Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia

Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polari...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 88 - 11
Main Authors Dai, Jie, Tong, Yawen, Zhao, Long, Hu, Zhiwei, Chen, Chien-Te, Kuo, Chang-Yang, Zhan, Guangming, Wang, Jiaxian, Zou, Xingyue, Zheng, Qian, Hou, Wei, Wang, Ruizhao, Wang, Kaiyuan, Zhao, Rui, Gu, Xiang-Kui, Yao, Yancai, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe 1 −Ti pairs on monolithic titanium electrode that exhibits an attractive NH 3 yield rate of 272,000 μg h −1 mg Fe −1 and a high NH 3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe 1 −Ti pairs (51000 μg h –1 mg Fe –1 ) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH 3 recovery unit, the simultaneous nitrate reduction and NH 3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe 1 −Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion.
AbstractList Abstract Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe1−Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h−1 mgFe −1 and a high NH3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe1−Ti pairs (51000 μg h–1 mgFe –1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe1−Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h−1 mgFe−1 and a high NH3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe1−Ti pairs (51000 μg h–1 mgFe–1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe1−Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion.
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe 1 −Ti pairs on monolithic titanium electrode that exhibits an attractive NH 3 yield rate of 272,000 μg h −1 mg Fe −1 and a high NH 3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe 1 −Ti pairs (51000 μg h –1 mg Fe –1 ) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH 3 recovery unit, the simultaneous nitrate reduction and NH 3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin–state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin−polarized Fe 1 −Ti pairs on monolithic titanium electrode that exhibits an attractive NH 3 yield rate of 272,000 μg h −1 mg Fe −1 and a high NH 3 Faradic efficiency of 95.2% at −0.4 V vs. RHE, far superior to the counterpart with spin−depressed Fe 1 −Ti pairs (51000 μg h –1 mg Fe –1 ) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow−through electrolyzer with a membrane-based NH 3 recovery unit, the simultaneous nitrate reduction and NH 3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment. Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production. Here, the authors construct spin−polarized Fe 1 −Ti pairs via manipulating oxygen vacancies on monolithic titanium electrode for highly efficient nitrate to ammonia conversion.
ArticleNumber 88
Author Gu, Xiang-Kui
Zhang, Lizhi
Yao, Yancai
Chen, Chien-Te
Hu, Zhiwei
Zhao, Long
Zou, Xingyue
Wang, Kaiyuan
Wang, Jiaxian
Dai, Jie
Kuo, Chang-Yang
Hou, Wei
Tong, Yawen
Zheng, Qian
Zhan, Guangming
Wang, Ruizhao
Zhao, Rui
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-9470-5172
  surname: Dai
  fullname: Dai, Jie
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 2
  givenname: Yawen
  surname: Tong
  fullname: Tong, Yawen
  organization: School of Power and Mechanical Engineering, Wuhan University
– sequence: 3
  givenname: Long
  orcidid: 0000-0002-8979-7241
  surname: Zhao
  fullname: Zhao, Long
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Zhiwei
  orcidid: 0000-0003-0324-2227
  surname: Hu
  fullname: Hu, Zhiwei
  organization: Max Planck Institute for Chemical Physics of Solids
– sequence: 5
  givenname: Chien-Te
  orcidid: 0000-0002-1881-2600
  surname: Chen
  fullname: Chen, Chien-Te
  organization: National Synchrotron Radiation Research Center
– sequence: 6
  givenname: Chang-Yang
  surname: Kuo
  fullname: Kuo, Chang-Yang
  organization: National Synchrotron Radiation Research Center, Department of Electrophysics, National Yang Ming Chiao Tung University
– sequence: 7
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 8
  givenname: Jiaxian
  surname: Wang
  fullname: Wang, Jiaxian
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 9
  givenname: Xingyue
  surname: Zou
  fullname: Zou, Xingyue
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 10
  givenname: Qian
  surname: Zheng
  fullname: Zheng, Qian
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 11
  givenname: Wei
  surname: Hou
  fullname: Hou, Wei
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 12
  givenname: Ruizhao
  surname: Wang
  fullname: Wang, Ruizhao
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 13
  givenname: Kaiyuan
  surname: Wang
  fullname: Wang, Kaiyuan
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 14
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 15
  givenname: Xiang-Kui
  orcidid: 0000-0001-6537-7026
  surname: Gu
  fullname: Gu, Xiang-Kui
  email: xiangkuigu@whu.edu.cn
  organization: School of Power and Mechanical Engineering, Wuhan University
– sequence: 16
  givenname: Yancai
  surname: Yao
  fullname: Yao, Yancai
  email: yyancai@sjtu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 17
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglz@ccnu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
BookMark eNp9UsFu1TAQtFARLaU_wCkSFy6hXsdJnBNCFYVKlXqgcLUce_2enxI72Eml8gWc-US-BL-mCNpDfbAt78x4ZzUvyYEPHgl5DfQd0EqcJg68aUvKqpJz3nQlf0aOGOVQQsuqg__uh-QkpR3Nq-pAcP6CHFYCmratuiPy7cvkfDGFQUX3A01xjvD7569rV0zKxVTYEIut22yH2wKtddqhnwscUM8xRDSLnl3whXdzVDMWcyjUOAbv1Cvy3Koh4cn9eUy-nn-8PvtcXl59ujj7cFnqGsRcGt6ZvmmrHsH0pqF1LWwNvQVBGeoKRGOZoVQbhhaVagAV063OprDtc6k6JherrglqJ6foRhVvZVBO3j2EuJEqzk4PKKnWTdd2FLC3nIu64zTv1tCsaFsGWev9qjUt_YhGZ6tRDQ9EH1a828pNuJFA24YB8Kzw9l4hhu8LplmOLmkcBuUxLEmyDih0jDV76JtH0F1Yos-zyigqOsFyexklVpSOIaWIVmo3q_3McwNuyD_LfRjkGgaZwyDvwiD3VPaI-tfIk6RqJaUM9huM_7p6gvUHTmrI5w
CitedBy_id crossref_primary_10_1021_acs_analchem_4c07022
crossref_primary_10_1002_ange_202414392
crossref_primary_10_1021_acscatal_4c07928
crossref_primary_10_1016_j_mcat_2024_114477
crossref_primary_10_1002_ange_202421361
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1021_acsnano_4c17163
crossref_primary_10_5772_geet_32
crossref_primary_10_1002_ange_202412209
crossref_primary_10_1002_ange_202415438
crossref_primary_10_1039_D3CS00913K
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1002_ange_202411796
crossref_primary_10_1016_j_watres_2024_123077
crossref_primary_10_1021_acscatal_4c03214
crossref_primary_10_1002_anie_202412591
crossref_primary_10_1016_S1872_2067_24_60111_7
crossref_primary_10_1073_pnas_2405236121
crossref_primary_10_1016_j_nanoen_2025_110708
crossref_primary_10_1039_D4EE04382K
crossref_primary_10_1002_adfm_202423612
crossref_primary_10_1016_j_ces_2025_121573
crossref_primary_10_1016_j_mser_2025_100967
crossref_primary_10_1002_ange_202425630
crossref_primary_10_1002_adma_202418828
crossref_primary_10_1039_D4CC04897K
crossref_primary_10_1016_j_apcatb_2024_124558
crossref_primary_10_1016_j_jechem_2024_05_001
crossref_primary_10_1016_j_jechem_2025_02_033
crossref_primary_10_1002_ange_202410517
crossref_primary_10_1002_cssc_202402331
crossref_primary_10_1016_j_cej_2025_161528
crossref_primary_10_1016_j_cej_2024_158814
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1021_acsestengg_4c00299
crossref_primary_10_1002_ange_202412591
crossref_primary_10_1002_anie_202408382
crossref_primary_10_1016_j_susc_2025_122702
crossref_primary_10_1002_anie_202415438
crossref_primary_10_1002_anie_202411796
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1016_j_jcis_2024_05_223
crossref_primary_10_1016_j_cej_2025_159775
crossref_primary_10_1002_anie_202412209
crossref_primary_10_1016_j_apcatb_2025_125190
crossref_primary_10_1016_j_nanoen_2025_110650
crossref_primary_10_1038_s41467_025_56566_7
crossref_primary_10_1039_D4SC04370G
crossref_primary_10_1002_aenm_202402970
crossref_primary_10_1002_ange_202408771
crossref_primary_10_1038_s44160_025_00756_0
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1002_anie_202425630
crossref_primary_10_1016_j_apcatb_2024_124943
crossref_primary_10_1039_D4DT01578A
crossref_primary_10_1002_anie_202401386
crossref_primary_10_1016_j_jhazmat_2024_134522
crossref_primary_10_1002_anie_202414392
crossref_primary_10_1016_j_cej_2025_161014
crossref_primary_10_1016_j_matt_2024_11_018
crossref_primary_10_1021_jacs_5c00837
crossref_primary_10_1002_aenm_202403295
crossref_primary_10_1016_j_nxener_2024_100144
crossref_primary_10_1021_acsnano_4c08885
crossref_primary_10_1039_D4QM00962B
crossref_primary_10_1002_ange_202408382
crossref_primary_10_1016_j_ccr_2025_216545
crossref_primary_10_1002_ange_202401386
crossref_primary_10_1002_anie_202410517
crossref_primary_10_1002_anie_202421361
crossref_primary_10_1002_adma_202415739
crossref_primary_10_1002_anie_202408771
crossref_primary_10_1002_adma_202403958
crossref_primary_10_1016_j_jcis_2024_12_122
crossref_primary_10_1039_D4CC02012J
crossref_primary_10_1016_j_apsusc_2024_162078
crossref_primary_10_1016_j_cej_2024_153427
crossref_primary_10_1093_nsr_nwae217
crossref_primary_10_1016_j_chempr_2024_06_014
Cites_doi 10.1002/adfm.202108316
10.1038/nmat4367
10.1073/pnas.2115504119
10.1002/anie.201801538
10.1038/s41929-019-0241-7
10.1038/s41565-022-01121-4
10.1002/adma.201907976
10.1002/anie.201915992
10.1021/jacs.6b12971
10.1016/j.joule.2020.12.025
10.1002/adma.202003297
10.1038/s41929-019-0252-4
10.1021/acs.est.0c08552
10.1021/acscatal.1c02031
10.1016/j.niox.2020.07.004
10.1038/s41467-022-31096-8
10.1038/nature02756
10.1038/nmat3924
10.1016/j.chempr.2020.10.027
10.1038/s41467-022-29797-1
10.1002/anie.202005930
10.1021/acscatal.2c03004
10.1038/s41586-019-1134-2
10.1038/s41467-021-23896-1
10.1002/adma.201502024
10.1038/s41467-021-23115-x
10.1038/s41467-021-22865-y
10.1002/adma.201803498
10.1016/j.chempr.2022.10.001
10.1039/c2ee23062c
10.1021/jacs.0c00418
10.1021/jacs.9b13347
10.1002/anie.201502104
10.1038/s41467-020-19433-1
10.1021/jp505174k
10.1088/0953-8984/25/23/236002
10.1002/adfm.202200498
10.1088/0953-8984/24/3/035501
10.1038/s41560-021-00826-5
10.1038/s41929-018-0170-x
10.1021/jacs.7b05130
10.1039/c2cp44352j
10.1002/anie.202202556
10.1002/smll.202102396
10.1038/s41467-020-14333-w
10.1039/C9CS00280D
10.1038/s41560-020-0654-1
10.1039/D1CS00116G
10.1021/acs.est.1c08442
10.1126/science.345.6197.610
10.1021/jp992511h
10.1038/s41467-022-29926-w
10.1016/j.apcatb.2017.11.010
10.1002/anie.202002337
10.1038/nature00977
10.1002/anie.202208215
10.1021/acsnano.2c08919
10.1002/adma.202205767
10.1039/D1CS00857A
10.1073/pnas.112202099
10.1038/s41467-022-28843-2
10.1038/s44160-023-00258-x
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-44469-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_0cc697901ebf4485940485fd02c7f721
PMC10762114
10_1038_s41467_023_44469_4
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U22A20402; U21A20286
  funderid: https://doi.org/10.13039/501100001809
– fundername: Shenzhen Science and Technology Program (JCYJ20220818095601002)
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-d49db673be1dbd60558f51bf1802ec3186f2d00cd2efeaa61ea2c7c723e7bf2d3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:06:59 EDT 2025
Thu Aug 21 18:42:23 EDT 2025
Wed Jul 30 10:26:15 EDT 2025
Wed Aug 13 05:16:10 EDT 2025
Tue Jul 01 02:10:51 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-d49db673be1dbd60558f51bf1802ec3186f2d00cd2efeaa61ea2c7c723e7bf2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8979-7241
0000-0003-0324-2227
0000-0001-9470-5172
0000-0002-1881-2600
0000-0002-6842-9167
0000-0001-6537-7026
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-44469-4
PMID 38167739
PQID 2908982404
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0cc697901ebf4485940485fd02c7f721
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10762114
proquest_miscellaneous_2910192264
proquest_journals_2908982404
crossref_citationtrail_10_1038_s41467_023_44469_4
crossref_primary_10_1038_s41467_023_44469_4
springer_journals_10_1038_s41467_023_44469_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gao (CR63) 2022; 56
Wang (CR21) 2020; 142
Li (CR32) 2022; 3
Zhang (CR35) 2020; 59
Clayborne, Chun, Rankin, Greeley (CR24) 2015; 54
Chakraborty, Meneghini, Aquilanti, Ray (CR37) 2013; 25
Wang (CR53) 2020; 59
Lv (CR7) 2018; 57
Gao (CR61) 2021; 6
Hao (CR5) 2019; 2
Li (CR31) 2020; 6
Gao (CR64) 2021; 55
Wang (CR14) 2021; 50
Yao (CR34) 2022; 61
Miao (CR51) 2021; 11
Zhang (CR20) 2022; 119
Xu (CR15) 2022; 51
Liu (CR44) 2017; 139
Pan (CR47) 2020; 11
Liu (CR55) 2023; 13
Mtangi (CR25) 2017; 139
Ohtomo, Muller, Grazul, Hwang (CR46) 2002; 419
Service (CR2) 2014; 345
Wu (CR9) 2021; 12
Niu (CR60) 2021; 17
Liu (CR23) 2022; 61
Long (CR56) 2020; 59
Liu (CR62) 2022; 13
Duca, Koper (CR13) 2012; 5
Shafirovich, Lymar (CR16) 2002; 99
Xie (CR42) 2018; 1
Li (CR8) 2020; 142
Dai (CR33) 2020; 11
Ford, Miranda (CR17) 2020; 103
Liang (CR28) 2022; 13
CR54
CR52
van Langevelde, Katsounaros, Koper (CR12) 2021; 5
Do, Lee (CR26) 2022; 16
Wu (CR30) 2021; 12
Guo (CR50) 2015; 27
Chen (CR11) 2022; 17
Gao (CR19) 2022; 13
Schlappa (CR49) 2012; 24
Sun (CR57) 2020; 32
Zitolo (CR45) 2015; 14
Wei (CR40) 2022; 32
Geng (CR6) 2018; 30
Chen (CR27) 2020; 32
Mao (CR41) 2018; 224
Li (CR59) 2022; 32
Chen (CR10) 2020; 5
Yang (CR39) 2013; 15
Ren (CR29) 2021; 12
Janaway, Brauman (CR18) 2000; 104
Mondal (CR43) 2014; 118
Sala (CR38) 2014; 13
Ashida, Arashiba, Nakajima, Nishibayashi (CR1) 2019; 568
Muller (CR36) 2004; 430
Tang, Qiao (CR4) 2019; 48
Wei (CR58) 2023; 9
Cheng (CR22) 2022; 34
Suryanto (CR3) 2019; 2
Chang (CR48) 2018; 8
Y Yao (44469_CR34) 2022; 61
T Wu (44469_CR30) 2021; 12
PC Ford (44469_CR17) 2020; 103
Y Guo (44469_CR50) 2015; 27
W Mtangi (44469_CR25) 2017; 139
Y Sun (44469_CR57) 2020; 32
X Li (44469_CR31) 2020; 6
C Mao (44469_CR41) 2018; 224
J Xie (44469_CR42) 2018; 1
S Zhang (44469_CR20) 2022; 119
F–Y Chen (44469_CR11) 2022; 17
H Xu (44469_CR15) 2022; 51
T-Y Yang (44469_CR39) 2013; 15
J Long (44469_CR56) 2020; 59
S Zhang (44469_CR35) 2020; 59
BHR Suryanto (44469_CR3) 2019; 2
44469_CR52
J Gao (44469_CR63) 2022; 56
44469_CR54
P Mondal (44469_CR43) 2014; 118
RF Service (44469_CR2) 2014; 345
M Duca (44469_CR13) 2012; 5
J Li (44469_CR59) 2022; 32
H Niu (44469_CR60) 2021; 17
Y Liang (44469_CR28) 2022; 13
PH van Langevelde (44469_CR12) 2021; 5
W Liu (44469_CR44) 2017; 139
A Clayborne (44469_CR24) 2015; 54
Z Li (44469_CR32) 2022; 3
V–H Do (44469_CR26) 2022; 16
T Chakraborty (44469_CR37) 2013; 25
R Gao (44469_CR61) 2021; 6
J Dai (44469_CR33) 2020; 11
A Ohtomo (44469_CR46) 2002; 419
Y Wang (44469_CR21) 2020; 142
J Gao (44469_CR64) 2021; 55
J Schlappa (44469_CR49) 2012; 24
A Zitolo (44469_CR45) 2015; 14
C Tang (44469_CR4) 2019; 48
J Li (44469_CR8) 2020; 142
Y–C Hao (44469_CR5) 2019; 2
CF Chang (44469_CR48) 2018; 8
K Liu (44469_CR62) 2022; 13
Z Geng (44469_CR6) 2018; 30
H Liu (44469_CR23) 2022; 61
X–F Cheng (44469_CR22) 2022; 34
Q Gao (44469_CR19) 2022; 13
Y Wang (44469_CR53) 2020; 59
C Lv (44469_CR7) 2018; 57
G–F Chen (44469_CR10) 2020; 5
L Pan (44469_CR47) 2020; 11
H Liu (44469_CR55) 2023; 13
Y Ashida (44469_CR1) 2019; 568
G Sala (44469_CR38) 2014; 13
J Miao (44469_CR51) 2021; 11
X Ren (44469_CR29) 2021; 12
DA Muller (44469_CR36) 2004; 430
Z–Y Wu (44469_CR9) 2021; 12
GA Janaway (44469_CR18) 2000; 104
RR Chen (44469_CR27) 2020; 32
K Wei (44469_CR40) 2022; 32
Y Wang (44469_CR14) 2021; 50
V Shafirovich (44469_CR16) 2002; 99
X Wei (44469_CR58) 2023; 9
References_xml – volume: 32
  start-page: 2108316
  year: 2022
  ident: CR59
  article-title: 3.4% solar–to–ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS nanosheets
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108316
– volume: 14
  start-page: 937
  year: 2015
  end-page: 942
  ident: CR45
  article-title: Identification of catalytic sites for oxygen reduction in iron– and nitrogen–doped graphene materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 119
  start-page: e2115504119
  year: 2022
  ident: CR20
  article-title: High–ammonia selective metal–organic framework–derived Co–doped Fe/Fe O catalysts for electrochemical nitrate reduction
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.2115504119
– volume: 57
  start-page: 6073
  year: 2018
  end-page: 6076
  ident: CR7
  article-title: An amorphous noble–metal–free electrocatalyst that enables nitrogen fixation under ambient conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801538
– volume: 2
  start-page: 448
  year: 2019
  end-page: 456
  ident: CR5
  article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 17
  start-page: 759
  year: 2022
  end-page: 767
  ident: CR11
  article-title: Efficient conversion of low–concentration nitrate sources into ammonia on a Ru–dispersed Cu nanowire electrocatalyst
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-022-01121-4
– ident: CR54
– volume: 32
  start-page: 1907976
  year: 2020
  ident: CR27
  article-title: Antiferromagnetic inverse spinel oxide LiCoVO with spin–polarized channels for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907976
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  ident: CR53
  article-title: Unveiling the activity origin of a copper–based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 139
  start-page: 2794
  year: 2017
  end-page: 2798
  ident: CR25
  article-title: Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12971
– volume: 5
  start-page: 290
  year: 2021
  end-page: 294
  ident: CR12
  article-title: Electrocatalytic nitrate reduction for sustainable ammonia production
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 32
  start-page: 2003297
  year: 2020
  ident: CR57
  article-title: Spin–related electron transfer and orbital interactions in oxygen electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003297
– volume: 2
  start-page: 290
  year: 2019
  end-page: 296
  ident: CR3
  article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0252-4
– volume: 8
  start-page: 021004
  year: 2018
  ident: CR48
  article-title: c-axis dimer and its electronic breakup: the insulator-to-metal transition in Ti O
  publication-title: Phys. Rev. X
– volume: 55
  start-page: 10684
  year: 2021
  end-page: 10694
  ident: CR64
  article-title: Electrochemically selective ammonia extraction from nitrate by coupling electron– and phase–transfer reactions at a three–phase interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c08552
– volume: 11
  start-page: 9569
  year: 2021
  end-page: 9577
  ident: CR51
  article-title: Spin–state–dependent peroxymonosulfate activation of single–atom M–N moieties via a radical–free pathway
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02031
– volume: 103
  start-page: 31
  year: 2020
  end-page: 46
  ident: CR17
  article-title: The solution chemistry of nitric oxide and other reactive nitrogen species
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2020.07.004
– volume: 13
  year: 2022
  ident: CR28
  article-title: Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31096-8
– volume: 430
  start-page: 657
  year: 2004
  end-page: 661
  ident: CR36
  article-title: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO
  publication-title: Nature
  doi: 10.1038/nature02756
– volume: 13
  start-page: 488
  year: 2014
  end-page: 493
  ident: CR38
  article-title: Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3924
– volume: 6
  start-page: 3440
  year: 2020
  end-page: 3454
  ident: CR31
  article-title: Identification of the electronic and structural dynamics of catalytic centers in single–Fe–atom material
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.027
– volume: 13
  year: 2022
  ident: CR62
  article-title: Insights into the activity of single–atom Fe–N–C catalysts for oxygen reduction reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29797-1
– volume: 59
  start-page: 13423
  year: 2020
  end-page: 13429
  ident: CR35
  article-title: Electrocatalytically active Fe–(O–C ) single–atom sites for efficient reduction of nitrogen to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005930
– volume: 13
  start-page: 1513
  year: 2023
  end-page: 1521
  ident: CR55
  article-title: Low–coordination Rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c03004
– volume: 568
  start-page: 536
  year: 2019
  end-page: 540
  ident: CR1
  article-title: Molybdenum–catalysed ammonia production with samarium diiodide and alcohols or water
  publication-title: Nature
  doi: 10.1038/s41586-019-1134-2
– volume: 12
  year: 2021
  ident: CR30
  article-title: Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23896-1
– volume: 27
  start-page: 5989
  year: 2015
  end-page: 5994
  ident: CR50
  article-title: Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502024
– volume: 12
  year: 2021
  ident: CR9
  article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 12
  year: 2021
  ident: CR29
  article-title: Spin–polarized oxygen evolution reaction under magnetic field
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22865-y
– volume: 30
  start-page: 1803498
  year: 2018
  ident: CR6
  article-title: Achieving a record–high yield rate of 120.9 for N electrochemical reduction over Ru single–atom catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 9
  start-page: 181
  year: 2023
  end-page: 197
  ident: CR58
  article-title: Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.10.001
– volume: 5
  start-page: 9726
  year: 2012
  end-page: 9742
  ident: CR13
  article-title: Powering denitrification: the perspectives of electrocatalytic nitrate reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23062c
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  ident: CR8
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 3
  start-page: 100268
  year: 2022
  ident: CR32
  article-title: Spin engineering of single–site metal catalysts
  publication-title: Innovation
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  ident: CR21
  article-title: Enhanced nitrate–to–ammonia sctivity on copper–nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 54
  start-page: 8255
  year: 2015
  end-page: 8258
  ident: CR24
  article-title: Elucidation of pathways for NO electroreduction on Pt(111) from first principles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502104
– volume: 11
  year: 2020
  ident: CR33
  article-title: Single–phase perovskite oxide with super–exchange induced atomic–scale synergistic active centers enables ultrafast hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19433-1
– volume: 118
  start-page: 21614
  year: 2014
  end-page: 21621
  ident: CR43
  article-title: Behavior of As(V) with ZVI–H O system and the reduction to As(0)
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp505174k
– volume: 25
  start-page: 236002
  year: 2013
  ident: CR37
  article-title: Microscopic distribution of metal dopants and anion vacancies in Fe-doped BaTiO single crystals
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/23/236002
– volume: 32
  start-page: 2200498
  year: 2022
  ident: CR40
  article-title: Strained zero-valent iron for highly efficient heavy metal removal
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200498
– volume: 24
  start-page: 035501
  year: 2012
  ident: CR49
  article-title: Resonant soft x-ray scattering from stepped surfaces of SrTiO
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/3/035501
– volume: 6
  start-page: 614
  year: 2021
  end-page: 623
  ident: CR61
  article-title: Pt/Fe O with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00826-5
– volume: 1
  start-page: 889
  year: 2018
  end-page: 896
  ident: CR42
  article-title: Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide–supported iron species
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0170-x
– volume: 139
  start-page: 10790
  year: 2017
  end-page: 10798
  ident: CR44
  article-title: Discriminating catalytically active FeN species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05130
– volume: 15
  start-page: 2117
  year: 2013
  end-page: 2124
  ident: CR39
  article-title: A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44352j
– volume: 61
  start-page: e202202556
  year: 2022
  ident: CR23
  article-title: Efficient electrochemical nitrate reduction to ammonia with copper–supported rhodium cluster and single–atom catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202556
– volume: 17
  start-page: 2102396
  year: 2021
  ident: CR60
  article-title: A feasible strategy for identifying single–atom catalysts toward electrochemical NO−to−NH conversion
  publication-title: Small
  doi: 10.1002/smll.202102396
– volume: 11
  year: 2020
  ident: CR47
  article-title: Manipulating spin polarization of titanium dioxide for efficient photocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14333-w
– volume: 48
  start-page: 3166
  year: 2019
  end-page: 3180
  ident: CR4
  article-title: How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00280D
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  ident: CR10
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight–electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 50
  start-page: 6720
  year: 2021
  end-page: 6733
  ident: CR14
  article-title: Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00116G
– volume: 56
  start-page: 11602
  year: 2022
  end-page: 11613
  ident: CR63
  article-title: Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08442
– volume: 345
  start-page: 610
  year: 2014
  end-page: 610
  ident: CR2
  article-title: New recipe produces ammonia from air, water, and sunlight
  publication-title: Science
  doi: 10.1126/science.345.6197.610
– volume: 104
  start-page: 1795
  year: 2000
  end-page: 1798
  ident: CR18
  article-title: Direct observation of spin forbidden proton–transfer reactions: NO + HA → HNO + A
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992511h
– volume: 13
  year: 2022
  ident: CR19
  article-title: Breaking adsorption–energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine–learned insights
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29926-w
– ident: CR52
– volume: 224
  start-page: 612
  year: 2018
  end-page: 620
  ident: CR41
  article-title: Energy–confined solar thermal ammonia synthesis with K/Ru/TiO H
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.11.010
– volume: 59
  start-page: 9711
  year: 2020
  end-page: 9718
  ident: CR56
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002337
– volume: 419
  start-page: 378
  year: 2002
  end-page: 380
  ident: CR46
  article-title: Artificial charge–modulationin atomic–scale perovskite titanate superlattices
  publication-title: Nature
  doi: 10.1038/nature00977
– volume: 61
  start-page: e202208215
  year: 2022
  ident: CR34
  article-title: Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202208215
– volume: 16
  start-page: 17847
  year: 2022
  end-page: 17890
  ident: CR26
  article-title: Orbital occupancy and spin polarization: from mechanistic study to rational design of transition metal–based electrocatalysts toward energy applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08919
– volume: 34
  start-page: 2205767
  year: 2022
  ident: CR22
  article-title: Coordination symmetry breaking of single–atom catalysts for robust and efficient nitrate electroreduction to ammonia
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205767
– volume: 51
  start-page: 2710
  year: 2022
  end-page: 2758
  ident: CR15
  article-title: Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00857A
– volume: 99
  start-page: 7340
  year: 2002
  end-page: 7345
  ident: CR16
  article-title: Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.112202099
– volume: 9
  start-page: 181
  year: 2023
  ident: 44469_CR58
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.10.001
– volume: 104
  start-page: 1795
  year: 2000
  ident: 44469_CR18
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992511h
– volume: 59
  start-page: 9711
  year: 2020
  ident: 44469_CR56
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002337
– volume: 17
  start-page: 2102396
  year: 2021
  ident: 44469_CR60
  publication-title: Small
  doi: 10.1002/smll.202102396
– volume: 5
  start-page: 9726
  year: 2012
  ident: 44469_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23062c
– volume: 6
  start-page: 3440
  year: 2020
  ident: 44469_CR31
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.027
– volume: 14
  start-page: 937
  year: 2015
  ident: 44469_CR45
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 27
  start-page: 5989
  year: 2015
  ident: 44469_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502024
– volume: 139
  start-page: 2794
  year: 2017
  ident: 44469_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12971
– volume: 61
  start-page: e202202556
  year: 2022
  ident: 44469_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202556
– ident: 44469_CR52
  doi: 10.1038/s41467-022-28843-2
– volume: 24
  start-page: 035501
  year: 2012
  ident: 44469_CR49
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/3/035501
– volume: 59
  start-page: 5350
  year: 2020
  ident: 44469_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 59
  start-page: 13423
  year: 2020
  ident: 44469_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005930
– volume: 30
  start-page: 1803498
  year: 2018
  ident: 44469_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 13
  year: 2022
  ident: 44469_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29797-1
– ident: 44469_CR54
  doi: 10.1038/s44160-023-00258-x
– volume: 16
  start-page: 17847
  year: 2022
  ident: 44469_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08919
– volume: 32
  start-page: 2200498
  year: 2022
  ident: 44469_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200498
– volume: 139
  start-page: 10790
  year: 2017
  ident: 44469_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05130
– volume: 345
  start-page: 610
  year: 2014
  ident: 44469_CR2
  publication-title: Science
  doi: 10.1126/science.345.6197.610
– volume: 12
  year: 2021
  ident: 44469_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 13
  year: 2022
  ident: 44469_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31096-8
– volume: 32
  start-page: 2108316
  year: 2022
  ident: 44469_CR59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108316
– volume: 51
  start-page: 2710
  year: 2022
  ident: 44469_CR15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00857A
– volume: 13
  start-page: 488
  year: 2014
  ident: 44469_CR38
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3924
– volume: 142
  start-page: 5702
  year: 2020
  ident: 44469_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 15
  start-page: 2117
  year: 2013
  ident: 44469_CR39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp44352j
– volume: 3
  start-page: 100268
  year: 2022
  ident: 44469_CR32
  publication-title: Innovation
– volume: 48
  start-page: 3166
  year: 2019
  ident: 44469_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00280D
– volume: 8
  start-page: 021004
  year: 2018
  ident: 44469_CR48
  publication-title: Phys. Rev. X
– volume: 13
  year: 2022
  ident: 44469_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29926-w
– volume: 32
  start-page: 1907976
  year: 2020
  ident: 44469_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907976
– volume: 11
  year: 2020
  ident: 44469_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14333-w
– volume: 11
  start-page: 9569
  year: 2021
  ident: 44469_CR51
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02031
– volume: 5
  start-page: 605
  year: 2020
  ident: 44469_CR10
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 17
  start-page: 759
  year: 2022
  ident: 44469_CR11
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-022-01121-4
– volume: 13
  start-page: 1513
  year: 2023
  ident: 44469_CR55
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c03004
– volume: 11
  year: 2020
  ident: 44469_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19433-1
– volume: 5
  start-page: 290
  year: 2021
  ident: 44469_CR12
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 118
  start-page: 21614
  year: 2014
  ident: 44469_CR43
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp505174k
– volume: 50
  start-page: 6720
  year: 2021
  ident: 44469_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00116G
– volume: 12
  year: 2021
  ident: 44469_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22865-y
– volume: 2
  start-page: 448
  year: 2019
  ident: 44469_CR5
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 419
  start-page: 378
  year: 2002
  ident: 44469_CR46
  publication-title: Nature
  doi: 10.1038/nature00977
– volume: 54
  start-page: 8255
  year: 2015
  ident: 44469_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502104
– volume: 430
  start-page: 657
  year: 2004
  ident: 44469_CR36
  publication-title: Nature
  doi: 10.1038/nature02756
– volume: 25
  start-page: 236002
  year: 2013
  ident: 44469_CR37
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/25/23/236002
– volume: 55
  start-page: 10684
  year: 2021
  ident: 44469_CR64
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c08552
– volume: 12
  year: 2021
  ident: 44469_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23896-1
– volume: 224
  start-page: 612
  year: 2018
  ident: 44469_CR41
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.11.010
– volume: 99
  start-page: 7340
  year: 2002
  ident: 44469_CR16
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.112202099
– volume: 103
  start-page: 31
  year: 2020
  ident: 44469_CR17
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2020.07.004
– volume: 1
  start-page: 889
  year: 2018
  ident: 44469_CR42
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0170-x
– volume: 568
  start-page: 536
  year: 2019
  ident: 44469_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1134-2
– volume: 56
  start-page: 11602
  year: 2022
  ident: 44469_CR63
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08442
– volume: 2
  start-page: 290
  year: 2019
  ident: 44469_CR3
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0252-4
– volume: 57
  start-page: 6073
  year: 2018
  ident: 44469_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801538
– volume: 6
  start-page: 614
  year: 2021
  ident: 44469_CR61
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00826-5
– volume: 32
  start-page: 2003297
  year: 2020
  ident: 44469_CR57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003297
– volume: 142
  start-page: 7036
  year: 2020
  ident: 44469_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 34
  start-page: 2205767
  year: 2022
  ident: 44469_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205767
– volume: 119
  start-page: e2115504119
  year: 2022
  ident: 44469_CR20
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.2115504119
– volume: 61
  start-page: e202208215
  year: 2022
  ident: 44469_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202208215
SSID ssj0000391844
Score 2.6685364
Snippet Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the...
Abstract Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms 119/118
140/131
140/146
140/58
147/137
639/301/299
639/638/161/886
704/172/169/896
Ammonia
Clean energy
Clean technology
Electrocatalysts
Electrochemistry
Electrode polarization
Electrodes
Electron spin
Humanities and Social Sciences
Hydrogenation
Intermediates
multidisciplinary
Nitrate reduction
Nitrates
Oxygen
Polarization (spin alignment)
Recovery
Renewable energy
Science
Science (multidisciplinary)
Sustainability
Sustainable development
Titanium
Wastewater treatment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxUxEA9SELyIf_HZKhG86dLd_NkkRxUfRdCLrfQWNskEF8q-R_t6qJ_Asx_RT-JMdt-zW1AvXjcJk0xmMjM7yW8Ye9lJA67VsYopKgxQpKysa2wVM4ROZRBg6KHwx0_t0Yn6cKpPr5X6ojthIzzwyLjDOsbWGbRaEDKGEtoplDmdUy2iyaY8IRdo864FU-UMlkhQqemVTC3t4YUqZwKaqEphCOQqNbNEBbB_5mXevCN5I1Fa7M_yHrs7OY78zTjh--wWDA_Y7bGU5NVD9uXzuh_4mgLV_hskvoTm5_cfxz1fU8KGo2vKCZn47IpDAY1AenwqgXNO6K20PxzVm5Aj-GbFO5LPvnvETpbvj98dVVPNhCrqxm6qpFwKrZEBmhQSxiraZt2ETEBvEFGB2yxSXcckIEPXtQ10yMhohAQTsEk-ZnvDaoAnjBsndEiRalQF1dTJBe1aSNKCcxm7L1iz5Z-PE6A41bU48yWxLa0fee6R577w3KsFe7Ubsx7hNP7a-y1ty64nQWGXDyggfhIQ_y8BWbCD7ab6ST8vvKB0p0VvBmm82DWjZlG6pBtgdUl9GvJ_0WNcMDsThtmE5i1D_7VgdGNU3WJsjUNfb-XmN_U_r_jp_1jxPrsj0PUqP4rEAdvbnF_CM3SdNuF50ZJfZEQVcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIkL4lcECjISN4gaJ05inxAglgoJLrSoNyu2xxCpStLd7aE8AWcekSdhxuvdKpXoNR7LsWfGM-Oxv2HsVVe1oJva5c47iQFKVeVKC5W7ALaTAUpo6aHwl6_N4bH8fFKfpAO3VbpWud0T40btR0dn5AclJagU2h_5djrLqWoUZVdTCY2b7JZAS0NXutTi0-6MhdDPlZTprUxRqYOVjDsDGqpcYiCkczmzRxG2f-ZrXr0peSVdGq3Q4h67m9xH_m7D7_vsBgwP2O1NQcmLh-z7t6kf-EThav8LPF-A-Pv7z1HPJ0rbcHRQOeETn15wiNAROB5PhXCWhOFKXOKo5IQfwdcj72jaffeIHS8-Hn04zFPlhNzVQq1zL7W3TVtZEN56jFhqFWphA8G9gUM1bkLpi8L5EgJ0XSOgK13r2rKC1mJT9ZjtDeMATxhvdVlb76hSlZWi8NrWugFfKdA6IHnGxHb9jEuw4lTd4tTE9HalzGbNDa65iWtuZMZe7_pMG1CNa6nfE1t2lASIHT-Myx8m6ZcpnGt0i84N2IARZ61RUFQdfIHzChjlZmx_y1STtHRlLmUqYy93zahflDTpBhjPiUaQF4x-Y8bUTBhmPzRvGfqfEakbY-sGI2zs-mYrN5ej_3_GT6__2WfsTomuVTwIKvfZ3np5Ds_RNVrbF1H-_wGzCA3s
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKKyQuiF-xtCAjcYOIxLET-7ggVtVKcGmLerNiewyRquxquz20T9BzH7FP0hlvsigVIHGNx7Jjz9jfeOxvGHvflDWYSvnMBy_RQSnLTJtCZz6Ca2QEATU9FP72vTo8kfNTdbrDxPAWJl3aT5SWaZkebod9OpfJpHGHySR6MCaTD9geUbWjbu9Np_Oj-fZkhTjPtZT9C5m81H-oPNqFEln_CGHevx95L0ia9p7ZE_a4B418uunmU7YD3TP2cJNG8vI5-3G0bDu-JCe1vYLAZ1DcXt8ct3xJwRqOsJQTK_HZJYdEGIHt8T79zYqYW2luOJo2sUbw9YI3pJtt84KdzL4efznM-nwJmVeFXmdBmuCqunRQBBfQT1E6qsJFInkDj8ZbRRHy3AcBEZqmKqARvva1KKF2WFS-ZLvdooNXjNdGKBc85adyssiDccpUEEoNxkQUn7BiGD_rezJxymlxZlNQu9R2M-YWx9ymMbdywj5s6yw3VBr_lP5M07KVJBrs9GGx-ml7tbC595WpEdKAi-hnKiNxQVIx5PhfEX3bCTsYJtX2tnluBYU6NSIZbOPdthitikIlTQeLC5IpCPsiWpwwPVKGUYfGJV37K_Fzo0ddoV-NVT8OevO79b__8ev_E99njwQCrHQcJA7Y7np1AW8QIK3d294i7gC67w0X
  priority: 102
  providerName: Springer Nature
Title Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia
URI https://link.springer.com/article/10.1038/s41467-023-44469-4
https://www.proquest.com/docview/2908982404
https://www.proquest.com/docview/2910192264
https://pubmed.ncbi.nlm.nih.gov/PMC10762114
https://doaj.org/article/0cc697901ebf4485940485fd02c7f721
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbtMwFLb2IyRuEL-ibFRG4g4CTeLE9gVCXbUyVdqE2Ip6Z8X2MUSq0q7rJMoTcM0j8iQcO0lRprGbRIpt2T72sb_jE3-HkNdFykHmmYmMNQwNlDSNhIxFZBzogjlIgPuLwqdn-cmUTWbZbIe04Y4aAV7datr5eFLT1fzdj8vNR1T4D_WVcfH-igV1x90nYmjdyIjtkn3cmbiPaHDawP2wMqfYDMaauzO3F-3sT4HGv4M9b_45ecN9Gnal8UPyoIGTdFiP_yOyA9Vjcq8OMLl5Qr6eL8uKLn0fy59g6RjiP79-X5R06d04FAEr9XzF8w2FQCWB9dEmMM7Kc7r6UaOo9J5Pgq4XtPCztiyekun4-GJ0EjWRFCKTxWIdWSatznmqIbbaogWTCZfF2nn6NzCo1rlL7GBgbAIOiiKPoUgMNzxJgWtMSp-RvWpRwXNCuUwybY2PXKVZPLBSZzIHmwqQ0mH2Holb-SnT0Iz7aBdzFdzdqVC1zBXKXAWZK9Yjb7ZlljXJxp25j_ywbHN6guzwYbH6php9UwNjcskR7IB2aIFmkuFSlTk7wH45tHp75LAdVNVOOpV4J6hAjIN1vNomo755J0pRweLa54k9KkYc2SOiMxk6DeqmVOX3wNyNtnaOFjcWfdvOm3-1_7_HL-5u7AG5nyDUCgdDySHZW6-u4SVCpbXuk10-4_gU4099sj8cTs4n-D46Pvv8Bb-O8lE_HEL0g578BU8-F-E
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWChgJThA1cZzEPiDEa9nSx4Ut6s3E9gRWqrJhdyu0_ALO_BB-FL-EGSfZaivRW6-x8_B4PPONJ_6GsadlWoDOMxc57yQGKGkaKZ2oyFVgS1mBgIIOCu8f5KND-fEoO9pgf_qzMPRbZW8Tg6H2U0d75NuCElQK_Y981XyPqGoUZVf7EhqtWuzC8geGbPOXO-9wfp8JMXw_fjuKuqoCkcsStYi81N7mRWoh8dYjms9UlSW2Iio0cKjieSV8HDsvoIKyzBMohStcIVIoLDal-NxL7LJM0ZPTyfThh9WeDrGtKym7szlxqrbnMlgidIyRxMBLR3LN_4UyAWvY9uyfmWfSs8HrDW-w6x1c5a9b_brJNqC-xa60BSyXt9nnT82k5g2Fx5Of4PkQkr-_fo8nvKE0EUdAzIkP-XjJIVBV4Pt4V3hnRpyxpBUcjQrxVfDFlJck5kl5hx1eiEzvss16WsM9xgstMusdVcayMom9tpnOwacKtK6w-4AlvfyM62jMqZrGsQnp9FSZVuYGZW6CzI0csOere5qWxOPc3m9oWlY9iYA7XJjOvppuPZvYuVwXCKbAVhjhZhoVU2WVj3FcFUbVA7bVT6rprMLcnOrwgD1ZNeN6piRNWcP0hPokhLoRpw6YWlOGtQ9ab6kn3wIzOMbyOUb0eOuLXm9O3_7_Ed8__2Mfs6uj8f6e2ds52H3ArgmEdWETSmyxzcXsBB4iLFvYR2EtcPblohffP4MYTLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVCAuiF-RUsBIcIJVdr3eXfuAEKWNWgpRBS3qzaz_aKRqE5JUKDwBZx6Hx-FJmNnspkoleut17f0bz4y_8djfADwv08KrPLORdVZggJKmkVSJjGzwphTBc1_QQeGPg3z3SLw_zo7X4E97Foa2VbY-sXbUbmRpjbzHKUElcf4RvdBsizjY7r8Zf4-oghRlWttyGgsV2ffzHxi-TV_vbeNYv-C8v3P4bjdqKgxENkvkLHJCOZMXqfGJMw6RfSZDlphAtGjeorrngbs4to774MsyT3zJbWELnvrCYFOKz70G6wVFRR1Y39oZHHxarvAQ97oUojmpE6eyNxW1X8JpMhIYhqlIrMyGddGAFaR7cZ_mhWRtPQf2b8OtBryytwttuwNrvroL1xflLOf34Mvn8bBiYwqWhz-9Y32f_P31-3DIxpQ0YgiPGbEjn86Zr4kr8H2sKcMzIQZZ0hGGLobYK9hsxEoS9LC8D0dXItUH0KlGlX8IrFA8M85SnSwjktgpk6ncu1R6pQJ270LSyk_bhtScamuc6jq5nkq9kLlGmeta5lp04eXynvGC0uPS3ls0LMueRMddXxhNvunGunVsba4KhFbeBIx3M4VqKrPgYvyvgDF2FzbbQdWNj5jqc43uwrNlM1o3pWzKyo_OqE9CGBxRaxfkijKsfNBqSzU8qXnCMbLPMb7HW1-1enP-9v__8cblH_sUbqDh6Q97g_1HcJMjxqtXpPgmdGaTM_8YMdrMPGmMgcHXq7a_f2rqUko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+polarized+Fe1%E2%88%92Ti+pairs+for+highly+efficient+electroreduction+nitrate+to+ammonia&rft.jtitle=Nature+communications&rft.au=Dai%2C+Jie&rft.au=Tong%2C+Yawen&rft.au=Zhao%2C+Long&rft.au=Hu%2C+Zhiwei&rft.date=2024-01-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1038%2Fs41467-023-44469-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon