Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level
This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions,...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 108; no. 5; pp. 1389 - 1394 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.05.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R
2
= 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. |
---|---|
AbstractList | This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R 2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R 2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R... = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% (trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. (ProQuest: ... denotes formulae/symbols omitted.) This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. |
Author | Nordez, Antoine Hug, François |
Author_xml | – sequence: 1 givenname: Antoine surname: Nordez fullname: Nordez, Antoine organization: Laboratoire “Motricité, Interactions, Performance” (EA 4334), Université de Nantes, Nantes, France – sequence: 2 givenname: François surname: Hug fullname: Hug, François organization: Laboratoire “Motricité, Interactions, Performance” (EA 4334), Université de Nantes, Nantes, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763704$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20167669$$D View this record in MEDLINE/PubMed https://hal.science/hal-03409603$$DView record in HAL |
BookMark | eNqFkk9v1DAQxS1URLeFrwAWEqo4ZBnHiZ0cOFRVoUiLuMDZchxn1ysnDv6z0n57vGQLqBdOI8383huP9a7QxeQmjdAbAmtC6vLDXs6znXfHYJxdA6ElXZcA7TO0ytOyIAzIBVo1vIaC1w2_RFch7AFIVdXkBbosgTDOWLtC7msKymocdlp6rK0M0Sg8uj7ZFPCoZUhe9zgFM21xSLP2wU2ZWHgzyu1pYALeme3OHrHPFjELosPj4ixVNAcTj9jqg7Yv0fNB2qBfnes1-vHp_vvdQ7H59vnL3e2mUDVpYqGGWg6V4qruCCMge5AdZbSi-dJmqLqB9NB0rCwJ7yjRmkHdsZZx3bVctp2i1-j94ruTVsw-P9QfhZNGPNxuxKkHtIKWAT2QzN4s7Ozdz6RDFKMJSlsrJ-1SEJzStmpICZl8-4Tcu-SnfIighLaEA-MZen2GUjfq_s_2x0_PwLszIIOSdvByUib85UrOKIcqcx8XTnkXgteDUCbKaNwUvTRWEBCnMIh_wyB-h0GcwpD1_In-ccX_lL8ARcW-XQ |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1016_j_ultrasmedbio_2024_08_004 crossref_primary_10_1002_ca_23266 crossref_primary_10_1016_j_jelekin_2015_07_010 crossref_primary_10_1016_j_medengphy_2011_05_015 crossref_primary_10_1016_j_jbiomech_2018_11_043 crossref_primary_10_1371_journal_pone_0251939 crossref_primary_10_1519_JSC_0000000000004090 crossref_primary_10_1007_s00256_019_03300_2 crossref_primary_10_1115_1_4047651 crossref_primary_10_1111_joa_13455 crossref_primary_10_1007_s00256_012_1520_4 crossref_primary_10_3390_ijerph17124381 crossref_primary_10_1016_j_jbmt_2020_07_004 crossref_primary_10_1371_journal_pone_0091899 crossref_primary_10_2519_jospt_2020_8821 crossref_primary_10_1088_0967_3334_33_3_N19 crossref_primary_10_1371_journal_pone_0124311 crossref_primary_10_1007_s00421_016_3528_2 crossref_primary_10_1080_09205063_2019_1612725 crossref_primary_10_1111_sms_12111 crossref_primary_10_1007_s00421_016_3509_5 crossref_primary_10_1117_1_JBO_21_11_116006 crossref_primary_10_1016_j_clinbiomech_2021_105289 crossref_primary_10_3389_fphys_2023_1337170 crossref_primary_10_1111_bju_13688 crossref_primary_10_1123_jab_2017_0121 crossref_primary_10_3233_CH_231822 crossref_primary_10_1038_s41598_019_54100_6 crossref_primary_10_1016_j_apmr_2014_07_007 crossref_primary_10_1177_2058460115604009 crossref_primary_10_1002_gamm_202370012 crossref_primary_10_1111_apha_12272 crossref_primary_10_1115_1_4043443 crossref_primary_10_1371_journal_pone_0155187 crossref_primary_10_1519_JSC_0000000000004412 crossref_primary_10_1111_sms_12749 crossref_primary_10_3389_fspor_2024_1428301 crossref_primary_10_1016_j_jelekin_2022_102645 crossref_primary_10_1016_j_ultrasmedbio_2015_07_011 crossref_primary_10_1007_s00421_017_3558_4 crossref_primary_10_1016_j_jos_2019_06_017 crossref_primary_10_1016_j_ultras_2013_09_024 crossref_primary_10_3390_app11010452 crossref_primary_10_1016_j_jelekin_2020_102480 crossref_primary_10_3103_S1062873821060034 crossref_primary_10_1152_japplphysiol_00892_2017 crossref_primary_10_1249_MSS_0b013e3182850e17 crossref_primary_10_3390_life13112107 crossref_primary_10_1002_tsm2_68 crossref_primary_10_1007_s00161_020_00933_w crossref_primary_10_1177_0284185114559765 crossref_primary_10_1249_JES_0000000000000015 crossref_primary_10_3390_s20247317 crossref_primary_10_1016_j_jmbbm_2020_103829 crossref_primary_10_1016_j_ultrasmedbio_2012_01_010 crossref_primary_10_1016_j_jbiomech_2020_110067 crossref_primary_10_1051_sm_2011158 crossref_primary_10_1109_TUFFC_2021_3118380 crossref_primary_10_1016_j_ultrasmedbio_2015_11_022 crossref_primary_10_1016_j_ultrasmedbio_2019_08_007 crossref_primary_10_1007_s00421_022_05104_0 crossref_primary_10_14814_phy2_14955 crossref_primary_10_1016_j_ultrasmedbio_2018_07_009 crossref_primary_10_3389_fneur_2019_00736 crossref_primary_10_1007_s00421_018_3798_y crossref_primary_10_1007_s00421_018_3967_z crossref_primary_10_1002_mus_25245 crossref_primary_10_3390_diagnostics12081791 crossref_primary_10_1589_jpts_25_3 crossref_primary_10_3390_s20247200 crossref_primary_10_1016_j_humov_2020_102751 crossref_primary_10_1016_j_jbiomech_2017_07_031 crossref_primary_10_1016_j_ultrasmedbio_2014_03_024 crossref_primary_10_2139_ssrn_3983845 crossref_primary_10_1371_journal_pone_0053159 crossref_primary_10_1016_j_device_2024_100288 crossref_primary_10_1186_s40349_015_0030_y crossref_primary_10_1039_D0BM00540A crossref_primary_10_1002_mp_14020 crossref_primary_10_1016_j_ultras_2016_06_007 crossref_primary_10_1589_jpts_34_777 crossref_primary_10_1155_2017_5387948 crossref_primary_10_1016_j_clinbiomech_2015_01_004 crossref_primary_10_3389_fcell_2021_657621 crossref_primary_10_1007_s13760_024_02547_4 crossref_primary_10_1088_1361_6560_ac0f9b crossref_primary_10_1016_j_jbiomech_2024_111957 crossref_primary_10_1186_s12984_017_0318_y crossref_primary_10_1177_0954411916656022 crossref_primary_10_1242_jeb_248118 crossref_primary_10_1016_j_ultrasmedbio_2018_07_016 crossref_primary_10_1038_s41598_023_47468_z crossref_primary_10_1177_8756479319834255 crossref_primary_10_1186_s12891_020_03342_x crossref_primary_10_1002_ca_23065 crossref_primary_10_1109_OJEMB_2023_3338090 crossref_primary_10_1002_jmri_23597 crossref_primary_10_1177_0954411915584963 crossref_primary_10_3390_app8071156 crossref_primary_10_1016_j_clinph_2022_05_006 crossref_primary_10_1024_0301_1526_a001039 crossref_primary_10_7600_jpfsm_5_313 crossref_primary_10_1016_j_jbiomech_2014_05_008 crossref_primary_10_1016_j_ultrasmedbio_2019_06_417 crossref_primary_10_1371_journal_pone_0067199 crossref_primary_10_1109_TUFFC_2016_2641299 crossref_primary_10_1016_j_ultrasmedbio_2015_04_001 crossref_primary_10_1002_nau_23275 crossref_primary_10_1016_j_morpho_2022_06_056 crossref_primary_10_1038_s41598_018_34719_7 crossref_primary_10_1007_s00421_023_05193_5 crossref_primary_10_1016_j_apmr_2018_03_024 crossref_primary_10_1016_j_actbio_2017_02_009 crossref_primary_10_1016_j_jbiomech_2019_07_019 crossref_primary_10_1007_s00256_017_2843_y crossref_primary_10_1016_j_diii_2015_05_010 crossref_primary_10_1155_2017_9469548 crossref_primary_10_1007_s00421_023_05156_w crossref_primary_10_1088_0967_3334_34_6_713 crossref_primary_10_1097_MD_0000000000025196 crossref_primary_10_1097_PHM_0000000000001173 crossref_primary_10_1016_j_jelekin_2019_02_003 crossref_primary_10_1007_s00330_018_5742_2 crossref_primary_10_1016_j_ultrasmedbio_2023_10_005 crossref_primary_10_1371_journal_pone_0139272 crossref_primary_10_1016_j_jbiomech_2015_12_039 crossref_primary_10_1016_j_jmbbm_2016_03_001 crossref_primary_10_3389_fphy_2024_1329296 crossref_primary_10_1016_j_jmbbm_2022_105543 crossref_primary_10_1016_j_zemedi_2024_03_001 crossref_primary_10_1007_s41315_018_0050_1 crossref_primary_10_1016_j_jbiomech_2013_05_016 crossref_primary_10_1016_j_medengphy_2019_04_005 crossref_primary_10_1038_s41598_023_45037_y crossref_primary_10_1111_sms_12146 crossref_primary_10_1002_sono_12204 crossref_primary_10_1007_s00421_018_4032_7 crossref_primary_10_1016_j_jbiomech_2023_111838 crossref_primary_10_1007_s10439_014_1186_2 crossref_primary_10_1016_j_jbmt_2021_03_009 crossref_primary_10_1109_TNSRE_2018_2870155 crossref_primary_10_1371_journal_pone_0101769 crossref_primary_10_1016_j_clinimag_2016_05_008 crossref_primary_10_1016_j_jbiomech_2012_01_009 crossref_primary_10_1016_j_jbiomech_2014_06_031 crossref_primary_10_1016_j_kine_2014_11_029 crossref_primary_10_14814_phy2_15295 crossref_primary_10_14814_phy2_15691 crossref_primary_10_1016_j_clinbiomech_2017_08_009 crossref_primary_10_1080_02640414_2024_2318540 crossref_primary_10_1038_s41598_020_77330_5 crossref_primary_10_1371_journal_pone_0068216 crossref_primary_10_3389_fphys_2017_00708 crossref_primary_10_1002_ca_22903 crossref_primary_10_1007_s00421_014_3037_0 crossref_primary_10_1016_j_apergo_2024_104227 crossref_primary_10_1016_j_jbiomech_2016_08_008 crossref_primary_10_1007_s00421_025_05708_2 crossref_primary_10_1152_japplphysiol_01058_2013 crossref_primary_10_7863_jum_2012_31_8_1209 crossref_primary_10_1016_j_actbio_2015_09_019 crossref_primary_10_1016_j_cont_2024_101216 crossref_primary_10_1111_1556_4029_12349 crossref_primary_10_1123_jab_2020_0095 crossref_primary_10_3233_BMR_230333 crossref_primary_10_1111_cpf_12527 crossref_primary_10_1016_j_jse_2021_04_013 crossref_primary_10_1186_s12891_024_07241_3 crossref_primary_10_3389_fphys_2018_00022 crossref_primary_10_1016_j_jbiomech_2020_109687 crossref_primary_10_1371_journal_pone_0138523 crossref_primary_10_1111_joa_12978 crossref_primary_10_1016_j_ultrasmedbio_2018_08_011 crossref_primary_10_1016_j_clinimag_2017_05_017 crossref_primary_10_1016_j_jbiomech_2012_02_020 crossref_primary_10_1016_j_jelekin_2010_08_009 crossref_primary_10_3390_sports12010026 crossref_primary_10_1109_TUFFC_2019_2911036 crossref_primary_10_1016_j_jelekin_2019_05_004 crossref_primary_10_1109_ACCESS_2019_2909542 crossref_primary_10_1002_mus_24104 crossref_primary_10_1152_japplphysiol_00106_2020 crossref_primary_10_1016_j_jelekin_2020_102505 crossref_primary_10_2139_ssrn_4101072 crossref_primary_10_1152_japplphysiol_00125_2022 crossref_primary_10_1111_sms_13973 crossref_primary_10_1016_j_jbmt_2021_05_002 crossref_primary_10_1080_14763141_2023_2195827 crossref_primary_10_1123_japa_2021_0384 crossref_primary_10_1299_transjsme_24_00175 |
Cites_doi | 10.1109/TUFFC.2004.1295425 10.1016/S0268-0033(03)00070-6 10.1121/1.1579008 10.1016/S0021-9290(03)00005-8 10.1016/j.clinbiomech.2006.09.005 10.1002/nbm.887 10.1016/j.jelekin.2004.09.003 10.1123/jab.20.4.367 10.1016/j.clinbiomech.2008.08.003 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1 10.1016/j.ultrasmedbio.2008.02.002 10.1121/1.1815075 10.1016/j.jelekin.2006.08.005 10.2165/00007256-200030010-00001 10.1152/japplphysiol.01070.2003 10.1016/j.jbiomech.2004.07.013 10.1109/TMI.2008.925077 10.1016/j.jbiomech.2008.03.033 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Physiological Society May 2010 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Physiological Society May 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 1XC BXJBU IHQJB VOOES |
DOI | 10.1152/japplphysiol.01323.2009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1394 |
ExternalDocumentID | oai_HAL_hal_03409603v1 2040191301 20167669 22763704 10_1152_japplphysiol_01323_2009 |
Genre | Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX ADXHL AEILP AENEX AETEA AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ OHT OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 1XC BXJBU IHQJB UMC VOOES |
ID | FETCH-LOGICAL-c518t-cf5af4c7c5b1610ad0ab363433238f4bf1d08b62217b31ee605b6967eb97a9bc3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Fri May 09 12:25:57 EDT 2025 Thu Jul 10 22:09:39 EDT 2025 Mon Jun 30 08:50:50 EDT 2025 Mon Jul 21 05:59:45 EDT 2025 Mon Jul 21 09:13:02 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 01:13:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Elastic modulus Shear modulus biceps brachii Electrophysiology Elasticity elastography Striated muscle muscle elasticity Biceps muscle Vertebrata Mammalia Imaging Electromyography Ultrasound electromyography ultrasound |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c518t-cf5af4c7c5b1610ad0ab363433238f4bf1d08b62217b31ee605b6967eb97a9bc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6432-558X 0000-0002-7276-4793 |
OpenAccessLink | https://hal.science/hal-03409603 |
PMID | 20167669 |
PQID | 313917067 |
PQPubID | 40905 |
PageCount | 6 |
ParticipantIDs | hal_primary_oai_HAL_hal_03409603v1 proquest_miscellaneous_733948120 proquest_journals_313917067 pubmed_primary_20167669 pascalfrancis_primary_22763704 crossref_citationtrail_10_1152_japplphysiol_01323_2009 crossref_primary_10_1152_japplphysiol_01323_2009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B11 B12 B13 B14 B15 B16 B18 B19 Lieber RL (B17) 2002 B1 B2 B3 B4 B5 B6 B7 B8 B9 Fung YC (B10) 1983 |
References_xml | – ident: B1 doi: 10.1109/TUFFC.2004.1295425 – ident: B13 doi: 10.1016/S0268-0033(03)00070-6 – ident: B11 doi: 10.1121/1.1579008 – ident: B16 doi: 10.1016/S0021-9290(03)00005-8 – ident: B7 doi: 10.1016/j.clinbiomech.2006.09.005 – ident: B20 doi: 10.1002/nbm.887 – ident: B14 doi: 10.1016/j.jelekin.2004.09.003 – ident: B2 doi: 10.1123/jab.20.4.367 – ident: B5 doi: 10.1016/j.clinbiomech.2008.08.003 – ident: B6 doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1 – volume-title: Skeletal Muscle Structure, Function and Plasticity year: 2002 ident: B17 – ident: B19 doi: 10.1016/j.ultrasmedbio.2008.02.002 – ident: B3 doi: 10.1121/1.1815075 – ident: B9 doi: 10.1016/j.jelekin.2006.08.005 – ident: B15 doi: 10.2165/00007256-200030010-00001 – volume-title: Mechanical Properties of Living Tissues year: 1983 ident: B10 – ident: B8 doi: 10.1152/japplphysiol.01070.2003 – ident: B12 doi: 10.1016/j.jbiomech.2004.07.013 – ident: B4 doi: 10.1109/TMI.2008.925077 – ident: B18 doi: 10.1016/j.jbiomech.2008.03.033 |
SSID | ssj0014451 |
Score | 2.4344854 |
Snippet | This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle... |
SourceID | hal proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1389 |
SubjectTerms | Adult Biological and medical sciences Coefficient of variation Correlation coefficient Elastic Modulus Elasticity Imaging Techniques Electromyography Ergometry - instrumentation Exercise Female Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Humans Isometric Contraction Life Sciences Linear Models Male Muscle Strength Dynamometer Muscle, Skeletal - diagnostic imaging Muscle, Skeletal - physiology Muscular system Physiology Pilot Projects Reproducibility of Results Torque Upper Extremity Young Adult |
Title | Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20167669 https://www.proquest.com/docview/313917067 https://www.proquest.com/docview/733948120 https://hal.science/hal-03409603 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WCiKIaOslVssg4suSOsnk-riIsqgtCi30LWQmE13YTRaTFNof4u_1nJlJNqsttb6EZXYy7Oz55sy5H0LepLzIPbTcy7QsXLihhCtYkbtRCbctUyDDmmqfx9H8NPh0Fp5NJr9GUUtdKw7l5ZV5Jf9DVRgDumKW7C0oOywKA_AZ6AtPoDA8_4nGR10DI9MGu1JPFcjBWH11VRfdsmumK2P9K6adNgc03VoL1zDDzF-sTIOiRTPFmsXLC5PXAi-AOLoyK2PWg20ucW5j6_8WZHMryGojiSnphNWf0iQcmRmOscbnpS1XUI-c-fPuey9Aa6d9XC-2TBHGi25NEX20JnNBATE3qLIcFbRdL7LTepbLkhG2whEDRb_p6DIG-TS4mtGHvm4wADu0uztErxHX6Zybu6335_9x5Q2BiFoFCv1svFCmF8pMXuhdH9QP5J-fv228U1jUzdiNzXZt3CAs9O6aX7Ql9dz5gTG3D9Z5A8ewNP1TrldwtKBz8og8tISlMwO3x2Siql2yN6vytl5d0Lf060DmXXLvyIZm7JHagJFqcFELRmrBSHswUg1GugGjnW_BSBcNNWCkFoy0rakBI-3BSDUYn5DTjx9O3s9d283DlaGXtK4sw7wMZCxDAVoGywuWCx5xrJ_HkzIQpVewREQ-6MiCe0qBni2iNIqVSOM8FZI_JTtVXannhDKeMpkkkufKD1TpCcWFLIo0LWMQf5V0SNT_25m0pe6x48oyu4HeDmHDi2tT7eXmV14DOYfZWK19PvuS4RjjARoI-LnnkIMtag_TfR_u95gFDtnvyZ9ZBtNkHNCP1a1ih9DhW-D-6NLLK1V3TRZzjuWWfOaQZwY0m6UxwSiK0he339M-ub853i_JTvuzU69A9m7FgT4IvwEae95q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+shear+elastic+modulus+measured+using+supersonic+shear+imaging+is+highly+related+to+muscle+activity+level&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nordez%2C+Antoine&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2010-05-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=5&rft.spage=1389&rft.epage=1394&rft_id=info:doi/10.1152%2Fjapplphysiol.01323.2009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_01323_2009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |