Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics

A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This no...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7987 - 11
Main Authors Yan, Yuandong, Wang, Ruyi, Zheng, Qian, Zhong, Jiaying, Hao, Weichang, Yan, Shicheng, Zou, Zhigang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e g orbitals of trivalent nickel (t 2g 6 e g 1 ). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process.
AbstractList Abstract A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g 6eg 1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.
A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process.
A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e g orbitals of trivalent nickel (t 2g 6 e g 1 ). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions. A good understanding of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, the authors find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a non-redox process.
A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from −7.4 to −6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from −0.65 to −0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied e g orbitals of trivalent nickel (t 2g 6 e g 1 ). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.
A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.
ArticleNumber 7987
Author Zhong, Jiaying
Yan, Yuandong
Yan, Shicheng
Zheng, Qian
Hao, Weichang
Zou, Zhigang
Wang, Ruyi
Author_xml – sequence: 1
  givenname: Yuandong
  surname: Yan
  fullname: Yan, Yuandong
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University
– sequence: 2
  givenname: Ruyi
  surname: Wang
  fullname: Wang, Ruyi
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University
– sequence: 3
  givenname: Qian
  surname: Zheng
  fullname: Zheng, Qian
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University
– sequence: 4
  givenname: Jiaying
  surname: Zhong
  fullname: Zhong, Jiaying
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University
– sequence: 5
  givenname: Weichang
  orcidid: 0000-0002-1597-7151
  surname: Hao
  fullname: Hao, Weichang
  organization: School of Physics, Beihang University
– sequence: 6
  givenname: Shicheng
  orcidid: 0000-0002-3432-9117
  surname: Yan
  fullname: Yan, Shicheng
  email: yscfei@nju.edu.cn
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University
– sequence: 7
  givenname: Zhigang
  orcidid: 0000-0003-2092-8335
  surname: Zou
  fullname: Zou, Zhigang
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University
BookMark eNp9kc9vFCEcxYmpsbX2H_A0iRcvo_z4wsDJmEbbJk296JkwwG5ZWVhhpmn966U7jdoeygUC73148F6jg5STR-gtwR8IZvJjBQJi6DFlPTABqhcv0BHFQHoyUHbw3_oQndS6wW0wRSTAK3TIJAYquThCV1c5Fe_ybTeVcGOiT1OXgv3pY2fNZOLd75DWXZpt9Hl3HWKwnY_eTiXn2-DMFHLq8qrLZW2arb5BL1cmVn_yMB-jH1-_fD897y-_nV2cfr7sLSdy6p3kVCgKGI_OK8wxYG4FdVwAjByUkQQLBaMVxFCrHJUjUWT0IJjhIAk7RhcL12Wz0bsStqbc6WyC3m-0ONqUKbTUGtNGtMaNzHkYhVIDDNgMLYJiarC0sT4trN08br2z7QuKiY-gj09SuNbrfKPvMzLBZCO8fyCU_Gv2ddLbUK2P0SSf56qpVEJiPgBv0ndPpJs8l9T-aq8iVAFhTUUXlS251uJXf9MQrO_r10v97XFM7-vXopnkE5MN076hljrE561ssdZ2T1r78i_VM64_EZvEQw
CitedBy_id crossref_primary_10_1021_acsami_4c18860
crossref_primary_10_1002_aenm_202400696
crossref_primary_10_1002_anie_202407038
crossref_primary_10_1016_j_cej_2025_160619
crossref_primary_10_1016_j_chempr_2024_07_015
crossref_primary_10_1021_acs_nanolett_4c02315
crossref_primary_10_1039_D4TA07348G
crossref_primary_10_1016_j_jpowsour_2025_236834
crossref_primary_10_1021_acsami_4c04902
crossref_primary_10_1002_smtd_202401443
crossref_primary_10_1002_chem_202404174
crossref_primary_10_1002_ange_202423457
crossref_primary_10_1016_j_mseb_2025_118228
crossref_primary_10_1021_acsanm_4c03232
crossref_primary_10_1039_D4QM00867G
crossref_primary_10_1021_acs_jpcc_4c05583
crossref_primary_10_1002_anie_202424014
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1021_acssuschemeng_4c06249
crossref_primary_10_1016_j_apcatb_2025_125229
crossref_primary_10_1002_ange_202410555
crossref_primary_10_1038_s41467_024_51951_0
crossref_primary_10_1039_D4DT02871F
crossref_primary_10_1002_adfm_202412810
crossref_primary_10_1021_jacs_4c13603
crossref_primary_10_1002_cctc_202402013
crossref_primary_10_1021_acs_inorgchem_4c00985
crossref_primary_10_1002_adma_202403187
crossref_primary_10_1039_D5CC00245A
crossref_primary_10_1002_ange_202424014
crossref_primary_10_1002_anie_202423457
crossref_primary_10_1039_D4TA06649A
crossref_primary_10_1002_ange_202407038
crossref_primary_10_1016_j_jcis_2024_10_059
crossref_primary_10_1016_j_cej_2024_154525
crossref_primary_10_1016_j_jcat_2024_115814
crossref_primary_10_1021_acsami_4c01733
crossref_primary_10_1016_j_micromeso_2024_113300
crossref_primary_10_1002_adfm_202501170
crossref_primary_10_1002_adfm_202503353
crossref_primary_10_1016_j_jcis_2025_03_002
crossref_primary_10_26599_NRE_2024_9120136
crossref_primary_10_1002_anie_202410555
crossref_primary_10_1002_aenm_202402883
crossref_primary_10_1002_aenm_202405358
crossref_primary_10_1021_acs_inorgchem_4c02111
crossref_primary_10_1002_cjoc_202400442
crossref_primary_10_1016_j_cej_2024_156977
crossref_primary_10_1021_acs_inorgchem_4c02942
crossref_primary_10_1039_D4RA07911F
Cites_doi 10.1073/pnas.82.20.6723
10.1039/C6CS00526H
10.1038/s41467-021-22250-9
10.1002/ange.201909832
10.1149/1.2086450
10.1002/jcc.20495
10.1063/1.1305879
10.1021/ja301018q
10.1080/00268979300103121
10.1515/jnet-2020-0070
10.1039/D2EE03323B
10.1038/s41560-022-01114-6
10.1016/j.chempr.2022.08.018
10.1002/anie.202015773
10.1103/PhysRevLett.77.3865
10.1021/ja00112a036
10.1038/s41560-019-0462-7
10.1021/jp105159t
10.1063/1.458452
10.1021/acs.jpca.9b06762
10.1126/science.260.5105.176
10.1016/j.chempr.2020.07.022
10.1002/ange.201502226
10.1021/acs.jpcc.6b00214
10.1021/ar200192t
10.1002/anie.202213328
10.1038/s41557-022-01056-2
10.1021/la9600255
10.1016/j.joule.2021.03.022
10.1038/s41467-019-14157-3
10.1063/1.452288
10.1038/s41467-023-37775-4
10.1063/1.1316015
10.1021/jacs.6b12250
10.1002/jcc.22885
10.1021/jp046577a
10.1038/s41560-021-00899-2
10.1002/advs.201500433
10.1038/s41563-021-01006-2
10.1002/anie.201608899
10.1038/s41563-022-01380-5
10.1021/jp106469x
10.1038/s41467-020-19729-2
10.1021/ja511559d
10.1038/s41929-021-00715-w
10.1016/j.chempr.2022.07.010
10.1021/acscatal.0c02413
10.1016/j.cej.2021.133114
10.1002/cber.19050380317
10.1002/smll.202206531
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-43649-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_02b54cadb3de4b6997470a7d859397c2
PMC10693638
10_1038_s41467_023_43649_6
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22372078; 51872135; 51572121; 21633004; 52073006
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 22372078; 51872135; 51572121; 21633004; 52073006
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-d852692400bde9050405c62d5644b549a810694bc61a2c9d28b191be463a54813
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:22 EDT 2025
Thu Aug 21 18:36:04 EDT 2025
Sun Aug 24 04:11:48 EDT 2025
Wed Aug 13 11:33:48 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Tue Jul 01 02:10:48 EDT 2025
Fri Feb 21 02:38:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-d852692400bde9050405c62d5644b549a810694bc61a2c9d28b191be463a54813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1597-7151
0000-0003-2092-8335
0000-0002-3432-9117
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-43649-6
PMID 38042856
PQID 2896129413
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_02b54cadb3de4b6997470a7d859397c2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10693638
proquest_miscellaneous_2896805745
proquest_journals_2896129413
crossref_primary_10_1038_s41467_023_43649_6
crossref_citationtrail_10_1038_s41467_023_43649_6
springer_journals_10_1038_s41467_023_43649_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Dolg, Wedig, Stoll, Preuss (CR43) 1987; 86
Bao (CR21) 2015; 127
Grimme (CR45) 2006; 27
Perdew, Burke, Ernzerhof (CR42) 1996; 77
Kandori (CR36) 1995; 117
Wang, Cao, Jiao (CR4) 2022; 61
Wu (CR8) 2023; 22
Peugeot (CR24) 2021; 5
Lo, Hwang (CR26) 1998; 14
Chen (CR27) 2016; 3
Noh, Mayer (CR15) 2022; 8
Liu (CR6) 2020; 11
Bucko, Hafner, Lebegue, Angyan (CR46) 2010; 114
Pandya, Hoffman, McBreen, O’Grady (CR29) 1990; 137
Morell, Grand, Toro-Labbé (CR17) 2005; 109
Delley (CR40) 1990; 92
Fuentealba, Pérez, Contreras (CR49) 2000; 113
Görlin (CR23) 2020; 11
Zhu (CR38) 2023; 19
Li (CR9) 2021; 20
Yu (CR19) 2022; 430
Zhao (CR11) 2021; 12
Huang (CR32) 2023; 14
Tang (CR13) 2017; 56
Dotan (CR14) 2019; 4
Zhang (CR35) 2019; 131
Geng (CR37) 2021; 6
Allendorf (CR2) 2022; 14
Bergner, Dolg, Küchle, Stoll, Preuß (CR44) 1993; 80
Xu, Chen, Shi (CR7) 2023; 16
Lu, Chen (CR48) 2012; 33
Friebel (CR47) 2015; 137
Daramola, Singh, Botte (CR39) 2010; 114
Fidelsky, Caspary Toroker (CR22) 2016; 120
Bediako (CR30) 2012; 134
Delley (CR41) 2000; 113
Ovshinsky, Fetcenko, Ross (CR25) 1993; 260
Arias-Rotondo, McCusker (CR16) 2016; 45
Ali, Reddy, Manna (CR34) 2019; 123
Tschugaeff (CR33) 1905; 38
Gӧrlin (CR28) 2017; 139
del Olmo, Pavelka, Kosek (CR31) 2021; 46
Chen (CR10) 2020; 6
Kim (CR5) 2020; 10
Chen (CR12) 2021; 60
Geerlings, Ayers, Toro-Labbé, Chattaraj, De Proft (CR18) 2012; 45
Yang, Nielsen, Song, McElroy (CR1) 2022; 7
Yang, Parr (CR50) 1985; 82
Wu, Wang, Wu (CR3) 2022; 8
Kang (CR20) 2021; 4
H Huang (43649_CR32) 2023; 14
M Görlin (43649_CR23) 2020; 11
S-K Geng (43649_CR37) 2021; 6
JP Perdew (43649_CR42) 1996; 77
V Fidelsky (43649_CR22) 2016; 120
H Kim (43649_CR5) 2020; 10
Y Zhu (43649_CR38) 2023; 19
S Ovshinsky (43649_CR25) 1993; 260
Z-Y Wu (43649_CR8) 2023; 22
S Grimme (43649_CR45) 2006; 27
T Bucko (43649_CR46) 2010; 114
A Bergner (43649_CR44) 1993; 80
H Kandori (43649_CR36) 1995; 117
YL Lo (43649_CR26) 1998; 14
SY Ali (43649_CR34) 2019; 123
B Delley (43649_CR40) 1990; 92
D Chen (43649_CR27) 2016; 3
M Gӧrlin (43649_CR28) 2017; 139
M Dolg (43649_CR43) 1987; 86
W Chen (43649_CR12) 2021; 60
DM Arias-Rotondo (43649_CR16) 2016; 45
J Kang (43649_CR20) 2021; 4
D Friebel (43649_CR47) 2015; 137
H Xu (43649_CR7) 2023; 16
J Bao (43649_CR21) 2015; 127
L Zhang (43649_CR35) 2019; 131
X Yang (43649_CR1) 2022; 7
B Delley (43649_CR41) 2000; 113
DA Daramola (43649_CR39) 2010; 114
D del Olmo (43649_CR31) 2021; 46
MD Allendorf (43649_CR2) 2022; 14
C Morell (43649_CR17) 2005; 109
S Li (43649_CR9) 2021; 20
W Liu (43649_CR6) 2020; 11
H Dotan (43649_CR14) 2019; 4
K Pandya (43649_CR29) 1990; 137
T Wang (43649_CR4) 2022; 61
H Zhao (43649_CR11) 2021; 12
W Chen (43649_CR10) 2020; 6
DK Bediako (43649_CR30) 2012; 134
T Lu (43649_CR48) 2012; 33
W Yang (43649_CR50) 1985; 82
P Geerlings (43649_CR18) 2012; 45
G Yu (43649_CR19) 2022; 430
L Tschugaeff (43649_CR33) 1905; 38
P Fuentealba (43649_CR49) 2000; 113
A Peugeot (43649_CR24) 2021; 5
C Tang (43649_CR13) 2017; 56
H Noh (43649_CR15) 2022; 8
X Wu (43649_CR3) 2022; 8
References_xml – volume: 82
  start-page: 6723
  year: 1985
  end-page: 6726
  ident: CR50
  article-title: Hardness, softness, and the fukui function in the electronic theory of metals and catalysis
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.82.20.6723
– volume: 45
  start-page: 5803
  year: 2016
  end-page: 5820
  ident: CR16
  article-title: The photophysics of photoredox catalysis: a roadmap for catalyst design
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00526H
– volume: 12
  year: 2021
  ident: CR11
  article-title: Raw biomass electroreforming coupled to green hydrogen generation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22250-9
– volume: 131
  start-page: 16976
  year: 2019
  end-page: 16981
  ident: CR35
  article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909832
– volume: 137
  start-page: 383
  year: 1990
  ident: CR29
  article-title: In situ X-ray absorption spectroscopic studies of nickel oxide electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086450
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR45
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 113
  start-page: 2544
  year: 2000
  end-page: 2551
  ident: CR49
  article-title: On the condensed Fukui function
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1305879
– volume: 134
  start-page: 6801
  year: 2012
  end-page: 6809
  ident: CR30
  article-title: Structure-activity correlations in a nickel-borate oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301018q
– volume: 80
  start-page: 1431
  year: 1993
  end-page: 1441
  ident: CR44
  article-title: Ab initio energy-adjusted pseudopotentials for elements of groups 13-17
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300103121
– volume: 46
  start-page: 91
  year: 2021
  end-page: 108
  ident: CR31
  article-title: Open-circuit voltage comes from non-equilibrium thermodynamics
  publication-title: J. Non-equil. Thermody.
  doi: 10.1515/jnet-2020-0070
– volume: 16
  start-page: 1334
  year: 2023
  end-page: 1363
  ident: CR7
  article-title: Advanced electrocatalytic systems for enhanced atom/electron utilization
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03323B
– volume: 7
  start-page: 955
  year: 2022
  end-page: 965
  ident: CR1
  article-title: Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01114-6
– volume: 8
  start-page: 3324
  year: 2022
  end-page: 3345
  ident: CR15
  article-title: Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.08.018
– volume: 60
  start-page: 7297
  year: 2021
  end-page: 7307
  ident: CR12
  article-title: Unveiling the electrooxidation of urea: intramolecular coupling of the N-N bond
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015773
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR42
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 117
  start-page: 2118
  year: 1995
  end-page: 2119
  ident: CR36
  article-title: Water-mediated proton transfer in proteins: an FTIR
  publication-title: study of bacteriorhodopsin. J. Am. Chem. Soc.
  doi: 10.1021/ja00112a036
– volume: 4
  start-page: 786
  year: 2019
  end-page: 795
  ident: CR14
  article-title: Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0462-7
– volume: 114
  start-page: 11513
  year: 2010
  end-page: 11521
  ident: CR39
  article-title: Dissociation rates of urea in the presence of NiOOH catalyst: a DFT
  publication-title: analysis. J. Phys. Chem. A
  doi: 10.1021/jp105159t
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: CR40
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 123
  start-page: 9166
  year: 2019
  end-page: 9174
  ident: CR34
  article-title: Structural, electronic, and spectral properties of metal dimethylglyoximato [M(DMG) ; M = Ni , Cu ] complexes: a comparative theoretical study
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b06762
– volume: 260
  start-page: 176
  year: 1993
  end-page: 181
  ident: CR25
  article-title: A nickel metal hydride battery for electric vehicles
  publication-title: Science
  doi: 10.1126/science.260.5105.176
– volume: 6
  start-page: 2974
  year: 2020
  end-page: 2993
  ident: CR10
  article-title: Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.022
– volume: 127
  start-page: 7507
  year: 2015
  end-page: 7512
  ident: CR21
  article-title: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201502226
– volume: 120
  start-page: 8104
  year: 2016
  end-page: 8108
  ident: CR22
  article-title: Engineering band edge positions of nickel oxyhydroxide through facet selection
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00214
– volume: 45
  start-page: 683
  year: 2012
  end-page: 695
  ident: CR18
  article-title: The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200192t
– volume: 61
  start-page: e202213328
  year: 2022
  ident: CR4
  article-title: Progress in hydrogen production coupled with electrochemical oxidation of small molecules
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213328
– volume: 14
  start-page: 1214
  year: 2022
  end-page: 1223
  ident: CR2
  article-title: Challenges to developing materials for the transport and storage of hydrogen
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-01056-2
– volume: 14
  start-page: 944
  year: 1998
  end-page: 950
  ident: CR26
  article-title: In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution
  publication-title: Langmuir
  doi: 10.1021/la9600255
– volume: 5
  start-page: 1281
  year: 2021
  end-page: 1300
  ident: CR24
  article-title: Benchmarking of oxygen evolution catalysts on porous nickel supports
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.022
– volume: 11
  year: 2020
  ident: CR6
  article-title: Efficient electrochemical production of glucaric acid and H via glucose electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14157-3
– volume: 86
  start-page: 866
  year: 1987
  end-page: 872
  ident: CR43
  article-title: Energy‐adjusted abinitio pseudopotentials for the first row transition elements
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452288
– volume: 14
  year: 2023
  ident: CR32
  article-title: Unusual double ligand holes as catalytic active sites in LiNiO
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37775-4
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: CR41
  article-title: From molecules to solids with the DMol approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 139
  start-page: 2070
  year: 2017
  end-page: 2082
  ident: CR28
  article-title: Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: CR48
  article-title: Multiwfn: A multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 109
  start-page: 205
  year: 2005
  end-page: 212
  ident: CR17
  article-title: New dual descriptor for chemical reactivity
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp046577a
– volume: 6
  start-page: 904
  year: 2021
  end-page: 912
  ident: CR37
  article-title: Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
– volume: 3
  start-page: 1500433
  year: 2016
  ident: CR27
  article-title: Probing structural evolution and charge storage mechanism of NiO H electrode materials using in operando resonance raman spectroscopy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500433
– volume: 20
  start-page: 1240
  year: 2021
  end-page: 1247
  ident: CR9
  article-title: Oxygen-evolving catalytic atoms on metal carbides
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 56
  start-page: 842
  year: 2017
  end-page: 846
  ident: CR13
  article-title: Energy‐saving electrolytic hydrogen generation: Ni P nanoarray as a high‐performance non‐noble‐metal electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608899
– volume: 22
  start-page: 100
  year: 2023
  end-page: 108
  ident: CR8
  article-title: Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01380-5
– volume: 114
  start-page: 11814
  year: 2010
  end-page: 11824
  ident: CR46
  article-title: Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals
  publication-title: corrections. J. Phys. Chem. A
  doi: 10.1021/jp106469x
– volume: 11
  year: 2020
  ident: CR23
  article-title: Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19729-2
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: CR47
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 4
  start-page: 1050
  year: 2021
  end-page: 1058
  ident: CR20
  article-title: Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00715-w
– volume: 8
  start-page: 2594
  year: 2022
  end-page: 2629
  ident: CR3
  article-title: Design principle of electrocatalysts for the electrooxidation of organics
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.010
– volume: 10
  start-page: 11674
  year: 2020
  end-page: 11684
  ident: CR5
  article-title: Operando stability of platinum electrocatalysts in ammonia oxidation reactions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c02413
– volume: 430
  start-page: 133114
  year: 2022
  ident: CR19
  article-title: Mechanism of ozone adsorption and activation on B-, N-, P-, and Si-doped graphene: A DFT study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133114
– volume: 38
  start-page: 2520
  year: 1905
  end-page: 2522
  ident: CR33
  article-title: Ueber ein neues, empfindliches Reagens auf Nickel
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19050380317
– volume: 19
  start-page: 2206531
  year: 2023
  ident: CR38
  article-title: Improving the oxygen evolution activity of layered double-hydroxide via erbium‐induced electronic engineering
  publication-title: Small
  doi: 10.1002/smll.202206531
– volume: 6
  start-page: 2974
  year: 2020
  ident: 43649_CR10
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.07.022
– volume: 113
  start-page: 7756
  year: 2000
  ident: 43649_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 127
  start-page: 7507
  year: 2015
  ident: 43649_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201502226
– volume: 114
  start-page: 11513
  year: 2010
  ident: 43649_CR39
  publication-title: analysis. J. Phys. Chem. A
  doi: 10.1021/jp105159t
– volume: 22
  start-page: 100
  year: 2023
  ident: 43649_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01380-5
– volume: 113
  start-page: 2544
  year: 2000
  ident: 43649_CR49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1305879
– volume: 38
  start-page: 2520
  year: 1905
  ident: 43649_CR33
  publication-title: Ber. Dtsch. Chem. Ges.
  doi: 10.1002/cber.19050380317
– volume: 5
  start-page: 1281
  year: 2021
  ident: 43649_CR24
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.022
– volume: 56
  start-page: 842
  year: 2017
  ident: 43649_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608899
– volume: 4
  start-page: 1050
  year: 2021
  ident: 43649_CR20
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00715-w
– volume: 3
  start-page: 1500433
  year: 2016
  ident: 43649_CR27
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500433
– volume: 33
  start-page: 580
  year: 2012
  ident: 43649_CR48
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 92
  start-page: 508
  year: 1990
  ident: 43649_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 8
  start-page: 2594
  year: 2022
  ident: 43649_CR3
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.010
– volume: 117
  start-page: 2118
  year: 1995
  ident: 43649_CR36
  publication-title: study of bacteriorhodopsin. J. Am. Chem. Soc.
  doi: 10.1021/ja00112a036
– volume: 20
  start-page: 1240
  year: 2021
  ident: 43649_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 45
  start-page: 5803
  year: 2016
  ident: 43649_CR16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00526H
– volume: 123
  start-page: 9166
  year: 2019
  ident: 43649_CR34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b06762
– volume: 16
  start-page: 1334
  year: 2023
  ident: 43649_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03323B
– volume: 131
  start-page: 16976
  year: 2019
  ident: 43649_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909832
– volume: 6
  start-page: 904
  year: 2021
  ident: 43649_CR37
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
– volume: 14
  start-page: 1214
  year: 2022
  ident: 43649_CR2
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-01056-2
– volume: 11
  year: 2020
  ident: 43649_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19729-2
– volume: 134
  start-page: 6801
  year: 2012
  ident: 43649_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301018q
– volume: 8
  start-page: 3324
  year: 2022
  ident: 43649_CR15
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.08.018
– volume: 27
  start-page: 1787
  year: 2006
  ident: 43649_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 139
  start-page: 2070
  year: 2017
  ident: 43649_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 19
  start-page: 2206531
  year: 2023
  ident: 43649_CR38
  publication-title: Small
  doi: 10.1002/smll.202206531
– volume: 137
  start-page: 1305
  year: 2015
  ident: 43649_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 86
  start-page: 866
  year: 1987
  ident: 43649_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452288
– volume: 4
  start-page: 786
  year: 2019
  ident: 43649_CR14
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0462-7
– volume: 7
  start-page: 955
  year: 2022
  ident: 43649_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01114-6
– volume: 120
  start-page: 8104
  year: 2016
  ident: 43649_CR22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00214
– volume: 114
  start-page: 11814
  year: 2010
  ident: 43649_CR46
  publication-title: corrections. J. Phys. Chem. A
  doi: 10.1021/jp106469x
– volume: 137
  start-page: 383
  year: 1990
  ident: 43649_CR29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086450
– volume: 10
  start-page: 11674
  year: 2020
  ident: 43649_CR5
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c02413
– volume: 109
  start-page: 205
  year: 2005
  ident: 43649_CR17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp046577a
– volume: 61
  start-page: e202213328
  year: 2022
  ident: 43649_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213328
– volume: 77
  start-page: 3865
  year: 1996
  ident: 43649_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 60
  start-page: 7297
  year: 2021
  ident: 43649_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015773
– volume: 14
  start-page: 944
  year: 1998
  ident: 43649_CR26
  publication-title: Langmuir
  doi: 10.1021/la9600255
– volume: 82
  start-page: 6723
  year: 1985
  ident: 43649_CR50
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.82.20.6723
– volume: 80
  start-page: 1431
  year: 1993
  ident: 43649_CR44
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300103121
– volume: 260
  start-page: 176
  year: 1993
  ident: 43649_CR25
  publication-title: Science
  doi: 10.1126/science.260.5105.176
– volume: 46
  start-page: 91
  year: 2021
  ident: 43649_CR31
  publication-title: J. Non-equil. Thermody.
  doi: 10.1515/jnet-2020-0070
– volume: 11
  year: 2020
  ident: 43649_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14157-3
– volume: 430
  start-page: 133114
  year: 2022
  ident: 43649_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133114
– volume: 45
  start-page: 683
  year: 2012
  ident: 43649_CR18
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200192t
– volume: 14
  year: 2023
  ident: 43649_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37775-4
– volume: 12
  year: 2021
  ident: 43649_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22250-9
SSID ssj0000391844
Score 2.632915
Snippet A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we...
Abstract A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology....
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7987
SubjectTerms 119/118
140/125
140/131
140/133
140/146
147/135
147/143
147/28
639/4077/4079/4088/4058
639/638/675
639/638/77/885
639/638/77/886
639/766/94
Alcohol
Benzyl alcohol
Carbonyl compounds
Carbonyls
Catalysts
Electrodes
Electrolytes
Electron transfer
Electrons
Energy
Energy conversion
Energy levels
Ethanol
Functional groups
Glucosamine
Glucose
Humanities and Social Sciences
Hydrogen
Molecular orbitals
multidisciplinary
Nickel
Oxidation
Renewable resources
Science
Science (multidisciplinary)
Softness
Urea
Voltammetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLSdqGOI-iQm-tiS3JWumYloZQ6J4ayE1oJIUuBDtkN5Dk12ckebdxoO2lV0uWrU8zmhk9vgH4iE4jn-muRhdntXSOVCqgqkmUYxChFZgDxR9zdXYuv190F09SfaUzYYUeuAB33HDspHcBRYgSlUn-b-NmIfF0mZnPsy_ZvCfBVJ6DhaHQRY63ZBqhj5cyzwlkomoplDS1mliiTNg_8TKfn5F8tlGa7c_pNrweHUd2Un54B17E_g28LKkk79_CfD70ifvzjq1uFiQ91B7rF6SiVyyv0Nw_UKusT-zFw3VaRPFszIAz3C1KXiU2XLKS5Mkv38H56befX8_qMVdC7btWr2rCgyuTDoRiiKbpSDc7r3joyN8hAI3Tbbriil61jnsTuEaK1DBKJRwFLa3Yha1-6OMeMFJRhY1D5NJLsvco20tBjgQpf3CN0xW0a9ysH4nEUz6LK5s3tIW2BWtLWNuMtVUVfNq8c11oNP5a-0sajk3NRIGdHxAIdhQM-y_BqOBwPZh21MulpfCSXDpDlruCD5ti0qi0TeL6ONyWOprcWNlVoCdCMPmhaUm_-JW5uRPKgua0Cj6v5eX31__c4_3_0eMDeMWTfKfDNvwQtlY3t_GIXKYVvs_a8QjYPhEC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6alEIupa8Qt2lRobdUxLZkrXwqbek2FLqnBHITeoUsBHuT3UCSX58ZWbvBgeRqy7I9mrdG8wF8c1a7eqIb7myccGktilRwiiMrxyBCJVwKFP_P1NGJ_HfanOaE2zKXVa51YlLUofeUIz_EwACNcYs698fikhNqFO2uZgiNLXhZoaWhki49_bvJsVD3cy1lPitTCn24lEkzoKHiUijZcjWyR6lt_8jXfFwp-Wi7NFmh6Rt4nd1H9nNY77fwInbv4NUAKHn7HmazvqMOoDdsdTVHHsL5WDdHQb1gKU9ze4ezso56GPcLSqV4lnFw-pv5gK7E-jM2QD355Qc4mf45_n3EM2IC902lVzxoAgynslAXYls2KKGNV3Vo0OtxGAlaXdFBV-dVZWvfhlo7jNdclEpYDF0qsQvbXd_FPWAoqMqV1rlaeolW38nqTKA7gSog2NLqAqo13YzP7cQJ1eLCpG1toc1Aa4O0NonWRhVwsHlmMTTTeHb0L1qOzUhqhJ0uIBFMliscj__lbXAiROlUS-FRaSeB2ri1E18XsL9eTJOlc2keeKmAr5vbKFe0WWK72F8PYzQ6s7IpQI-YYPRB4zvd_Dx16CYqC9RsBXxf88vD25_-44_Pf-wn2CGw-1RMU-_D9urqOn5Gl2jlviS-vwdryAi6
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB7sidCXorXSqJUt-GaDSXazt3m8looceC-t4Nuys7vigSTineD513d2k5xEtOBrMvmxk_kyM7uz3wAco1FYjFWZovHjVBhDkHIoUzJl77jLOcZE8WImzy_F9Kq82oCi3wsTi_YjpWX8TffVYacLESFNHiYVXIoqlR9gM1C1k21vTibTP9P1zErgPFdCdDtkMq5euXjghSJZ_yDCfFkf-WKRNPqes2341AWNbNK-5g5s-PozbLVtJFe7MJs1deD9fGTL-zlZDt2P1XOC5y2LszOrJ7orqwNzcXMXJlAs67rfNI_ztqcSa65Z2-DJLr7A5dnvv7_O065PQmrLXC1Tp0Kb8FAMis5XWUm4LK0sXEmxDlL-Z1QetreilbkpbOUKhZSloReSG0pYcr4Ho7qp_VdgBE-JmUEshBXk61Hk15yCCAK-M5lRCeS93rTtSMRDL4tbHRezudKtrjXpWkdda5nAyfqau5ZC47_SP8PnWEsG-ut4gJSgO3MgeRqXNQ658wJlFZKizIxdIG-rxrZI4LD_mLrD5EJTaknhXEVeO4Hv69OEprBEYmrfPLQyikJYUSagBkYweKHhmXp-E3m5g5Y5_c8S-NHby_PT3x7x_vvED-BjaHkfS2qKQxgt7x_8NwqMlnjUIeEfTNoH6Q
  priority: 102
  providerName: Springer Nature
Title Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics
URI https://link.springer.com/article/10.1038/s41467-023-43649-6
https://www.proquest.com/docview/2896129413
https://www.proquest.com/docview/2896805745
https://pubmed.ncbi.nlm.nih.gov/PMC10693638
https://doaj.org/article/02b54cadb3de4b6997470a7d859397c2
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD70wmAvZVfmtgsq7G3zFluyLD-MkYamJdAwtgXyJnQrCwS7S1JI-ut3JNsZLl1fbLDk29H5dM7R5XwAH7QSOs1FFmvl8pgphZCymseoys5Sm1AdAsXrCb-asvEsm-1BS3fUCHD1aGjn-aSmy8XnzZ_tNwT813rLuPiyYgHuaH1iRjkrYr4Ph2iZcs9ocN24-6FnpgUGNKzZO_P4rR37FNL4d3zPhysnH0yfBqs0egFHjTtJBnX7v4Q9V76CZzXB5PY1TCZV6TOCbsh6OUedwueRco7AXZAwbrO9x6eS0uc0rm790IohDS9OtZnXbEukuiE19ZNZvYHp6OLX8CpuGBRikyViHVvhCcT9MlFtXdHPELGZ4anN0AvSGBkqkfiNr9rwRKWmsKnQGL9pxzhVGMok9C0clFXp3gFB4HLdV1qnzDD0AjRLbii6F9glWNVXIoKklZs0TXpxz3KxkGGamwpZy1qirGWQteQRfNzdc1sn13iy9rlvjl1Nnxg7XEAhyAZnWB__yyirqXVM88KHS32VW5_WrchNGsFp25iyVTaJQSc6egXa8wjOdsWIMz95okpX3dV1BDq3LItAdJSg80HdknL-O2Ts9lKm2NNF8KnVl39v__8fHz_9sSfwPPWa6xfXpKdwsF7euffoIq11D_bzWY5HMbrsweFgMP45xvP5xeT7D7w65MNeGHzoBXz8BSDcErE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMEChgJThA1sR2vc0CI17Kl7Z5aqTfjRypWqpKluxVdfhS_kRkn2SqV6K3XxHGS8TcvP-YDeO2sdnyki9TZapRKa1GlglMpQrkKIuTCxURxf6omh_L7UXG0AX_7szC0rbK3idFQh8bTHPk2JgbojEu0uR_mv1JijaLV1Z5Co4XFbrX6jSnb4v3OFxzfN5yPvx58nqQdq0Dqi1wv06CJVJu2TrpQlVmBKC684qHAyMBhtmR1TodBnVe55b4MXDvMaVwllbAY3ucC-70BN6VAT04n08ff1nM6VG1dS9mdzcmE3l7IaInQMaZSKFmmauD_Ik3AILa9vDPz0vJs9Hrje3C3C1fZxxZf92Gjqh_ArZbAcvUQptOmpoqj52x5OkPMYn-snqFhOGFxXmj1B3tlNdVMbuY0deNZx7vTnM9aNifWHLOWWsovHsHhtcjyMWzWTV09AYaGQbnMOsellxhlOJkfCwxf0OQEm1mdQN7LzfiufDmxaJyYuIwutGllbVDWJsraqATerp-Zt8U7rmz9iYZj3ZIKb8cLKATT6TG2x__yNjgRKulUSelYZkeBysaVI88T2OoH03TWYGEusJvAq_Vt1GNanLF11Zy1bTQGz7JIQA9AMPig4Z169jNWBCcpC7SkCbzr8XLx9v__8dOrP_Yl3J4c7O-ZvZ3p7jO4wwnFtJGHb8Hm8vSseo7h2NK9iDrA4Md1K90_1-xCtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIJoE9tJnANClHbVUogqRKXegl8rVqqSpbsVXX4av46ZPLZKJXrrNXGcZDzzecYezwfw2mhleKaS0GifhVJrNCln0hBV2TvhYmGaQPFrke4fy88nyckG_O3PwlBaZY-JDVC72tIa-RgDA5yMc8Tc8bRLizjanXyY_wqJQYp2Wns6jVZFDv3qN4Zvi_cHuzjWbzif7H3_tB92DAOhTWK1DJ0igm1KozTO51GCGp3YlLsEvQSDkZNWMR0MNTaNNbe548pgfGO8TIVGVz8W2O8t2MwoKhrB5s5ecfRtvcJDtdeVlN1JnUio8UI2uITTZChFKvMwHcyGDWnAwNO9mqd5ZbO2mQMn9-Fe57yyj622PYANXz2E2y2d5eoRFEVdUf3RC7Y8m6EGY3-smiFMnLJmlWj1B3tlFVVQrue0kGNZx8JTX8xabidWT1lLNGUXj-H4RqT5BEZVXfktYAgTqYm0MVxaiT6HkfFUoDODAOR0pFUAcS-30nbFzIlT47RsNtWFKltZlyjrspF1mQbwdv3MvC3lcW3rHRqOdUsqw91cQCGUnVVje_wvq50RzkuT5hScRTpzVEQuzywPYLsfzLLDhkV5qckBvFrfRqumrRpd-fq8baPQlZZJAGqgBIMPGt6pZj-b-uAkZYG4GsC7Xl8u3_7_P356_ce-hDtocOWXg-LwGdzlpMSU1cO3YbQ8O_fP0TdbmhedETD4cdN29w-GHkhG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonredox+trivalent+nickel+catalyzing+nucleophilic+electrooxidation+of+organics&rft.jtitle=Nature+communications&rft.au=Yan%2C+Yuandong&rft.au=Wang%2C+Ruyi&rft.au=Zheng%2C+Qian&rft.au=Zhong%2C+Jiaying&rft.date=2023-12-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7987&rft_id=info:doi/10.1038%2Fs41467-023-43649-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon