CZVcP9ShQL2N8vnJktcO1Y5mgTJqIDDbTPZEAdGfI-XV7kPAUtFcKcAO1v22QfNW_rv3zIbN52pM9Ap4M1GQ36P_ucZP_sfM34O92vWaPKltdmHneHXFb4gkDR0B9kebgAShQyt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RbxQhECZaX3wxbdW4tpo16YNGSdkFuuyTOetdG6M-2eTeCAtDa2L2am-b_n1nOO4u28S-LhCWGWA-mOEbxo6iUUEiDOXK1Sd4QNGRuygU71xt0ACBhpYeOP_4eXJ-ob7N9TxfuC1zWOV6T0wbdVh4uiM_pqZ4ltFN_fn6L6esUeRdzSk0HrMnRF1Gs7qZN9s7FklwROS3MkKa4yXaK6Ifrcl5ieCE343sUaLtH2HN-5GS99ylyQrNdtmzDB_LyUrfe-wR9PtsLy_QZfk-s0h_eM70pPxOUd7ljJ738UtKBQGhnKT4DdziylU-B-ylnE7Pyq9uQHs2vGAXs-mv03OecyRwryszcGjaBmoDAQdaE3-WrCrpnYmI7LrWBJCd8E1baQNNHYIWUfjolIxRhNgqJV-ynX7RwytWRsqL7kCr4LVS0bcgo9eCAiRQ8KALVq0lZX0mEKc8Fn9scmRLY1fStShdm6Rr7wr2cdPmekWf8WDtL6SATU2ivk4fFjeXNq8k25goARCFCqgUDtHE6LxHpAiuC60MBTtcq8_m9bi029lTsHebYlxJ5B5xPSxuUx2ElxJBT8HMSO2jHxqX9L-vEic3nqwT3CnYp_UM2fb-_xG_fvhnD9hTSm9PtrLWh2xnuLmFNwiChu5tmun_ANJ2AuU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9sIFUT5EoCAjcQBBhBPbjXMMsEu1Ai5QqTfLsccFCWVRN1X_PmOvs1UqQOIa27I9HnueM-M3AC-Cll4QDC2lrY_pgqJCaQOXZW9rTQYIFbbxgfPnL8cnp3J1ps72oJ7ewqSg_URpmY7pKTrs7YYMTeQNraPXkVBFeXULDiJVO-n2Qdetvq6u_6yICEJ4fiHDhf5D45kVSmT9M4R5Mz7yhpM02Z7lXbiTQSPrtsM8hD0c7sFh3pYb9jJzR7-6D6pjn2JsN1vGR33leUwAgZ51KWqDDja2zeJAvbDF4iP7YEeyYuMDOF0uvr0_KXNmhNKpSo8lNm2DtUZPE60ja5aoKuGsDoTn-lZ7FD13TVspjU3tveKBu2ClCIH70EopHsL-sB7wEbAQs6FbVNI7JWVwLYrgFI9hEXR1RFVANUnKuEwbHrNX_DTJfS202UrXkHRNkq65KuD1rs2vLWnGP2u_iwuwqxkJr9OH9cW5yQpgGh0EImFPjpWkKeoQrHOED9H2vhW-gKNp-UzehRsT1Y0mQTIq4PmumPZPdIrYAdeXqQ6BSkFQpwA9W_bZgOYlw4_viYmb7tMJ5BTwZtKQ697_PuPH_1f9CdyOSe6jxazVEeyPF5f4lKDQ2D_Luv8bNOUCdA
  priority: 102
  providerName: Springer Nature
Title A Large Finer-grained Affective Computing EEG Dataset
URI https://link.springer.com/article/10.1038/s41597-023-02650-w
https://www.proquest.com/docview/2881549572
https://www.proquest.com/docview/2882323021
https://pubmed.ncbi.nlm.nih.gov/PMC10600242
https://doaj.org/article/78f3ee5660e14b988ffacc095eabd93d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFeUMtDhJZVkDiAIJDE9sY5oCpddqlWtELASnuzHD9apCpLd1O1_HvGTrJVqsKBUxQ_5Hg8k_n8-gbgleVUE4ShEZXpECcozEbSxjQqZcrRARlmcnfB-eR0eDyj0zmbb0AX7qgV4OreqZ2LJzVbXry_ufx9iAb_sbkyzj-s0Ak5TtHU7Ugi4oiuN2EbPVPmIhqctHDfr7kQB0_i9u7M_VV34IGjWMe3Yc9VeUb_Hgy9e4jyzk6qd1CTXXjYIsuwaFRhDzZM9Qj2Wttdha9bguk3j4EV4Rd3ADycuJt_0ZmLEmF0WPijHfj3C5tQD9hKOB5_Dj_JGl1d_QRmk_GP0XHUhk-IFEt4HZksz0zKjcY-p45aiyQJUZJbBH1lzrUhZayyPGHcZKnWLLaxspISa2Ntc0rJU9iqFpV5BqF1IdOlYVQrRqlVuSFWsdidncD5pWEBJJ2khGq5xV2Iiwvh97gJF42gBQpaeEGL6wDeruv8apg1_ln6yA3AuqRjxfYJi-WZaI1MZNwSYxCgxiah2EVurVQKQaSRpc6JDuCgGz7RaZpwOomdQBkF8HKdjUbmdk5kZRZXvgwiT4J4KADeG_beB_Vzqp_nnq4bJ90eCQXwrtOQ29b_3uPn_9_SPuykTqXRxabsALbq5ZV5gdipLgewmc2zAWwXxfT7FJ9H49Ov3zB1NBwN_HrEwJvMH-YhGZU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoALojyEaQEjgQQCq_Y-6vUBoUATUpr21Eq5LfY-ClLllMZVxJ_iNzKzthOlEr31aq8fOzO7883OC-CNV8JyhKGJKNkeGijSJ6VPRVKVTKECctIVlOB8dLw3PhXfp3K6AX_7XBgKq-z3xLBR25mhM_JdehRtGZmzzxe_E-oaRd7VvoVGKxaH7s8CTbb5p4N95O9bxkbDk6_jpOsqkBiZqSZxeZE7ppxFpMKo4hTPMm5K5RELVYWyjlepyYtMKpcza2XqU-NLwb1PrS-E4PjeO3AXFW9Kxl4-zVdnOpzgT9rl5qRc7c5RP1K5U0bOUgRDyWJN_4U2AWvY9npk5jX3bNB6o4fwoIOr8aCVry3YcPUj2Oo2hHn8rqta_f4xyEE8oajyeETphMkZtZ5wNh6EeBHcUuO2fwR-JR4Ov8X7ZYP6s3kCp7dCvaewWc9q9wxiT33YSyeFNVIIbwrHvZEpBWQgo52MIOsppU1XsJz6Zpzr4DjnSrfU1UhdHairFxF8WD5z0ZbruHH0F2LAciSV2g4XZpdnulu5OleeO4eoN3WZwCkq70tjEJm6srIFtxHs9OzT3fqf65W0RvB6eRtXLrljytrNrsIYhLMcQVYEao3taz-0fqf-9TPUAEdLPsCrCD72ErL6-v9n_Pzmn30F98YnRxM9OTg-3Ib7jOQW9TSTO7DZXF65FwjAmuplkPoYftz2MvsH_20_OA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQXsX5gtGoEBUXDJfvRbB5Ert6dra1HEQt92yb7UQXJ1V7K4b_mX-dMPu5Iwb71NdlkNzOzM7_JzM4AvPJKWI4wNBI520EHRfoo97GIipwpNEBOuowOOH-d7ewdiy8n8mQD_nZnYSitstOJtaK2c0P_yIf0KPoyMmVD36ZFHI2nH89_R9RBiiKtXTuNRkQO3J8lum-LD_tj5PVrxqaT75_2orbDQGRkoqrIpVnqmHIWUQuj6lM8SbjJlUdcVGTKOl7EJs0SqVzKrJWxj43PBfc-tj4TguN7b8FmSl7RADZ3J7Ojb-s_PJzAUNye1Im5Gi7QWlLxU0ahU4RG0bJnDeumAT2kezVP80qwtraB03twtwWv4aiRti3YcOV92GrVwyJ809awfvsA5Cg8pBzzcEqHC6MzakThbDiqs0dQwYZNNwmcJZxMPofjvEJrWj2E4xuh3yMYlPPSPYbQU1f23ElhjRTCm8xxb2RM6RnIdicDSDpKadOWL6cuGr90HUbnSjfU1UhdXVNXLwN4t3rmvCnece3oXWLAaiQV3q4vzC_OdLuPdao8dw4xcOwSgZ-ovM-NQZzq8sJm3Aaw3bFPt9pgodeyG8DL1W3cxxScyUs3v6zHILjlCLkCUD229xbUv1P-_FFXBEe_vgZbAbzvJGQ9-_-_-Mn1i30Bt3GL6cP92cFTuMNIbNFoM7kNg-ri0j1DNFYVz1uxD-H0pnfaP3zZRNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Large+Finer-grained+Affective+Computing+EEG+Dataset&rft.jtitle=Scientific+data&rft.au=Chen%2C+Jingjing&rft.au=Wang%2C+Xiaobin&rft.au=Huang%2C+Chen&rft.au=Hu%2C+Xin&rft.date=2023-10-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=10&rft_id=info:doi/10.1038%2Fs41597-023-02650-w&rft_id=info%3Apmid%2F37880266&rft.externalDocID=PMC10600242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon