Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level

This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions,...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 108; no. 5; pp. 1389 - 1394
Main Authors Nordez, Antoine, Hug, François
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.05.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R 2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.
AbstractList This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R 2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.
This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression ( P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects ( R 2 = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% ( trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% ( trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different ( P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.
This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.
This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P < 0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R... = 0.94 ± 0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7 ± 6.7 kPa; trial 2: 23.2 ± 7.2 kPa, intraclass correlation coefficient = 0.89, standard error in measurement = 2.3 kPa, coefficient of variation = 12.7%) and 7% (trial 1: 42.6 ± 14.1 kPa; trial 2: 44.8 ± 15.8 kPa, intraclass correlation coefficient = 0.94, standard error in measurement = 3.7 kPa, coefficient of variation = 7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P > 0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress. (ProQuest: ... denotes formulae/symbols omitted.)
This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle activity level. Using direct visual feedback of torque, six healthy subjects were asked to perform two incremental isometric elbow flexions, consisting of linear torque ramps of 30 s from 0 to 40% of maximal voluntary contraction. Both electromyographic (EMG) activity and shear elastic modulus were continuously measured in the biceps brachii during the two ramps. There was significant linear regression (P<0.001) between shear elastic modulus and EMG activity level for both ramps of all six subjects (R2=0.94+/-0.05, ranging from 0.82 to 0.98). Good repeatability was found for shear elastic modulus estimated at both 3% (trial 1: 21.7+/-6.7 kPa; trial 2: 23.2+/-7.2 kPa, intraclass correlation coefficient=0.89, standard error in measurement=2.3 kPa, coefficient of variation=12.7%) and 7% (trial 1: 42.6+/-14.1 kPa; trial 2: 44.8+/-15.8 kPa, intraclass correlation coefficient=0.94, standard error in measurement=3.7 kPa, coefficient of variation=7.1%) of maximal EMG activity. The shear elastic modulus estimated at both 3 and 7% of maximal EMG activity was not significantly different (P>0.05) between the two trials. These results confirm our hypothesis that the use of supersonic shear imaging greatly improves the correlation between muscle shear elastic modulus and EMG activity level. Due to the nonlinearity of muscle mechanical properties, the muscle elasticity should be linked to the muscle stress. Therefore, the present study represents a first step in attempting to show that supersonic shear imaging can be used to indirectly estimate muscle stress.
Author Nordez, Antoine
Hug, François
Author_xml – sequence: 1
  givenname: Antoine
  surname: Nordez
  fullname: Nordez, Antoine
  organization: Laboratoire “Motricité, Interactions, Performance” (EA 4334), Université de Nantes, Nantes, France
– sequence: 2
  givenname: François
  surname: Hug
  fullname: Hug, François
  organization: Laboratoire “Motricité, Interactions, Performance” (EA 4334), Université de Nantes, Nantes, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763704$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20167669$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03409603$$DView record in HAL
BookMark eNqFkk9v1DAQxS1URLeFrwAWEqo4ZBnHiZ0cOFRVoUiLuMDZchxn1ysnDv6z0n57vGQLqBdOI8383huP9a7QxeQmjdAbAmtC6vLDXs6znXfHYJxdA6ElXZcA7TO0ytOyIAzIBVo1vIaC1w2_RFch7AFIVdXkBbosgTDOWLtC7msKymocdlp6rK0M0Sg8uj7ZFPCoZUhe9zgFM21xSLP2wU2ZWHgzyu1pYALeme3OHrHPFjELosPj4ixVNAcTj9jqg7Yv0fNB2qBfnes1-vHp_vvdQ7H59vnL3e2mUDVpYqGGWg6V4qruCCMge5AdZbSi-dJmqLqB9NB0rCwJ7yjRmkHdsZZx3bVctp2i1-j94ruTVsw-P9QfhZNGPNxuxKkHtIKWAT2QzN4s7Ozdz6RDFKMJSlsrJ-1SEJzStmpICZl8-4Tcu-SnfIighLaEA-MZen2GUjfq_s_2x0_PwLszIIOSdvByUib85UrOKIcqcx8XTnkXgteDUCbKaNwUvTRWEBCnMIh_wyB-h0GcwpD1_In-ccX_lL8ARcW-XQ
CODEN JAPHEV
CitedBy_id crossref_primary_10_1016_j_ultrasmedbio_2024_08_004
crossref_primary_10_1002_ca_23266
crossref_primary_10_1016_j_jelekin_2015_07_010
crossref_primary_10_1016_j_medengphy_2011_05_015
crossref_primary_10_1016_j_jbiomech_2018_11_043
crossref_primary_10_1371_journal_pone_0251939
crossref_primary_10_1519_JSC_0000000000004090
crossref_primary_10_1007_s00256_019_03300_2
crossref_primary_10_1115_1_4047651
crossref_primary_10_1111_joa_13455
crossref_primary_10_1007_s00256_012_1520_4
crossref_primary_10_3390_ijerph17124381
crossref_primary_10_1016_j_jbmt_2020_07_004
crossref_primary_10_1371_journal_pone_0091899
crossref_primary_10_2519_jospt_2020_8821
crossref_primary_10_1088_0967_3334_33_3_N19
crossref_primary_10_1371_journal_pone_0124311
crossref_primary_10_1007_s00421_016_3528_2
crossref_primary_10_1080_09205063_2019_1612725
crossref_primary_10_1111_sms_12111
crossref_primary_10_1007_s00421_016_3509_5
crossref_primary_10_1117_1_JBO_21_11_116006
crossref_primary_10_1016_j_clinbiomech_2021_105289
crossref_primary_10_3389_fphys_2023_1337170
crossref_primary_10_1111_bju_13688
crossref_primary_10_1123_jab_2017_0121
crossref_primary_10_3233_CH_231822
crossref_primary_10_1038_s41598_019_54100_6
crossref_primary_10_1016_j_apmr_2014_07_007
crossref_primary_10_1177_2058460115604009
crossref_primary_10_1002_gamm_202370012
crossref_primary_10_1111_apha_12272
crossref_primary_10_1115_1_4043443
crossref_primary_10_1371_journal_pone_0155187
crossref_primary_10_1519_JSC_0000000000004412
crossref_primary_10_1111_sms_12749
crossref_primary_10_3389_fspor_2024_1428301
crossref_primary_10_1016_j_jelekin_2022_102645
crossref_primary_10_1016_j_ultrasmedbio_2015_07_011
crossref_primary_10_1007_s00421_017_3558_4
crossref_primary_10_1016_j_jos_2019_06_017
crossref_primary_10_1016_j_ultras_2013_09_024
crossref_primary_10_3390_app11010452
crossref_primary_10_1016_j_jelekin_2020_102480
crossref_primary_10_3103_S1062873821060034
crossref_primary_10_1152_japplphysiol_00892_2017
crossref_primary_10_1249_MSS_0b013e3182850e17
crossref_primary_10_3390_life13112107
crossref_primary_10_1002_tsm2_68
crossref_primary_10_1007_s00161_020_00933_w
crossref_primary_10_1177_0284185114559765
crossref_primary_10_1249_JES_0000000000000015
crossref_primary_10_3390_s20247317
crossref_primary_10_1016_j_jmbbm_2020_103829
crossref_primary_10_1016_j_ultrasmedbio_2012_01_010
crossref_primary_10_1016_j_jbiomech_2020_110067
crossref_primary_10_1051_sm_2011158
crossref_primary_10_1109_TUFFC_2021_3118380
crossref_primary_10_1016_j_ultrasmedbio_2015_11_022
crossref_primary_10_1016_j_ultrasmedbio_2019_08_007
crossref_primary_10_1007_s00421_022_05104_0
crossref_primary_10_14814_phy2_14955
crossref_primary_10_1016_j_ultrasmedbio_2018_07_009
crossref_primary_10_3389_fneur_2019_00736
crossref_primary_10_1007_s00421_018_3798_y
crossref_primary_10_1007_s00421_018_3967_z
crossref_primary_10_1002_mus_25245
crossref_primary_10_3390_diagnostics12081791
crossref_primary_10_1589_jpts_25_3
crossref_primary_10_3390_s20247200
crossref_primary_10_1016_j_humov_2020_102751
crossref_primary_10_1016_j_jbiomech_2017_07_031
crossref_primary_10_1016_j_ultrasmedbio_2014_03_024
crossref_primary_10_2139_ssrn_3983845
crossref_primary_10_1371_journal_pone_0053159
crossref_primary_10_1016_j_device_2024_100288
crossref_primary_10_1186_s40349_015_0030_y
crossref_primary_10_1039_D0BM00540A
crossref_primary_10_1002_mp_14020
crossref_primary_10_1016_j_ultras_2016_06_007
crossref_primary_10_1589_jpts_34_777
crossref_primary_10_1155_2017_5387948
crossref_primary_10_1016_j_clinbiomech_2015_01_004
crossref_primary_10_3389_fcell_2021_657621
crossref_primary_10_1007_s13760_024_02547_4
crossref_primary_10_1088_1361_6560_ac0f9b
crossref_primary_10_1016_j_jbiomech_2024_111957
crossref_primary_10_1186_s12984_017_0318_y
crossref_primary_10_1177_0954411916656022
crossref_primary_10_1242_jeb_248118
crossref_primary_10_1016_j_ultrasmedbio_2018_07_016
crossref_primary_10_1038_s41598_023_47468_z
crossref_primary_10_1177_8756479319834255
crossref_primary_10_1186_s12891_020_03342_x
crossref_primary_10_1002_ca_23065
crossref_primary_10_1109_OJEMB_2023_3338090
crossref_primary_10_1002_jmri_23597
crossref_primary_10_1177_0954411915584963
crossref_primary_10_3390_app8071156
crossref_primary_10_1016_j_clinph_2022_05_006
crossref_primary_10_1024_0301_1526_a001039
crossref_primary_10_7600_jpfsm_5_313
crossref_primary_10_1016_j_jbiomech_2014_05_008
crossref_primary_10_1016_j_ultrasmedbio_2019_06_417
crossref_primary_10_1371_journal_pone_0067199
crossref_primary_10_1109_TUFFC_2016_2641299
crossref_primary_10_1016_j_ultrasmedbio_2015_04_001
crossref_primary_10_1002_nau_23275
crossref_primary_10_1016_j_morpho_2022_06_056
crossref_primary_10_1038_s41598_018_34719_7
crossref_primary_10_1007_s00421_023_05193_5
crossref_primary_10_1016_j_apmr_2018_03_024
crossref_primary_10_1016_j_actbio_2017_02_009
crossref_primary_10_1016_j_jbiomech_2019_07_019
crossref_primary_10_1007_s00256_017_2843_y
crossref_primary_10_1016_j_diii_2015_05_010
crossref_primary_10_1155_2017_9469548
crossref_primary_10_1007_s00421_023_05156_w
crossref_primary_10_1088_0967_3334_34_6_713
crossref_primary_10_1097_MD_0000000000025196
crossref_primary_10_1097_PHM_0000000000001173
crossref_primary_10_1016_j_jelekin_2019_02_003
crossref_primary_10_1007_s00330_018_5742_2
crossref_primary_10_1016_j_ultrasmedbio_2023_10_005
crossref_primary_10_1371_journal_pone_0139272
crossref_primary_10_1016_j_jbiomech_2015_12_039
crossref_primary_10_1016_j_jmbbm_2016_03_001
crossref_primary_10_3389_fphy_2024_1329296
crossref_primary_10_1016_j_jmbbm_2022_105543
crossref_primary_10_1016_j_zemedi_2024_03_001
crossref_primary_10_1007_s41315_018_0050_1
crossref_primary_10_1016_j_jbiomech_2013_05_016
crossref_primary_10_1016_j_medengphy_2019_04_005
crossref_primary_10_1038_s41598_023_45037_y
crossref_primary_10_1111_sms_12146
crossref_primary_10_1002_sono_12204
crossref_primary_10_1007_s00421_018_4032_7
crossref_primary_10_1016_j_jbiomech_2023_111838
crossref_primary_10_1007_s10439_014_1186_2
crossref_primary_10_1016_j_jbmt_2021_03_009
crossref_primary_10_1109_TNSRE_2018_2870155
crossref_primary_10_1371_journal_pone_0101769
crossref_primary_10_1016_j_clinimag_2016_05_008
crossref_primary_10_1016_j_jbiomech_2012_01_009
crossref_primary_10_1016_j_jbiomech_2014_06_031
crossref_primary_10_1016_j_kine_2014_11_029
crossref_primary_10_14814_phy2_15295
crossref_primary_10_14814_phy2_15691
crossref_primary_10_1016_j_clinbiomech_2017_08_009
crossref_primary_10_1080_02640414_2024_2318540
crossref_primary_10_1038_s41598_020_77330_5
crossref_primary_10_1371_journal_pone_0068216
crossref_primary_10_3389_fphys_2017_00708
crossref_primary_10_1002_ca_22903
crossref_primary_10_1007_s00421_014_3037_0
crossref_primary_10_1016_j_apergo_2024_104227
crossref_primary_10_1016_j_jbiomech_2016_08_008
crossref_primary_10_1007_s00421_025_05708_2
crossref_primary_10_1152_japplphysiol_01058_2013
crossref_primary_10_7863_jum_2012_31_8_1209
crossref_primary_10_1016_j_actbio_2015_09_019
crossref_primary_10_1016_j_cont_2024_101216
crossref_primary_10_1111_1556_4029_12349
crossref_primary_10_1123_jab_2020_0095
crossref_primary_10_3233_BMR_230333
crossref_primary_10_1111_cpf_12527
crossref_primary_10_1016_j_jse_2021_04_013
crossref_primary_10_1186_s12891_024_07241_3
crossref_primary_10_3389_fphys_2018_00022
crossref_primary_10_1016_j_jbiomech_2020_109687
crossref_primary_10_1371_journal_pone_0138523
crossref_primary_10_1111_joa_12978
crossref_primary_10_1016_j_ultrasmedbio_2018_08_011
crossref_primary_10_1016_j_clinimag_2017_05_017
crossref_primary_10_1016_j_jbiomech_2012_02_020
crossref_primary_10_1016_j_jelekin_2010_08_009
crossref_primary_10_3390_sports12010026
crossref_primary_10_1109_TUFFC_2019_2911036
crossref_primary_10_1016_j_jelekin_2019_05_004
crossref_primary_10_1109_ACCESS_2019_2909542
crossref_primary_10_1002_mus_24104
crossref_primary_10_1152_japplphysiol_00106_2020
crossref_primary_10_1016_j_jelekin_2020_102505
crossref_primary_10_2139_ssrn_4101072
crossref_primary_10_1152_japplphysiol_00125_2022
crossref_primary_10_1111_sms_13973
crossref_primary_10_1016_j_jbmt_2021_05_002
crossref_primary_10_1080_14763141_2023_2195827
crossref_primary_10_1123_japa_2021_0384
crossref_primary_10_1299_transjsme_24_00175
Cites_doi 10.1109/TUFFC.2004.1295425
10.1016/S0268-0033(03)00070-6
10.1121/1.1579008
10.1016/S0021-9290(03)00005-8
10.1016/j.clinbiomech.2006.09.005
10.1002/nbm.887
10.1016/j.jelekin.2004.09.003
10.1123/jab.20.4.367
10.1016/j.clinbiomech.2008.08.003
10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
10.1016/j.ultrasmedbio.2008.02.002
10.1121/1.1815075
10.1016/j.jelekin.2006.08.005
10.2165/00007256-200030010-00001
10.1152/japplphysiol.01070.2003
10.1016/j.jbiomech.2004.07.013
10.1109/TMI.2008.925077
10.1016/j.jbiomech.2008.03.033
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Physiological Society May 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Physiological Society May 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
1XC
BXJBU
IHQJB
VOOES
DOI 10.1152/japplphysiol.01323.2009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1394
ExternalDocumentID oai_HAL_hal_03409603v1
2040191301
20167669
22763704
10_1152_japplphysiol_01323_2009
Genre Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
ADXHL
AEILP
AENEX
AETEA
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
1XC
BXJBU
IHQJB
UMC
VOOES
ID FETCH-LOGICAL-c518t-cf5af4c7c5b1610ad0ab363433238f4bf1d08b62217b31ee605b6967eb97a9bc3
ISSN 8750-7587
1522-1601
IngestDate Fri May 09 12:25:57 EDT 2025
Thu Jul 10 22:09:39 EDT 2025
Mon Jun 30 08:50:50 EDT 2025
Mon Jul 21 05:59:45 EDT 2025
Mon Jul 21 09:13:02 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 01:13:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Elastic modulus
Shear modulus
biceps brachii
Electrophysiology
Elasticity
elastography
Striated muscle
muscle elasticity
Biceps muscle
Vertebrata
Mammalia
Imaging
Electromyography
Ultrasound
electromyography
ultrasound
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-cf5af4c7c5b1610ad0ab363433238f4bf1d08b62217b31ee605b6967eb97a9bc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6432-558X
0000-0002-7276-4793
OpenAccessLink https://hal.science/hal-03409603
PMID 20167669
PQID 313917067
PQPubID 40905
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_03409603v1
proquest_miscellaneous_733948120
proquest_journals_313917067
pubmed_primary_20167669
pascalfrancis_primary_22763704
crossref_citationtrail_10_1152_japplphysiol_01323_2009
crossref_primary_10_1152_japplphysiol_01323_2009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B11
B12
B13
B14
B15
B16
B18
B19
Lieber RL (B17) 2002
B1
B2
B3
B4
B5
B6
B7
B8
B9
Fung YC (B10) 1983
References_xml – ident: B1
  doi: 10.1109/TUFFC.2004.1295425
– ident: B13
  doi: 10.1016/S0268-0033(03)00070-6
– ident: B11
  doi: 10.1121/1.1579008
– ident: B16
  doi: 10.1016/S0021-9290(03)00005-8
– ident: B7
  doi: 10.1016/j.clinbiomech.2006.09.005
– ident: B20
  doi: 10.1002/nbm.887
– ident: B14
  doi: 10.1016/j.jelekin.2004.09.003
– ident: B2
  doi: 10.1123/jab.20.4.367
– ident: B5
  doi: 10.1016/j.clinbiomech.2008.08.003
– ident: B6
  doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
– volume-title: Skeletal Muscle Structure, Function and Plasticity
  year: 2002
  ident: B17
– ident: B19
  doi: 10.1016/j.ultrasmedbio.2008.02.002
– ident: B3
  doi: 10.1121/1.1815075
– ident: B9
  doi: 10.1016/j.jelekin.2006.08.005
– ident: B15
  doi: 10.2165/00007256-200030010-00001
– volume-title: Mechanical Properties of Living Tissues
  year: 1983
  ident: B10
– ident: B8
  doi: 10.1152/japplphysiol.01070.2003
– ident: B12
  doi: 10.1016/j.jbiomech.2004.07.013
– ident: B4
  doi: 10.1109/TMI.2008.925077
– ident: B18
  doi: 10.1016/j.jbiomech.2008.03.033
SSID ssj0014451
Score 2.4344854
Snippet This pilot study was designed to determine whether the shear elastic modulus measured using supersonic shear imaging can be used to accurately estimate muscle...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1389
SubjectTerms Adult
Biological and medical sciences
Coefficient of variation
Correlation coefficient
Elastic Modulus
Elasticity Imaging Techniques
Electromyography
Ergometry - instrumentation
Exercise
Female
Fundamental and applied biological sciences. Psychology
Humanities and Social Sciences
Humans
Isometric Contraction
Life Sciences
Linear Models
Male
Muscle Strength Dynamometer
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiology
Muscular system
Physiology
Pilot Projects
Reproducibility of Results
Torque
Upper Extremity
Young Adult
Title Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level
URI https://www.ncbi.nlm.nih.gov/pubmed/20167669
https://www.proquest.com/docview/313917067
https://www.proquest.com/docview/733948120
https://hal.science/hal-03409603
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WCiKIaOslVssg4suSOsnk-riIsqgtCi30LWQmE13YTRaTFNof4u_1nJlJNqsttb6EZXYy7Oz55sy5H0LepLzIPbTcy7QsXLihhCtYkbtRCbctUyDDmmqfx9H8NPh0Fp5NJr9GUUtdKw7l5ZV5Jf9DVRgDumKW7C0oOywKA_AZ6AtPoDA8_4nGR10DI9MGu1JPFcjBWH11VRfdsmumK2P9K6adNgc03VoL1zDDzF-sTIOiRTPFmsXLC5PXAi-AOLoyK2PWg20ucW5j6_8WZHMryGojiSnphNWf0iQcmRmOscbnpS1XUI-c-fPuey9Aa6d9XC-2TBHGi25NEX20JnNBATE3qLIcFbRdL7LTepbLkhG2whEDRb_p6DIG-TS4mtGHvm4wADu0uztErxHX6Zybu6335_9x5Q2BiFoFCv1svFCmF8pMXuhdH9QP5J-fv228U1jUzdiNzXZt3CAs9O6aX7Ql9dz5gTG3D9Z5A8ewNP1TrldwtKBz8og8tISlMwO3x2Siql2yN6vytl5d0Lf060DmXXLvyIZm7JHagJFqcFELRmrBSHswUg1GugGjnW_BSBcNNWCkFoy0rakBI-3BSDUYn5DTjx9O3s9d283DlaGXtK4sw7wMZCxDAVoGywuWCx5xrJ_HkzIQpVewREQ-6MiCe0qBni2iNIqVSOM8FZI_JTtVXannhDKeMpkkkufKD1TpCcWFLIo0LWMQf5V0SNT_25m0pe6x48oyu4HeDmHDi2tT7eXmV14DOYfZWK19PvuS4RjjARoI-LnnkIMtag_TfR_u95gFDtnvyZ9ZBtNkHNCP1a1ih9DhW-D-6NLLK1V3TRZzjuWWfOaQZwY0m6UxwSiK0he339M-ub853i_JTvuzU69A9m7FgT4IvwEae95q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+shear+elastic+modulus+measured+using+supersonic+shear+imaging+is+highly+related+to+muscle+activity+level&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Nordez%2C+Antoine&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2010-05-01&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=5&rft.spage=1389&rft.epage=1394&rft_id=info:doi/10.1152%2Fjapplphysiol.01323.2009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_01323_2009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon