Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics
A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This no...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7987 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e
g
orbitals of trivalent nickel (t
2g
6
e
g
1
). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.
A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process. |
---|---|
AbstractList | Abstract A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g 6eg 1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process. A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e g orbitals of trivalent nickel (t 2g 6 e g 1 ). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process. A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e g orbitals of trivalent nickel (t 2g 6 e g 1 ). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. |
ArticleNumber | 7987 |
Author | Zhong, Jiaying Yan, Yuandong Yan, Shicheng Zheng, Qian Hao, Weichang Zou, Zhigang Wang, Ruyi |
Author_xml | – sequence: 1 givenname: Yuandong surname: Yan fullname: Yan, Yuandong organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University – sequence: 2 givenname: Ruyi surname: Wang fullname: Wang, Ruyi organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University – sequence: 3 givenname: Qian surname: Zheng fullname: Zheng, Qian organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University – sequence: 4 givenname: Jiaying surname: Zhong fullname: Zhong, Jiaying organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University – sequence: 5 givenname: Weichang orcidid: 0000-0002-1597-7151 surname: Hao fullname: Hao, Weichang organization: School of Physics, Beihang University – sequence: 6 givenname: Shicheng orcidid: 0000-0002-3432-9117 surname: Yan fullname: Yan, Shicheng email: yscfei@nju.edu.cn organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University – sequence: 7 givenname: Zhigang orcidid: 0000-0003-2092-8335 surname: Zou fullname: Zou, Zhigang organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University |
BookMark | eNp9kc9vFCEcxYmpsbX2H_A0iRcvo_z4wsDJmEbbJk296JkwwG5ZWVhhpmn966U7jdoeygUC73148F6jg5STR-gtwR8IZvJjBQJi6DFlPTABqhcv0BHFQHoyUHbw3_oQndS6wW0wRSTAK3TIJAYquThCV1c5Fe_ybTeVcGOiT1OXgv3pY2fNZOLd75DWXZpt9Hl3HWKwnY_eTiXn2-DMFHLq8qrLZW2arb5BL1cmVn_yMB-jH1-_fD897y-_nV2cfr7sLSdy6p3kVCgKGI_OK8wxYG4FdVwAjByUkQQLBaMVxFCrHJUjUWT0IJjhIAk7RhcL12Wz0bsStqbc6WyC3m-0ONqUKbTUGtNGtMaNzHkYhVIDDNgMLYJiarC0sT4trN08br2z7QuKiY-gj09SuNbrfKPvMzLBZCO8fyCU_Gv2ddLbUK2P0SSf56qpVEJiPgBv0ndPpJs8l9T-aq8iVAFhTUUXlS251uJXf9MQrO_r10v97XFM7-vXopnkE5MN076hljrE561ssdZ2T1r78i_VM64_EZvEQw |
CitedBy_id | crossref_primary_10_1021_acsami_4c18860 crossref_primary_10_1002_aenm_202400696 crossref_primary_10_1002_anie_202407038 crossref_primary_10_1016_j_cej_2025_160619 crossref_primary_10_1016_j_chempr_2024_07_015 crossref_primary_10_1021_acs_nanolett_4c02315 crossref_primary_10_1039_D4TA07348G crossref_primary_10_1016_j_jpowsour_2025_236834 crossref_primary_10_1021_acsami_4c04902 crossref_primary_10_1002_smtd_202401443 crossref_primary_10_1002_chem_202404174 crossref_primary_10_1002_ange_202423457 crossref_primary_10_1016_j_mseb_2025_118228 crossref_primary_10_1021_acsanm_4c03232 crossref_primary_10_1039_D4QM00867G crossref_primary_10_1021_acs_jpcc_4c05583 crossref_primary_10_1002_anie_202424014 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1021_acssuschemeng_4c06249 crossref_primary_10_1016_j_apcatb_2025_125229 crossref_primary_10_1002_ange_202410555 crossref_primary_10_1038_s41467_024_51951_0 crossref_primary_10_1039_D4DT02871F crossref_primary_10_1002_adfm_202412810 crossref_primary_10_1021_jacs_4c13603 crossref_primary_10_1002_cctc_202402013 crossref_primary_10_1021_acs_inorgchem_4c00985 crossref_primary_10_1002_adma_202403187 crossref_primary_10_1039_D5CC00245A crossref_primary_10_1002_ange_202424014 crossref_primary_10_1002_anie_202423457 crossref_primary_10_1039_D4TA06649A crossref_primary_10_1002_ange_202407038 crossref_primary_10_1016_j_jcis_2024_10_059 crossref_primary_10_1016_j_cej_2024_154525 crossref_primary_10_1016_j_jcat_2024_115814 crossref_primary_10_1021_acsami_4c01733 crossref_primary_10_1016_j_micromeso_2024_113300 crossref_primary_10_1002_adfm_202501170 crossref_primary_10_1002_adfm_202503353 crossref_primary_10_1016_j_jcis_2025_03_002 crossref_primary_10_26599_NRE_2024_9120136 crossref_primary_10_1002_anie_202410555 crossref_primary_10_1002_aenm_202402883 crossref_primary_10_1002_aenm_202405358 crossref_primary_10_1021_acs_inorgchem_4c02111 crossref_primary_10_1002_cjoc_202400442 crossref_primary_10_1016_j_cej_2024_156977 crossref_primary_10_1021_acs_inorgchem_4c02942 crossref_primary_10_1039_D4RA07911F |
Cites_doi | 10.1073/pnas.82.20.6723 10.1039/C6CS00526H 10.1038/s41467-021-22250-9 10.1002/ange.201909832 10.1149/1.2086450 10.1002/jcc.20495 10.1063/1.1305879 10.1021/ja301018q 10.1080/00268979300103121 10.1515/jnet-2020-0070 10.1039/D2EE03323B 10.1038/s41560-022-01114-6 10.1016/j.chempr.2022.08.018 10.1002/anie.202015773 10.1103/PhysRevLett.77.3865 10.1021/ja00112a036 10.1038/s41560-019-0462-7 10.1021/jp105159t 10.1063/1.458452 10.1021/acs.jpca.9b06762 10.1126/science.260.5105.176 10.1016/j.chempr.2020.07.022 10.1002/ange.201502226 10.1021/acs.jpcc.6b00214 10.1021/ar200192t 10.1002/anie.202213328 10.1038/s41557-022-01056-2 10.1021/la9600255 10.1016/j.joule.2021.03.022 10.1038/s41467-019-14157-3 10.1063/1.452288 10.1038/s41467-023-37775-4 10.1063/1.1316015 10.1021/jacs.6b12250 10.1002/jcc.22885 10.1021/jp046577a 10.1038/s41560-021-00899-2 10.1002/advs.201500433 10.1038/s41563-021-01006-2 10.1002/anie.201608899 10.1038/s41563-022-01380-5 10.1021/jp106469x 10.1038/s41467-020-19729-2 10.1021/ja511559d 10.1038/s41929-021-00715-w 10.1016/j.chempr.2022.07.010 10.1021/acscatal.0c02413 10.1016/j.cej.2021.133114 10.1002/cber.19050380317 10.1002/smll.202206531 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-43649-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_02b54cadb3de4b6997470a7d859397c2 PMC10693638 10_1038_s41467_023_43649_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22372078; 51872135; 51572121; 21633004; 52073006 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 22372078; 51872135; 51572121; 21633004; 52073006 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-d852692400bde9050405c62d5644b549a810694bc61a2c9d28b191be463a54813 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:22 EDT 2025 Thu Aug 21 18:36:04 EDT 2025 Sun Aug 24 04:11:48 EDT 2025 Wed Aug 13 11:33:48 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Tue Jul 01 02:10:48 EDT 2025 Fri Feb 21 02:38:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-d852692400bde9050405c62d5644b549a810694bc61a2c9d28b191be463a54813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1597-7151 0000-0003-2092-8335 0000-0002-3432-9117 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-43649-6 |
PMID | 38042856 |
PQID | 2896129413 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02b54cadb3de4b6997470a7d859397c2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10693638 proquest_miscellaneous_2896805745 proquest_journals_2896129413 crossref_primary_10_1038_s41467_023_43649_6 crossref_citationtrail_10_1038_s41467_023_43649_6 springer_journals_10_1038_s41467_023_43649_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-02 |
PublicationDateYYYYMMDD | 2023-12-02 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Dolg, Wedig, Stoll, Preuss (CR43) 1987; 86 Bao (CR21) 2015; 127 Grimme (CR45) 2006; 27 Perdew, Burke, Ernzerhof (CR42) 1996; 77 Kandori (CR36) 1995; 117 Wang, Cao, Jiao (CR4) 2022; 61 Wu (CR8) 2023; 22 Peugeot (CR24) 2021; 5 Lo, Hwang (CR26) 1998; 14 Chen (CR27) 2016; 3 Noh, Mayer (CR15) 2022; 8 Liu (CR6) 2020; 11 Bucko, Hafner, Lebegue, Angyan (CR46) 2010; 114 Pandya, Hoffman, McBreen, O’Grady (CR29) 1990; 137 Morell, Grand, Toro-Labbé (CR17) 2005; 109 Delley (CR40) 1990; 92 Fuentealba, Pérez, Contreras (CR49) 2000; 113 Görlin (CR23) 2020; 11 Zhu (CR38) 2023; 19 Li (CR9) 2021; 20 Yu (CR19) 2022; 430 Zhao (CR11) 2021; 12 Huang (CR32) 2023; 14 Tang (CR13) 2017; 56 Dotan (CR14) 2019; 4 Zhang (CR35) 2019; 131 Geng (CR37) 2021; 6 Allendorf (CR2) 2022; 14 Bergner, Dolg, Küchle, Stoll, Preuß (CR44) 1993; 80 Xu, Chen, Shi (CR7) 2023; 16 Lu, Chen (CR48) 2012; 33 Friebel (CR47) 2015; 137 Daramola, Singh, Botte (CR39) 2010; 114 Fidelsky, Caspary Toroker (CR22) 2016; 120 Bediako (CR30) 2012; 134 Delley (CR41) 2000; 113 Ovshinsky, Fetcenko, Ross (CR25) 1993; 260 Arias-Rotondo, McCusker (CR16) 2016; 45 Ali, Reddy, Manna (CR34) 2019; 123 Tschugaeff (CR33) 1905; 38 Gӧrlin (CR28) 2017; 139 del Olmo, Pavelka, Kosek (CR31) 2021; 46 Chen (CR10) 2020; 6 Kim (CR5) 2020; 10 Chen (CR12) 2021; 60 Geerlings, Ayers, Toro-Labbé, Chattaraj, De Proft (CR18) 2012; 45 Yang, Nielsen, Song, McElroy (CR1) 2022; 7 Yang, Parr (CR50) 1985; 82 Wu, Wang, Wu (CR3) 2022; 8 Kang (CR20) 2021; 4 H Huang (43649_CR32) 2023; 14 M Görlin (43649_CR23) 2020; 11 S-K Geng (43649_CR37) 2021; 6 JP Perdew (43649_CR42) 1996; 77 V Fidelsky (43649_CR22) 2016; 120 H Kim (43649_CR5) 2020; 10 Y Zhu (43649_CR38) 2023; 19 S Ovshinsky (43649_CR25) 1993; 260 Z-Y Wu (43649_CR8) 2023; 22 S Grimme (43649_CR45) 2006; 27 T Bucko (43649_CR46) 2010; 114 A Bergner (43649_CR44) 1993; 80 H Kandori (43649_CR36) 1995; 117 YL Lo (43649_CR26) 1998; 14 SY Ali (43649_CR34) 2019; 123 B Delley (43649_CR40) 1990; 92 D Chen (43649_CR27) 2016; 3 M Gӧrlin (43649_CR28) 2017; 139 M Dolg (43649_CR43) 1987; 86 W Chen (43649_CR12) 2021; 60 DM Arias-Rotondo (43649_CR16) 2016; 45 J Kang (43649_CR20) 2021; 4 D Friebel (43649_CR47) 2015; 137 H Xu (43649_CR7) 2023; 16 J Bao (43649_CR21) 2015; 127 L Zhang (43649_CR35) 2019; 131 X Yang (43649_CR1) 2022; 7 B Delley (43649_CR41) 2000; 113 DA Daramola (43649_CR39) 2010; 114 D del Olmo (43649_CR31) 2021; 46 MD Allendorf (43649_CR2) 2022; 14 C Morell (43649_CR17) 2005; 109 S Li (43649_CR9) 2021; 20 W Liu (43649_CR6) 2020; 11 H Dotan (43649_CR14) 2019; 4 K Pandya (43649_CR29) 1990; 137 T Wang (43649_CR4) 2022; 61 H Zhao (43649_CR11) 2021; 12 W Chen (43649_CR10) 2020; 6 DK Bediako (43649_CR30) 2012; 134 T Lu (43649_CR48) 2012; 33 W Yang (43649_CR50) 1985; 82 P Geerlings (43649_CR18) 2012; 45 G Yu (43649_CR19) 2022; 430 L Tschugaeff (43649_CR33) 1905; 38 P Fuentealba (43649_CR49) 2000; 113 A Peugeot (43649_CR24) 2021; 5 C Tang (43649_CR13) 2017; 56 H Noh (43649_CR15) 2022; 8 X Wu (43649_CR3) 2022; 8 |
References_xml | – volume: 82 start-page: 6723 year: 1985 end-page: 6726 ident: CR50 article-title: Hardness, softness, and the fukui function in the electronic theory of metals and catalysis publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.82.20.6723 – volume: 45 start-page: 5803 year: 2016 end-page: 5820 ident: CR16 article-title: The photophysics of photoredox catalysis: a roadmap for catalyst design publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00526H – volume: 12 year: 2021 ident: CR11 article-title: Raw biomass electroreforming coupled to green hydrogen generation publication-title: Nat. Commun. doi: 10.1038/s41467-021-22250-9 – volume: 131 start-page: 16976 year: 2019 end-page: 16981 ident: CR35 article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909832 – volume: 137 start-page: 383 year: 1990 ident: CR29 article-title: In situ X-ray absorption spectroscopic studies of nickel oxide electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086450 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR45 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 113 start-page: 2544 year: 2000 end-page: 2551 ident: CR49 article-title: On the condensed Fukui function publication-title: J. Chem. Phys. doi: 10.1063/1.1305879 – volume: 134 start-page: 6801 year: 2012 end-page: 6809 ident: CR30 article-title: Structure-activity correlations in a nickel-borate oxygen evolution catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301018q – volume: 80 start-page: 1431 year: 1993 end-page: 1441 ident: CR44 article-title: Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 publication-title: Mol. Phys. doi: 10.1080/00268979300103121 – volume: 46 start-page: 91 year: 2021 end-page: 108 ident: CR31 article-title: Open-circuit voltage comes from non-equilibrium thermodynamics publication-title: J. Non-equil. Thermody. doi: 10.1515/jnet-2020-0070 – volume: 16 start-page: 1334 year: 2023 end-page: 1363 ident: CR7 article-title: Advanced electrocatalytic systems for enhanced atom/electron utilization publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03323B – volume: 7 start-page: 955 year: 2022 end-page: 965 ident: CR1 article-title: Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen publication-title: Nat. Energy doi: 10.1038/s41560-022-01114-6 – volume: 8 start-page: 3324 year: 2022 end-page: 3345 ident: CR15 article-title: Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes publication-title: Chem doi: 10.1016/j.chempr.2022.08.018 – volume: 60 start-page: 7297 year: 2021 end-page: 7307 ident: CR12 article-title: Unveiling the electrooxidation of urea: intramolecular coupling of the N-N bond publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015773 – volume: 77 start-page: 3865 year: 1996 ident: CR42 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 117 start-page: 2118 year: 1995 end-page: 2119 ident: CR36 article-title: Water-mediated proton transfer in proteins: an FTIR publication-title: study of bacteriorhodopsin. J. Am. Chem. Soc. doi: 10.1021/ja00112a036 – volume: 4 start-page: 786 year: 2019 end-page: 795 ident: CR14 article-title: Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting publication-title: Nat. Energy doi: 10.1038/s41560-019-0462-7 – volume: 114 start-page: 11513 year: 2010 end-page: 11521 ident: CR39 article-title: Dissociation rates of urea in the presence of NiOOH catalyst: a DFT publication-title: analysis. J. Phys. Chem. A doi: 10.1021/jp105159t – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: CR40 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 123 start-page: 9166 year: 2019 end-page: 9174 ident: CR34 article-title: Structural, electronic, and spectral properties of metal dimethylglyoximato [M(DMG) ; M = Ni , Cu ] complexes: a comparative theoretical study publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b06762 – volume: 260 start-page: 176 year: 1993 end-page: 181 ident: CR25 article-title: A nickel metal hydride battery for electric vehicles publication-title: Science doi: 10.1126/science.260.5105.176 – volume: 6 start-page: 2974 year: 2020 end-page: 2993 ident: CR10 article-title: Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation publication-title: Chem doi: 10.1016/j.chempr.2020.07.022 – volume: 127 start-page: 7507 year: 2015 end-page: 7512 ident: CR21 article-title: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201502226 – volume: 120 start-page: 8104 year: 2016 end-page: 8108 ident: CR22 article-title: Engineering band edge positions of nickel oxyhydroxide through facet selection publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00214 – volume: 45 start-page: 683 year: 2012 end-page: 695 ident: CR18 article-title: The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory publication-title: Acc. Chem. Res. doi: 10.1021/ar200192t – volume: 61 start-page: e202213328 year: 2022 ident: CR4 article-title: Progress in hydrogen production coupled with electrochemical oxidation of small molecules publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213328 – volume: 14 start-page: 1214 year: 2022 end-page: 1223 ident: CR2 article-title: Challenges to developing materials for the transport and storage of hydrogen publication-title: Nat. Chem. doi: 10.1038/s41557-022-01056-2 – volume: 14 start-page: 944 year: 1998 end-page: 950 ident: CR26 article-title: In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution publication-title: Langmuir doi: 10.1021/la9600255 – volume: 5 start-page: 1281 year: 2021 end-page: 1300 ident: CR24 article-title: Benchmarking of oxygen evolution catalysts on porous nickel supports publication-title: Joule doi: 10.1016/j.joule.2021.03.022 – volume: 11 year: 2020 ident: CR6 article-title: Efficient electrochemical production of glucaric acid and H via glucose electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-14157-3 – volume: 86 start-page: 866 year: 1987 end-page: 872 ident: CR43 article-title: Energy‐adjusted abinitio pseudopotentials for the first row transition elements publication-title: J. Chem. Phys. doi: 10.1063/1.452288 – volume: 14 year: 2023 ident: CR32 article-title: Unusual double ligand holes as catalytic active sites in LiNiO publication-title: Nat. Commun. doi: 10.1038/s41467-023-37775-4 – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: CR41 article-title: From molecules to solids with the DMol approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 139 start-page: 2070 year: 2017 end-page: 2082 ident: CR28 article-title: Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR48 article-title: Multiwfn: A multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 109 start-page: 205 year: 2005 end-page: 212 ident: CR17 article-title: New dual descriptor for chemical reactivity publication-title: J. Phys. Chem. A doi: 10.1021/jp046577a – volume: 6 start-page: 904 year: 2021 end-page: 912 ident: CR37 article-title: Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 – volume: 3 start-page: 1500433 year: 2016 ident: CR27 article-title: Probing structural evolution and charge storage mechanism of NiO H electrode materials using in operando resonance raman spectroscopy publication-title: Adv. Sci. doi: 10.1002/advs.201500433 – volume: 20 start-page: 1240 year: 2021 end-page: 1247 ident: CR9 article-title: Oxygen-evolving catalytic atoms on metal carbides publication-title: Nat. Mater. doi: 10.1038/s41563-021-01006-2 – volume: 56 start-page: 842 year: 2017 end-page: 846 ident: CR13 article-title: Energy‐saving electrolytic hydrogen generation: Ni P nanoarray as a high‐performance non‐noble‐metal electrocatalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608899 – volume: 22 start-page: 100 year: 2023 end-page: 108 ident: CR8 article-title: Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis publication-title: Nat. Mater. doi: 10.1038/s41563-022-01380-5 – volume: 114 start-page: 11814 year: 2010 end-page: 11824 ident: CR46 article-title: Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals publication-title: corrections. J. Phys. Chem. A doi: 10.1021/jp106469x – volume: 11 year: 2020 ident: CR23 article-title: Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations publication-title: Nat. Commun. doi: 10.1038/s41467-020-19729-2 – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: CR47 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 4 start-page: 1050 year: 2021 end-page: 1058 ident: CR20 article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-021-00715-w – volume: 8 start-page: 2594 year: 2022 end-page: 2629 ident: CR3 article-title: Design principle of electrocatalysts for the electrooxidation of organics publication-title: Chem doi: 10.1016/j.chempr.2022.07.010 – volume: 10 start-page: 11674 year: 2020 end-page: 11684 ident: CR5 article-title: Operando stability of platinum electrocatalysts in ammonia oxidation reactions publication-title: ACS Catal doi: 10.1021/acscatal.0c02413 – volume: 430 start-page: 133114 year: 2022 ident: CR19 article-title: Mechanism of ozone adsorption and activation on B-, N-, P-, and Si-doped graphene: A DFT study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133114 – volume: 38 start-page: 2520 year: 1905 end-page: 2522 ident: CR33 article-title: Ueber ein neues, empfindliches Reagens auf Nickel publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19050380317 – volume: 19 start-page: 2206531 year: 2023 ident: CR38 article-title: Improving the oxygen evolution activity of layered double-hydroxide via erbium‐induced electronic engineering publication-title: Small doi: 10.1002/smll.202206531 – volume: 6 start-page: 2974 year: 2020 ident: 43649_CR10 publication-title: Chem doi: 10.1016/j.chempr.2020.07.022 – volume: 113 start-page: 7756 year: 2000 ident: 43649_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 127 start-page: 7507 year: 2015 ident: 43649_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201502226 – volume: 114 start-page: 11513 year: 2010 ident: 43649_CR39 publication-title: analysis. J. Phys. Chem. A doi: 10.1021/jp105159t – volume: 22 start-page: 100 year: 2023 ident: 43649_CR8 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01380-5 – volume: 113 start-page: 2544 year: 2000 ident: 43649_CR49 publication-title: J. Chem. Phys. doi: 10.1063/1.1305879 – volume: 38 start-page: 2520 year: 1905 ident: 43649_CR33 publication-title: Ber. Dtsch. Chem. Ges. doi: 10.1002/cber.19050380317 – volume: 5 start-page: 1281 year: 2021 ident: 43649_CR24 publication-title: Joule doi: 10.1016/j.joule.2021.03.022 – volume: 56 start-page: 842 year: 2017 ident: 43649_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608899 – volume: 4 start-page: 1050 year: 2021 ident: 43649_CR20 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00715-w – volume: 3 start-page: 1500433 year: 2016 ident: 43649_CR27 publication-title: Adv. Sci. doi: 10.1002/advs.201500433 – volume: 33 start-page: 580 year: 2012 ident: 43649_CR48 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 92 start-page: 508 year: 1990 ident: 43649_CR40 publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 8 start-page: 2594 year: 2022 ident: 43649_CR3 publication-title: Chem doi: 10.1016/j.chempr.2022.07.010 – volume: 117 start-page: 2118 year: 1995 ident: 43649_CR36 publication-title: study of bacteriorhodopsin. J. Am. Chem. Soc. doi: 10.1021/ja00112a036 – volume: 20 start-page: 1240 year: 2021 ident: 43649_CR9 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01006-2 – volume: 45 start-page: 5803 year: 2016 ident: 43649_CR16 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00526H – volume: 123 start-page: 9166 year: 2019 ident: 43649_CR34 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b06762 – volume: 16 start-page: 1334 year: 2023 ident: 43649_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03323B – volume: 131 start-page: 16976 year: 2019 ident: 43649_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909832 – volume: 6 start-page: 904 year: 2021 ident: 43649_CR37 publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 – volume: 14 start-page: 1214 year: 2022 ident: 43649_CR2 publication-title: Nat. Chem. doi: 10.1038/s41557-022-01056-2 – volume: 11 year: 2020 ident: 43649_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19729-2 – volume: 134 start-page: 6801 year: 2012 ident: 43649_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301018q – volume: 8 start-page: 3324 year: 2022 ident: 43649_CR15 publication-title: Chem doi: 10.1016/j.chempr.2022.08.018 – volume: 27 start-page: 1787 year: 2006 ident: 43649_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 139 start-page: 2070 year: 2017 ident: 43649_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 19 start-page: 2206531 year: 2023 ident: 43649_CR38 publication-title: Small doi: 10.1002/smll.202206531 – volume: 137 start-page: 1305 year: 2015 ident: 43649_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 86 start-page: 866 year: 1987 ident: 43649_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.452288 – volume: 4 start-page: 786 year: 2019 ident: 43649_CR14 publication-title: Nat. Energy doi: 10.1038/s41560-019-0462-7 – volume: 7 start-page: 955 year: 2022 ident: 43649_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01114-6 – volume: 120 start-page: 8104 year: 2016 ident: 43649_CR22 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00214 – volume: 114 start-page: 11814 year: 2010 ident: 43649_CR46 publication-title: corrections. J. Phys. Chem. A doi: 10.1021/jp106469x – volume: 137 start-page: 383 year: 1990 ident: 43649_CR29 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086450 – volume: 10 start-page: 11674 year: 2020 ident: 43649_CR5 publication-title: ACS Catal doi: 10.1021/acscatal.0c02413 – volume: 109 start-page: 205 year: 2005 ident: 43649_CR17 publication-title: J. Phys. Chem. A doi: 10.1021/jp046577a – volume: 61 start-page: e202213328 year: 2022 ident: 43649_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213328 – volume: 77 start-page: 3865 year: 1996 ident: 43649_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 60 start-page: 7297 year: 2021 ident: 43649_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015773 – volume: 14 start-page: 944 year: 1998 ident: 43649_CR26 publication-title: Langmuir doi: 10.1021/la9600255 – volume: 82 start-page: 6723 year: 1985 ident: 43649_CR50 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.82.20.6723 – volume: 80 start-page: 1431 year: 1993 ident: 43649_CR44 publication-title: Mol. Phys. doi: 10.1080/00268979300103121 – volume: 260 start-page: 176 year: 1993 ident: 43649_CR25 publication-title: Science doi: 10.1126/science.260.5105.176 – volume: 46 start-page: 91 year: 2021 ident: 43649_CR31 publication-title: J. Non-equil. Thermody. doi: 10.1515/jnet-2020-0070 – volume: 11 year: 2020 ident: 43649_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14157-3 – volume: 430 start-page: 133114 year: 2022 ident: 43649_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133114 – volume: 45 start-page: 683 year: 2012 ident: 43649_CR18 publication-title: Acc. Chem. Res. doi: 10.1021/ar200192t – volume: 14 year: 2023 ident: 43649_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37775-4 – volume: 12 year: 2021 ident: 43649_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22250-9 |
SSID | ssj0000391844 |
Score | 2.632915 |
Snippet | A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we... Abstract A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology.... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7987 |
SubjectTerms | 119/118 140/125 140/131 140/133 140/146 147/135 147/143 147/28 639/4077/4079/4088/4058 639/638/675 639/638/77/885 639/638/77/886 639/766/94 Alcohol Benzyl alcohol Carbonyl compounds Carbonyls Catalysts Electrodes Electrolytes Electron transfer Electrons Energy Energy conversion Energy levels Ethanol Functional groups Glucosamine Glucose Humanities and Social Sciences Hydrogen Molecular orbitals multidisciplinary Nickel Oxidation Renewable resources Science Science (multidisciplinary) Softness Urea Voltammetry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLSdqGOI-iQm-tiS3JWumYloZQ6J4ayE1oJIUuBDtkN5Dk12ckebdxoO2lV0uWrU8zmhk9vgH4iE4jn-muRhdntXSOVCqgqkmUYxChFZgDxR9zdXYuv190F09SfaUzYYUeuAB33HDspHcBRYgSlUn-b-NmIfF0mZnPsy_ZvCfBVJ6DhaHQRY63ZBqhj5cyzwlkomoplDS1mliiTNg_8TKfn5F8tlGa7c_pNrweHUd2Un54B17E_g28LKkk79_CfD70ifvzjq1uFiQ91B7rF6SiVyyv0Nw_UKusT-zFw3VaRPFszIAz3C1KXiU2XLKS5Mkv38H56befX8_qMVdC7btWr2rCgyuTDoRiiKbpSDc7r3joyN8hAI3Tbbriil61jnsTuEaK1DBKJRwFLa3Yha1-6OMeMFJRhY1D5NJLsvco20tBjgQpf3CN0xW0a9ysH4nEUz6LK5s3tIW2BWtLWNuMtVUVfNq8c11oNP5a-0sajk3NRIGdHxAIdhQM-y_BqOBwPZh21MulpfCSXDpDlruCD5ti0qi0TeL6ONyWOprcWNlVoCdCMPmhaUm_-JW5uRPKgua0Cj6v5eX31__c4_3_0eMDeMWTfKfDNvwQtlY3t_GIXKYVvs_a8QjYPhEC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6alEIupa8Qt2lRobdUxLZkrXwqbek2FLqnBHITeoUsBHuT3UCSX58ZWbvBgeRqy7I9mrdG8wF8c1a7eqIb7myccGktilRwiiMrxyBCJVwKFP_P1NGJ_HfanOaE2zKXVa51YlLUofeUIz_EwACNcYs698fikhNqFO2uZgiNLXhZoaWhki49_bvJsVD3cy1lPitTCn24lEkzoKHiUijZcjWyR6lt_8jXfFwp-Wi7NFmh6Rt4nd1H9nNY77fwInbv4NUAKHn7HmazvqMOoDdsdTVHHsL5WDdHQb1gKU9ze4ezso56GPcLSqV4lnFw-pv5gK7E-jM2QD355Qc4mf45_n3EM2IC902lVzxoAgynslAXYls2KKGNV3Vo0OtxGAlaXdFBV-dVZWvfhlo7jNdclEpYDF0qsQvbXd_FPWAoqMqV1rlaeolW38nqTKA7gSog2NLqAqo13YzP7cQJ1eLCpG1toc1Aa4O0NonWRhVwsHlmMTTTeHb0L1qOzUhqhJ0uIBFMliscj__lbXAiROlUS-FRaSeB2ri1E18XsL9eTJOlc2keeKmAr5vbKFe0WWK72F8PYzQ6s7IpQI-YYPRB4zvd_Dx16CYqC9RsBXxf88vD25_-44_Pf-wn2CGw-1RMU-_D9urqOn5Gl2jlviS-vwdryAi6 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7sidCXorXSqJUt-GaDSXazt3m8looceC-t4Nuys7vigSTineD513d2k5xEtOBrMvmxk_kyM7uz3wAco1FYjFWZovHjVBhDkHIoUzJl77jLOcZE8WImzy_F9Kq82oCi3wsTi_YjpWX8TffVYacLESFNHiYVXIoqlR9gM1C1k21vTibTP9P1zErgPFdCdDtkMq5euXjghSJZ_yDCfFkf-WKRNPqes2341AWNbNK-5g5s-PozbLVtJFe7MJs1deD9fGTL-zlZDt2P1XOC5y2LszOrJ7orqwNzcXMXJlAs67rfNI_ztqcSa65Z2-DJLr7A5dnvv7_O065PQmrLXC1Tp0Kb8FAMis5XWUm4LK0sXEmxDlL-Z1QetreilbkpbOUKhZSloReSG0pYcr4Ho7qp_VdgBE-JmUEshBXk61Hk15yCCAK-M5lRCeS93rTtSMRDL4tbHRezudKtrjXpWkdda5nAyfqau5ZC47_SP8PnWEsG-ut4gJSgO3MgeRqXNQ658wJlFZKizIxdIG-rxrZI4LD_mLrD5EJTaknhXEVeO4Hv69OEprBEYmrfPLQyikJYUSagBkYweKHhmXp-E3m5g5Y5_c8S-NHby_PT3x7x_vvED-BjaHkfS2qKQxgt7x_8NwqMlnjUIeEfTNoH6Q priority: 102 providerName: Springer Nature |
Title | Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics |
URI | https://link.springer.com/article/10.1038/s41467-023-43649-6 https://www.proquest.com/docview/2896129413 https://www.proquest.com/docview/2896805745 https://pubmed.ncbi.nlm.nih.gov/PMC10693638 https://doaj.org/article/02b54cadb3de4b6997470a7d859397c2 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70wmAvZVfmtgsq7G3zFluyLD-MkYamJdAwtgXyJnQrCwS7S1JI-ut3JNsZLl1fbLDk29H5dM7R5XwAH7QSOs1FFmvl8pgphZCymseoys5Sm1AdAsXrCb-asvEsm-1BS3fUCHD1aGjn-aSmy8XnzZ_tNwT813rLuPiyYgHuaH1iRjkrYr4Ph2iZcs9ocN24-6FnpgUGNKzZO_P4rR37FNL4d3zPhysnH0yfBqs0egFHjTtJBnX7v4Q9V76CZzXB5PY1TCZV6TOCbsh6OUedwueRco7AXZAwbrO9x6eS0uc0rm790IohDS9OtZnXbEukuiE19ZNZvYHp6OLX8CpuGBRikyViHVvhCcT9MlFtXdHPELGZ4anN0AvSGBkqkfiNr9rwRKWmsKnQGL9pxzhVGMok9C0clFXp3gFB4HLdV1qnzDD0AjRLbii6F9glWNVXIoKklZs0TXpxz3KxkGGamwpZy1qirGWQteQRfNzdc1sn13iy9rlvjl1Nnxg7XEAhyAZnWB__yyirqXVM88KHS32VW5_WrchNGsFp25iyVTaJQSc6egXa8wjOdsWIMz95okpX3dV1BDq3LItAdJSg80HdknL-O2Ts9lKm2NNF8KnVl39v__8fHz_9sSfwPPWa6xfXpKdwsF7euffoIq11D_bzWY5HMbrsweFgMP45xvP5xeT7D7w65MNeGHzoBXz8BSDcErE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMEChgJThA1sR2vc0CI17Kl7Z5aqTfjRypWqpKluxVdfhS_kRkn2SqV6K3XxHGS8TcvP-YDeO2sdnyki9TZapRKa1GlglMpQrkKIuTCxURxf6omh_L7UXG0AX_7szC0rbK3idFQh8bTHPk2JgbojEu0uR_mv1JijaLV1Z5Co4XFbrX6jSnb4v3OFxzfN5yPvx58nqQdq0Dqi1wv06CJVJu2TrpQlVmBKC684qHAyMBhtmR1TodBnVe55b4MXDvMaVwllbAY3ucC-70BN6VAT04n08ff1nM6VG1dS9mdzcmE3l7IaInQMaZSKFmmauD_Ik3AILa9vDPz0vJs9Hrje3C3C1fZxxZf92Gjqh_ArZbAcvUQptOmpoqj52x5OkPMYn-snqFhOGFxXmj1B3tlNdVMbuY0deNZx7vTnM9aNifWHLOWWsovHsHhtcjyMWzWTV09AYaGQbnMOsellxhlOJkfCwxf0OQEm1mdQN7LzfiufDmxaJyYuIwutGllbVDWJsraqATerp-Zt8U7rmz9iYZj3ZIKb8cLKATT6TG2x__yNjgRKulUSelYZkeBysaVI88T2OoH03TWYGEusJvAq_Vt1GNanLF11Zy1bTQGz7JIQA9AMPig4Z169jNWBCcpC7SkCbzr8XLx9v__8dOrP_Yl3J4c7O-ZvZ3p7jO4wwnFtJGHb8Hm8vSseo7h2NK9iDrA4Md1K90_1-xCtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIJoE9tJnANClHbVUogqRKXegl8rVqqSpbsVXX4av46ZPLZKJXrrNXGcZDzzecYezwfw2mhleKaS0GifhVJrNCln0hBV2TvhYmGaQPFrke4fy88nyckG_O3PwlBaZY-JDVC72tIa-RgDA5yMc8Tc8bRLizjanXyY_wqJQYp2Wns6jVZFDv3qN4Zvi_cHuzjWbzif7H3_tB92DAOhTWK1DJ0igm1KozTO51GCGp3YlLsEvQSDkZNWMR0MNTaNNbe548pgfGO8TIVGVz8W2O8t2MwoKhrB5s5ecfRtvcJDtdeVlN1JnUio8UI2uITTZChFKvMwHcyGDWnAwNO9mqd5ZbO2mQMn9-Fe57yyj622PYANXz2E2y2d5eoRFEVdUf3RC7Y8m6EGY3-smiFMnLJmlWj1B3tlFVVQrue0kGNZx8JTX8xabidWT1lLNGUXj-H4RqT5BEZVXfktYAgTqYm0MVxaiT6HkfFUoDODAOR0pFUAcS-30nbFzIlT47RsNtWFKltZlyjrspF1mQbwdv3MvC3lcW3rHRqOdUsqw91cQCGUnVVje_wvq50RzkuT5hScRTpzVEQuzywPYLsfzLLDhkV5qckBvFrfRqumrRpd-fq8baPQlZZJAGqgBIMPGt6pZj-b-uAkZYG4GsC7Xl8u3_7_P356_ce-hDtocOWXg-LwGdzlpMSU1cO3YbQ8O_fP0TdbmhedETD4cdN29w-GHkhG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonredox+trivalent+nickel+catalyzing+nucleophilic+electrooxidation+of+organics&rft.jtitle=Nature+communications&rft.au=Yan%2C+Yuandong&rft.au=Wang%2C+Ruyi&rft.au=Zheng%2C+Qian&rft.au=Zhong%2C+Jiaying&rft.date=2023-12-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7987&rft_id=info:doi/10.1038%2Fs41467-023-43649-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |