Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polari...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 88 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.01.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe
1
−Ti pairs on monolithic titanium electrode that exhibits an attractive NH
3
yield rate of 272,000 μg h
−1
mg
Fe
−1
and a high NH
3
Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe
1
−Ti pairs (51000 μg h
–1
mg
Fe
–1
) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH
3
recovery unit, the simultaneous nitrate reduction and NH
3
recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe
1
−Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion. |
---|---|
AbstractList | Abstract Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe1−Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h−1 mgFe −1 and a high NH3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe1−Ti pairs (51000 μg h–1 mgFe –1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe1−Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h−1 mgFe−1 and a high NH3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe1−Ti pairs (51000 μg h–1 mgFe–1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe1−Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe 1 −Ti pairs on monolithic titanium electrode that exhibits an attractive NH 3 yield rate of 272,000 μg h −1 mg Fe −1 and a high NH 3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe 1 −Ti pairs (51000 μg h –1 mg Fe –1 ) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH 3 recovery unit, the simultaneous nitrate reduction and NH 3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe 1 −Ti pairs on monolithic titanium electrode that exhibits an attractive NH 3 yield rate of 272,000 μg h −1 mg Fe −1 and a high NH 3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe 1 −Ti pairs (51000 μg h –1 mg Fe –1 ) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH 3 recovery unit, the simultaneous nitrate reduction and NH 3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe 1 −Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion. |
ArticleNumber | 88 |
Author | Gu, Xiang-Kui Zhang, Lizhi Yao, Yancai Chen, Chien-Te Hu, Zhiwei Zhao, Long Zou, Xingyue Wang, Kaiyuan Wang, Jiaxian Dai, Jie Kuo, Chang-Yang Hou, Wei Tong, Yawen Zheng, Qian Zhan, Guangming Wang, Ruizhao Zhao, Rui |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-9470-5172 surname: Dai fullname: Dai, Jie organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 2 givenname: Yawen surname: Tong fullname: Tong, Yawen organization: School of Power and Mechanical Engineering, Wuhan University – sequence: 3 givenname: Long orcidid: 0000-0002-8979-7241 surname: Zhao fullname: Zhao, Long organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Zhiwei orcidid: 0000-0003-0324-2227 surname: Hu fullname: Hu, Zhiwei organization: Max Planck Institute for Chemical Physics of Solids – sequence: 5 givenname: Chien-Te orcidid: 0000-0002-1881-2600 surname: Chen fullname: Chen, Chien-Te organization: National Synchrotron Radiation Research Center – sequence: 6 givenname: Chang-Yang surname: Kuo fullname: Kuo, Chang-Yang organization: National Synchrotron Radiation Research Center, Department of Electrophysics, National Yang Ming Chiao Tung University – sequence: 7 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 8 givenname: Jiaxian surname: Wang fullname: Wang, Jiaxian organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 9 givenname: Xingyue surname: Zou fullname: Zou, Xingyue organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 10 givenname: Qian surname: Zheng fullname: Zheng, Qian organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 11 givenname: Wei surname: Hou fullname: Hou, Wei organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 12 givenname: Ruizhao surname: Wang fullname: Wang, Ruizhao organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 13 givenname: Kaiyuan surname: Wang fullname: Wang, Kaiyuan organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 14 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 15 givenname: Xiang-Kui orcidid: 0000-0001-6537-7026 surname: Gu fullname: Gu, Xiang-Kui email: xiangkuigu@whu.edu.cn organization: School of Power and Mechanical Engineering, Wuhan University – sequence: 16 givenname: Yancai surname: Yao fullname: Yao, Yancai email: yyancai@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 17 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglz@ccnu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University |
BookMark | eNp9UsFu1TAQtFARLaU_wCkSFy6hXsdJnBNCFYVKlXqgcLUce_2enxI72Eml8gWc-US-BL-mCNpDfbAt78x4ZzUvyYEPHgl5DfQd0EqcJg68aUvKqpJz3nQlf0aOGOVQQsuqg__uh-QkpR3Nq-pAcP6CHFYCmratuiPy7cvkfDGFQUX3A01xjvD7569rV0zKxVTYEIut22yH2wKtddqhnwscUM8xRDSLnl3whXdzVDMWcyjUOAbv1Cvy3Koh4cn9eUy-nn-8PvtcXl59ujj7cFnqGsRcGt6ZvmmrHsH0pqF1LWwNvQVBGeoKRGOZoVQbhhaVagAV063OprDtc6k6JherrglqJ6foRhVvZVBO3j2EuJEqzk4PKKnWTdd2FLC3nIu64zTv1tCsaFsGWev9qjUt_YhGZ6tRDQ9EH1a828pNuJFA24YB8Kzw9l4hhu8LplmOLmkcBuUxLEmyDih0jDV76JtH0F1Yos-zyigqOsFyexklVpSOIaWIVmo3q_3McwNuyD_LfRjkGgaZwyDvwiD3VPaI-tfIk6RqJaUM9huM_7p6gvUHTmrI5w |
CitedBy_id | crossref_primary_10_1021_acs_analchem_4c07022 crossref_primary_10_1002_ange_202414392 crossref_primary_10_1021_acscatal_4c07928 crossref_primary_10_1016_j_mcat_2024_114477 crossref_primary_10_1002_ange_202421361 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1021_acsnano_4c17163 crossref_primary_10_5772_geet_32 crossref_primary_10_1002_ange_202412209 crossref_primary_10_1002_ange_202415438 crossref_primary_10_1039_D3CS00913K crossref_primary_10_1002_adma_202412031 crossref_primary_10_1002_ange_202411796 crossref_primary_10_1016_j_watres_2024_123077 crossref_primary_10_1021_acscatal_4c03214 crossref_primary_10_1002_anie_202412591 crossref_primary_10_1016_S1872_2067_24_60111_7 crossref_primary_10_1073_pnas_2405236121 crossref_primary_10_1016_j_nanoen_2025_110708 crossref_primary_10_1039_D4EE04382K crossref_primary_10_1002_adfm_202423612 crossref_primary_10_1016_j_ces_2025_121573 crossref_primary_10_1016_j_mser_2025_100967 crossref_primary_10_1002_ange_202425630 crossref_primary_10_1002_adma_202418828 crossref_primary_10_1039_D4CC04897K crossref_primary_10_1016_j_apcatb_2024_124558 crossref_primary_10_1016_j_jechem_2024_05_001 crossref_primary_10_1016_j_jechem_2025_02_033 crossref_primary_10_1002_ange_202410517 crossref_primary_10_1002_cssc_202402331 crossref_primary_10_1016_j_cej_2025_161528 crossref_primary_10_1016_j_cej_2024_158814 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1021_acsestengg_4c00299 crossref_primary_10_1002_ange_202412591 crossref_primary_10_1002_anie_202408382 crossref_primary_10_1016_j_susc_2025_122702 crossref_primary_10_1002_anie_202415438 crossref_primary_10_1002_anie_202411796 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1016_j_jcis_2024_05_223 crossref_primary_10_1016_j_cej_2025_159775 crossref_primary_10_1002_anie_202412209 crossref_primary_10_1016_j_apcatb_2025_125190 crossref_primary_10_1016_j_nanoen_2025_110650 crossref_primary_10_1038_s41467_025_56566_7 crossref_primary_10_1039_D4SC04370G crossref_primary_10_1002_aenm_202402970 crossref_primary_10_1002_ange_202408771 crossref_primary_10_1038_s44160_025_00756_0 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1002_anie_202425630 crossref_primary_10_1016_j_apcatb_2024_124943 crossref_primary_10_1039_D4DT01578A crossref_primary_10_1002_anie_202401386 crossref_primary_10_1016_j_jhazmat_2024_134522 crossref_primary_10_1002_anie_202414392 crossref_primary_10_1016_j_cej_2025_161014 crossref_primary_10_1016_j_matt_2024_11_018 crossref_primary_10_1021_jacs_5c00837 crossref_primary_10_1002_aenm_202403295 crossref_primary_10_1016_j_nxener_2024_100144 crossref_primary_10_1021_acsnano_4c08885 crossref_primary_10_1039_D4QM00962B crossref_primary_10_1002_ange_202408382 crossref_primary_10_1016_j_ccr_2025_216545 crossref_primary_10_1002_ange_202401386 crossref_primary_10_1002_anie_202410517 crossref_primary_10_1002_anie_202421361 crossref_primary_10_1002_adma_202415739 crossref_primary_10_1002_anie_202408771 crossref_primary_10_1002_adma_202403958 crossref_primary_10_1016_j_jcis_2024_12_122 crossref_primary_10_1039_D4CC02012J crossref_primary_10_1016_j_apsusc_2024_162078 crossref_primary_10_1016_j_cej_2024_153427 crossref_primary_10_1093_nsr_nwae217 crossref_primary_10_1016_j_chempr_2024_06_014 |
Cites_doi | 10.1002/adfm.202108316 10.1038/nmat4367 10.1073/pnas.2115504119 10.1002/anie.201801538 10.1038/s41929-019-0241-7 10.1038/s41565-022-01121-4 10.1002/adma.201907976 10.1002/anie.201915992 10.1021/jacs.6b12971 10.1016/j.joule.2020.12.025 10.1002/adma.202003297 10.1038/s41929-019-0252-4 10.1021/acs.est.0c08552 10.1021/acscatal.1c02031 10.1016/j.niox.2020.07.004 10.1038/s41467-022-31096-8 10.1038/nature02756 10.1038/nmat3924 10.1016/j.chempr.2020.10.027 10.1038/s41467-022-29797-1 10.1002/anie.202005930 10.1021/acscatal.2c03004 10.1038/s41586-019-1134-2 10.1038/s41467-021-23896-1 10.1002/adma.201502024 10.1038/s41467-021-23115-x 10.1038/s41467-021-22865-y 10.1002/adma.201803498 10.1016/j.chempr.2022.10.001 10.1039/c2ee23062c 10.1021/jacs.0c00418 10.1021/jacs.9b13347 10.1002/anie.201502104 10.1038/s41467-020-19433-1 10.1021/jp505174k 10.1088/0953-8984/25/23/236002 10.1002/adfm.202200498 10.1088/0953-8984/24/3/035501 10.1038/s41560-021-00826-5 10.1038/s41929-018-0170-x 10.1021/jacs.7b05130 10.1039/c2cp44352j 10.1002/anie.202202556 10.1002/smll.202102396 10.1038/s41467-020-14333-w 10.1039/C9CS00280D 10.1038/s41560-020-0654-1 10.1039/D1CS00116G 10.1021/acs.est.1c08442 10.1126/science.345.6197.610 10.1021/jp992511h 10.1038/s41467-022-29926-w 10.1016/j.apcatb.2017.11.010 10.1002/anie.202002337 10.1038/nature00977 10.1002/anie.202208215 10.1021/acsnano.2c08919 10.1002/adma.202205767 10.1039/D1CS00857A 10.1073/pnas.112202099 10.1038/s41467-022-28843-2 10.1038/s44160-023-00258-x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-44469-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_0cc697901ebf4485940485fd02c7f721 PMC10762114 10_1038_s41467_023_44469_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U22A20402; U21A20286 funderid: https://doi.org/10.13039/501100001809 – fundername: Shenzhen Science and Technology Program (JCYJ20220818095601002) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-d49db673be1dbd60558f51bf1802ec3186f2d00cd2efeaa61ea2c7c723e7bf2d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:06:59 EDT 2025 Thu Aug 21 18:42:23 EDT 2025 Wed Jul 30 10:26:15 EDT 2025 Wed Aug 13 05:16:10 EDT 2025 Tue Jul 01 02:10:51 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:37:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-d49db673be1dbd60558f51bf1802ec3186f2d00cd2efeaa61ea2c7c723e7bf2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8979-7241 0000-0003-0324-2227 0000-0001-9470-5172 0000-0002-1881-2600 0000-0002-6842-9167 0000-0001-6537-7026 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-44469-4 |
PMID | 38167739 |
PQID | 2908982404 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0cc697901ebf4485940485fd02c7f721 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10762114 proquest_miscellaneous_2910192264 proquest_journals_2908982404 crossref_citationtrail_10_1038_s41467_023_44469_4 crossref_primary_10_1038_s41467_023_44469_4 springer_journals_10_1038_s41467_023_44469_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-02 |
PublicationDateYYYYMMDD | 2024-01-02 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Gao (CR63) 2022; 56 Wang (CR21) 2020; 142 Li (CR32) 2022; 3 Zhang (CR35) 2020; 59 Clayborne, Chun, Rankin, Greeley (CR24) 2015; 54 Chakraborty, Meneghini, Aquilanti, Ray (CR37) 2013; 25 Wang (CR53) 2020; 59 Lv (CR7) 2018; 57 Gao (CR61) 2021; 6 Hao (CR5) 2019; 2 Li (CR31) 2020; 6 Gao (CR64) 2021; 55 Wang (CR14) 2021; 50 Yao (CR34) 2022; 61 Miao (CR51) 2021; 11 Zhang (CR20) 2022; 119 Xu (CR15) 2022; 51 Liu (CR44) 2017; 139 Pan (CR47) 2020; 11 Liu (CR55) 2023; 13 Mtangi (CR25) 2017; 139 Ohtomo, Muller, Grazul, Hwang (CR46) 2002; 419 Service (CR2) 2014; 345 Wu (CR9) 2021; 12 Niu (CR60) 2021; 17 Liu (CR23) 2022; 61 Long (CR56) 2020; 59 Liu (CR62) 2022; 13 Duca, Koper (CR13) 2012; 5 Shafirovich, Lymar (CR16) 2002; 99 Xie (CR42) 2018; 1 Li (CR8) 2020; 142 Dai (CR33) 2020; 11 Ford, Miranda (CR17) 2020; 103 Liang (CR28) 2022; 13 CR54 CR52 van Langevelde, Katsounaros, Koper (CR12) 2021; 5 Do, Lee (CR26) 2022; 16 Wu (CR30) 2021; 12 Guo (CR50) 2015; 27 Chen (CR11) 2022; 17 Gao (CR19) 2022; 13 Schlappa (CR49) 2012; 24 Sun (CR57) 2020; 32 Zitolo (CR45) 2015; 14 Wei (CR40) 2022; 32 Geng (CR6) 2018; 30 Chen (CR27) 2020; 32 Mao (CR41) 2018; 224 Li (CR59) 2022; 32 Chen (CR10) 2020; 5 Yang (CR39) 2013; 15 Ren (CR29) 2021; 12 Janaway, Brauman (CR18) 2000; 104 Mondal (CR43) 2014; 118 Sala (CR38) 2014; 13 Ashida, Arashiba, Nakajima, Nishibayashi (CR1) 2019; 568 Muller (CR36) 2004; 430 Tang, Qiao (CR4) 2019; 48 Wei (CR58) 2023; 9 Cheng (CR22) 2022; 34 Suryanto (CR3) 2019; 2 Chang (CR48) 2018; 8 Y Yao (44469_CR34) 2022; 61 T Wu (44469_CR30) 2021; 12 PC Ford (44469_CR17) 2020; 103 Y Guo (44469_CR50) 2015; 27 W Mtangi (44469_CR25) 2017; 139 Y Sun (44469_CR57) 2020; 32 X Li (44469_CR31) 2020; 6 C Mao (44469_CR41) 2018; 224 J Xie (44469_CR42) 2018; 1 S Zhang (44469_CR20) 2022; 119 F–Y Chen (44469_CR11) 2022; 17 H Xu (44469_CR15) 2022; 51 T-Y Yang (44469_CR39) 2013; 15 J Long (44469_CR56) 2020; 59 S Zhang (44469_CR35) 2020; 59 BHR Suryanto (44469_CR3) 2019; 2 44469_CR52 J Gao (44469_CR63) 2022; 56 44469_CR54 P Mondal (44469_CR43) 2014; 118 RF Service (44469_CR2) 2014; 345 M Duca (44469_CR13) 2012; 5 J Li (44469_CR59) 2022; 32 H Niu (44469_CR60) 2021; 17 Y Liang (44469_CR28) 2022; 13 PH van Langevelde (44469_CR12) 2021; 5 W Liu (44469_CR44) 2017; 139 A Clayborne (44469_CR24) 2015; 54 Z Li (44469_CR32) 2022; 3 V–H Do (44469_CR26) 2022; 16 T Chakraborty (44469_CR37) 2013; 25 R Gao (44469_CR61) 2021; 6 J Dai (44469_CR33) 2020; 11 A Ohtomo (44469_CR46) 2002; 419 Y Wang (44469_CR21) 2020; 142 J Gao (44469_CR64) 2021; 55 J Schlappa (44469_CR49) 2012; 24 A Zitolo (44469_CR45) 2015; 14 C Tang (44469_CR4) 2019; 48 J Li (44469_CR8) 2020; 142 Y–C Hao (44469_CR5) 2019; 2 CF Chang (44469_CR48) 2018; 8 K Liu (44469_CR62) 2022; 13 Z Geng (44469_CR6) 2018; 30 H Liu (44469_CR23) 2022; 61 X–F Cheng (44469_CR22) 2022; 34 Q Gao (44469_CR19) 2022; 13 Y Wang (44469_CR53) 2020; 59 C Lv (44469_CR7) 2018; 57 G–F Chen (44469_CR10) 2020; 5 L Pan (44469_CR47) 2020; 11 H Liu (44469_CR55) 2023; 13 Y Ashida (44469_CR1) 2019; 568 G Sala (44469_CR38) 2014; 13 J Miao (44469_CR51) 2021; 11 X Ren (44469_CR29) 2021; 12 DA Muller (44469_CR36) 2004; 430 Z–Y Wu (44469_CR9) 2021; 12 GA Janaway (44469_CR18) 2000; 104 RR Chen (44469_CR27) 2020; 32 K Wei (44469_CR40) 2022; 32 Y Wang (44469_CR14) 2021; 50 V Shafirovich (44469_CR16) 2002; 99 X Wei (44469_CR58) 2023; 9 |
References_xml | – volume: 32 start-page: 2108316 year: 2022 ident: CR59 article-title: 3.4% solar–to–ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS nanosheets publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108316 – volume: 14 start-page: 937 year: 2015 end-page: 942 ident: CR45 article-title: Identification of catalytic sites for oxygen reduction in iron– and nitrogen–doped graphene materials publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 119 start-page: e2115504119 year: 2022 ident: CR20 article-title: High–ammonia selective metal–organic framework–derived Co–doped Fe/Fe O catalysts for electrochemical nitrate reduction publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.2115504119 – volume: 57 start-page: 6073 year: 2018 end-page: 6076 ident: CR7 article-title: An amorphous noble–metal–free electrocatalyst that enables nitrogen fixation under ambient conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801538 – volume: 2 start-page: 448 year: 2019 end-page: 456 ident: CR5 article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 17 start-page: 759 year: 2022 end-page: 767 ident: CR11 article-title: Efficient conversion of low–concentration nitrate sources into ammonia on a Ru–dispersed Cu nanowire electrocatalyst publication-title: Nat. Nanotech. doi: 10.1038/s41565-022-01121-4 – ident: CR54 – volume: 32 start-page: 1907976 year: 2020 ident: CR27 article-title: Antiferromagnetic inverse spinel oxide LiCoVO with spin–polarized channels for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201907976 – volume: 59 start-page: 5350 year: 2020 end-page: 5354 ident: CR53 article-title: Unveiling the activity origin of a copper–based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 139 start-page: 2794 year: 2017 end-page: 2798 ident: CR25 article-title: Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12971 – volume: 5 start-page: 290 year: 2021 end-page: 294 ident: CR12 article-title: Electrocatalytic nitrate reduction for sustainable ammonia production publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 32 start-page: 2003297 year: 2020 ident: CR57 article-title: Spin–related electron transfer and orbital interactions in oxygen electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202003297 – volume: 2 start-page: 290 year: 2019 end-page: 296 ident: CR3 article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia publication-title: Nat. Catal. doi: 10.1038/s41929-019-0252-4 – volume: 8 start-page: 021004 year: 2018 ident: CR48 article-title: c-axis dimer and its electronic breakup: the insulator-to-metal transition in Ti O publication-title: Phys. Rev. X – volume: 55 start-page: 10684 year: 2021 end-page: 10694 ident: CR64 article-title: Electrochemically selective ammonia extraction from nitrate by coupling electron– and phase–transfer reactions at a three–phase interface publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08552 – volume: 11 start-page: 9569 year: 2021 end-page: 9577 ident: CR51 article-title: Spin–state–dependent peroxymonosulfate activation of single–atom M–N moieties via a radical–free pathway publication-title: ACS Catal. doi: 10.1021/acscatal.1c02031 – volume: 103 start-page: 31 year: 2020 end-page: 46 ident: CR17 article-title: The solution chemistry of nitric oxide and other reactive nitrogen species publication-title: Nitric Oxide doi: 10.1016/j.niox.2020.07.004 – volume: 13 year: 2022 ident: CR28 article-title: Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes publication-title: Nat. Commun. doi: 10.1038/s41467-022-31096-8 – volume: 430 start-page: 657 year: 2004 end-page: 661 ident: CR36 article-title: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO publication-title: Nature doi: 10.1038/nature02756 – volume: 13 start-page: 488 year: 2014 end-page: 493 ident: CR38 article-title: Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores publication-title: Nat. Mater. doi: 10.1038/nmat3924 – volume: 6 start-page: 3440 year: 2020 end-page: 3454 ident: CR31 article-title: Identification of the electronic and structural dynamics of catalytic centers in single–Fe–atom material publication-title: Chem doi: 10.1016/j.chempr.2020.10.027 – volume: 13 year: 2022 ident: CR62 article-title: Insights into the activity of single–atom Fe–N–C catalysts for oxygen reduction reaction publication-title: Nat. Commun. doi: 10.1038/s41467-022-29797-1 – volume: 59 start-page: 13423 year: 2020 end-page: 13429 ident: CR35 article-title: Electrocatalytically active Fe–(O–C ) single–atom sites for efficient reduction of nitrogen to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005930 – volume: 13 start-page: 1513 year: 2023 end-page: 1521 ident: CR55 article-title: Low–coordination Rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia publication-title: ACS Catal. doi: 10.1021/acscatal.2c03004 – volume: 568 start-page: 536 year: 2019 end-page: 540 ident: CR1 article-title: Molybdenum–catalysed ammonia production with samarium diiodide and alcohols or water publication-title: Nature doi: 10.1038/s41586-019-1134-2 – volume: 12 year: 2021 ident: CR30 article-title: Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-021-23896-1 – volume: 27 start-page: 5989 year: 2015 end-page: 5994 ident: CR50 article-title: Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201502024 – volume: 12 year: 2021 ident: CR9 article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 12 year: 2021 ident: CR29 article-title: Spin–polarized oxygen evolution reaction under magnetic field publication-title: Nat. Commun. doi: 10.1038/s41467-021-22865-y – volume: 30 start-page: 1803498 year: 2018 ident: CR6 article-title: Achieving a record–high yield rate of 120.9 for N electrochemical reduction over Ru single–atom catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 9 start-page: 181 year: 2023 end-page: 197 ident: CR58 article-title: Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway publication-title: Chem doi: 10.1016/j.chempr.2022.10.001 – volume: 5 start-page: 9726 year: 2012 end-page: 9742 ident: CR13 article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23062c – volume: 142 start-page: 7036 year: 2020 end-page: 7046 ident: CR8 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 3 start-page: 100268 year: 2022 ident: CR32 article-title: Spin engineering of single–site metal catalysts publication-title: Innovation – volume: 142 start-page: 5702 year: 2020 end-page: 5708 ident: CR21 article-title: Enhanced nitrate–to–ammonia sctivity on copper–nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 54 start-page: 8255 year: 2015 end-page: 8258 ident: CR24 article-title: Elucidation of pathways for NO electroreduction on Pt(111) from first principles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502104 – volume: 11 year: 2020 ident: CR33 article-title: Single–phase perovskite oxide with super–exchange induced atomic–scale synergistic active centers enables ultrafast hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-19433-1 – volume: 118 start-page: 21614 year: 2014 end-page: 21621 ident: CR43 article-title: Behavior of As(V) with ZVI–H O system and the reduction to As(0) publication-title: J. Phys. Chem. C. doi: 10.1021/jp505174k – volume: 25 start-page: 236002 year: 2013 ident: CR37 article-title: Microscopic distribution of metal dopants and anion vacancies in Fe-doped BaTiO single crystals publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/23/236002 – volume: 32 start-page: 2200498 year: 2022 ident: CR40 article-title: Strained zero-valent iron for highly efficient heavy metal removal publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200498 – volume: 24 start-page: 035501 year: 2012 ident: CR49 article-title: Resonant soft x-ray scattering from stepped surfaces of SrTiO publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/3/035501 – volume: 6 start-page: 614 year: 2021 end-page: 623 ident: CR61 article-title: Pt/Fe O with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading publication-title: Nat. Energy doi: 10.1038/s41560-021-00826-5 – volume: 1 start-page: 889 year: 2018 end-page: 896 ident: CR42 article-title: Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide–supported iron species publication-title: Nat. Catal. doi: 10.1038/s41929-018-0170-x – volume: 139 start-page: 10790 year: 2017 end-page: 10798 ident: CR44 article-title: Discriminating catalytically active FeN species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05130 – volume: 15 start-page: 2117 year: 2013 end-page: 2124 ident: CR39 article-title: A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44352j – volume: 61 start-page: e202202556 year: 2022 ident: CR23 article-title: Efficient electrochemical nitrate reduction to ammonia with copper–supported rhodium cluster and single–atom catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202556 – volume: 17 start-page: 2102396 year: 2021 ident: CR60 article-title: A feasible strategy for identifying single–atom catalysts toward electrochemical NO−to−NH conversion publication-title: Small doi: 10.1002/smll.202102396 – volume: 11 year: 2020 ident: CR47 article-title: Manipulating spin polarization of titanium dioxide for efficient photocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-14333-w – volume: 48 start-page: 3166 year: 2019 end-page: 3180 ident: CR4 article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00280D – volume: 5 start-page: 605 year: 2020 end-page: 613 ident: CR10 article-title: Electrochemical reduction of nitrate to ammonia via direct eight–electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 50 start-page: 6720 year: 2021 end-page: 6733 ident: CR14 article-title: Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00116G – volume: 56 start-page: 11602 year: 2022 end-page: 11613 ident: CR63 article-title: Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08442 – volume: 345 start-page: 610 year: 2014 end-page: 610 ident: CR2 article-title: New recipe produces ammonia from air, water, and sunlight publication-title: Science doi: 10.1126/science.345.6197.610 – volume: 104 start-page: 1795 year: 2000 end-page: 1798 ident: CR18 article-title: Direct observation of spin forbidden proton–transfer reactions: NO + HA → HNO + A publication-title: J. Phys. Chem. A doi: 10.1021/jp992511h – volume: 13 year: 2022 ident: CR19 article-title: Breaking adsorption–energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine–learned insights publication-title: Nat. Commun. doi: 10.1038/s41467-022-29926-w – ident: CR52 – volume: 224 start-page: 612 year: 2018 end-page: 620 ident: CR41 article-title: Energy–confined solar thermal ammonia synthesis with K/Ru/TiO H publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.11.010 – volume: 59 start-page: 9711 year: 2020 end-page: 9718 ident: CR56 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002337 – volume: 419 start-page: 378 year: 2002 end-page: 380 ident: CR46 article-title: Artificial charge–modulationin atomic–scale perovskite titanate superlattices publication-title: Nature doi: 10.1038/nature00977 – volume: 61 start-page: e202208215 year: 2022 ident: CR34 article-title: Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202208215 – volume: 16 start-page: 17847 year: 2022 end-page: 17890 ident: CR26 article-title: Orbital occupancy and spin polarization: from mechanistic study to rational design of transition metal–based electrocatalysts toward energy applications publication-title: ACS Nano doi: 10.1021/acsnano.2c08919 – volume: 34 start-page: 2205767 year: 2022 ident: CR22 article-title: Coordination symmetry breaking of single–atom catalysts for robust and efficient nitrate electroreduction to ammonia publication-title: Adv. Mater. doi: 10.1002/adma.202205767 – volume: 51 start-page: 2710 year: 2022 end-page: 2758 ident: CR15 article-title: Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00857A – volume: 99 start-page: 7340 year: 2002 end-page: 7345 ident: CR16 article-title: Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.112202099 – volume: 9 start-page: 181 year: 2023 ident: 44469_CR58 publication-title: Chem doi: 10.1016/j.chempr.2022.10.001 – volume: 104 start-page: 1795 year: 2000 ident: 44469_CR18 publication-title: J. Phys. Chem. A doi: 10.1021/jp992511h – volume: 59 start-page: 9711 year: 2020 ident: 44469_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002337 – volume: 17 start-page: 2102396 year: 2021 ident: 44469_CR60 publication-title: Small doi: 10.1002/smll.202102396 – volume: 5 start-page: 9726 year: 2012 ident: 44469_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23062c – volume: 6 start-page: 3440 year: 2020 ident: 44469_CR31 publication-title: Chem doi: 10.1016/j.chempr.2020.10.027 – volume: 14 start-page: 937 year: 2015 ident: 44469_CR45 publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 27 start-page: 5989 year: 2015 ident: 44469_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.201502024 – volume: 139 start-page: 2794 year: 2017 ident: 44469_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12971 – volume: 61 start-page: e202202556 year: 2022 ident: 44469_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202556 – ident: 44469_CR52 doi: 10.1038/s41467-022-28843-2 – volume: 24 start-page: 035501 year: 2012 ident: 44469_CR49 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/3/035501 – volume: 59 start-page: 5350 year: 2020 ident: 44469_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 59 start-page: 13423 year: 2020 ident: 44469_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005930 – volume: 30 start-page: 1803498 year: 2018 ident: 44469_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 13 year: 2022 ident: 44469_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29797-1 – ident: 44469_CR54 doi: 10.1038/s44160-023-00258-x – volume: 16 start-page: 17847 year: 2022 ident: 44469_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.2c08919 – volume: 32 start-page: 2200498 year: 2022 ident: 44469_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200498 – volume: 139 start-page: 10790 year: 2017 ident: 44469_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05130 – volume: 345 start-page: 610 year: 2014 ident: 44469_CR2 publication-title: Science doi: 10.1126/science.345.6197.610 – volume: 12 year: 2021 ident: 44469_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 13 year: 2022 ident: 44469_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31096-8 – volume: 32 start-page: 2108316 year: 2022 ident: 44469_CR59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108316 – volume: 51 start-page: 2710 year: 2022 ident: 44469_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00857A – volume: 13 start-page: 488 year: 2014 ident: 44469_CR38 publication-title: Nat. Mater. doi: 10.1038/nmat3924 – volume: 142 start-page: 5702 year: 2020 ident: 44469_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 15 start-page: 2117 year: 2013 ident: 44469_CR39 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp44352j – volume: 3 start-page: 100268 year: 2022 ident: 44469_CR32 publication-title: Innovation – volume: 48 start-page: 3166 year: 2019 ident: 44469_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00280D – volume: 8 start-page: 021004 year: 2018 ident: 44469_CR48 publication-title: Phys. Rev. X – volume: 13 year: 2022 ident: 44469_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29926-w – volume: 32 start-page: 1907976 year: 2020 ident: 44469_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201907976 – volume: 11 year: 2020 ident: 44469_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14333-w – volume: 11 start-page: 9569 year: 2021 ident: 44469_CR51 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02031 – volume: 5 start-page: 605 year: 2020 ident: 44469_CR10 publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 17 start-page: 759 year: 2022 ident: 44469_CR11 publication-title: Nat. Nanotech. doi: 10.1038/s41565-022-01121-4 – volume: 13 start-page: 1513 year: 2023 ident: 44469_CR55 publication-title: ACS Catal. doi: 10.1021/acscatal.2c03004 – volume: 11 year: 2020 ident: 44469_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19433-1 – volume: 5 start-page: 290 year: 2021 ident: 44469_CR12 publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 118 start-page: 21614 year: 2014 ident: 44469_CR43 publication-title: J. Phys. Chem. C. doi: 10.1021/jp505174k – volume: 50 start-page: 6720 year: 2021 ident: 44469_CR14 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00116G – volume: 12 year: 2021 ident: 44469_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22865-y – volume: 2 start-page: 448 year: 2019 ident: 44469_CR5 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 419 start-page: 378 year: 2002 ident: 44469_CR46 publication-title: Nature doi: 10.1038/nature00977 – volume: 54 start-page: 8255 year: 2015 ident: 44469_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502104 – volume: 430 start-page: 657 year: 2004 ident: 44469_CR36 publication-title: Nature doi: 10.1038/nature02756 – volume: 25 start-page: 236002 year: 2013 ident: 44469_CR37 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/23/236002 – volume: 55 start-page: 10684 year: 2021 ident: 44469_CR64 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08552 – volume: 12 year: 2021 ident: 44469_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23896-1 – volume: 224 start-page: 612 year: 2018 ident: 44469_CR41 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.11.010 – volume: 99 start-page: 7340 year: 2002 ident: 44469_CR16 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.112202099 – volume: 103 start-page: 31 year: 2020 ident: 44469_CR17 publication-title: Nitric Oxide doi: 10.1016/j.niox.2020.07.004 – volume: 1 start-page: 889 year: 2018 ident: 44469_CR42 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0170-x – volume: 568 start-page: 536 year: 2019 ident: 44469_CR1 publication-title: Nature doi: 10.1038/s41586-019-1134-2 – volume: 56 start-page: 11602 year: 2022 ident: 44469_CR63 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08442 – volume: 2 start-page: 290 year: 2019 ident: 44469_CR3 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0252-4 – volume: 57 start-page: 6073 year: 2018 ident: 44469_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801538 – volume: 6 start-page: 614 year: 2021 ident: 44469_CR61 publication-title: Nat. Energy doi: 10.1038/s41560-021-00826-5 – volume: 32 start-page: 2003297 year: 2020 ident: 44469_CR57 publication-title: Adv. Mater. doi: 10.1002/adma.202003297 – volume: 142 start-page: 7036 year: 2020 ident: 44469_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 34 start-page: 2205767 year: 2022 ident: 44469_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.202205767 – volume: 119 start-page: e2115504119 year: 2022 ident: 44469_CR20 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.2115504119 – volume: 61 start-page: e202208215 year: 2022 ident: 44469_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202208215 |
SSID | ssj0000391844 |
Score | 2.6685364 |
Snippet | Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the... Abstract Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 88 |
SubjectTerms | 119/118 140/131 140/146 140/58 147/137 639/301/299 639/638/161/886 704/172/169/896 Ammonia Clean energy Clean technology Electrocatalysts Electrochemistry Electrode polarization Electrodes Electron spin Humanities and Social Sciences Hydrogenation Intermediates multidisciplinary Nitrate reduction Nitrates Oxygen Polarization (spin alignment) Recovery Renewable energy Science Science (multidisciplinary) Sustainability Sustainable development Titanium Wastewater treatment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxUxEA9SELyIf_HZKhG86dLd_NkkRxUfRdCLrfQWNskEF8q-R_t6qJ_Asx_RT-JMdt-zW1AvXjcJk0xmMjM7yW8Ye9lJA67VsYopKgxQpKysa2wVM4ROZRBg6KHwx0_t0Yn6cKpPr5X6ojthIzzwyLjDOsbWGbRaEDKGEtoplDmdUy2iyaY8IRdo864FU-UMlkhQqemVTC3t4YUqZwKaqEphCOQqNbNEBbB_5mXevCN5I1Fa7M_yHrs7OY78zTjh--wWDA_Y7bGU5NVD9uXzuh_4mgLV_hskvoTm5_cfxz1fU8KGo2vKCZn47IpDAY1AenwqgXNO6K20PxzVm5Aj-GbFO5LPvnvETpbvj98dVVPNhCrqxm6qpFwKrZEBmhQSxiraZt2ETEBvEFGB2yxSXcckIEPXtQ10yMhohAQTsEk-ZnvDaoAnjBsndEiRalQF1dTJBe1aSNKCcxm7L1iz5Z-PE6A41bU48yWxLa0fee6R577w3KsFe7Ubsx7hNP7a-y1ty64nQWGXDyggfhIQ_y8BWbCD7ab6ST8vvKB0p0VvBmm82DWjZlG6pBtgdUl9GvJ_0WNcMDsThtmE5i1D_7VgdGNU3WJsjUNfb-XmN_U_r_jp_1jxPrsj0PUqP4rEAdvbnF_CM3SdNuF50ZJfZEQVcA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIkL4lcECjISN4gaJ05inxAglgoJLrSoNyu2xxCpStLd7aE8AWcekSdhxuvdKpXoNR7LsWfGM-Oxv2HsVVe1oJva5c47iQFKVeVKC5W7ALaTAUpo6aHwl6_N4bH8fFKfpAO3VbpWud0T40btR0dn5AclJagU2h_5djrLqWoUZVdTCY2b7JZAS0NXutTi0-6MhdDPlZTprUxRqYOVjDsDGqpcYiCkczmzRxG2f-ZrXr0peSVdGq3Q4h67m9xH_m7D7_vsBgwP2O1NQcmLh-z7t6kf-EThav8LPF-A-Pv7z1HPJ0rbcHRQOeETn15wiNAROB5PhXCWhOFKXOKo5IQfwdcj72jaffeIHS8-Hn04zFPlhNzVQq1zL7W3TVtZEN56jFhqFWphA8G9gUM1bkLpi8L5EgJ0XSOgK13r2rKC1mJT9ZjtDeMATxhvdVlb76hSlZWi8NrWugFfKdA6IHnGxHb9jEuw4lTd4tTE9HalzGbNDa65iWtuZMZe7_pMG1CNa6nfE1t2lASIHT-Myx8m6ZcpnGt0i84N2IARZ61RUFQdfIHzChjlZmx_y1STtHRlLmUqYy93zahflDTpBhjPiUaQF4x-Y8bUTBhmPzRvGfqfEakbY-sGI2zs-mYrN5ej_3_GT6__2WfsTomuVTwIKvfZ3np5Ds_RNVrbF1H-_wGzCA3s priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQuiF-xtCAjcYOIxLET-7ggVtVKcGmLerNiewyRquxquz20T9BzH7FP0hlvsigVIHGNx7Jjz9jfeOxvGHvflDWYSvnMBy_RQSnLTJtCZz6Ca2QEATU9FP72vTo8kfNTdbrDxPAWJl3aT5SWaZkebod9OpfJpHGHySR6MCaTD9geUbWjbu9Np_Oj-fZkhTjPtZT9C5m81H-oPNqFEln_CGHevx95L0ia9p7ZE_a4B418uunmU7YD3TP2cJNG8vI5-3G0bDu-JCe1vYLAZ1DcXt8ct3xJwRqOsJQTK_HZJYdEGIHt8T79zYqYW2luOJo2sUbw9YI3pJtt84KdzL4efznM-nwJmVeFXmdBmuCqunRQBBfQT1E6qsJFInkDj8ZbRRHy3AcBEZqmKqARvva1KKF2WFS-ZLvdooNXjNdGKBc85adyssiDccpUEEoNxkQUn7BiGD_rezJxymlxZlNQu9R2M-YWx9ymMbdywj5s6yw3VBr_lP5M07KVJBrs9GGx-ml7tbC595WpEdKAi-hnKiNxQVIx5PhfEX3bCTsYJtX2tnluBYU6NSIZbOPdthitikIlTQeLC5IpCPsiWpwwPVKGUYfGJV37K_Fzo0ddoV-NVT8OevO79b__8ev_E99njwQCrHQcJA7Y7np1AW8QIK3d294i7gC67w0X priority: 102 providerName: Springer Nature |
Title | Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia |
URI | https://link.springer.com/article/10.1038/s41467-023-44469-4 https://www.proquest.com/docview/2908982404 https://www.proquest.com/docview/2910192264 https://pubmed.ncbi.nlm.nih.gov/PMC10762114 https://doaj.org/article/0cc697901ebf4485940485fd02c7f721 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbtMwFLb2IyRuEL-ibFRG4g4CTeLE9gVCXbUyVdqE2Ip6Z8X2MUSq0q7rJMoTcM0j8iQcO0lRprGbRIpt2T72sb_jE3-HkNdFykHmmYmMNQwNlDSNhIxFZBzogjlIgPuLwqdn-cmUTWbZbIe04Y4aAV7datr5eFLT1fzdj8vNR1T4D_WVcfH-igV1x90nYmjdyIjtkn3cmbiPaHDawP2wMqfYDMaauzO3F-3sT4HGv4M9b_45ecN9Gnal8UPyoIGTdFiP_yOyA9Vjcq8OMLl5Qr6eL8uKLn0fy59g6RjiP79-X5R06d04FAEr9XzF8w2FQCWB9dEmMM7Kc7r6UaOo9J5Pgq4XtPCztiyekun4-GJ0EjWRFCKTxWIdWSatznmqIbbaogWTCZfF2nn6NzCo1rlL7GBgbAIOiiKPoUgMNzxJgWtMSp-RvWpRwXNCuUwybY2PXKVZPLBSZzIHmwqQ0mH2Holb-SnT0Iz7aBdzFdzdqVC1zBXKXAWZK9Yjb7ZlljXJxp25j_ywbHN6guzwYbH6php9UwNjcskR7IB2aIFmkuFSlTk7wH45tHp75LAdVNVOOpV4J6hAjIN1vNomo755J0pRweLa54k9KkYc2SOiMxk6DeqmVOX3wNyNtnaOFjcWfdvOm3-1_7_HL-5u7AG5nyDUCgdDySHZW6-u4SVCpbXuk10-4_gU4099sj8cTs4n-D46Pvv8Bb-O8lE_HEL0g578BU8-F-E |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWChgJThA1cZzEPiDEa9nSx4Ut6s3E9gRWqrJhdyu0_ALO_BB-FL-EGSfZaivRW6-x8_B4PPONJ_6GsadlWoDOMxc57yQGKGkaKZ2oyFVgS1mBgIIOCu8f5KND-fEoO9pgf_qzMPRbZW8Tg6H2U0d75NuCElQK_Y981XyPqGoUZVf7EhqtWuzC8geGbPOXO-9wfp8JMXw_fjuKuqoCkcsStYi81N7mRWoh8dYjms9UlSW2Iio0cKjieSV8HDsvoIKyzBMohStcIVIoLDal-NxL7LJM0ZPTyfThh9WeDrGtKym7szlxqrbnMlgidIyRxMBLR3LN_4UyAWvY9uyfmWfSs8HrDW-w6x1c5a9b_brJNqC-xa60BSyXt9nnT82k5g2Fx5Of4PkQkr-_fo8nvKE0EUdAzIkP-XjJIVBV4Pt4V3hnRpyxpBUcjQrxVfDFlJck5kl5hx1eiEzvss16WsM9xgstMusdVcayMom9tpnOwacKtK6w-4AlvfyM62jMqZrGsQnp9FSZVuYGZW6CzI0csOere5qWxOPc3m9oWlY9iYA7XJjOvppuPZvYuVwXCKbAVhjhZhoVU2WVj3FcFUbVA7bVT6rprMLcnOrwgD1ZNeN6piRNWcP0hPokhLoRpw6YWlOGtQ9ab6kn3wIzOMbyOUb0eOuLXm9O3_7_Ed8__2Mfs6uj8f6e2ds52H3ArgmEdWETSmyxzcXsBB4iLFvYR2EtcPblohffP4MYTLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVCAuiF-RUsBIcIJVdr3eXfuAEKWNWgpRBS3qzaz_aKRqE5JUKDwBZx6Hx-FJmNnspkoleut17f0bz4y_8djfADwv08KrPLORdVZggJKmkVSJjGzwphTBc1_QQeGPg3z3SLw_zo7X4E97Foa2VbY-sXbUbmRpjbzHKUElcf4RvdBsizjY7r8Zf4-oghRlWttyGgsV2ffzHxi-TV_vbeNYv-C8v3P4bjdqKgxENkvkLHJCOZMXqfGJMw6RfSZDlphAtGjeorrngbs4to774MsyT3zJbWELnvrCYFOKz70G6wVFRR1Y39oZHHxarvAQ97oUojmpE6eyNxW1X8JpMhIYhqlIrMyGddGAFaR7cZ_mhWRtPQf2b8OtBryytwttuwNrvroL1xflLOf34Mvn8bBiYwqWhz-9Y32f_P31-3DIxpQ0YgiPGbEjn86Zr4kr8H2sKcMzIQZZ0hGGLobYK9hsxEoS9LC8D0dXItUH0KlGlX8IrFA8M85SnSwjktgpk6ncu1R6pQJ270LSyk_bhtScamuc6jq5nkq9kLlGmeta5lp04eXynvGC0uPS3ls0LMueRMddXxhNvunGunVsba4KhFbeBIx3M4VqKrPgYvyvgDF2FzbbQdWNj5jqc43uwrNlM1o3pWzKyo_OqE9CGBxRaxfkijKsfNBqSzU8qXnCMbLPMb7HW1-1enP-9v__8cblH_sUbqDh6Q97g_1HcJMjxqtXpPgmdGaTM_8YMdrMPGmMgcHXq7a_f2rqUko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+polarized+Fe1%E2%88%92Ti+pairs+for+highly+efficient+electroreduction+nitrate+to+ammonia&rft.jtitle=Nature+communications&rft.au=Dai%2C+Jie&rft.au=Tong%2C+Yawen&rft.au=Zhao%2C+Long&rft.au=Hu%2C+Zhiwei&rft.date=2024-01-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1038%2Fs41467-023-44469-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |