BioBERT: a pre-trained biomedical language representation model for biomedical text mining
Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep lear...
Saved in:
Published in | Bioinformatics Vol. 36; no. 4; pp. 1234 - 1240 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora.
Results
We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts.
Availability and implementation
We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert. |
---|---|
AbstractList | Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora.MOTIVATIONBiomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora.We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts.RESULTSWe introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts.We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.AVAILABILITY AND IMPLEMENTATIONWe make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert. Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert. Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. Results We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. Availability and implementation We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert. |
Author | Lee, Jinhyuk Kim, Sungdong Kim, Donghyeon Kim, Sunkyu So, Chan Ho Yoon, Wonjin Kang, Jaewoo |
AuthorAffiliation | 2 Clova AI Research, Naver Corp , Seong-Nam 13561, Korea 1 Department of Computer Science and Engineering, Korea University , Seoul 02841, Korea 3 Interdisciplinary Graduate Program in Bioinformatics, Korea University , Seoul 02841, Korea |
AuthorAffiliation_xml | – name: 3 Interdisciplinary Graduate Program in Bioinformatics, Korea University , Seoul 02841, Korea – name: 2 Clova AI Research, Naver Corp , Seong-Nam 13561, Korea – name: 1 Department of Computer Science and Engineering, Korea University , Seoul 02841, Korea |
Author_xml | – sequence: 1 givenname: Jinhyuk orcidid: 0000-0003-4972-239X surname: Lee fullname: Lee, Jinhyuk organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea – sequence: 2 givenname: Wonjin orcidid: 0000-0002-6435-548X surname: Yoon fullname: Yoon, Wonjin organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea – sequence: 3 givenname: Sungdong orcidid: 0000-0002-0240-6210 surname: Kim fullname: Kim, Sungdong organization: Clova AI Research, Naver Corp, Seong-Nam 13561, Korea – sequence: 4 givenname: Donghyeon orcidid: 0000-0002-8224-8354 surname: Kim fullname: Kim, Donghyeon organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea – sequence: 5 givenname: Sunkyu orcidid: 0000-0002-0240-6210 surname: Kim fullname: Kim, Sunkyu organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea – sequence: 6 givenname: Chan Ho orcidid: 0000-0001-7633-1074 surname: So fullname: So, Chan Ho organization: Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul 02841, Korea – sequence: 7 givenname: Jaewoo orcidid: 0000-0001-6798-9106 surname: Kang fullname: Kang, Jaewoo email: kangj@korea.ac.kr organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31501885$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctKHjEUDmLx2kewzLKb0ZNkJhcLBRV7AUEQ3XQTkkzmN2Um-ZvMlLZPb2S0qBtdhATOd8t3dtFmiMEhdIDhEIOkR8ZHH_qYRj15m4_M9I8JsoF2cMOgJtDKzfKmjNeNALqNdnP-CdDipmm20DbFLWAh2h3049TH0_Or6-NKV-vk6ilpH1xXFfnRdd7qoRp0WM165arkCiK7MBXLGKoxdm6oSoSn4Mn9marRBx9W--hdr4fs3j_ce-jmy_n12bf64vLr97OTi9q2WEy1ddL2XAsDBhimsuVWYtF0WnJqnTDM9lgSQ6RhLZHAjC3HQdNTTnjHBN1Dnxfd9WxKDFsCJj2odfKjTn9V1F49nwR_q1bxt-IcKBesCHx8EEjx1-zypEafrRvKx12csyJECABOhCzQD0-9_ps8FloAnxaATTHn5Hpl_dLXfbODwqDu16eer08t6yvs9gX70eA1Hiy8OK_fSLkDklq5-A |
CitedBy_id | crossref_primary_10_1145_3546580 crossref_primary_10_3390_app12010154 crossref_primary_10_1016_j_ijmedinf_2022_104805 crossref_primary_10_3390_electronics13234775 crossref_primary_10_1186_s12859_021_04421_z crossref_primary_10_3390_bioengineering11030263 crossref_primary_10_3390_computation13020030 crossref_primary_10_1186_s12911_020_01131_z crossref_primary_10_1038_s41598_025_90450_0 crossref_primary_10_3390_electronics14020328 crossref_primary_10_1007_s00521_022_07228_y crossref_primary_10_1093_database_baac056 crossref_primary_10_1093_bib_bbad427 crossref_primary_10_1093_database_baac058 crossref_primary_10_1177_03331024241251488 crossref_primary_10_1016_j_neucom_2025_129752 crossref_primary_10_1371_journal_pone_0257361 crossref_primary_10_1093_jamia_ocae045 crossref_primary_10_2174_1574893618666230707123817 crossref_primary_10_1016_j_ijmedinf_2020_104234 crossref_primary_10_1186_s12864_024_10978_9 crossref_primary_10_1016_j_compbiomed_2022_105933 crossref_primary_10_1016_j_eswa_2022_117166 crossref_primary_10_1093_database_baac043 crossref_primary_10_1186_s13326_021_00247_z crossref_primary_10_1093_bioinformatics_btaa1087 crossref_primary_10_1093_database_baac047 crossref_primary_10_1093_jamia_ocae054 crossref_primary_10_1007_s42979_022_01295_7 crossref_primary_10_1109_ACCESS_2021_3115617 crossref_primary_10_2196_49724 crossref_primary_10_3174_ajnr_A7241 crossref_primary_10_1016_j_heliyon_2024_e32279 crossref_primary_10_2196_60503 crossref_primary_10_1038_s41597_022_01533_w crossref_primary_10_1155_2021_7181815 crossref_primary_10_1007_s00521_024_09454_y crossref_primary_10_1016_j_jbi_2021_103888 crossref_primary_10_3389_fdata_2022_965619 crossref_primary_10_1016_j_artmed_2023_102535 crossref_primary_10_1186_s13326_022_00262_8 crossref_primary_10_1097_GCO_0000000000000951 crossref_primary_10_2196_59505 crossref_primary_10_1016_j_jbi_2021_103880 crossref_primary_10_1093_bib_bbad451 crossref_primary_10_1016_j_heliyon_2024_e26831 crossref_primary_10_5715_jnlp_29_294 crossref_primary_10_1007_s13042_024_02496_7 crossref_primary_10_1016_j_jclinepi_2022_04_027 crossref_primary_10_1093_jamia_ocae061 crossref_primary_10_1177_00236772241237608 crossref_primary_10_2139_ssrn_4595975 crossref_primary_10_2196_23101 crossref_primary_10_3390_app122110987 crossref_primary_10_3103_S0027134924702291 crossref_primary_10_2215_CJN_0000000000000081 crossref_primary_10_1093_jamia_ocae065 crossref_primary_10_1093_database_baac070 crossref_primary_10_1093_jamia_ocae069 crossref_primary_10_3390_fi15020079 crossref_primary_10_1093_database_baac074 crossref_primary_10_1002_wics_1549 crossref_primary_10_1016_j_phrs_2022_106185 crossref_primary_10_1016_j_jbi_2021_103893 crossref_primary_10_1145_3617833 crossref_primary_10_1016_j_jbi_2021_103898 crossref_primary_10_1007_s11042_023_15080_y crossref_primary_10_1108_EL_02_2023_0050 crossref_primary_10_1109_TASLPRO_2025_3536177 crossref_primary_10_1186_s12859_022_04810_y crossref_primary_10_1093_database_baac067 crossref_primary_10_1093_jamia_ocae071 crossref_primary_10_1093_database_baac066 crossref_primary_10_1016_j_engappai_2025_110096 crossref_primary_10_1093_jamia_ocae074 crossref_primary_10_1371_journal_pdig_0000086 crossref_primary_10_1007_s11596_024_2960_5 crossref_primary_10_1093_jamia_ocae078 crossref_primary_10_1186_s12859_023_05520_9 crossref_primary_10_1287_isre_2022_1111 crossref_primary_10_1016_j_jbi_2021_103865 crossref_primary_10_2196_37770 crossref_primary_10_3390_informatics11030057 crossref_primary_10_3390_app13085163 crossref_primary_10_1016_j_knosys_2022_109460 crossref_primary_10_1016_j_jbi_2020_103581 crossref_primary_10_1093_bioinformatics_btaa674 crossref_primary_10_1111_bcp_14784 crossref_primary_10_1093_bioinformatics_btaa675 crossref_primary_10_3389_frai_2024_1460065 crossref_primary_10_1016_j_neucom_2024_129035 crossref_primary_10_1109_TLT_2023_3240715 crossref_primary_10_1186_s12859_023_05172_9 crossref_primary_10_1016_j_jacr_2024_01_012 crossref_primary_10_1016_j_jbi_2021_103872 crossref_primary_10_1109_JSTARS_2024_3383854 crossref_primary_10_1093_bioinformatics_btad716 crossref_primary_10_1016_j_engappai_2023_106212 crossref_primary_10_1016_j_jbi_2020_103578 crossref_primary_10_1016_j_jbi_2020_103579 crossref_primary_10_2174_1386207326666230508113036 crossref_primary_10_1109_JBHI_2024_3358169 crossref_primary_10_3390_app13085178 crossref_primary_10_1109_RBME_2024_3496744 crossref_primary_10_1007_s40593_023_00373_y crossref_primary_10_1093_hr_uhae082 crossref_primary_10_1007_s00371_024_03579_w crossref_primary_10_1155_2022_3524090 crossref_primary_10_3934_mbe_2020200 crossref_primary_10_1186_s44247_023_00029_w crossref_primary_10_1093_bib_bbaa344 crossref_primary_10_34133_hds_0078 crossref_primary_10_3390_s23094250 crossref_primary_10_1093_jamia_ocae015 crossref_primary_10_1186_s12911_024_02825_4 crossref_primary_10_1016_j_addr_2022_114172 crossref_primary_10_14778_3421424_3421431 crossref_primary_10_1007_s40264_023_01323_2 crossref_primary_10_1007_s10278_022_00692_x crossref_primary_10_1002_acm2_13597 crossref_primary_10_2139_ssrn_4088406 crossref_primary_10_3390_app12199781 crossref_primary_10_1007_s00799_021_00305_y crossref_primary_10_1016_j_neucom_2020_09_078 crossref_primary_10_1016_j_media_2022_102630 crossref_primary_10_1038_s41467_021_22328_4 crossref_primary_10_3389_frai_2023_1184851 crossref_primary_10_1007_s11192_022_04602_4 crossref_primary_10_1109_TMI_2024_3472672 crossref_primary_10_1016_j_artmed_2023_102586 crossref_primary_10_1016_j_artmed_2023_102587 crossref_primary_10_1186_s12859_021_04247_9 crossref_primary_10_7717_peerj_13061 crossref_primary_10_1515_jisys_2023_0021 crossref_primary_10_1007_s10916_024_02049_z crossref_primary_10_1093_jamia_ocad190 crossref_primary_10_1109_TMI_2023_3322868 crossref_primary_10_22201_fm_30617243e_2024_2_47 crossref_primary_10_3390_knowledge4030023 crossref_primary_10_1016_j_asoc_2024_111531 crossref_primary_10_1016_j_simpat_2023_102754 crossref_primary_10_1371_journal_pbio_3001470 crossref_primary_10_1016_j_eswa_2022_119369 crossref_primary_10_1186_s12859_022_04876_8 crossref_primary_10_31083_j_fbl2912404 crossref_primary_10_1093_jamia_ocae037 crossref_primary_10_1016_j_artmed_2022_102298 crossref_primary_10_3390_diagnostics12081882 crossref_primary_10_1007_s11042_023_14790_7 crossref_primary_10_1016_j_compbiomed_2024_109233 crossref_primary_10_1016_j_jbi_2021_103820 crossref_primary_10_1038_s41598_024_76369_y crossref_primary_10_4018_IJSSCI_316972 crossref_primary_10_1016_j_jbi_2023_104474 crossref_primary_10_1016_j_jbi_2022_104192 crossref_primary_10_1038_s41598_025_91809_z crossref_primary_10_1155_2021_6641832 crossref_primary_10_1093_nar_gkac310 crossref_primary_10_1145_3686807 crossref_primary_10_3390_bdcc8110153 crossref_primary_10_3390_make7010003 crossref_primary_10_3390_make7010006 crossref_primary_10_1016_j_jbi_2024_104748 crossref_primary_10_1016_j_knosys_2024_111916 crossref_primary_10_1186_s13643_023_02351_w crossref_primary_10_1016_j_patrec_2022_03_021 crossref_primary_10_1016_j_jbi_2023_104486 crossref_primary_10_1016_j_knosys_2021_106962 crossref_primary_10_1093_bioinformatics_btac422 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1109_JBHI_2021_3062322 crossref_primary_10_1111_exsy_13388 crossref_primary_10_1016_j_patter_2021_100307 crossref_primary_10_1371_journal_pone_0258623 crossref_primary_10_3390_app14188283 crossref_primary_10_1007_s13369_024_09508_2 crossref_primary_10_1371_journal_pdig_0000468 crossref_primary_10_3389_fonc_2024_1474155 crossref_primary_10_1016_j_jbi_2024_104739 crossref_primary_10_1109_ACCESS_2021_3124163 crossref_primary_10_1016_j_jbi_2024_104738 crossref_primary_10_1186_s12859_022_05051_9 crossref_primary_10_1016_j_acra_2021_03_036 crossref_primary_10_1166_jbn_2024_3925 crossref_primary_10_1016_j_ensm_2024_103555 crossref_primary_10_1016_j_jbi_2024_104734 crossref_primary_10_1007_s10495_023_01889_3 crossref_primary_10_1016_j_jbi_2024_104731 crossref_primary_10_1038_s43856_024_00631_7 crossref_primary_10_1016_j_inffus_2020_10_009 crossref_primary_10_1016_j_compbiomed_2022_106415 crossref_primary_10_1016_j_procs_2024_10_344 crossref_primary_10_1093_gigascience_giac077 crossref_primary_10_1007_s12032_023_02184_6 crossref_primary_10_1007_s00330_021_08132_0 crossref_primary_10_1007_s43681_023_00329_x crossref_primary_10_1109_ACCESS_2024_3472500 crossref_primary_10_1093_jamia_ocac226 crossref_primary_10_1093_jamia_ocac225 crossref_primary_10_1016_j_procs_2023_01_027 crossref_primary_10_1038_s41597_024_03835_7 crossref_primary_10_1093_bioinformatics_btad771 crossref_primary_10_1016_j_artmed_2024_102845 crossref_primary_10_1093_bioinformatics_btab593 crossref_primary_10_1016_j_artmed_2024_102848 crossref_primary_10_1016_j_artmed_2024_102847 crossref_primary_10_1371_journal_pone_0258639 crossref_primary_10_3390_s21113854 crossref_primary_10_2197_ipsjjip_28_623 crossref_primary_10_5194_soil_9_155_2023 crossref_primary_10_2196_44892 crossref_primary_10_2196_39077 crossref_primary_10_3389_fonc_2023_1265024 crossref_primary_10_1016_j_eswa_2023_120210 crossref_primary_10_1016_j_jbi_2024_104719 crossref_primary_10_1016_j_jbi_2024_104717 crossref_primary_10_1093_jamia_ocac216 crossref_primary_10_1200_CCI_23_00048 crossref_primary_10_1038_s41746_023_00989_3 crossref_primary_10_2147_IDR_S292743 crossref_primary_10_1109_ACCESS_2024_3460976 crossref_primary_10_1016_j_asoc_2020_106779 crossref_primary_10_1016_j_jbi_2023_104433 crossref_primary_10_1016_j_jbi_2023_104431 crossref_primary_10_1145_3597299 crossref_primary_10_1093_bioinformatics_btad301 crossref_primary_10_1016_j_engappai_2024_109163 crossref_primary_10_1016_j_compchemeng_2024_108895 crossref_primary_10_1016_j_eswa_2023_121598 crossref_primary_10_3389_fgene_2023_1161047 crossref_primary_10_1007_s11280_022_01084_5 crossref_primary_10_3390_e23030338 crossref_primary_10_1093_bioinformatics_btae648 crossref_primary_10_1016_j_jbi_2022_104147 crossref_primary_10_1016_j_bbadis_2024_167263 crossref_primary_10_1093_jamia_ocad133 crossref_primary_10_1016_j_artmed_2024_102823 crossref_primary_10_1016_j_jbi_2023_104441 crossref_primary_10_1016_j_jbi_2023_104442 crossref_primary_10_1021_acs_analchem_4c01793 crossref_primary_10_1093_bioinformatics_btab133 crossref_primary_10_1093_bioinformatics_btad310 crossref_primary_10_1007_s10579_023_09669_w crossref_primary_10_1371_journal_pcbi_1012745 crossref_primary_10_1021_acs_jproteome_3c00367 crossref_primary_10_3390_app13158623 crossref_primary_10_7717_peerj_cs_835 crossref_primary_10_1371_journal_pdig_0000022 crossref_primary_10_1016_j_heliyon_2024_e30053 crossref_primary_10_1016_j_media_2025_103551 crossref_primary_10_3389_fmed_2022_906554 crossref_primary_10_1016_j_jbi_2023_104459 crossref_primary_10_1016_j_icte_2024_05_015 crossref_primary_10_1098_rsos_240720 crossref_primary_10_2139_ssrn_4638347 crossref_primary_10_1016_j_jbi_2023_104456 crossref_primary_10_1186_s12880_022_00800_x crossref_primary_10_3389_fpubh_2021_695139 crossref_primary_10_1021_acs_jpcb_3c06526 crossref_primary_10_1093_nar_gkac326 crossref_primary_10_1016_j_artmed_2024_102813 crossref_primary_10_1016_j_ijmedinf_2022_104864 crossref_primary_10_3233_ADR_230139 crossref_primary_10_1093_bfgp_elaa030 crossref_primary_10_2139_ssrn_4020056 crossref_primary_10_1093_bioinformatics_btae655 crossref_primary_10_1002_adhm_202300150 crossref_primary_10_1186_s12911_022_01975_7 crossref_primary_10_18043_001c_120570 crossref_primary_10_3390_aerospace10030279 crossref_primary_10_1016_j_knosys_2020_106649 crossref_primary_10_1007_s10479_022_04527_4 crossref_primary_10_1093_nargab_lqab062 crossref_primary_10_1177_20552076211057662 crossref_primary_10_1016_j_jbi_2024_104769 crossref_primary_10_1109_TASLP_2021_3069295 crossref_primary_10_2174_1574893618666221025105927 crossref_primary_10_1016_j_jbi_2022_104161 crossref_primary_10_1093_bioinformatics_btac001 crossref_primary_10_1093_jamia_ocaa080 crossref_primary_10_1016_j_jbi_2024_104761 crossref_primary_10_2478_popets_2021_0019 crossref_primary_10_1093_jamiaopen_ooab081 crossref_primary_10_1109_ACCESS_2024_3367715 crossref_primary_10_1145_3645089 crossref_primary_10_1021_acssynbio_1c00188 crossref_primary_10_1109_ACCESS_2022_3148279 crossref_primary_10_1038_s41467_024_48446_3 crossref_primary_10_1186_s12911_022_02003_4 crossref_primary_10_1109_ACCESS_2024_3400007 crossref_primary_10_1186_s12911_023_02409_8 crossref_primary_10_3389_fpubh_2020_515347 crossref_primary_10_3389_fpubh_2022_881234 crossref_primary_10_1016_j_sapharm_2024_09_004 crossref_primary_10_1038_s41746_024_01126_4 crossref_primary_10_1016_j_jbi_2022_104114 crossref_primary_10_1016_j_neucom_2022_01_019 crossref_primary_10_1109_TPDS_2023_3243261 crossref_primary_10_1111_eje_13073 crossref_primary_10_3390_app112210536 crossref_primary_10_1007_s42979_024_02947_6 crossref_primary_10_1093_bioinformatics_btab042 crossref_primary_10_1093_bioinformatics_btae552 crossref_primary_10_1098_rsos_221585 crossref_primary_10_2196_31510 crossref_primary_10_3389_fnbot_2022_773329 crossref_primary_10_1186_s12859_022_04653_7 crossref_primary_10_3390_informatics10040089 crossref_primary_10_1016_S1470_2045_20_30615_X crossref_primary_10_1515_geo_2022_0677 crossref_primary_10_1093_bioinformatics_btae560 crossref_primary_10_1148_ryai_210092 crossref_primary_10_2196_38150 crossref_primary_10_1093_jamia_ocaa106 crossref_primary_10_2196_29667 crossref_primary_10_1016_j_jbi_2023_104405 crossref_primary_10_1016_j_eswa_2024_123960 crossref_primary_10_3390_biom11101430 crossref_primary_10_1109_TCBB_2024_3376566 crossref_primary_10_1186_s13326_024_00318_x crossref_primary_10_1016_j_jbi_2022_104106 crossref_primary_10_1016_j_jbi_2023_104403 crossref_primary_10_1088_1361_6579_ada869 crossref_primary_10_1109_TCBB_2021_3079339 crossref_primary_10_1016_j_is_2023_102291 crossref_primary_10_7717_peerj_cs_913 crossref_primary_10_1186_s12911_021_01724_2 crossref_primary_10_1016_j_ins_2024_120134 crossref_primary_10_1080_17460441_2024_2430955 crossref_primary_10_1038_s41598_024_58334_x crossref_primary_10_1016_j_jbi_2022_104137 crossref_primary_10_1016_j_jbi_2023_104416 crossref_primary_10_1016_j_jbi_2022_104135 crossref_primary_10_1016_j_jbi_2023_104418 crossref_primary_10_1186_s12859_024_05851_1 crossref_primary_10_3390_info16020076 crossref_primary_10_1021_acs_jcim_4c01093 crossref_primary_10_1007_s12539_024_00654_7 crossref_primary_10_1016_j_ssci_2023_106252 crossref_primary_10_1093_bioinformatics_btac397 crossref_primary_10_1016_j_eswa_2024_123519 crossref_primary_10_1016_j_jbi_2022_104134 crossref_primary_10_1038_s41598_022_21604_7 crossref_primary_10_1007_s40747_023_01075_7 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1109_ACCESS_2023_3237025 crossref_primary_10_1109_TASLP_2023_3331149 crossref_primary_10_3934_mbe_2022478 crossref_primary_10_1186_s12859_021_04397_w crossref_primary_10_1007_s41666_024_00170_9 crossref_primary_10_3390_genes11111264 crossref_primary_10_1016_j_jclinepi_2023_08_004 crossref_primary_10_1109_TCBB_2022_3233856 crossref_primary_10_3390_digital2040030 crossref_primary_10_1186_s12911_022_01753_5 crossref_primary_10_1136_bmj_m3658 crossref_primary_10_1093_bioinformatics_btae589 crossref_primary_10_1007_s13042_024_02318_w crossref_primary_10_1016_j_jbi_2022_104120 crossref_primary_10_1093_bioinformatics_btab083 crossref_primary_10_2196_42630 crossref_primary_10_32604_cmc_2022_025711 crossref_primary_10_1016_j_inffus_2022_08_024 crossref_primary_10_1016_j_patter_2021_100290 crossref_primary_10_1177_03611981221125744 crossref_primary_10_3389_fdgth_2023_1186516 crossref_primary_10_1017_S174849952100004X crossref_primary_10_1007_s42979_022_01563_6 crossref_primary_10_1093_jamia_ocaa155 crossref_primary_10_1080_10810730_2024_2426810 crossref_primary_10_1016_j_jksuci_2022_08_016 crossref_primary_10_3934_mbe_2023391 crossref_primary_10_1016_j_compind_2020_103347 crossref_primary_10_1016_j_patter_2023_100887 crossref_primary_10_1039_D3TA02780E crossref_primary_10_3390_su14052802 crossref_primary_10_1093_cvr_cvac018 crossref_primary_10_1186_s13643_021_01763_w crossref_primary_10_1080_07853890_2021_2025418 crossref_primary_10_1109_TCBB_2022_3171388 crossref_primary_10_1109_TCBB_2022_3173562 crossref_primary_10_1016_j_infsof_2021_106542 crossref_primary_10_1186_s13326_021_00251_3 crossref_primary_10_1016_j_jbi_2024_104703 crossref_primary_10_1016_j_eswa_2024_125701 crossref_primary_10_2196_52482 crossref_primary_10_3390_biomedinformatics3030034 crossref_primary_10_1016_j_iswa_2022_200091 crossref_primary_10_1016_j_compbiomed_2021_104821 crossref_primary_10_1186_s12911_024_02557_5 crossref_primary_10_1016_j_immuno_2024_100040 crossref_primary_10_3390_ijerph19105959 crossref_primary_10_1016_j_engappai_2024_108339 crossref_primary_10_1002_wsbm_1548 crossref_primary_10_1007_s10462_023_10484_6 crossref_primary_10_1007_s12145_023_01112_6 crossref_primary_10_2196_44876 crossref_primary_10_1155_2021_5589829 crossref_primary_10_3389_fdgth_2022_1065581 crossref_primary_10_1093_jamia_ocaa136 crossref_primary_10_1109_ACCESS_2022_3228802 crossref_primary_10_61186_jsdp_20_3_103 crossref_primary_10_2196_54653 crossref_primary_10_2196_56831 crossref_primary_10_1016_j_eswa_2022_118841 crossref_primary_10_1016_j_imu_2023_101326 crossref_primary_10_1038_s41598_024_67146_y crossref_primary_10_1111_lnc3_12402 crossref_primary_10_3390_electronics14050967 crossref_primary_10_1093_jamia_ocaa128 crossref_primary_10_1007_s13755_023_00253_8 crossref_primary_10_1093_bioadv_vbaf043 crossref_primary_10_1016_j_eswa_2023_121054 crossref_primary_10_1007_s42979_023_02392_x crossref_primary_10_1016_j_commatsci_2023_112441 crossref_primary_10_1007_s12530_024_09573_w crossref_primary_10_1145_3474831 crossref_primary_10_1016_j_artmed_2024_102889 crossref_primary_10_1002_hcs2_61 crossref_primary_10_1007_s11280_023_01144_4 crossref_primary_10_1186_s12911_023_02369_z crossref_primary_10_2196_41342 crossref_primary_10_1109_JBHI_2024_3438885 crossref_primary_10_1142_S0218001424500095 crossref_primary_10_1371_journal_pdig_0000568 crossref_primary_10_1155_2022_4414207 crossref_primary_10_1098_rspb_2021_2721 crossref_primary_10_1109_TCBB_2024_3429234 crossref_primary_10_1002_2211_5463_70003 crossref_primary_10_1038_s43856_021_00008_0 crossref_primary_10_1007_s40264_023_01322_3 crossref_primary_10_1016_j_dss_2025_114411 crossref_primary_10_1038_s41598_024_51615_5 crossref_primary_10_1109_TKDE_2024_3377229 crossref_primary_10_1109_JBHI_2023_3244044 crossref_primary_10_1007_s10489_023_04944_3 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_1093_bioinformatics_btae163 crossref_primary_10_1186_s13326_021_00238_0 crossref_primary_10_1093_bioadv_vbae133 crossref_primary_10_1186_s12911_022_01829_2 crossref_primary_10_1016_j_eswa_2024_123572 crossref_primary_10_1016_j_imu_2023_101381 crossref_primary_10_1021_acssynbio_1c00611 crossref_primary_10_1016_j_array_2024_100355 crossref_primary_10_1038_s41597_023_02617_x crossref_primary_10_3389_frma_2021_674205 crossref_primary_10_1007_s00330_021_08412_9 crossref_primary_10_1007_s10506_025_09449_7 crossref_primary_10_1016_j_imu_2020_100456 crossref_primary_10_1007_s00521_022_07366_3 crossref_primary_10_1186_s12859_021_04260_y crossref_primary_10_1007_s41666_023_00146_1 crossref_primary_10_1109_ACCESS_2024_3414184 crossref_primary_10_1089_cmb_2023_0080 crossref_primary_10_1109_ACCESS_2022_3180830 crossref_primary_10_1016_j_techfore_2022_122160 crossref_primary_10_1109_ACCESS_2024_3360705 crossref_primary_10_1093_jamiaopen_ooab104 crossref_primary_10_1177_10732748231197915 crossref_primary_10_5114_bta_200803 crossref_primary_10_3390_biomedicines12071535 crossref_primary_10_1007_s00398_024_00664_z crossref_primary_10_1016_j_neucom_2023_127079 crossref_primary_10_1093_bioinformatics_btae185 crossref_primary_10_3390_nu15020270 crossref_primary_10_1038_s41598_023_48564_w crossref_primary_10_1109_TKDE_2021_3090253 crossref_primary_10_1021_acs_chemmater_4c02726 crossref_primary_10_3390_electronics13152892 crossref_primary_10_1155_2021_8893270 crossref_primary_10_1186_s12859_019_3000_5 crossref_primary_10_32604_cmes_2024_052256 crossref_primary_10_1016_j_procs_2021_06_082 crossref_primary_10_1007_s00330_023_10224_y crossref_primary_10_1016_j_cmpbup_2024_100158 crossref_primary_10_1109_ACCESS_2021_3131386 crossref_primary_10_1016_j_knosys_2023_111160 crossref_primary_10_1016_j_drudis_2024_104018 crossref_primary_10_3390_app12063191 crossref_primary_10_1109_TAI_2021_3086435 crossref_primary_10_1016_j_energy_2024_134352 crossref_primary_10_3390_app142411529 crossref_primary_10_1177_20563051211043212 crossref_primary_10_1039_D3DD00159H crossref_primary_10_1145_3609483 crossref_primary_10_1016_j_dss_2024_114172 crossref_primary_10_1016_j_compbiomed_2025_109834 crossref_primary_10_1016_j_ymeth_2024_04_003 crossref_primary_10_1016_j_ymeth_2024_04_005 crossref_primary_10_3389_frai_2022_999289 crossref_primary_10_1038_s41597_023_02487_3 crossref_primary_10_2196_52897 crossref_primary_10_1109_ACCESS_2024_3367360 crossref_primary_10_1002_widm_1570 crossref_primary_10_1093_database_baac098 crossref_primary_10_1093_jamia_ocae081 crossref_primary_10_1007_s42001_024_00276_5 crossref_primary_10_1007_s42979_024_03553_2 crossref_primary_10_1093_bib_bbad349 crossref_primary_10_1093_database_baac090 crossref_primary_10_1038_s41598_020_77258_w crossref_primary_10_1109_JBHI_2022_3172479 crossref_primary_10_1587_transinf_2022DAP0010 crossref_primary_10_2196_17638 crossref_primary_10_1016_j_compmedimag_2023_102320 crossref_primary_10_1109_JBHI_2023_3338356 crossref_primary_10_1007_s10115_023_01957_9 crossref_primary_10_1016_j_nbt_2023_09_001 crossref_primary_10_1038_s43856_024_00470_6 crossref_primary_10_1093_bib_bbac497 crossref_primary_10_1016_j_mcpro_2023_100682 crossref_primary_10_1016_j_psychres_2024_115896 crossref_primary_10_1016_j_knosys_2024_112373 crossref_primary_10_1093_jamia_ocae092 crossref_primary_10_3390_app14209302 crossref_primary_10_3390_healthcare10081478 crossref_primary_10_1093_jamia_ocae095 crossref_primary_10_1186_s12864_021_08239_0 crossref_primary_10_1007_s11192_023_04821_3 crossref_primary_10_3233_THC crossref_primary_10_2196_37237 crossref_primary_10_3390_ijerph19169974 crossref_primary_10_1093_bioadv_vbae106 crossref_primary_10_1108_DTS_05_2022_0013 crossref_primary_10_2196_40408 crossref_primary_10_1021_acs_jpclett_0c02393 crossref_primary_10_1109_TVCG_2024_3456325 crossref_primary_10_1186_s13643_022_02074_4 crossref_primary_10_2196_50209 crossref_primary_10_1186_s12859_023_05209_z crossref_primary_10_1109_TMM_2024_3384057 crossref_primary_10_1016_j_inffus_2024_102888 crossref_primary_10_1111_test_12367 crossref_primary_10_1016_j_compbiomed_2023_107262 crossref_primary_10_3389_fcvm_2022_800864 crossref_primary_10_1016_j_array_2024_100372 crossref_primary_10_1021_acs_jnatprod_4c00581 crossref_primary_10_35713_aic_v2_i1_1 crossref_primary_10_1038_s41597_023_02781_0 crossref_primary_10_1093_bioadv_vbae116 crossref_primary_10_1186_s12859_022_04688_w crossref_primary_10_1016_j_cmpb_2021_106446 crossref_primary_10_1038_s41746_020_0285_8 crossref_primary_10_1186_s12859_023_05601_9 crossref_primary_10_1016_j_ijmedinf_2024_105500 crossref_primary_10_1016_j_nlp_2024_100123 crossref_primary_10_1016_j_compbiomed_2025_109808 crossref_primary_10_2208_jscejj_22_22042 crossref_primary_10_2196_23099 crossref_primary_10_1161_JAHA_122_028120 crossref_primary_10_1109_TVCG_2024_3456339 crossref_primary_10_1093_bioadv_vbae120 crossref_primary_10_21923_jesd_973181 crossref_primary_10_3390_math12172717 crossref_primary_10_1145_3423209 crossref_primary_10_1016_j_ijmedinf_2022_104928 crossref_primary_10_1007_s11431_020_1647_3 crossref_primary_10_1093_bioadv_vbab015 crossref_primary_10_1093_jamia_ocad068 crossref_primary_10_1016_j_jmoldx_2022_06_001 crossref_primary_10_1093_jamia_ocad062 crossref_primary_10_1145_3555176 crossref_primary_10_1007_s10278_022_00714_8 crossref_primary_10_1016_j_artmed_2020_101939 crossref_primary_10_3390_metabo12040276 crossref_primary_10_1007_s12559_021_09917_7 crossref_primary_10_1146_annurev_statistics_040522_022138 crossref_primary_10_1038_s41540_024_00358_0 crossref_primary_10_1016_j_fhj_2024_100168 crossref_primary_10_1109_TASLP_2022_3161146 crossref_primary_10_1016_j_ipm_2021_102564 crossref_primary_10_3390_app11146421 crossref_primary_10_1016_j_commatsci_2024_113014 crossref_primary_10_1016_j_bspc_2023_105873 crossref_primary_10_1002_mgea_70001 crossref_primary_10_1088_1742_6596_1963_1_012173 crossref_primary_10_3390_bioengineering10050586 crossref_primary_10_1016_j_rvsc_2022_04_010 crossref_primary_10_1038_s41586_024_08167_5 crossref_primary_10_1016_j_ajpath_2021_01_015 crossref_primary_10_1016_j_neucom_2022_04_009 crossref_primary_10_2196_49607 crossref_primary_10_1016_j_ijmedinf_2020_104351 crossref_primary_10_1001_jamasurg_2023_4679 crossref_primary_10_1093_bib_bbae420 crossref_primary_10_1016_j_patrec_2020_12_013 crossref_primary_10_1093_jamia_ocad041 crossref_primary_10_3389_fpsyt_2022_861930 crossref_primary_10_1016_j_eswa_2023_120964 crossref_primary_10_3389_fbinf_2023_1332902 crossref_primary_10_1016_j_patrec_2023_02_016 crossref_primary_10_1109_ACCESS_2024_3524588 crossref_primary_10_1016_j_habitatint_2025_103357 crossref_primary_10_1093_gerona_glae176 crossref_primary_10_1021_acs_jcim_4c00572 crossref_primary_10_35711_aimi_v3_i3_55 crossref_primary_10_1002_pmic_202300471 crossref_primary_10_2196_14502 crossref_primary_10_1371_journal_pone_0291142 crossref_primary_10_1093_bib_bbaa057 crossref_primary_10_1007_s12539_024_00605_2 crossref_primary_10_1109_JBHI_2023_3308064 crossref_primary_10_1093_bib_bbac229 crossref_primary_10_1016_j_isatra_2022_03_013 crossref_primary_10_1016_j_isci_2021_102155 crossref_primary_10_7717_peerj_cs_384 crossref_primary_10_3389_fimmu_2024_1293706 crossref_primary_10_1016_j_eswa_2024_125241 crossref_primary_10_1162_tacl_a_00585 crossref_primary_10_1016_j_jbi_2021_103982 crossref_primary_10_1177_01655515231193845 crossref_primary_10_1186_s12967_023_04011_y crossref_primary_10_3389_fphar_2023_1205144 crossref_primary_10_1016_j_jbi_2021_103984 crossref_primary_10_1016_j_ijmedinf_2020_104321 crossref_primary_10_1075_li_00107_mor crossref_primary_10_1016_j_jbi_2025_104792 crossref_primary_10_3390_app14167031 crossref_primary_10_1016_j_cmpb_2024_108329 crossref_primary_10_1186_s40537_025_01077_x crossref_primary_10_12720_jait_15_6_723_734 crossref_primary_10_1016_j_infsof_2022_106886 crossref_primary_10_1186_s13677_020_00218_2 crossref_primary_10_1016_j_neunet_2025_107250 crossref_primary_10_1093_bioinformatics_btac508 crossref_primary_10_1016_j_jii_2024_100748 crossref_primary_10_3389_fdgth_2021_620828 crossref_primary_10_3390_app11020690 crossref_primary_10_1038_s41467_024_53081_z crossref_primary_10_2478_seeur_2023_0035 crossref_primary_10_1186_s13326_024_00311_4 crossref_primary_10_1016_j_jbi_2021_103960 crossref_primary_10_1016_j_compbiomed_2024_109337 crossref_primary_10_3390_make4020021 crossref_primary_10_1038_s42003_025_07615_w crossref_primary_10_1093_jamia_ocad081 crossref_primary_10_1007_s41060_025_00724_z crossref_primary_10_1016_j_ins_2021_04_021 crossref_primary_10_1093_database_baad005 crossref_primary_10_1016_j_compbiolchem_2022_107808 crossref_primary_10_1016_j_gene_2023_147435 crossref_primary_10_1016_j_jbi_2021_103971 crossref_primary_10_3390_diagnostics12071726 crossref_primary_10_1016_j_jbi_2021_103970 crossref_primary_10_1017_S1351324923000165 crossref_primary_10_1016_j_jbi_2025_104789 crossref_primary_10_1155_2021_5517145 crossref_primary_10_1093_jamia_ocad075 crossref_primary_10_1093_bioinformatics_btab671 crossref_primary_10_1016_j_jbi_2025_104783 crossref_primary_10_1093_jamia_ocad071 crossref_primary_10_1055_a_2405_2489 crossref_primary_10_1016_j_jbi_2021_103968 crossref_primary_10_1016_j_jbi_2021_103969 crossref_primary_10_1093_bioadv_vbab012 crossref_primary_10_1186_s11689_022_09442_0 crossref_primary_10_1109_RBME_2022_3210270 crossref_primary_10_3390_info16030225 crossref_primary_10_1016_j_compag_2024_109349 crossref_primary_10_1186_s42466_023_00270_8 crossref_primary_10_1186_s40537_020_00392_9 crossref_primary_10_1093_bioinformatics_btac539 crossref_primary_10_1007_s11227_024_06698_2 crossref_primary_10_1016_j_neunet_2024_106492 crossref_primary_10_1016_j_jmgm_2022_108344 crossref_primary_10_1016_j_drudis_2020_10_002 crossref_primary_10_1016_j_joi_2023_101376 crossref_primary_10_1016_j_acags_2024_100164 crossref_primary_10_1016_j_artmed_2021_102224 crossref_primary_10_3389_fdgth_2022_878369 crossref_primary_10_1016_j_inffus_2023_101817 crossref_primary_10_1093_jamia_ocae326 crossref_primary_10_1109_TSE_2022_3178469 crossref_primary_10_1093_jamia_ocab279 crossref_primary_10_2196_54580 crossref_primary_10_2196_22508 crossref_primary_10_1007_s10115_025_02338_0 crossref_primary_10_1371_journal_pone_0295925 crossref_primary_10_1007_s11063_023_11201_8 crossref_primary_10_1371_journal_pcbi_1012426 crossref_primary_10_2196_22982 crossref_primary_10_1093_gigascience_giad054 crossref_primary_10_1007_s10664_024_10576_z crossref_primary_10_1016_j_compchemeng_2023_108446 crossref_primary_10_1109_TCBB_2023_3236477 crossref_primary_10_1109_ACCESS_2021_3130956 crossref_primary_10_1016_j_heliyon_2024_e30373 crossref_primary_10_1016_j_mcpdig_2024_11_005 crossref_primary_10_1016_j_heliyon_2023_e19265 crossref_primary_10_5715_jnlp_27_969 crossref_primary_10_1093_database_baac108 crossref_primary_10_1148_ryai_220281 crossref_primary_10_1093_database_baac107 crossref_primary_10_1016_j_engappai_2025_110365 crossref_primary_10_1115_1_4054203 crossref_primary_10_3390_info13030117 crossref_primary_10_5715_jnlp_31_984 crossref_primary_10_1109_JBHI_2021_3117238 crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_1016_j_jbi_2021_103918 crossref_primary_10_1016_j_ymeth_2022_03_012 crossref_primary_10_1016_j_heliyon_2024_e41488 crossref_primary_10_1002_qub2_32 crossref_primary_10_1016_j_jbi_2020_103631 crossref_primary_10_1016_j_jbi_2021_103931 crossref_primary_10_34133_2021_9819851 crossref_primary_10_2139_ssrn_4049602 crossref_primary_10_1109_ACCESS_2023_3258973 crossref_primary_10_3390_app12115720 crossref_primary_10_1093_database_baac103 crossref_primary_10_1371_journal_pcbi_1009283 crossref_primary_10_1186_s12859_024_05903_6 crossref_primary_10_1145_3421509 crossref_primary_10_1016_j_jbi_2020_103628 crossref_primary_10_3390_su16020809 crossref_primary_10_1001_jamaneurol_2022_2514 crossref_primary_10_1186_s13321_022_00590_y crossref_primary_10_1016_j_ipm_2023_103574 crossref_primary_10_1016_j_jbi_2022_104279 crossref_primary_10_3390_ai5040126 crossref_primary_10_1016_j_jbi_2023_104557 crossref_primary_10_1093_nar_gkac1000 crossref_primary_10_1007_s10115_023_01862_1 crossref_primary_10_1002_slct_202304359 crossref_primary_10_1093_bioinformatics_btac578 crossref_primary_10_1186_s12911_023_02121_7 crossref_primary_10_1038_s41598_025_87724_y crossref_primary_10_1128_msystems_01258_24 crossref_primary_10_1186_s12911_022_02059_2 crossref_primary_10_1371_journal_pdig_0000152 crossref_primary_10_3390_electronics13030648 crossref_primary_10_1016_j_ajhg_2023_08_018 crossref_primary_10_14801_jkiit_2024_22_1_51 crossref_primary_10_1038_s41598_023_35482_0 crossref_primary_10_1007_s11063_025_11725_1 crossref_primary_10_1016_j_cjche_2023_02_026 crossref_primary_10_4103_singaporemedj_SMJ_2021_438 crossref_primary_10_1093_jamia_ocad012 crossref_primary_10_1016_j_ipm_2023_103560 crossref_primary_10_1016_j_engappai_2024_109028 crossref_primary_10_1145_3462476 crossref_primary_10_1145_3462475 crossref_primary_10_1016_j_ijmedinf_2022_104956 crossref_primary_10_1016_j_jbi_2022_104265 crossref_primary_10_1080_2326263X_2024_2413214 crossref_primary_10_1145_3524887 crossref_primary_10_3390_app11167318 crossref_primary_10_1186_s12911_021_01495_w crossref_primary_10_1016_j_ins_2022_10_063 crossref_primary_10_3390_computation9120140 crossref_primary_10_1016_j_jbi_2021_103902 crossref_primary_10_1109_JBHI_2024_3383610 crossref_primary_10_3389_frma_2021_689059 crossref_primary_10_1007_s44196_024_00456_1 crossref_primary_10_1109_ACCESS_2024_3350190 crossref_primary_10_1016_j_jbi_2020_103607 crossref_primary_10_1016_j_jbi_2020_103609 crossref_primary_10_1200_CCI_20_00060 crossref_primary_10_1016_j_measurement_2024_114123 crossref_primary_10_1007_s10115_023_02059_2 crossref_primary_10_3390_app122111084 crossref_primary_10_1016_j_ymeth_2024_08_007 crossref_primary_10_2196_58977 crossref_primary_10_3390_ijms231911498 crossref_primary_10_1093_bioinformatics_btac598 crossref_primary_10_1126_science_adh1114 crossref_primary_10_1016_j_gim_2022_04_025 crossref_primary_10_1093_comjnl_bxae131 crossref_primary_10_1017_nlp_2024_52 crossref_primary_10_1093_comjnl_bxae132 crossref_primary_10_1111_2041_210X_13778 crossref_primary_10_3390_jcp1040031 crossref_primary_10_1038_s41746_024_01323_1 crossref_primary_10_1186_s13040_024_00414_9 crossref_primary_10_1093_nar_gkae1030 crossref_primary_10_1016_j_powtec_2023_118960 crossref_primary_10_1145_3600088 crossref_primary_10_3390_sym16121629 crossref_primary_10_1016_j_commatsci_2024_113431 crossref_primary_10_1109_ACCESS_2021_3135381 crossref_primary_10_1186_s12911_024_02592_2 crossref_primary_10_1371_journal_pone_0304329 crossref_primary_10_3390_jcm11112967 crossref_primary_10_1016_j_ijmedinf_2021_104676 crossref_primary_10_1109_JBHI_2023_3294249 crossref_primary_10_1016_j_ijmedinf_2021_104678 crossref_primary_10_1016_j_ijmedinf_2022_104979 crossref_primary_10_1177_20552076241305168 crossref_primary_10_1016_j_seta_2022_102896 crossref_primary_10_1109_TCBB_2022_3161032 crossref_primary_10_1158_2767_9764_CRC_24_0064 crossref_primary_10_12688_wellcomeopenres_16718_1 crossref_primary_10_1145_3648471 crossref_primary_10_1038_s41598_022_08667_2 crossref_primary_10_2196_43483 crossref_primary_10_26599_TST_2022_9010012 crossref_primary_10_1109_ACCESS_2021_3054479 crossref_primary_10_1093_jamia_ocae311 crossref_primary_10_2139_ssrn_4183577 crossref_primary_10_1021_acs_jcim_2c00035 crossref_primary_10_1093_jamia_ocae314 crossref_primary_10_3390_e26040344 crossref_primary_10_1186_s12859_021_04504_x crossref_primary_10_1007_s13042_024_02304_2 crossref_primary_10_1038_s41597_024_03841_9 crossref_primary_10_1093_nar_gkac1046 crossref_primary_10_1145_3723352 crossref_primary_10_7326_M23_2772 crossref_primary_10_2196_18417 crossref_primary_10_1093_bioinformatics_btae679 crossref_primary_10_3390_electronics11193048 crossref_primary_10_1016_j_cmpb_2019_105117 crossref_primary_10_1038_s41597_022_01350_1 crossref_primary_10_1007_s41666_024_00171_8 crossref_primary_10_2196_28212 crossref_primary_10_1016_j_jenvman_2024_123320 crossref_primary_10_3389_ebm_2025_10389 crossref_primary_10_1186_s13326_024_00306_1 crossref_primary_10_1371_journal_pcbi_1011989 crossref_primary_10_7232_JKIIE_2021_47_4_342 crossref_primary_10_5715_jnlp_28_1089 crossref_primary_10_1016_j_jbi_2023_104527 crossref_primary_10_1088_1752_7163_acf065 crossref_primary_10_1109_TMI_2022_3185008 crossref_primary_10_1016_j_jbi_2022_104229 crossref_primary_10_1186_s12859_020_3393_1 crossref_primary_10_3389_fbinf_2022_835805 crossref_primary_10_3390_app15031252 crossref_primary_10_1038_s41746_022_00742_2 crossref_primary_10_1016_j_ymben_2024_09_001 crossref_primary_10_1038_s42256_023_00637_1 crossref_primary_10_1016_j_jbi_2022_104220 crossref_primary_10_2196_19735 crossref_primary_10_3390_s21092893 crossref_primary_10_1109_JTEHM_2023_3307794 crossref_primary_10_1093_bioinformatics_btad361 crossref_primary_10_1016_j_artint_2023_104019 crossref_primary_10_3390_su13042276 crossref_primary_10_2196_41205 crossref_primary_10_1109_ACCESS_2020_3014862 crossref_primary_10_1016_j_heliyon_2023_e21502 crossref_primary_10_3390_s23063064 crossref_primary_10_1007_s11192_020_03718_9 crossref_primary_10_1002_int_22533 crossref_primary_10_1145_3448253 crossref_primary_10_1017_dsj_2022_16 crossref_primary_10_1093_bioinformatics_btad369 crossref_primary_10_1007_s00521_024_10711_3 crossref_primary_10_2196_27386 crossref_primary_10_1016_j_ejrad_2022_110366 crossref_primary_10_1371_journal_pone_0262182 crossref_primary_10_1007_s11063_024_11574_4 crossref_primary_10_3390_electronics13152949 crossref_primary_10_2196_53636 crossref_primary_10_1038_s42256_025_01014_w crossref_primary_10_1038_s41598_024_60256_7 crossref_primary_10_1038_s41587_020_0686_x crossref_primary_10_1515_lpp_2023_0002 crossref_primary_10_1109_ACCESS_2022_3141161 crossref_primary_10_1007_s11280_023_01169_9 crossref_primary_10_2196_28229 crossref_primary_10_1016_j_eswa_2024_123894 crossref_primary_10_1016_j_autcon_2023_104890 crossref_primary_10_3389_fimmu_2025_1502484 crossref_primary_10_1177_15353702231215895 crossref_primary_10_1109_JBHI_2023_3271580 crossref_primary_10_3390_jcp2020022 crossref_primary_10_1038_s41746_022_00590_0 crossref_primary_10_1016_j_engappai_2024_109561 crossref_primary_10_1016_j_engappai_2024_108231 crossref_primary_10_1515_mr_2023_0011 crossref_primary_10_1093_g3journal_jkae161 crossref_primary_10_1109_TCBB_2022_3173447 crossref_primary_10_3390_info13030137 crossref_primary_10_1007_s10462_022_10183_8 crossref_primary_10_1007_s10278_023_00894_x crossref_primary_10_32604_csse_2023_027481 crossref_primary_10_3390_rs14153808 crossref_primary_10_1016_j_ifacol_2022_07_568 crossref_primary_10_1080_21645515_2022_2114422 crossref_primary_10_1016_j_ecoinf_2024_102742 crossref_primary_10_3389_fncom_2024_1389475 crossref_primary_10_1155_2023_2989791 crossref_primary_10_1016_j_yjbinx_2019_100058 crossref_primary_10_1093_bib_bbad065 crossref_primary_10_1109_TCBB_2024_3442199 crossref_primary_10_1109_TMI_2022_3163232 crossref_primary_10_1016_j_nlp_2025_100129 crossref_primary_10_1007_s41666_024_00162_9 crossref_primary_10_1186_s12911_019_0992_8 crossref_primary_10_4258_hir_2024_30_4_355 crossref_primary_10_3390_app11188319 crossref_primary_10_1016_j_ins_2021_11_061 crossref_primary_10_1016_j_jbi_2022_104215 crossref_primary_10_1109_TASLP_2023_3275040 crossref_primary_10_1186_s12885_025_13596_0 crossref_primary_10_1093_bib_bbad099 crossref_primary_10_1109_ACCESS_2022_3213676 crossref_primary_10_3390_s23104812 crossref_primary_10_1016_j_compbiomed_2024_108926 crossref_primary_10_1093_bioinformatics_btac085 crossref_primary_10_1371_journal_pdig_0000692 crossref_primary_10_7759_cureus_71744 crossref_primary_10_1007_s00799_023_00368_z crossref_primary_10_3389_frai_2023_1023281 crossref_primary_10_2196_38052 crossref_primary_10_1109_TEM_2023_3306569 crossref_primary_10_2174_1574893618666230224142324 crossref_primary_10_1109_JBHI_2023_3288768 crossref_primary_10_3390_su15054216 crossref_primary_10_1038_s41597_020_0543_2 crossref_primary_10_1016_j_patter_2023_100729 crossref_primary_10_1016_j_patter_2023_100726 crossref_primary_10_1007_s41666_023_00141_6 crossref_primary_10_1016_j_jbi_2019_103354 crossref_primary_10_1007_s10489_024_05974_1 crossref_primary_10_2514_1_I011251 crossref_primary_10_1016_j_aei_2024_102664 crossref_primary_10_1007_s42979_024_03472_2 crossref_primary_10_1186_s12911_022_01819_4 crossref_primary_10_1016_j_knosys_2024_111542 crossref_primary_10_1109_TMM_2021_3132724 crossref_primary_10_7759_cureus_43292 crossref_primary_10_1162_coli_a_00462 crossref_primary_10_1007_s11704_024_3900_z crossref_primary_10_1145_3652594 crossref_primary_10_1016_j_csbj_2022_07_049 crossref_primary_10_2196_52730 crossref_primary_10_1039_D4DD00335G crossref_primary_10_1007_s11042_023_15224_0 crossref_primary_10_1016_j_compbiolchem_2024_108058 crossref_primary_10_3389_frma_2021_689803 crossref_primary_10_1049_cje_2020_00_326 crossref_primary_10_1002_cpt_3053 crossref_primary_10_1186_s13073_024_01330_7 crossref_primary_10_2196_34072 crossref_primary_10_1038_s41591_023_02448_8 crossref_primary_10_2196_40743 crossref_primary_10_1017_S1351324923000542 crossref_primary_10_1371_journal_pbio_3000716 crossref_primary_10_1093_bib_bbae354 crossref_primary_10_1186_s12859_024_05712_x crossref_primary_10_1007_s11042_023_15477_9 crossref_primary_10_1109_ACCESS_2023_3323574 crossref_primary_10_1089_apb_2023_0020 crossref_primary_10_1162_coli_a_00458 crossref_primary_10_1007_s10462_024_10921_0 crossref_primary_10_1148_ryai_230415 crossref_primary_10_1016_j_compbiolchem_2024_108063 crossref_primary_10_1016_j_psychres_2023_115667 crossref_primary_10_1016_j_cmpb_2025_108638 crossref_primary_10_1145_3655619 crossref_primary_10_1038_s41598_023_39543_2 crossref_primary_10_3390_jpm12010086 crossref_primary_10_1007_s00521_020_05335_2 crossref_primary_10_1038_s41524_022_00784_w crossref_primary_10_1145_3665899 crossref_primary_10_2196_37557 crossref_primary_10_5715_jnlp_31_1717 crossref_primary_10_1016_j_artmed_2023_102498 crossref_primary_10_3390_toxics11090785 crossref_primary_10_1007_s41666_022_00115_0 crossref_primary_10_1136_bmjhci_2022_100659 crossref_primary_10_3390_ai6020031 crossref_primary_10_1038_s41467_025_56526_1 crossref_primary_10_1371_journal_pcbi_1008757 crossref_primary_10_1016_j_imu_2024_101519 crossref_primary_10_1109_ACCESS_2023_3299824 crossref_primary_10_1186_s12874_022_01583_z crossref_primary_10_1007_s00234_024_03427_7 crossref_primary_10_15302_J_QB_022_0302 crossref_primary_10_1109_TCSS_2022_3143768 crossref_primary_10_1155_2023_3106631 crossref_primary_10_1007_s10579_024_09738_8 crossref_primary_10_1109_ACCESS_2024_3521596 crossref_primary_10_2196_28632 crossref_primary_10_1016_j_datak_2023_102155 crossref_primary_10_52361_fsbh_2023_3_e17 crossref_primary_10_1109_TCSVT_2024_3432095 crossref_primary_10_1080_27660400_2022_2124831 crossref_primary_10_3389_fgene_2024_1464976 crossref_primary_10_3389_fpsyt_2024_1181739 crossref_primary_10_1093_bib_bbac194 crossref_primary_10_1145_3653450 crossref_primary_10_1109_TNNLS_2023_3265173 crossref_primary_10_3390_jpm11040300 crossref_primary_10_2196_49546 crossref_primary_10_32604_cmc_2023_041520 crossref_primary_10_1007_s41060_021_00305_w crossref_primary_10_3390_math10030447 crossref_primary_10_1186_s13326_022_00280_6 crossref_primary_10_3389_frai_2024_1487335 crossref_primary_10_1007_s11135_025_02077_y crossref_primary_10_1007_s11192_023_04833_z crossref_primary_10_1007_s12539_020_00412_5 crossref_primary_10_1093_nar_gkaa1074 crossref_primary_10_1109_ACCESS_2024_3522465 crossref_primary_10_1016_j_patter_2022_100483 crossref_primary_10_1109_JBHI_2021_3116769 crossref_primary_10_3390_info14030187 crossref_primary_10_1007_s41095_021_0229_5 crossref_primary_10_23919_ICN_2024_0004 crossref_primary_10_1093_bib_bbab282 crossref_primary_10_1136_rapm_2021_103261 crossref_primary_10_1186_s12911_023_02117_3 crossref_primary_10_21105_joss_05017 crossref_primary_10_1016_j_techfore_2023_122546 crossref_primary_10_1093_database_baad054 crossref_primary_10_1007_s11042_023_15509_4 crossref_primary_10_1093_bib_bbae304 crossref_primary_10_3390_bs15030352 crossref_primary_10_1007_s00261_024_04708_8 crossref_primary_10_1007_s40290_022_00434_y crossref_primary_10_1186_s12859_023_05539_y crossref_primary_10_2196_63881 crossref_primary_10_1016_j_compbiomed_2021_104998 crossref_primary_10_1093_bib_bbad493 crossref_primary_10_1002_widm_1470 crossref_primary_10_1002_pmic_202100197 crossref_primary_10_1007_s11192_022_04607_z crossref_primary_10_1002_capr_12766 crossref_primary_10_1093_database_baad080 crossref_primary_10_1007_s10844_024_00844_1 crossref_primary_10_1007_s40120_022_00355_7 crossref_primary_10_1038_s41598_022_20752_0 crossref_primary_10_1038_s41598_022_07545_1 crossref_primary_10_1016_j_jhydrol_2022_128597 crossref_primary_10_1145_3611651 crossref_primary_10_1038_s43856_024_00495_x crossref_primary_10_1038_s41746_024_01274_7 crossref_primary_10_1038_s41598_023_34294_6 crossref_primary_10_1109_ACCESS_2020_3024238 crossref_primary_10_3390_cancers17030516 crossref_primary_10_1016_j_compbiomed_2024_108539 crossref_primary_10_1002_advs_202307647 crossref_primary_10_2196_25157 crossref_primary_10_1145_3715318 crossref_primary_10_1002_advs_202100707 crossref_primary_10_1007_s10462_023_10650_w crossref_primary_10_1109_TCBB_2022_3170301 crossref_primary_10_1186_s12911_024_02698_7 crossref_primary_10_1093_database_baad070 crossref_primary_10_1016_j_jtcvs_2023_01_022 crossref_primary_10_1016_j_aiopen_2021_08_002 crossref_primary_10_1155_2022_3133096 crossref_primary_10_7717_peerj_18509 crossref_primary_10_1016_j_isci_2024_109309 crossref_primary_10_3390_app122211469 crossref_primary_10_1093_bib_bbac342 crossref_primary_10_1016_j_jbi_2020_103381 crossref_primary_10_1016_j_compbiomed_2024_108548 crossref_primary_10_1016_j_jbi_2020_103382 crossref_primary_10_1186_s12859_023_05411_z crossref_primary_10_1109_TBME_2023_3280987 crossref_primary_10_1055_s_0040_1702001 crossref_primary_10_1038_s41698_024_00573_2 crossref_primary_10_1093_jamia_ocae287 crossref_primary_10_1038_s41598_025_91187_6 crossref_primary_10_1016_j_jpowsour_2022_231946 crossref_primary_10_3389_fgene_2022_858252 crossref_primary_10_1016_j_jbi_2024_104588 crossref_primary_10_1186_s12911_024_02444_z crossref_primary_10_1007_s10916_024_02132_5 crossref_primary_10_1016_j_inffus_2025_103033 crossref_primary_10_3390_informatics11040072 crossref_primary_10_1177_13524585241277376 crossref_primary_10_1371_journal_pone_0248663 crossref_primary_10_1007_s11063_023_11266_5 crossref_primary_10_32604_cmc_2023_035594 crossref_primary_10_1007_s00521_023_08635_5 crossref_primary_10_2196_62924 crossref_primary_10_3233_IDT_200048 crossref_primary_10_4018_IJSWIS_295552 crossref_primary_10_1371_journal_pone_0270595 crossref_primary_10_1016_j_csbj_2024_12_011 crossref_primary_10_1186_s12911_022_01946_y crossref_primary_10_3389_frai_2024_1450477 crossref_primary_10_1016_j_xops_2023_100371 crossref_primary_10_1136_bmjhci_2023_100775 crossref_primary_10_1186_s12859_025_06086_4 crossref_primary_10_1108_IDD_08_2020_090 crossref_primary_10_1007_s11227_024_06597_6 crossref_primary_10_1109_ACCESS_2023_3341612 crossref_primary_10_1016_j_knosys_2021_108072 crossref_primary_10_3390_app132413117 crossref_primary_10_1038_s41524_023_01171_9 crossref_primary_10_31818_JKNST_2023_06_6_2_201 crossref_primary_10_1016_j_heliyon_2024_e31158 crossref_primary_10_3390_info15020091 crossref_primary_10_3389_frma_2021_654438 crossref_primary_10_1016_j_seizure_2025_01_008 crossref_primary_10_1093_nar_gkac936 crossref_primary_10_1109_TIM_2022_3189630 crossref_primary_10_1371_journal_pone_0292356 crossref_primary_10_1007_s00330_023_10061_z crossref_primary_10_1109_TCBB_2024_3447273 crossref_primary_10_34197_ats_scholar_2023_0036PS crossref_primary_10_1007_s10796_024_10566_y crossref_primary_10_1088_1742_6596_2062_1_012027 crossref_primary_10_1515_hsz_2021_0125 crossref_primary_10_1007_s11063_024_11526_y crossref_primary_10_1007_s11227_023_05647_9 crossref_primary_10_1109_JBHI_2022_3207502 crossref_primary_10_3390_ijms232314934 crossref_primary_10_1001_jamanetworkopen_2022_25593 crossref_primary_10_1111_jebm_70004 crossref_primary_10_1162_qss_a_00303 crossref_primary_10_1093_bib_bbab451 crossref_primary_10_1109_TC_2023_3257518 crossref_primary_10_1007_s41666_023_00136_3 crossref_primary_10_1016_j_acags_2022_100084 crossref_primary_10_1155_2021_6631837 crossref_primary_10_3758_s13428_023_02294_z crossref_primary_10_1177_10732748231209892 crossref_primary_10_2196_49997 crossref_primary_10_3390_s24216878 crossref_primary_10_3390_a18030124 crossref_primary_10_1016_j_neunet_2025_107389 crossref_primary_10_1016_j_isci_2024_109352 crossref_primary_10_1016_j_isci_2024_109334 crossref_primary_10_2196_59792 crossref_primary_10_1007_s41666_023_00149_y crossref_primary_10_1007_s00778_023_00779_z crossref_primary_10_1109_ACCESS_2025_3538325 crossref_primary_10_1016_j_jbi_2023_104286 crossref_primary_10_1145_3465221 crossref_primary_10_1016_j_jbi_2023_104285 crossref_primary_10_2147_JMDH_S467877 crossref_primary_10_1007_s10579_023_09676_x crossref_primary_10_1016_j_patrec_2024_05_007 crossref_primary_10_3390_diagnostics13071251 crossref_primary_10_1007_s10489_025_06349_w crossref_primary_10_32604_cmc_2022_027236 crossref_primary_10_1049_rpg2_13151 crossref_primary_10_2196_23357 crossref_primary_10_1038_s41746_024_01074_z crossref_primary_10_2196_59782 crossref_primary_10_1186_s12911_021_01633_4 crossref_primary_10_1186_s12859_021_04236_y crossref_primary_10_1016_j_jbi_2023_104297 crossref_primary_10_3389_fpsyt_2024_1304916 crossref_primary_10_1111_exsy_13513 crossref_primary_10_1021_acs_jcim_4c00882 crossref_primary_10_1145_3707650 crossref_primary_10_1093_bib_bbab470 crossref_primary_10_1016_j_jss_2021_111160 crossref_primary_10_1038_s41598_023_29213_8 crossref_primary_10_1108_K_03_2024_0554 crossref_primary_10_1108_EL_01_2024_0022 crossref_primary_10_1371_journal_pone_0259763 crossref_primary_10_2200_S01123ED1V01Y202108HLT053 crossref_primary_10_1186_s12911_024_02814_7 crossref_primary_10_1002_spe_3408 crossref_primary_10_1007_s10799_024_00428_z crossref_primary_10_3389_fphar_2020_584875 crossref_primary_10_1186_s40246_025_00718_9 crossref_primary_10_1038_s41746_023_00952_2 crossref_primary_10_1186_s13326_023_00292_w crossref_primary_10_3390_electronics11234008 crossref_primary_10_2196_26407 crossref_primary_10_2196_44293 crossref_primary_10_1007_s00521_021_06614_2 crossref_primary_10_2139_ssrn_4053575 crossref_primary_10_1007_s10601_024_09376_5 crossref_primary_10_1021_acs_jcim_4c00063 crossref_primary_10_1007_s10115_022_01779_1 crossref_primary_10_7554_eLife_58227 crossref_primary_10_2139_ssrn_4147127 crossref_primary_10_1371_journal_pone_0305362 crossref_primary_10_2196_56655 crossref_primary_10_3233_JIFS_219349 crossref_primary_10_1186_s13321_024_00928_8 crossref_primary_10_1109_TASLP_2023_3293047 crossref_primary_10_1038_s41746_021_00455_y crossref_primary_10_1108_DTA_04_2022_0151 crossref_primary_10_3390_bdcc6010004 crossref_primary_10_1109_ACCESS_2023_3281845 crossref_primary_10_5715_jnlp_30_800 crossref_primary_10_1016_j_inffus_2023_101939 crossref_primary_10_1097_CORR_0000000000002995 crossref_primary_10_1186_s13321_023_00771_3 crossref_primary_10_1155_2021_5753693 crossref_primary_10_3390_app15052573 crossref_primary_10_1038_s41598_024_81646_x crossref_primary_10_1016_j_csbj_2024_03_021 crossref_primary_10_1109_ACCESS_2022_3233228 crossref_primary_10_1093_bioinformatics_btab331 crossref_primary_10_2196_32698 crossref_primary_10_1093_bioinformatics_btaa491 crossref_primary_10_1162_tacl_a_00602 crossref_primary_10_1016_j_aiopen_2021_06_003 crossref_primary_10_1039_D4DD00051J crossref_primary_10_3390_s22249609 crossref_primary_10_1186_s12859_024_05902_7 crossref_primary_10_3390_bdcc6010010 crossref_primary_10_1038_s41591_024_02959_y crossref_primary_10_1016_j_heliyon_2024_e39038 crossref_primary_10_1155_2023_4919371 crossref_primary_10_1200_CCI_24_00149 crossref_primary_10_1007_s10796_020_10035_2 crossref_primary_10_1016_j_csbj_2024_03_017 crossref_primary_10_1007_s40264_024_01468_8 crossref_primary_10_1093_bioinformatics_btac675 crossref_primary_10_1109_TCBB_2023_3261315 crossref_primary_10_3390_app12062891 crossref_primary_10_3390_computers12010017 crossref_primary_10_1109_TCSS_2022_3159677 crossref_primary_10_1186_s12911_022_01977_5 crossref_primary_10_3390_app13052858 crossref_primary_10_1007_s41666_024_00159_4 crossref_primary_10_1186_s12859_023_05597_2 crossref_primary_10_3233_JIFS_210982 crossref_primary_10_1002_aaai_12140 crossref_primary_10_1186_s12859_022_04803_x crossref_primary_10_2196_22898 crossref_primary_10_2196_41137 crossref_primary_10_2196_68618 crossref_primary_10_3390_fi17030129 crossref_primary_10_1093_glycob_cwad033 crossref_primary_10_1177_20552076231212296 crossref_primary_10_1162_tacl_a_00616 crossref_primary_10_1055_s_0040_1701997 crossref_primary_10_2196_56627 crossref_primary_10_3390_electronics11203336 crossref_primary_10_3934_mbe_2022640 crossref_primary_10_2139_ssrn_3910214 crossref_primary_10_7717_peerj_cs_1888 crossref_primary_10_1016_j_imed_2024_12_001 crossref_primary_10_1016_j_ins_2022_06_089 crossref_primary_10_1177_15353702231220669 crossref_primary_10_1038_s41598_024_72130_7 crossref_primary_10_1038_s41587_023_01872_y crossref_primary_10_1371_journal_pone_0260712 crossref_primary_10_1109_JBHI_2022_3220924 crossref_primary_10_1155_2022_7088126 crossref_primary_10_1016_j_compbiomed_2024_108189 crossref_primary_10_1007_s10579_022_09590_8 crossref_primary_10_1093_bioinformatics_btad542 crossref_primary_10_1016_j_xops_2023_100394 crossref_primary_10_1093_bioinformatics_btab365 crossref_primary_10_3390_info12040139 crossref_primary_10_1007_s11192_024_05040_0 crossref_primary_10_1109_ACCESS_2024_3365742 crossref_primary_10_3389_fdgth_2020_569261 crossref_primary_10_3390_informatics12010028 crossref_primary_10_1007_s11432_023_4127_5 crossref_primary_10_1038_s41746_024_01190_w crossref_primary_10_1016_j_knosys_2022_110220 crossref_primary_10_2196_47739 crossref_primary_10_1186_s12859_022_05116_9 crossref_primary_10_2139_ssrn_4352931 crossref_primary_10_1093_bioinformatics_btae406 crossref_primary_10_1016_j_ipm_2023_103442 crossref_primary_10_1007_s12539_024_00665_4 crossref_primary_10_1016_j_csbj_2024_10_017 crossref_primary_10_1093_jamia_ocac040 crossref_primary_10_1007_s10278_024_01126_6 crossref_primary_10_1093_bioinformatics_btae402 crossref_primary_10_1109_ACCESS_2024_3384496 crossref_primary_10_1016_j_techfore_2024_123455 crossref_primary_10_1016_j_cie_2025_111034 crossref_primary_10_1109_TCBB_2024_3412174 crossref_primary_10_1371_journal_pdig_0000269 crossref_primary_10_2196_22422 crossref_primary_10_1111_cgf_14195 crossref_primary_10_1038_s41591_021_01614_0 crossref_primary_10_1007_s40264_022_01176_1 crossref_primary_10_1007_s12598_024_02766_x crossref_primary_10_1055_s_0041_1726528 crossref_primary_10_1186_s40537_024_00903_y crossref_primary_10_1016_j_survophthal_2025_02_009 crossref_primary_10_1093_jamiaopen_ooad014 crossref_primary_10_1002_ctd2_323 crossref_primary_10_1016_j_jpainsymman_2024_05_015 crossref_primary_10_5715_jnlp_29_23 crossref_primary_10_1016_j_jbi_2025_104806 crossref_primary_10_3390_bioengineering10040420 crossref_primary_10_1109_TVCG_2022_3225114 crossref_primary_10_3389_frai_2021_711467 crossref_primary_10_1200_CCI_24_00110 crossref_primary_10_1093_bioinformatics_btae429 crossref_primary_10_1093_jamia_ocab176 crossref_primary_10_1016_j_compind_2021_103497 crossref_primary_10_1016_j_aichem_2024_100060 crossref_primary_10_1007_s10238_022_00975_1 crossref_primary_10_3389_frai_2021_732381 crossref_primary_10_3390_math10091386 crossref_primary_10_1109_TIP_2022_3186759 crossref_primary_10_1186_s13643_024_02470_y crossref_primary_10_3389_fcell_2020_00673 crossref_primary_10_1109_ACCESS_2020_2993169 crossref_primary_10_1016_j_eswa_2025_127241 crossref_primary_10_1186_s13018_024_04774_0 crossref_primary_10_1016_j_eswa_2024_126099 crossref_primary_10_1007_s11633_024_1515_3 crossref_primary_10_3233_SW_243568 crossref_primary_10_1109_ACCESS_2024_3521857 crossref_primary_10_1109_TII_2022_3159710 crossref_primary_10_1016_j_rtbm_2024_101197 crossref_primary_10_1200_CCI_21_00129 crossref_primary_10_3390_info15080509 crossref_primary_10_3390_app13095609 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1007_s00521_022_07747_8 crossref_primary_10_1186_s44247_023_00035_y crossref_primary_10_2196_42884 crossref_primary_10_1186_s12911_024_02600_5 crossref_primary_10_1038_s41524_023_01003_w crossref_primary_10_1001_jamanetworkopen_2023_1204 crossref_primary_10_1016_j_compbiomed_2024_109089 crossref_primary_10_1016_j_cose_2024_103998 crossref_primary_10_1016_j_drudis_2021_06_009 crossref_primary_10_1186_s12911_020_1078_3 crossref_primary_10_1109_ACCESS_2023_3272056 crossref_primary_10_1109_ACCESS_2022_3179685 crossref_primary_10_3389_fmmed_2021_734659 crossref_primary_10_3390_info16010054 crossref_primary_10_1007_s12539_021_00425_8 crossref_primary_10_3389_fpsyt_2023_1258887 crossref_primary_10_3233_IDA_227129 crossref_primary_10_3390_app14062456 crossref_primary_10_1186_s40708_022_00174_4 crossref_primary_10_1007_s13278_023_01102_y crossref_primary_10_1016_j_ebiom_2023_104512 crossref_primary_10_1016_j_ipm_2023_103511 crossref_primary_10_1038_s41598_023_45155_7 crossref_primary_10_1186_s12911_024_02439_w crossref_primary_10_3390_s23020651 crossref_primary_10_1016_j_cmpbup_2021_100042 crossref_primary_10_1016_j_jbi_2019_103267 crossref_primary_10_1145_3657305 crossref_primary_10_2196_30401 crossref_primary_10_1371_journal_pone_0274042 crossref_primary_10_1038_s41598_023_35597_4 crossref_primary_10_1109_TEM_2021_3078231 crossref_primary_10_1038_s41598_023_34981_4 crossref_primary_10_1109_JBHI_2021_3123192 crossref_primary_10_3389_fmolb_2022_928530 crossref_primary_10_1016_j_ailsci_2023_100078 crossref_primary_10_1016_j_csbj_2024_01_015 crossref_primary_10_1016_j_csbj_2024_01_014 crossref_primary_10_1038_s41597_023_01960_3 crossref_primary_10_1208_s12248_021_00593_x crossref_primary_10_1093_bioinformatics_btad496 crossref_primary_10_2196_49031 crossref_primary_10_52846_stccj_2021_1_2_26 crossref_primary_10_3233_JAD_240116 crossref_primary_10_1093_bioinformatics_btae349 crossref_primary_10_1093_infdis_jiad158 crossref_primary_10_3389_fmicb_2024_1474078 crossref_primary_10_1186_s12911_022_01897_4 crossref_primary_10_3390_make5020036 crossref_primary_10_1016_j_omtn_2024_102255 crossref_primary_10_1109_TCBB_2022_3219375 crossref_primary_10_5715_jnlp_31_1691 crossref_primary_10_1007_s10844_024_00885_6 crossref_primary_10_1016_j_ipm_2025_104148 crossref_primary_10_1109_ACCESS_2024_3463717 crossref_primary_10_1109_JBHI_2020_2984931 crossref_primary_10_1148_ryai_220097 crossref_primary_10_1186_s12859_020_03905_8 crossref_primary_10_1093_bioinformatics_btad035 crossref_primary_10_3389_frai_2021_625341 crossref_primary_10_1007_s41666_023_00140_7 crossref_primary_10_1016_j_patter_2024_100933 crossref_primary_10_1016_j_jpi_2022_100154 crossref_primary_10_1167_tvst_11_3_37 crossref_primary_10_1001_jamasurg_2023_6496 crossref_primary_10_1038_s41598_024_66160_4 crossref_primary_10_1007_s00521_022_07734_z crossref_primary_10_3390_s21196430 crossref_primary_10_1016_j_iswa_2024_200416 crossref_primary_10_1093_bioadv_vbad096 crossref_primary_10_7232_JKIIE_2023_49_2_133 crossref_primary_10_1016_j_eng_2023_01_014 crossref_primary_10_1038_s41598_021_94897_9 crossref_primary_10_1038_s42256_024_00899_3 crossref_primary_10_1016_j_ipm_2022_103194 crossref_primary_10_1016_j_compbiomed_2023_107421 crossref_primary_10_1049_cim2_70003 crossref_primary_10_1371_journal_pone_0311238 crossref_primary_10_1007_s10462_024_11042_4 crossref_primary_10_3390_app10217831 crossref_primary_10_1016_j_knosys_2024_111650 crossref_primary_10_3390_app12168373 crossref_primary_10_1109_ACCESS_2022_3170466 crossref_primary_10_1200_CCI_22_00096 crossref_primary_10_3390_app132011207 crossref_primary_10_1109_TMM_2024_3397191 crossref_primary_10_3390_electronics13112123 crossref_primary_10_1016_j_euf_2024_01_009 crossref_primary_10_1186_s13321_024_00874_5 crossref_primary_10_1016_j_wpi_2022_102112 crossref_primary_10_2196_41100 crossref_primary_10_3390_app13169450 crossref_primary_10_1109_JBHI_2021_3095478 crossref_primary_10_1016_j_procs_2023_08_022 crossref_primary_10_1136_bmjopen_2021_052911 crossref_primary_10_1109_ACCESS_2020_2987399 crossref_primary_10_3389_fnagi_2022_798132 crossref_primary_10_1109_TKDE_2024_3469578 crossref_primary_10_1093_database_baae079 crossref_primary_10_3390_s23239355 crossref_primary_10_1021_acs_jcim_4c00857 crossref_primary_10_1016_j_nlp_2023_100037 crossref_primary_10_1093_ehjdh_ztae066 crossref_primary_10_3346_jkms_2024_39_e291 crossref_primary_10_1145_3643514 crossref_primary_10_3390_diagnostics15060756 crossref_primary_10_1259_bjr_20220769 crossref_primary_10_1002_asi_24714 crossref_primary_10_1016_j_seps_2024_101995 crossref_primary_10_3389_fpubh_2023_1166120 crossref_primary_10_1016_j_xops_2022_100127 crossref_primary_10_1109_ACCESS_2021_3110683 crossref_primary_10_1093_bib_bbac298 crossref_primary_10_1016_j_cmpb_2024_108013 crossref_primary_10_1016_j_patter_2024_100968 crossref_primary_10_2196_48115 crossref_primary_10_3233_JID_220013 crossref_primary_10_1093_database_baae069 crossref_primary_10_1093_database_baae066 crossref_primary_10_9728_dcs_2022_23_4_765 crossref_primary_10_1016_j_nlp_2023_100048 crossref_primary_10_1016_j_infsof_2023_107202 crossref_primary_10_1038_s44222_024_00152_x crossref_primary_10_1016_j_nlp_2023_100046 crossref_primary_10_1016_j_nlp_2023_100045 crossref_primary_10_3390_electronics13173563 crossref_primary_10_1016_j_ins_2024_121625 crossref_primary_10_1109_JBHI_2023_3316750 crossref_primary_10_3390_app112210717 crossref_primary_10_3390_bdcc8080087 crossref_primary_10_1016_j_compbiolchem_2022_107732 crossref_primary_10_3389_fgene_2022_893409 crossref_primary_10_1109_TEM_2023_3312923 crossref_primary_10_1109_ACCESS_2022_3152159 crossref_primary_10_1016_j_ijrobp_2021_01_044 crossref_primary_10_3390_electronics12081848 crossref_primary_10_1093_database_baae094 crossref_primary_10_1016_j_nlp_2023_100015 crossref_primary_10_1038_s41598_025_94778_5 crossref_primary_10_1093_database_baae095 crossref_primary_10_1186_s13326_023_00301_y crossref_primary_10_1109_JBHI_2024_3466294 crossref_primary_10_1007_s13755_023_00251_w crossref_primary_10_1016_j_apjo_2024_100090 crossref_primary_10_1159_000539306 crossref_primary_10_1080_09540091_2021_1985968 crossref_primary_10_3390_app11198812 crossref_primary_10_3233_THC_236011 crossref_primary_10_54097_jceim_v10i3_8715 crossref_primary_10_1145_3651159 crossref_primary_10_1145_3604811 crossref_primary_10_1109_ACCESS_2022_3157854 crossref_primary_10_1039_D4SC00966E crossref_primary_10_1038_s41586_023_06291_2 crossref_primary_10_1002_cpt_3161 crossref_primary_10_1007_s12539_021_00443_6 crossref_primary_10_1016_j_eswa_2023_123046 crossref_primary_10_1109_ACCESS_2022_3190408 crossref_primary_10_3390_s22010003 crossref_primary_10_2174_0118741207289680240510045617 crossref_primary_10_2196_41516 crossref_primary_10_1038_s41598_023_39986_7 crossref_primary_10_1021_acs_iecr_4c01656 crossref_primary_10_1093_bioinformatics_btaa837 crossref_primary_10_1016_j_neucom_2020_03_105 crossref_primary_10_2196_60272 crossref_primary_10_1186_s12911_022_02085_0 crossref_primary_10_1038_s41597_024_03317_w crossref_primary_10_2478_jdis_2021_0013 crossref_primary_10_2196_48145 crossref_primary_10_3390_app11010024 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_1016_j_asoc_2021_107230 crossref_primary_10_3390_electronics14010205 crossref_primary_10_1186_s12859_024_05951_y crossref_primary_10_3390_min13060770 crossref_primary_10_2196_60263 crossref_primary_10_1177_20552076241288681 crossref_primary_10_1016_j_ijmedinf_2024_105764 crossref_primary_10_2106_JBJS_23_01417 crossref_primary_10_3390_info16010013 crossref_primary_10_1016_j_jbi_2019_103294 crossref_primary_10_59324_ejtas_2024_2_6__37 crossref_primary_10_1080_10543406_2024_2403442 crossref_primary_10_4108_eetsis_4185 crossref_primary_10_1109_JBHI_2022_3173558 crossref_primary_10_1093_bib_bbac282 crossref_primary_10_1021_acsomega_3c05114 crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_1109_JBHI_2021_3056748 crossref_primary_10_3934_mbe_2024064 crossref_primary_10_3390_en17236063 crossref_primary_10_1109_JBHI_2020_3005016 crossref_primary_10_1016_j_procs_2021_05_078 crossref_primary_10_1145_3490238 crossref_primary_10_1007_s41666_023_00157_y crossref_primary_10_1016_j_inffus_2025_102963 crossref_primary_10_1109_TITS_2022_3140355 crossref_primary_10_1016_j_eng_2025_02_010 crossref_primary_10_1017_S1351324922000213 crossref_primary_10_15188_kjopp_2024_04_38_2_49 crossref_primary_10_1371_journal_pone_0283342 crossref_primary_10_1186_s12859_022_04642_w crossref_primary_10_3934_mbe_2024073 crossref_primary_10_1002_iis2_13105 crossref_primary_10_1093_bib_bbad120 crossref_primary_10_37661_1816_0301_2020_17_4_61_72 crossref_primary_10_1007_s00330_025_11500_9 crossref_primary_10_1007_s00330_023_10213_1 crossref_primary_10_1016_j_mcpdig_2024_02_003 crossref_primary_10_1109_JBHI_2022_3193365 crossref_primary_10_1093_database_baae049 crossref_primary_10_1186_s12859_021_04534_5 crossref_primary_10_2196_27210 crossref_primary_10_1007_s11192_020_03648_6 crossref_primary_10_1186_s12859_022_04993_4 crossref_primary_10_1186_s12874_024_02224_3 crossref_primary_10_24857_rgsa_v18n12_039 crossref_primary_10_1109_ACCESS_2022_3217492 crossref_primary_10_1111_1911_3846_12832 crossref_primary_10_1186_s13326_023_00282_y crossref_primary_10_1093_bib_bbae641 crossref_primary_10_3390_app12062953 crossref_primary_10_1093_bib_bbae644 crossref_primary_10_1186_s13321_024_00925_x crossref_primary_10_1007_s44196_024_00521_9 crossref_primary_10_1016_j_eswa_2023_122918 crossref_primary_10_3390_math11020354 crossref_primary_10_1186_s40537_023_00818_0 crossref_primary_10_1007_s10462_024_10902_3 crossref_primary_10_1016_j_cmpb_2024_108524 crossref_primary_10_1371_journal_pone_0318726 crossref_primary_10_3390_app13074115 crossref_primary_10_1007_s12539_021_00497_6 crossref_primary_10_1016_j_artmed_2022_102346 crossref_primary_10_1093_jamia_ocae166 crossref_primary_10_1186_s42162_023_00277_0 crossref_primary_10_32604_csse_2023_032104 crossref_primary_10_1007_s40593_024_00414_0 crossref_primary_10_1016_j_compag_2022_106776 crossref_primary_10_3389_fdgth_2021_711941 crossref_primary_10_1016_j_jbi_2021_103799 crossref_primary_10_1186_s12859_021_04248_8 crossref_primary_10_3390_electronics13234643 crossref_primary_10_1016_j_procs_2022_07_107 crossref_primary_10_1371_journal_pbio_3002612 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_1007_s44163_024_00197_2 crossref_primary_10_1016_j_neucom_2022_05_049 crossref_primary_10_1016_j_artmed_2024_102904 crossref_primary_10_1038_s41598_025_87161_x crossref_primary_10_1007_s10479_023_05545_6 crossref_primary_10_3389_fonc_2021_747250 crossref_primary_10_1016_j_jksuci_2024_101933 crossref_primary_10_1093_database_baab077 crossref_primary_10_1162_tacl_a_00328 crossref_primary_10_3389_fdgth_2023_1154133 crossref_primary_10_1007_s42001_024_00286_3 crossref_primary_10_1093_database_baae106 crossref_primary_10_3389_fphy_2021_763081 crossref_primary_10_1007_s10462_025_11162_5 crossref_primary_10_1007_s10664_021_10084_4 crossref_primary_10_1016_j_artmed_2021_102053 crossref_primary_10_1016_j_eswa_2025_126622 crossref_primary_10_1016_j_drudis_2025_104332 crossref_primary_10_1016_j_csbr_2024_100003 crossref_primary_10_1016_j_jbi_2020_103481 crossref_primary_10_3389_fphar_2023_1218679 crossref_primary_10_1038_s41368_023_00239_y crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_1002_pmic_202400058 crossref_primary_10_1108_AJIM_01_2023_0002 crossref_primary_10_32604_csse_2023_030385 crossref_primary_10_1145_3580393 crossref_primary_10_1186_s40537_024_00946_1 crossref_primary_10_1007_s10489_023_05040_2 crossref_primary_10_1007_s11280_024_01322_y crossref_primary_10_1093_jamia_ocaf037 crossref_primary_10_1016_j_tjpad_2024_100002 crossref_primary_10_1016_j_artmed_2021_102086 crossref_primary_10_1016_j_health_2022_100078 crossref_primary_10_1016_j_artmed_2023_102661 crossref_primary_10_1016_j_artmed_2023_102662 crossref_primary_10_1371_journal_pone_0253905 crossref_primary_10_1016_j_artmed_2022_102380 crossref_primary_10_1371_journal_pone_0246310 crossref_primary_10_1016_j_artmed_2023_102667 crossref_primary_10_1186_s13040_024_00371_3 crossref_primary_10_3389_fphar_2022_1020759 crossref_primary_10_1093_bib_bbaa296 crossref_primary_10_1093_jamia_ocab090 crossref_primary_10_1038_s41597_024_03793_0 crossref_primary_10_1093_bioinformatics_btac721 crossref_primary_10_1186_s12911_023_02328_8 crossref_primary_10_1016_j_farma_2024_04_001 crossref_primary_10_1021_acssuschemeng_3c03162 crossref_primary_10_1186_s12859_021_04551_4 crossref_primary_10_1038_s41598_025_93334_5 crossref_primary_10_1093_database_baae125 crossref_primary_10_3390_make4010012 crossref_primary_10_1145_3510033 crossref_primary_10_2196_60601 crossref_primary_10_3389_fpsyt_2022_946387 crossref_primary_10_1186_s13643_023_02247_9 crossref_primary_10_3390_informatics7010003 crossref_primary_10_1038_s41597_025_04417_x crossref_primary_10_1016_j_chbr_2025_100652 crossref_primary_10_1186_s12859_020_03834_6 crossref_primary_10_1016_j_heliyon_2024_e26973 crossref_primary_10_1016_j_jbi_2023_104392 crossref_primary_10_1016_j_simpa_2023_100543 crossref_primary_10_1007_s11063_022_11102_2 crossref_primary_10_1186_s12911_022_01967_7 crossref_primary_10_3390_ai3010013 crossref_primary_10_1155_2022_6334435 crossref_primary_10_1007_s12559_023_10112_z crossref_primary_10_1109_ACCESS_2021_3102685 crossref_primary_10_1016_j_eswa_2023_122964 crossref_primary_10_1093_jamia_ocae122 crossref_primary_10_3390_sym16050587 crossref_primary_10_1109_TCBB_2022_3157630 crossref_primary_10_3389_frma_2021_688353 crossref_primary_10_1016_j_jbi_2020_103451 crossref_primary_10_1016_j_jbi_2020_103452 crossref_primary_10_1007_s00167_022_07272_0 crossref_primary_10_1021_acs_jcim_4c01647 crossref_primary_10_1007_s00530_020_00710_4 crossref_primary_10_1016_j_csbj_2022_08_041 crossref_primary_10_2196_51711 crossref_primary_10_7717_peerj_cs_559 crossref_primary_10_1093_bib_bbac404 crossref_primary_10_2196_23230 crossref_primary_10_1111_ggi_14709 crossref_primary_10_32604_iasc_2022_028352 crossref_primary_10_1016_j_eswa_2025_126651 crossref_primary_10_1093_bib_bbac409 crossref_primary_10_1093_bioinformatics_btad603 crossref_primary_10_1093_ehjdh_ztae008 crossref_primary_10_1016_j_ccrj_2024_06_008 crossref_primary_10_1186_s13040_022_00311_z crossref_primary_10_1016_j_compbiomed_2024_109576 crossref_primary_10_1007_s10506_025_09437_x crossref_primary_10_1021_acs_jcim_4c00765 crossref_primary_10_1016_j_copbio_2020_09_002 crossref_primary_10_1093_jamia_ocae144 crossref_primary_10_1007_s42979_022_01415_3 crossref_primary_10_1109_TKDE_2023_3327777 crossref_primary_10_1093_jamia_ocae147 crossref_primary_10_1016_j_compmedimag_2024_102339 crossref_primary_10_3390_jimaging8050131 crossref_primary_10_1007_s10916_024_02090_y crossref_primary_10_1016_j_jbi_2021_103717 crossref_primary_10_1016_j_ipm_2024_103678 crossref_primary_10_2196_26777 crossref_primary_10_3390_make4030030 crossref_primary_10_1109_ACCESS_2023_3295776 crossref_primary_10_1038_s41597_023_02869_7 crossref_primary_10_3390_app9194062 crossref_primary_10_1109_JBHI_2021_3133103 crossref_primary_10_3390_app14198652 crossref_primary_10_1360_SSV_2022_0298 crossref_primary_10_1371_journal_pone_0282882 crossref_primary_10_1021_acs_jproteome_4c00535 crossref_primary_10_1016_j_jbi_2021_103728 crossref_primary_10_1038_s41598_022_17806_8 crossref_primary_10_1016_j_pbi_2024_102665 crossref_primary_10_1016_j_jbi_2020_103422 crossref_primary_10_2147_PGPM_S396971 crossref_primary_10_1021_jacsau_4c01160 crossref_primary_10_2196_29398 crossref_primary_10_1016_j_compbiomed_2024_109598 crossref_primary_10_1109_JBHI_2024_3450118 crossref_primary_10_3390_app12125775 crossref_primary_10_1016_j_jbi_2022_104073 crossref_primary_10_1007_s00432_023_04824_w crossref_primary_10_1109_ACCESS_2020_3039182 crossref_primary_10_1109_ACCESS_2023_3235265 crossref_primary_10_1148_ryai_210258 crossref_primary_10_1016_j_joen_2024_02_011 crossref_primary_10_1016_j_knosys_2025_113017 crossref_primary_10_1007_s41060_022_00310_7 crossref_primary_10_1109_JBHI_2024_3368288 crossref_primary_10_2196_48904 crossref_primary_10_1186_s12874_022_01665_y crossref_primary_10_1093_jamia_ocad216 crossref_primary_10_1016_j_ipm_2023_103367 crossref_primary_10_1093_jamia_ocaa189 crossref_primary_10_1186_s12911_021_01395_z crossref_primary_10_1111_bjet_13288 crossref_primary_10_1016_j_artmed_2024_102985 crossref_primary_10_1186_s12859_022_04768_x crossref_primary_10_1186_s44342_024_00036_x crossref_primary_10_1016_j_jbi_2024_104624 crossref_primary_10_1161_JAHA_123_030046 crossref_primary_10_1016_j_compbiomed_2024_109127 crossref_primary_10_1016_j_cosrev_2022_100511 crossref_primary_10_1016_j_jbi_2022_104062 crossref_primary_10_1016_j_jbi_2023_104361 crossref_primary_10_1371_journal_pone_0305475 crossref_primary_10_1109_ACCESS_2025_3532308 crossref_primary_10_1038_s41598_022_20474_3 crossref_primary_10_1145_3564275 crossref_primary_10_1109_TITS_2024_3373507 crossref_primary_10_1200_CCI_23_00148 crossref_primary_10_2196_42379 crossref_primary_10_1016_j_artmed_2024_102970 crossref_primary_10_1109_TASLP_2022_3178204 crossref_primary_10_3389_fmolb_2023_1136071 crossref_primary_10_1109_JBHI_2022_3217810 crossref_primary_10_1016_j_ipm_2023_103352 crossref_primary_10_1080_17543266_2024_2375654 crossref_primary_10_1016_j_jbi_2023_104370 crossref_primary_10_1088_1742_6596_1651_1_012108 crossref_primary_10_1002_cam4_6523 crossref_primary_10_1007_s10796_022_10295_0 crossref_primary_10_3390_ijerph19042173 crossref_primary_10_3390_computers14020036 crossref_primary_10_1093_jamiaopen_ooac087 crossref_primary_10_3389_fcomp_2021_672867 crossref_primary_10_1016_j_ijmedinf_2021_104464 crossref_primary_10_3389_frai_2023_1072329 crossref_primary_10_3390_app122412942 crossref_primary_10_1016_j_eswa_2024_125096 crossref_primary_10_1109_TNSM_2022_3192756 crossref_primary_10_1093_jamia_ocab014 crossref_primary_10_1186_s12859_021_04200_w crossref_primary_10_3389_fgene_2022_867946 crossref_primary_10_1016_j_artmed_2024_102965 crossref_primary_10_1109_JSTSP_2022_3197315 crossref_primary_10_1093_database_baab005 crossref_primary_10_1007_s10115_023_01918_2 crossref_primary_10_3390_ani15060822 crossref_primary_10_1093_bioinformatics_btab474 crossref_primary_10_1109_TKDE_2023_3310002 crossref_primary_10_1016_j_jbi_2023_104382 crossref_primary_10_1016_j_jbi_2023_104384 crossref_primary_10_3390_app12030976 crossref_primary_10_1016_j_jss_2024_111961 crossref_primary_10_3390_biochem1020007 crossref_primary_10_1016_j_ijmedinf_2024_105380 crossref_primary_10_1186_s12859_022_04590_5 crossref_primary_10_1186_s12859_024_05949_6 crossref_primary_10_1109_ACCESS_2020_3040182 crossref_primary_10_1200_CCI_23_00166 crossref_primary_10_3390_app122211709 crossref_primary_10_1016_j_jbi_2023_104317 crossref_primary_10_1007_s11042_024_19209_5 crossref_primary_10_1016_j_jbi_2023_104318 crossref_primary_10_1016_j_artmed_2024_102951 crossref_primary_10_1016_j_jbi_2024_104676 crossref_primary_10_1016_j_jbi_2024_104674 crossref_primary_10_2196_37817 crossref_primary_10_1093_database_baaa104 crossref_primary_10_3389_fnut_2024_1429259 crossref_primary_10_1016_j_ijmedinf_2022_104724 crossref_primary_10_1016_j_jbi_2022_104035 crossref_primary_10_1007_s11227_023_05619_z crossref_primary_10_1016_j_asoc_2022_109251 crossref_primary_10_1016_j_farma_2024_02_007 crossref_primary_10_1016_j_heliyon_2023_e16819 crossref_primary_10_1016_j_heliyon_2023_e16818 crossref_primary_10_12688_f1000research_24552_1 crossref_primary_10_1109_ACCESS_2020_3018688 crossref_primary_10_3390_app122312012 crossref_primary_10_1016_j_measurement_2023_114032 crossref_primary_10_1186_s13326_024_00304_3 crossref_primary_10_1093_jamia_ocad259 crossref_primary_10_1093_bioinformatics_btab019 crossref_primary_10_1093_jamia_ocad256 crossref_primary_10_1016_j_jbi_2024_104668 crossref_primary_10_1017_rsm_2025_1 crossref_primary_10_1093_jamia_ocab077 crossref_primary_10_1117_1_JEI_33_4_043021 crossref_primary_10_3389_frai_2024_1408843 crossref_primary_10_7759_cureus_39305 crossref_primary_10_1109_OJCOMS_2024_3456549 crossref_primary_10_1017_rsm_2025_3 crossref_primary_10_3390_lubricants10020018 crossref_primary_10_1109_ACCESS_2023_3279205 crossref_primary_10_1021_acs_iecr_4c03293 crossref_primary_10_2196_44597 crossref_primary_10_3389_fdgth_2025_1495040 crossref_primary_10_1007_s12553_021_00607_w crossref_primary_10_1016_j_artmed_2022_102311 crossref_primary_10_1109_ACCESS_2023_3266377 crossref_primary_10_1093_biostatistics_kxae028 crossref_primary_10_1053_j_ackd_2022_07_001 crossref_primary_10_1098_rspb_2024_0423 crossref_primary_10_1186_s12864_020_07315_1 crossref_primary_10_1002_jrsm_1533 crossref_primary_10_1016_j_jbi_2024_104658 crossref_primary_10_2196_57400 crossref_primary_10_1016_j_artmed_2023_102611 crossref_primary_10_1038_s41598_025_87722_0 crossref_primary_10_1007_s11227_024_06776_5 crossref_primary_10_1002_mef2_43 crossref_primary_10_1111_ejn_15854 crossref_primary_10_1016_j_jbi_2022_104050 crossref_primary_10_1016_j_procs_2022_09_122 crossref_primary_10_5715_jnlp_31_707 crossref_primary_10_1186_s12859_022_05096_w crossref_primary_10_1093_bioinformatics_btad689 crossref_primary_10_1186_s12911_023_02398_8 crossref_primary_10_1186_s13321_022_00633_4 crossref_primary_10_1016_j_ajpath_2022_07_012 crossref_primary_10_1109_ACCESS_2024_3504378 crossref_primary_10_1016_j_knosys_2025_113079 crossref_primary_10_1109_TCBB_2023_3318209 crossref_primary_10_2196_22333 crossref_primary_10_2139_ssrn_4138310 crossref_primary_10_1002_smtd_202301243 crossref_primary_10_1093_jamiaopen_ooac043 crossref_primary_10_1186_s12859_022_05083_1 crossref_primary_10_7717_peerj_cs_2662 crossref_primary_10_1038_s41467_022_29993_z crossref_primary_10_1148_ryai_220007 crossref_primary_10_1186_s12911_021_01614_7 crossref_primary_10_1007_s12021_022_09571_w crossref_primary_10_1038_s41598_024_73338_3 crossref_primary_10_1371_journal_pone_0290899 crossref_primary_10_1016_j_jocs_2024_102393 crossref_primary_10_2196_37804 crossref_primary_10_1016_j_jbi_2024_104640 crossref_primary_10_3390_electronics12153281 crossref_primary_10_1016_j_jclinepi_2021_01_010 crossref_primary_10_1371_journal_pone_0303231 crossref_primary_10_1038_s41540_024_00343_7 crossref_primary_10_1145_3674501 crossref_primary_10_1093_comjnl_bxad051 crossref_primary_10_1109_TCBB_2021_3086090 crossref_primary_10_3389_frma_2021_691105 crossref_primary_10_1007_s13369_024_09409_4 crossref_primary_10_1021_acs_jcim_1c00284 crossref_primary_10_3390_electronics13071395 crossref_primary_10_1016_j_knosys_2023_110675 crossref_primary_10_3389_fpsyg_2022_865841 crossref_primary_10_3390_asi4010023 crossref_primary_10_3390_prosthesis4010012 crossref_primary_10_1056_AIoa2300068 crossref_primary_10_1200_CCI_23_00122 crossref_primary_10_2196_48933 crossref_primary_10_1186_s13321_020_00461_4 crossref_primary_10_3390_healthcare10112270 crossref_primary_10_1038_s41598_025_94085_z crossref_primary_10_1109_TR_2023_3330733 crossref_primary_10_2196_51240 crossref_primary_10_1002_etc_5634 crossref_primary_10_2196_56932 crossref_primary_10_1093_bioinformatics_btad103 crossref_primary_10_2106_JBJS_23_00473 crossref_primary_10_3390_ijerph19105893 crossref_primary_10_1038_s41578_024_00754_2 crossref_primary_10_1109_TEM_2023_3327209 crossref_primary_10_3390_electronics9091364 crossref_primary_10_12677_sa_2025_142041 crossref_primary_10_1016_j_inffus_2023_102069 crossref_primary_10_1007_s00500_022_07573_z crossref_primary_10_1109_ACCESS_2024_3405997 crossref_primary_10_3390_biomedinformatics4020062 crossref_primary_10_1155_2021_5551318 crossref_primary_10_1016_j_schres_2024_07_016 crossref_primary_10_3322_caac_21608 crossref_primary_10_3390_app14062571 crossref_primary_10_1088_1742_6596_1646_1_012072 crossref_primary_10_1016_j_crmeth_2024_100707 crossref_primary_10_1109_TPAMI_2022_3211006 crossref_primary_10_1016_j_ipm_2023_103408 crossref_primary_10_1186_s41239_022_00353_7 crossref_primary_10_1186_s12859_021_04176_7 crossref_primary_10_1038_s41598_024_67114_6 crossref_primary_10_1109_TCE_2024_3419447 crossref_primary_10_1371_journal_pdig_0000409 crossref_primary_10_3233_IDT_230129 crossref_primary_10_3390_biom11111591 crossref_primary_10_7717_peerj_cs_2222 crossref_primary_10_1109_ACCESS_2023_3289863 crossref_primary_10_3389_frai_2022_970517 crossref_primary_10_1016_j_hfc_2021_12_002 crossref_primary_10_1109_ACCESS_2022_3164098 crossref_primary_10_1016_j_jma_2024_08_010 crossref_primary_10_1016_j_wneu_2025_123808 crossref_primary_10_1016_j_iswa_2022_200150 crossref_primary_10_1016_j_cie_2021_107236 crossref_primary_10_1016_j_gep_2022_119261 crossref_primary_10_1109_MSMC_2024_3417910 crossref_primary_10_1038_s41746_024_01219_0 crossref_primary_10_1016_j_bvth_2025_100052 crossref_primary_10_3390_agriculture11100912 crossref_primary_10_2478_ijanmc_2024_0039 crossref_primary_10_5715_jnlp_31_1563 crossref_primary_10_1038_s41592_024_02354_y crossref_primary_10_1016_j_neucom_2024_127881 crossref_primary_10_1016_j_neucom_2022_09_081 crossref_primary_10_1186_s12859_023_05350_9 crossref_primary_10_1145_3497842 crossref_primary_10_1016_j_eswa_2024_123657 crossref_primary_10_1016_j_is_2025_102539 crossref_primary_10_1109_ACCESS_2023_3251664 crossref_primary_10_1093_bioinformatics_btac297 crossref_primary_10_1007_s40747_023_01228_8 crossref_primary_10_1007_s10115_022_01665_w crossref_primary_10_3390_bioengineering12030308 crossref_primary_10_1109_JBHI_2021_3110805 crossref_primary_10_1016_j_ecoenv_2024_116671 crossref_primary_10_1038_s41746_024_01339_7 crossref_primary_10_1371_journal_pdig_0000416 crossref_primary_10_1007_s10579_024_09754_8 crossref_primary_10_1007_s10462_024_10834_y crossref_primary_10_1016_j_cherd_2022_05_018 crossref_primary_10_1016_j_imu_2022_101109 crossref_primary_10_1371_journal_pone_0273476 crossref_primary_10_1038_s43856_023_00370_1 crossref_primary_10_2139_ssrn_4145954 crossref_primary_10_1148_ryai_210185 crossref_primary_10_1148_rycan_240038 crossref_primary_10_1016_j_compbiomed_2023_106683 crossref_primary_10_1016_j_imed_2022_03_003 crossref_primary_10_1016_j_is_2021_101718 crossref_primary_10_1007_s11277_021_09323_0 crossref_primary_10_1109_JIOT_2024_3421918 crossref_primary_10_3390_ijms252111811 crossref_primary_10_2147_POR_S468253 crossref_primary_10_1371_journal_pone_0276539 crossref_primary_10_1093_bioinformatics_btad169 crossref_primary_10_1093_nar_gkad1071 crossref_primary_10_3390_bdcc7020085 crossref_primary_10_1016_j_asoc_2023_110498 crossref_primary_10_1016_j_jpi_2022_100003 crossref_primary_10_2174_0115748936278299231213045441 crossref_primary_10_1093_bioinformatics_btad174 crossref_primary_10_1093_bioinformatics_btae021 crossref_primary_10_1016_j_neunet_2024_106672 crossref_primary_10_1016_j_softx_2024_101670 crossref_primary_10_1186_s12859_021_04141_4 crossref_primary_10_1186_s12911_021_01618_3 crossref_primary_10_1007_s10278_022_00666_z crossref_primary_10_5715_jnlp_30_507 crossref_primary_10_3390_app13169338 crossref_primary_10_1016_j_asoc_2021_107975 crossref_primary_10_3390_math11030623 crossref_primary_10_1093_bib_bbaf025 crossref_primary_10_1109_TASLP_2021_3105013 crossref_primary_10_1016_j_jiph_2021_01_019 crossref_primary_10_3390_app122111250 crossref_primary_10_1016_j_sasc_2024_200075 crossref_primary_10_1007_s10489_024_05282_8 crossref_primary_10_1016_j_imu_2022_101139 crossref_primary_10_1002_cns3_5 crossref_primary_10_1109_TVCG_2022_3219762 crossref_primary_10_1038_s41467_023_36476_2 crossref_primary_10_22363_2658_4670_2023_31_1_64_74 crossref_primary_10_1016_j_eswa_2023_121186 crossref_primary_10_3390_jpm12050768 crossref_primary_10_1016_j_infsof_2023_107302 crossref_primary_10_1145_3663481 crossref_primary_10_1007_s10896_023_00517_7 crossref_primary_10_1016_j_dss_2022_113832 crossref_primary_10_1080_10572252_2022_2077452 crossref_primary_10_1186_s12859_022_05035_9 crossref_primary_10_1109_ACCESS_2025_3546131 crossref_primary_10_2196_27527 crossref_primary_10_3390_healthcare10040618 crossref_primary_10_1016_j_patrec_2021_08_009 crossref_primary_10_1038_s42256_023_00670_0 crossref_primary_10_1007_s12265_022_10260_x crossref_primary_10_1016_j_aiopen_2024_08_002 crossref_primary_10_3390_ai4010016 crossref_primary_10_1016_j_procs_2023_10_644 crossref_primary_10_1080_03610918_2024_2331083 crossref_primary_10_1145_3627820 crossref_primary_10_1016_j_isci_2024_109393 crossref_primary_10_1016_j_knosys_2024_112682 crossref_primary_10_1038_s41598_024_73561_y crossref_primary_10_1109_TAI_2024_3364586 crossref_primary_10_1063_5_0238090 crossref_primary_10_1186_s12859_021_04435_7 crossref_primary_10_1021_acs_jpcc_4c01974 crossref_primary_10_1136_jitc_2023_007841 crossref_primary_10_1371_journal_pcbi_1008967 crossref_primary_10_1093_nar_gkab1079 crossref_primary_10_1109_TMI_2024_3429471 crossref_primary_10_3390_ai4010004 crossref_primary_10_3390_app122111220 crossref_primary_10_1007_s11280_022_01013_6 crossref_primary_10_1186_s12859_021_04511_y crossref_primary_10_1007_s11042_023_14981_2 crossref_primary_10_1016_j_jtumed_2022_12_015 crossref_primary_10_1038_s41591_024_03233_x crossref_primary_10_3233_SW_223085 crossref_primary_10_18287_2223_9537_2023_13_2_282_293 crossref_primary_10_1002_asi_24612 crossref_primary_10_3934_mbe_2023047 crossref_primary_10_1109_ACCESS_2021_3108445 crossref_primary_10_2196_49771 crossref_primary_10_1109_TCBB_2021_3135844 crossref_primary_10_1093_bib_bbae132 crossref_primary_10_1038_s41746_024_01276_5 crossref_primary_10_3390_diagnostics12040887 crossref_primary_10_1016_j_jare_2025_02_011 crossref_primary_10_1016_j_procs_2023_08_150 crossref_primary_10_1109_JBHI_2022_3221988 crossref_primary_10_1080_10903127_2024_2352583 crossref_primary_10_1109_ACCESS_2024_3406426 crossref_primary_10_3390_a17040144 crossref_primary_10_1021_acs_energyfuels_4c01247 crossref_primary_10_1155_2021_6633213 crossref_primary_10_1007_s12028_022_01513_3 crossref_primary_10_2196_24020 crossref_primary_10_3389_fdgth_2021_779091 crossref_primary_10_1145_3689629 crossref_primary_10_3390_v14122761 crossref_primary_10_1016_j_heliyon_2023_e21723 crossref_primary_10_1016_j_artmed_2024_103002 crossref_primary_10_3390_electronics13091753 crossref_primary_10_1016_j_artmed_2024_103003 crossref_primary_10_2217_fmai_2024_0001 crossref_primary_10_1007_s10669_021_09830_2 crossref_primary_10_1016_j_jbi_2022_103985 crossref_primary_10_1093_bib_bbad236 crossref_primary_10_1093_bib_bbad235 crossref_primary_10_1371_journal_pone_0308155 crossref_primary_10_3389_fpubh_2025_1540946 crossref_primary_10_1017_S1351324923000335 crossref_primary_10_1186_s12859_023_05439_1 crossref_primary_10_1007_s11704_022_1563_1 crossref_primary_10_1093_bib_bbad226 crossref_primary_10_1093_bioadv_vbac035 crossref_primary_10_1098_rsta_2021_0125 crossref_primary_10_1152_physiolgenomics_00011_2024 crossref_primary_10_1016_j_knosys_2024_111395 crossref_primary_10_3390_info10080248 crossref_primary_10_3390_electronics13234618 crossref_primary_10_1002_sim_10148 crossref_primary_10_1016_j_aei_2020_101235 crossref_primary_10_1016_j_neucom_2021_05_103 crossref_primary_10_1093_nar_gkaa979 crossref_primary_10_1109_ACCESS_2024_3427369 crossref_primary_10_2196_30753 crossref_primary_10_3390_app11031090 crossref_primary_10_36535_0203_6460_2021_01_4 crossref_primary_10_1093_bib_bbae548 crossref_primary_10_1371_journal_pone_0317042 crossref_primary_10_1186_s12859_022_04994_3 crossref_primary_10_1016_S2589_7500_24_00114_6 crossref_primary_10_1017_S1351324921000322 crossref_primary_10_1182_bloodadvances_2023012200 crossref_primary_10_1016_j_jbi_2021_103683 crossref_primary_10_1109_ACCESS_2021_3083583 crossref_primary_10_3389_fgene_2022_799349 crossref_primary_10_1109_JBHI_2021_3112130 crossref_primary_10_1186_s12911_022_01924_4 crossref_primary_10_2196_17787 crossref_primary_10_1016_j_csbj_2024_09_031 crossref_primary_10_2196_32903 crossref_primary_10_1111_coin_12596 crossref_primary_10_1007_s10489_024_05808_0 crossref_primary_10_1109_TMI_2023_3253760 crossref_primary_10_1145_3641279 crossref_primary_10_1016_j_jbi_2021_103696 crossref_primary_10_1016_j_ins_2024_121759 crossref_primary_10_2196_39547 crossref_primary_10_1016_j_jbi_2022_103999 crossref_primary_10_1186_s12911_023_02239_8 crossref_primary_10_1093_nar_gkaa952 crossref_primary_10_1016_j_engappai_2024_108877 crossref_primary_10_1016_j_jbi_2020_103392 crossref_primary_10_1055_s_0042_1742388 crossref_primary_10_1016_j_compbiomed_2025_109925 crossref_primary_10_3389_fgene_2023_1154198 crossref_primary_10_1186_s12911_020_01227_6 crossref_primary_10_1007_s40747_024_01717_4 |
Cites_doi | 10.18653/v1/W19-1908 10.1371/journal.pone.0065390 10.18653/v1/W19-1909 10.1016/j.compbiomed.2019.04.002 10.1186/s12859-019-2813-6 10.1093/bioinformatics/btx172 10.1186/s12859-015-0472-9 10.1016/j.jbi.2012.04.004 10.1136/amiajnl-2011-000203 10.1093/bioinformatics/btx761 10.1186/gb-2008-9-s2-s2 10.1186/1471-2105-11-85 10.1093/bioinformatics/bty449 10.1016/j.jbi.2013.12.006 10.1186/s12859-015-0564-6 10.1371/journal.pone.0200699 10.1186/1758-2946-7-S1-S2 10.3115/v1/D14-1162 10.1093/database/bay060 10.1093/bioinformatics/btx228 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. 2019 The Author(s) 2019. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. 2019 – notice: The Author(s) 2019. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btz682 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 1240 |
ExternalDocumentID | PMC7703786 31501885 10_1093_bioinformatics_btz682 10.1093/bioinformatics/btz682 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea(NRF) funded by the Korea government grantid: NRF-2017R1A2A1A17069645; NRF-2017M3C4A7065887; NRF-2014M3C9A3063541 – fundername: ; grantid: NRF-2017R1A2A1A17069645; NRF-2017M3C4A7065887; NRF-2014M3C9A3063541 |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 KOP Q5Y RD5 ROX TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c518t-ce9cf7a8b0b0613957c9184da973ce8b6cf192b29b652906bc06be04f3727d683 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 14:01:12 EDT 2025 Fri Jul 11 09:33:11 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Tue Jul 01 02:33:50 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Wed Aug 28 03:17:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-ce9cf7a8b0b0613957c9184da973ce8b6cf192b29b652906bc06be04f3727d683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Jinhyuk Lee and Wonjin Yoon wish it to be known that the first two authors contributed equally. |
ORCID | 0000-0002-0240-6210 0000-0001-7633-1074 0000-0002-8224-8354 0000-0001-6798-9106 0000-0002-6435-548X 0000-0003-4972-239X |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btz682 |
PMID | 31501885 |
PQID | 2288007289 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703786 proquest_miscellaneous_2288007289 pubmed_primary_31501885 crossref_citationtrail_10_1093_bioinformatics_btz682 crossref_primary_10_1093_bioinformatics_btz682 oup_primary_10_1093_bioinformatics_btz682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Doğan (2023013110145762300_btz682-B5) 2014; 47 Pennington (2023013110145762300_btz682-B21) 2014 Mohan (2023013110145762300_btz682-B19) 2019 Uzuner (2023013110145762300_btz682-B30) 2011; 18 Lou (2023013110145762300_btz682-B15) 2017; 33 Sousa (2023013110145762300_btz682-B27) 2019 Krallinger (2023013110145762300_btz682-B10) 2015; 7 Habibi (2023013110145762300_btz682-B8) 2017; 33 Wu (2023013110145762300_btz682-B35) 2016 Li (2023013110145762300_btz682-B12) 2016; 2016 Kim (2023013110145762300_btz682-B9) 2004 McCann (2023013110145762300_btz682-B17) 2017 Bravo (2023013110145762300_btz682-B3) 2015; 16 Giorgi (2023013110145762300_btz682-B7) 2018; 34 Lim (2023013110145762300_btz682-B13) 2018; 2018 Van Mulligen (2023013110145762300_btz682-B31) 2012; 45 Wiese (2023013110145762300_btz682-B34) 2017 Wang (2023013110145762300_btz682-B33) 2018 Devlin (2023013110145762300_btz682-B4) 2019 Sachan (2023013110145762300_btz682-B25) 2018 Xu (2023013110145762300_btz682-B36) 2019; 108 Yoon (2023013110145762300_btz682-B37) 2019; 20 Mikolov (2023013110145762300_btz682-B18) 2013 Pafilis (2023013110145762300_btz682-B20) 2013; 8 Peters (2023013110145762300_btz682-B22) 2018 Rajpurkar (2023013110145762300_btz682-B24) 2016 Sung (2023013110145762300_btz682-B28) 2017 Smith (2023013110145762300_btz682-B26) 2008; 9 Tsatsaronis (2023013110145762300_btz682-B29) 2015; 16 Pyysalo (2023013110145762300_btz682-B23) 2013 Krallinger (2023013110145762300_btz682-B11) 2017 Zhu (2023013110145762300_btz682-B38) 2018 Alsentzer (2023013110145762300_btz682-B1) 2019 Vaswani (2023013110145762300_btz682-B32) 2017 Bhasuran (2023013110145762300_btz682-B2) 2018; 13 Gerner (2023013110145762300_btz682-B6) 2010; 11 Luo (2023013110145762300_btz682-B16) 2018; 34 Lin (2023013110145762300_btz682-B14) 2019 |
References_xml | – start-page: 65 year: 2019 ident: 2023013110145762300_btz682-B14 article-title: A bert-based universal model for both within-and cross-sentence clinical temporal relation extraction publication-title: Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA. doi: 10.18653/v1/W19-1908 – volume: 8 start-page: e65390 year: 2013 ident: 2023013110145762300_btz682-B20 article-title: The species and organisms resources for fast and accurate identification of taxonomic names in text publication-title: PLoS One doi: 10.1371/journal.pone.0065390 – start-page: 72 year: 2019 ident: 2023013110145762300_btz682-B1 article-title: Publicly available clinical bert embeddings publication-title: Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA doi: 10.18653/v1/W19-1909 – year: 2018 ident: 2023013110145762300_btz682-B38 – volume: 108 start-page: 122 year: 2019 ident: 2023013110145762300_btz682-B36 article-title: Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2019.04.002 – volume: 20 start-page: 249 year: 2019 ident: 2023013110145762300_btz682-B37 article-title: Collabonet: collaboration of deep neural networks for biomedical named entity recognition publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2813-6 – volume: 33 start-page: 2363 year: 2017 ident: 2023013110145762300_btz682-B15 article-title: A transition-based joint model for disease named entity recognition and normalization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx172 – volume: 16 start-page: 55 year: 2015 ident: 2023013110145762300_btz682-B3 article-title: Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0472-9 – start-page: 3111 year: 2013 ident: 2023013110145762300_btz682-B18 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in Neural Information Processing Systems 26 – volume: 45 start-page: 879 year: 2012 ident: 2023013110145762300_btz682-B31 article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships publication-title: J. Biomed. Inform doi: 10.1016/j.jbi.2012.04.004 – year: 2004 ident: 2023013110145762300_btz682-B9 – start-page: 4171 year: 2019 ident: 2023013110145762300_btz682-B4 article-title: Bert: pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA – year: 2018 ident: 2023013110145762300_btz682-B22 – volume: 18 start-page: 552 year: 2011 ident: 2023013110145762300_btz682-B30 article-title: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text publication-title: J. Am. Med. Inform. Assoc doi: 10.1136/amiajnl-2011-000203 – year: 2019 ident: 2023013110145762300_btz682-B19 – year: 2016 ident: 2023013110145762300_btz682-B24 – volume: 2016 year: 2016 ident: 2023013110145762300_btz682-B12 article-title: Biocreative V CDR task corpus: a resource for chemical disease relation extraction publication-title: Database – volume: 34 start-page: 1381 year: 2018 ident: 2023013110145762300_btz682-B16 article-title: An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx761 – volume: 9 start-page: S2 year: 2008 ident: 2023013110145762300_btz682-B26 article-title: Overview of biocreative ii gene mention recognition publication-title: Genome Biol doi: 10.1186/gb-2008-9-s2-s2 – year: 2017 ident: 2023013110145762300_btz682-B34 – start-page: 141 year: 2017 ident: 2023013110145762300_btz682-B11 article-title: Overview of the BioCreative VI chemical-protein interaction track publication-title: Proceedings of the BioCreative VI Workshop, Bethesda, MD, USA – start-page: 6294 year: 2017 ident: 2023013110145762300_btz682-B17 article-title: Learned in translation: contextualized word vectors publication-title: Advances in Neural Information Processing Systems 30 – start-page: 1487 year: 2019 ident: 2023013110145762300_btz682-B27 article-title: A silver standard corpus of human phenotype-gene relations publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN – volume: 11 start-page: 85 year: 2010 ident: 2023013110145762300_btz682-B6 article-title: Linnaeus: a species name identification system for biomedical literature publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-85 – start-page: 5998 year: 2017 ident: 2023013110145762300_btz682-B32 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 34 start-page: 4087 year: 2018 ident: 2023013110145762300_btz682-B7 article-title: Transfer learning for biomedical named entity recognition with neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty449 – year: 2017 ident: 2023013110145762300_btz682-B28 – volume: 47 start-page: 1 year: 2014 ident: 2023013110145762300_btz682-B5 article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization publication-title: J. Biomed. Inform doi: 10.1016/j.jbi.2013.12.006 – start-page: 39 year: 2013 ident: 2023013110145762300_btz682-B23 article-title: Distributional semantics resources for biomedical text processing publication-title: Proceedings of the 5th International Symposium on Languages in Biology and Medicine, Tokyo, Japan – volume: 16 start-page: 138 year: 2015 ident: 2023013110145762300_btz682-B29 article-title: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0564-6 – volume: 13 start-page: e0200699 year: 2018 ident: 2023013110145762300_btz682-B2 article-title: Automatic extraction of gene-disease associations from literature using joint ensemble learning publication-title: PLoS One doi: 10.1371/journal.pone.0200699 – volume: 7 year: 2015 ident: 2023013110145762300_btz682-B10 article-title: The chemdner corpus of chemicals and drugs and its annotation principles publication-title: J. Cheminform doi: 10.1186/1758-2946-7-S1-S2 – start-page: 1532 year: 2014 ident: 2023013110145762300_btz682-B21 article-title: Glove: Global vectors for word representation publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar doi: 10.3115/v1/D14-1162 – year: 2018 ident: 2023013110145762300_btz682-B33 – year: 2016 ident: 2023013110145762300_btz682-B35 – volume: 2018 year: 2018 ident: 2023013110145762300_btz682-B13 article-title: Chemical–gene relation extraction using recursive neural network publication-title: Database doi: 10.1093/database/bay060 – volume: 33 start-page: i37 year: 2017 ident: 2023013110145762300_btz682-B8 article-title: Deep learning with word embeddings improves biomedical named entity recognition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx228 – year: 2018 ident: 2023013110145762300_btz682-B25 |
SSID | ssj0051444 ssj0005056 |
Score | 2.7373486 |
Snippet | Abstract
Motivation
Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural... Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1234 |
SubjectTerms | Original Papers |
Title | BioBERT: a pre-trained biomedical language representation model for biomedical text mining |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31501885 https://www.proquest.com/docview/2288007289 https://pubmed.ncbi.nlm.nih.gov/PMC7703786 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jIHgRv61fRPDioa5rmjT1prIxBBVkg-GlNGmKA-1Eu4P-9b7XtHMdiHootDQJaV77Ppr3fj9CTkHncSSudlPNMzcAg-xGSRq4mY8GNlWBKLMqb-_EYBTcjPm4Rby6FmZ5Cz9iHTWZViCiCFzcUcWnkKh0wRAjWP7wfvyd0-EhMoy9AE8gsJS2iOwtPVbX7_w0ZMMyNardFpzO5dzJBWPUXydrlRdJL63YN0jL5JtkxfJKfmyRRzi76j0ML2hCMc2j5IEwKbW19igWWv-npCWqZV2BlNOSGYfCpBcbY3YIfSmpJLbJqN8bXg_cikTB1bwrC1ebSGdhIpWn0HRHPNQRRHVpEoVMG6mEzsDJU36kBEfod6XhMF6QMfBsUiHZDmnn09zsEcpEFqBH3kXAnSw0inOlRMo8A0ZeSOOQoF7AWFcI4_iAz7Hd6WZxc91ju-4OOZ93e7UQG791OAPp_LXtSS3DGD4c3A1JcjOdvce-D6rLCyHgdMiulel8SNZFnEPJHRI2pD1vgKDczTv55KkE5w5BhYZS7P9jjgdk1ccoHmlm-CFpF28zcwSuTqGOy9f7CxV0AfQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioBERT%3A+a+pre-trained+biomedical+language+representation+model+for+biomedical+text+mining&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Lee%2C+Jinhyuk&rft.au=Yoon%2C+Wonjin&rft.au=Kim%2C+Sungdong&rft.au=Kim%2C+Donghyeon&rft.date=2020-02-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=4&rft.spage=1234&rft.epage=1240&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz682&rft_id=info%3Apmid%2F31501885&rft.externalDocID=PMC7703786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |