BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep lear...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 4; pp. 1234 - 1240
Main Authors Lee, Jinhyuk, Yoon, Wonjin, Kim, Sungdong, Kim, Donghyeon, Kim, Sunkyu, So, Chan Ho, Kang, Jaewoo
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. Results We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. Availability and implementation We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.
AbstractList Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora.MOTIVATIONBiomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora.We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts.RESULTSWe introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts.We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.AVAILABILITY AND IMPLEMENTATIONWe make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.
Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.
Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. Results We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. Availability and implementation We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.
Author Lee, Jinhyuk
Kim, Sungdong
Kim, Donghyeon
Kim, Sunkyu
So, Chan Ho
Yoon, Wonjin
Kang, Jaewoo
AuthorAffiliation 2 Clova AI Research, Naver Corp , Seong-Nam 13561, Korea
1 Department of Computer Science and Engineering, Korea University , Seoul 02841, Korea
3 Interdisciplinary Graduate Program in Bioinformatics, Korea University , Seoul 02841, Korea
AuthorAffiliation_xml – name: 3 Interdisciplinary Graduate Program in Bioinformatics, Korea University , Seoul 02841, Korea
– name: 2 Clova AI Research, Naver Corp , Seong-Nam 13561, Korea
– name: 1 Department of Computer Science and Engineering, Korea University , Seoul 02841, Korea
Author_xml – sequence: 1
  givenname: Jinhyuk
  orcidid: 0000-0003-4972-239X
  surname: Lee
  fullname: Lee, Jinhyuk
  organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
– sequence: 2
  givenname: Wonjin
  orcidid: 0000-0002-6435-548X
  surname: Yoon
  fullname: Yoon, Wonjin
  organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
– sequence: 3
  givenname: Sungdong
  orcidid: 0000-0002-0240-6210
  surname: Kim
  fullname: Kim, Sungdong
  organization: Clova AI Research, Naver Corp, Seong-Nam 13561, Korea
– sequence: 4
  givenname: Donghyeon
  orcidid: 0000-0002-8224-8354
  surname: Kim
  fullname: Kim, Donghyeon
  organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
– sequence: 5
  givenname: Sunkyu
  orcidid: 0000-0002-0240-6210
  surname: Kim
  fullname: Kim, Sunkyu
  organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
– sequence: 6
  givenname: Chan Ho
  orcidid: 0000-0001-7633-1074
  surname: So
  fullname: So, Chan Ho
  organization: Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul 02841, Korea
– sequence: 7
  givenname: Jaewoo
  orcidid: 0000-0001-6798-9106
  surname: Kang
  fullname: Kang, Jaewoo
  email: kangj@korea.ac.kr
  organization: Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31501885$$D View this record in MEDLINE/PubMed
BookMark eNqNUctKHjEUDmLx2kewzLKb0ZNkJhcLBRV7AUEQ3XQTkkzmN2Um-ZvMlLZPb2S0qBtdhATOd8t3dtFmiMEhdIDhEIOkR8ZHH_qYRj15m4_M9I8JsoF2cMOgJtDKzfKmjNeNALqNdnP-CdDipmm20DbFLWAh2h3049TH0_Or6-NKV-vk6ilpH1xXFfnRdd7qoRp0WM165arkCiK7MBXLGKoxdm6oSoSn4Mn9marRBx9W--hdr4fs3j_ce-jmy_n12bf64vLr97OTi9q2WEy1ddL2XAsDBhimsuVWYtF0WnJqnTDM9lgSQ6RhLZHAjC3HQdNTTnjHBN1Dnxfd9WxKDFsCJj2odfKjTn9V1F49nwR_q1bxt-IcKBesCHx8EEjx1-zypEafrRvKx12csyJECABOhCzQD0-9_ps8FloAnxaATTHn5Hpl_dLXfbODwqDu16eer08t6yvs9gX70eA1Hiy8OK_fSLkDklq5-A
CitedBy_id crossref_primary_10_1145_3546580
crossref_primary_10_3390_app12010154
crossref_primary_10_1016_j_ijmedinf_2022_104805
crossref_primary_10_3390_electronics13234775
crossref_primary_10_1186_s12859_021_04421_z
crossref_primary_10_3390_bioengineering11030263
crossref_primary_10_3390_computation13020030
crossref_primary_10_1186_s12911_020_01131_z
crossref_primary_10_1038_s41598_025_90450_0
crossref_primary_10_3390_electronics14020328
crossref_primary_10_1007_s00521_022_07228_y
crossref_primary_10_1093_database_baac056
crossref_primary_10_1093_bib_bbad427
crossref_primary_10_1093_database_baac058
crossref_primary_10_1177_03331024241251488
crossref_primary_10_1016_j_neucom_2025_129752
crossref_primary_10_1371_journal_pone_0257361
crossref_primary_10_1093_jamia_ocae045
crossref_primary_10_2174_1574893618666230707123817
crossref_primary_10_1016_j_ijmedinf_2020_104234
crossref_primary_10_1186_s12864_024_10978_9
crossref_primary_10_1016_j_compbiomed_2022_105933
crossref_primary_10_1016_j_eswa_2022_117166
crossref_primary_10_1093_database_baac043
crossref_primary_10_1186_s13326_021_00247_z
crossref_primary_10_1093_bioinformatics_btaa1087
crossref_primary_10_1093_database_baac047
crossref_primary_10_1093_jamia_ocae054
crossref_primary_10_1007_s42979_022_01295_7
crossref_primary_10_1109_ACCESS_2021_3115617
crossref_primary_10_2196_49724
crossref_primary_10_3174_ajnr_A7241
crossref_primary_10_1016_j_heliyon_2024_e32279
crossref_primary_10_2196_60503
crossref_primary_10_1038_s41597_022_01533_w
crossref_primary_10_1155_2021_7181815
crossref_primary_10_1007_s00521_024_09454_y
crossref_primary_10_1016_j_jbi_2021_103888
crossref_primary_10_3389_fdata_2022_965619
crossref_primary_10_1016_j_artmed_2023_102535
crossref_primary_10_1186_s13326_022_00262_8
crossref_primary_10_1097_GCO_0000000000000951
crossref_primary_10_2196_59505
crossref_primary_10_1016_j_jbi_2021_103880
crossref_primary_10_1093_bib_bbad451
crossref_primary_10_1016_j_heliyon_2024_e26831
crossref_primary_10_5715_jnlp_29_294
crossref_primary_10_1007_s13042_024_02496_7
crossref_primary_10_1016_j_jclinepi_2022_04_027
crossref_primary_10_1093_jamia_ocae061
crossref_primary_10_1177_00236772241237608
crossref_primary_10_2139_ssrn_4595975
crossref_primary_10_2196_23101
crossref_primary_10_3390_app122110987
crossref_primary_10_3103_S0027134924702291
crossref_primary_10_2215_CJN_0000000000000081
crossref_primary_10_1093_jamia_ocae065
crossref_primary_10_1093_database_baac070
crossref_primary_10_1093_jamia_ocae069
crossref_primary_10_3390_fi15020079
crossref_primary_10_1093_database_baac074
crossref_primary_10_1002_wics_1549
crossref_primary_10_1016_j_phrs_2022_106185
crossref_primary_10_1016_j_jbi_2021_103893
crossref_primary_10_1145_3617833
crossref_primary_10_1016_j_jbi_2021_103898
crossref_primary_10_1007_s11042_023_15080_y
crossref_primary_10_1108_EL_02_2023_0050
crossref_primary_10_1109_TASLPRO_2025_3536177
crossref_primary_10_1186_s12859_022_04810_y
crossref_primary_10_1093_database_baac067
crossref_primary_10_1093_jamia_ocae071
crossref_primary_10_1093_database_baac066
crossref_primary_10_1016_j_engappai_2025_110096
crossref_primary_10_1093_jamia_ocae074
crossref_primary_10_1371_journal_pdig_0000086
crossref_primary_10_1007_s11596_024_2960_5
crossref_primary_10_1093_jamia_ocae078
crossref_primary_10_1186_s12859_023_05520_9
crossref_primary_10_1287_isre_2022_1111
crossref_primary_10_1016_j_jbi_2021_103865
crossref_primary_10_2196_37770
crossref_primary_10_3390_informatics11030057
crossref_primary_10_3390_app13085163
crossref_primary_10_1016_j_knosys_2022_109460
crossref_primary_10_1016_j_jbi_2020_103581
crossref_primary_10_1093_bioinformatics_btaa674
crossref_primary_10_1111_bcp_14784
crossref_primary_10_1093_bioinformatics_btaa675
crossref_primary_10_3389_frai_2024_1460065
crossref_primary_10_1016_j_neucom_2024_129035
crossref_primary_10_1109_TLT_2023_3240715
crossref_primary_10_1186_s12859_023_05172_9
crossref_primary_10_1016_j_jacr_2024_01_012
crossref_primary_10_1016_j_jbi_2021_103872
crossref_primary_10_1109_JSTARS_2024_3383854
crossref_primary_10_1093_bioinformatics_btad716
crossref_primary_10_1016_j_engappai_2023_106212
crossref_primary_10_1016_j_jbi_2020_103578
crossref_primary_10_1016_j_jbi_2020_103579
crossref_primary_10_2174_1386207326666230508113036
crossref_primary_10_1109_JBHI_2024_3358169
crossref_primary_10_3390_app13085178
crossref_primary_10_1109_RBME_2024_3496744
crossref_primary_10_1007_s40593_023_00373_y
crossref_primary_10_1093_hr_uhae082
crossref_primary_10_1007_s00371_024_03579_w
crossref_primary_10_1155_2022_3524090
crossref_primary_10_3934_mbe_2020200
crossref_primary_10_1186_s44247_023_00029_w
crossref_primary_10_1093_bib_bbaa344
crossref_primary_10_34133_hds_0078
crossref_primary_10_3390_s23094250
crossref_primary_10_1093_jamia_ocae015
crossref_primary_10_1186_s12911_024_02825_4
crossref_primary_10_1016_j_addr_2022_114172
crossref_primary_10_14778_3421424_3421431
crossref_primary_10_1007_s40264_023_01323_2
crossref_primary_10_1007_s10278_022_00692_x
crossref_primary_10_1002_acm2_13597
crossref_primary_10_2139_ssrn_4088406
crossref_primary_10_3390_app12199781
crossref_primary_10_1007_s00799_021_00305_y
crossref_primary_10_1016_j_neucom_2020_09_078
crossref_primary_10_1016_j_media_2022_102630
crossref_primary_10_1038_s41467_021_22328_4
crossref_primary_10_3389_frai_2023_1184851
crossref_primary_10_1007_s11192_022_04602_4
crossref_primary_10_1109_TMI_2024_3472672
crossref_primary_10_1016_j_artmed_2023_102586
crossref_primary_10_1016_j_artmed_2023_102587
crossref_primary_10_1186_s12859_021_04247_9
crossref_primary_10_7717_peerj_13061
crossref_primary_10_1515_jisys_2023_0021
crossref_primary_10_1007_s10916_024_02049_z
crossref_primary_10_1093_jamia_ocad190
crossref_primary_10_1109_TMI_2023_3322868
crossref_primary_10_22201_fm_30617243e_2024_2_47
crossref_primary_10_3390_knowledge4030023
crossref_primary_10_1016_j_asoc_2024_111531
crossref_primary_10_1016_j_simpat_2023_102754
crossref_primary_10_1371_journal_pbio_3001470
crossref_primary_10_1016_j_eswa_2022_119369
crossref_primary_10_1186_s12859_022_04876_8
crossref_primary_10_31083_j_fbl2912404
crossref_primary_10_1093_jamia_ocae037
crossref_primary_10_1016_j_artmed_2022_102298
crossref_primary_10_3390_diagnostics12081882
crossref_primary_10_1007_s11042_023_14790_7
crossref_primary_10_1016_j_compbiomed_2024_109233
crossref_primary_10_1016_j_jbi_2021_103820
crossref_primary_10_1038_s41598_024_76369_y
crossref_primary_10_4018_IJSSCI_316972
crossref_primary_10_1016_j_jbi_2023_104474
crossref_primary_10_1016_j_jbi_2022_104192
crossref_primary_10_1038_s41598_025_91809_z
crossref_primary_10_1155_2021_6641832
crossref_primary_10_1093_nar_gkac310
crossref_primary_10_1145_3686807
crossref_primary_10_3390_bdcc8110153
crossref_primary_10_3390_make7010003
crossref_primary_10_3390_make7010006
crossref_primary_10_1016_j_jbi_2024_104748
crossref_primary_10_1016_j_knosys_2024_111916
crossref_primary_10_1186_s13643_023_02351_w
crossref_primary_10_1016_j_patrec_2022_03_021
crossref_primary_10_1016_j_jbi_2023_104486
crossref_primary_10_1016_j_knosys_2021_106962
crossref_primary_10_1093_bioinformatics_btac422
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1109_JBHI_2021_3062322
crossref_primary_10_1111_exsy_13388
crossref_primary_10_1016_j_patter_2021_100307
crossref_primary_10_1371_journal_pone_0258623
crossref_primary_10_3390_app14188283
crossref_primary_10_1007_s13369_024_09508_2
crossref_primary_10_1371_journal_pdig_0000468
crossref_primary_10_3389_fonc_2024_1474155
crossref_primary_10_1016_j_jbi_2024_104739
crossref_primary_10_1109_ACCESS_2021_3124163
crossref_primary_10_1016_j_jbi_2024_104738
crossref_primary_10_1186_s12859_022_05051_9
crossref_primary_10_1016_j_acra_2021_03_036
crossref_primary_10_1166_jbn_2024_3925
crossref_primary_10_1016_j_ensm_2024_103555
crossref_primary_10_1016_j_jbi_2024_104734
crossref_primary_10_1007_s10495_023_01889_3
crossref_primary_10_1016_j_jbi_2024_104731
crossref_primary_10_1038_s43856_024_00631_7
crossref_primary_10_1016_j_inffus_2020_10_009
crossref_primary_10_1016_j_compbiomed_2022_106415
crossref_primary_10_1016_j_procs_2024_10_344
crossref_primary_10_1093_gigascience_giac077
crossref_primary_10_1007_s12032_023_02184_6
crossref_primary_10_1007_s00330_021_08132_0
crossref_primary_10_1007_s43681_023_00329_x
crossref_primary_10_1109_ACCESS_2024_3472500
crossref_primary_10_1093_jamia_ocac226
crossref_primary_10_1093_jamia_ocac225
crossref_primary_10_1016_j_procs_2023_01_027
crossref_primary_10_1038_s41597_024_03835_7
crossref_primary_10_1093_bioinformatics_btad771
crossref_primary_10_1016_j_artmed_2024_102845
crossref_primary_10_1093_bioinformatics_btab593
crossref_primary_10_1016_j_artmed_2024_102848
crossref_primary_10_1016_j_artmed_2024_102847
crossref_primary_10_1371_journal_pone_0258639
crossref_primary_10_3390_s21113854
crossref_primary_10_2197_ipsjjip_28_623
crossref_primary_10_5194_soil_9_155_2023
crossref_primary_10_2196_44892
crossref_primary_10_2196_39077
crossref_primary_10_3389_fonc_2023_1265024
crossref_primary_10_1016_j_eswa_2023_120210
crossref_primary_10_1016_j_jbi_2024_104719
crossref_primary_10_1016_j_jbi_2024_104717
crossref_primary_10_1093_jamia_ocac216
crossref_primary_10_1200_CCI_23_00048
crossref_primary_10_1038_s41746_023_00989_3
crossref_primary_10_2147_IDR_S292743
crossref_primary_10_1109_ACCESS_2024_3460976
crossref_primary_10_1016_j_asoc_2020_106779
crossref_primary_10_1016_j_jbi_2023_104433
crossref_primary_10_1016_j_jbi_2023_104431
crossref_primary_10_1145_3597299
crossref_primary_10_1093_bioinformatics_btad301
crossref_primary_10_1016_j_engappai_2024_109163
crossref_primary_10_1016_j_compchemeng_2024_108895
crossref_primary_10_1016_j_eswa_2023_121598
crossref_primary_10_3389_fgene_2023_1161047
crossref_primary_10_1007_s11280_022_01084_5
crossref_primary_10_3390_e23030338
crossref_primary_10_1093_bioinformatics_btae648
crossref_primary_10_1016_j_jbi_2022_104147
crossref_primary_10_1016_j_bbadis_2024_167263
crossref_primary_10_1093_jamia_ocad133
crossref_primary_10_1016_j_artmed_2024_102823
crossref_primary_10_1016_j_jbi_2023_104441
crossref_primary_10_1016_j_jbi_2023_104442
crossref_primary_10_1021_acs_analchem_4c01793
crossref_primary_10_1093_bioinformatics_btab133
crossref_primary_10_1093_bioinformatics_btad310
crossref_primary_10_1007_s10579_023_09669_w
crossref_primary_10_1371_journal_pcbi_1012745
crossref_primary_10_1021_acs_jproteome_3c00367
crossref_primary_10_3390_app13158623
crossref_primary_10_7717_peerj_cs_835
crossref_primary_10_1371_journal_pdig_0000022
crossref_primary_10_1016_j_heliyon_2024_e30053
crossref_primary_10_1016_j_media_2025_103551
crossref_primary_10_3389_fmed_2022_906554
crossref_primary_10_1016_j_jbi_2023_104459
crossref_primary_10_1016_j_icte_2024_05_015
crossref_primary_10_1098_rsos_240720
crossref_primary_10_2139_ssrn_4638347
crossref_primary_10_1016_j_jbi_2023_104456
crossref_primary_10_1186_s12880_022_00800_x
crossref_primary_10_3389_fpubh_2021_695139
crossref_primary_10_1021_acs_jpcb_3c06526
crossref_primary_10_1093_nar_gkac326
crossref_primary_10_1016_j_artmed_2024_102813
crossref_primary_10_1016_j_ijmedinf_2022_104864
crossref_primary_10_3233_ADR_230139
crossref_primary_10_1093_bfgp_elaa030
crossref_primary_10_2139_ssrn_4020056
crossref_primary_10_1093_bioinformatics_btae655
crossref_primary_10_1002_adhm_202300150
crossref_primary_10_1186_s12911_022_01975_7
crossref_primary_10_18043_001c_120570
crossref_primary_10_3390_aerospace10030279
crossref_primary_10_1016_j_knosys_2020_106649
crossref_primary_10_1007_s10479_022_04527_4
crossref_primary_10_1093_nargab_lqab062
crossref_primary_10_1177_20552076211057662
crossref_primary_10_1016_j_jbi_2024_104769
crossref_primary_10_1109_TASLP_2021_3069295
crossref_primary_10_2174_1574893618666221025105927
crossref_primary_10_1016_j_jbi_2022_104161
crossref_primary_10_1093_bioinformatics_btac001
crossref_primary_10_1093_jamia_ocaa080
crossref_primary_10_1016_j_jbi_2024_104761
crossref_primary_10_2478_popets_2021_0019
crossref_primary_10_1093_jamiaopen_ooab081
crossref_primary_10_1109_ACCESS_2024_3367715
crossref_primary_10_1145_3645089
crossref_primary_10_1021_acssynbio_1c00188
crossref_primary_10_1109_ACCESS_2022_3148279
crossref_primary_10_1038_s41467_024_48446_3
crossref_primary_10_1186_s12911_022_02003_4
crossref_primary_10_1109_ACCESS_2024_3400007
crossref_primary_10_1186_s12911_023_02409_8
crossref_primary_10_3389_fpubh_2020_515347
crossref_primary_10_3389_fpubh_2022_881234
crossref_primary_10_1016_j_sapharm_2024_09_004
crossref_primary_10_1038_s41746_024_01126_4
crossref_primary_10_1016_j_jbi_2022_104114
crossref_primary_10_1016_j_neucom_2022_01_019
crossref_primary_10_1109_TPDS_2023_3243261
crossref_primary_10_1111_eje_13073
crossref_primary_10_3390_app112210536
crossref_primary_10_1007_s42979_024_02947_6
crossref_primary_10_1093_bioinformatics_btab042
crossref_primary_10_1093_bioinformatics_btae552
crossref_primary_10_1098_rsos_221585
crossref_primary_10_2196_31510
crossref_primary_10_3389_fnbot_2022_773329
crossref_primary_10_1186_s12859_022_04653_7
crossref_primary_10_3390_informatics10040089
crossref_primary_10_1016_S1470_2045_20_30615_X
crossref_primary_10_1515_geo_2022_0677
crossref_primary_10_1093_bioinformatics_btae560
crossref_primary_10_1148_ryai_210092
crossref_primary_10_2196_38150
crossref_primary_10_1093_jamia_ocaa106
crossref_primary_10_2196_29667
crossref_primary_10_1016_j_jbi_2023_104405
crossref_primary_10_1016_j_eswa_2024_123960
crossref_primary_10_3390_biom11101430
crossref_primary_10_1109_TCBB_2024_3376566
crossref_primary_10_1186_s13326_024_00318_x
crossref_primary_10_1016_j_jbi_2022_104106
crossref_primary_10_1016_j_jbi_2023_104403
crossref_primary_10_1088_1361_6579_ada869
crossref_primary_10_1109_TCBB_2021_3079339
crossref_primary_10_1016_j_is_2023_102291
crossref_primary_10_7717_peerj_cs_913
crossref_primary_10_1186_s12911_021_01724_2
crossref_primary_10_1016_j_ins_2024_120134
crossref_primary_10_1080_17460441_2024_2430955
crossref_primary_10_1038_s41598_024_58334_x
crossref_primary_10_1016_j_jbi_2022_104137
crossref_primary_10_1016_j_jbi_2023_104416
crossref_primary_10_1016_j_jbi_2022_104135
crossref_primary_10_1016_j_jbi_2023_104418
crossref_primary_10_1186_s12859_024_05851_1
crossref_primary_10_3390_info16020076
crossref_primary_10_1021_acs_jcim_4c01093
crossref_primary_10_1007_s12539_024_00654_7
crossref_primary_10_1016_j_ssci_2023_106252
crossref_primary_10_1093_bioinformatics_btac397
crossref_primary_10_1016_j_eswa_2024_123519
crossref_primary_10_1016_j_jbi_2022_104134
crossref_primary_10_1038_s41598_022_21604_7
crossref_primary_10_1007_s40747_023_01075_7
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1109_ACCESS_2023_3237025
crossref_primary_10_1109_TASLP_2023_3331149
crossref_primary_10_3934_mbe_2022478
crossref_primary_10_1186_s12859_021_04397_w
crossref_primary_10_1007_s41666_024_00170_9
crossref_primary_10_3390_genes11111264
crossref_primary_10_1016_j_jclinepi_2023_08_004
crossref_primary_10_1109_TCBB_2022_3233856
crossref_primary_10_3390_digital2040030
crossref_primary_10_1186_s12911_022_01753_5
crossref_primary_10_1136_bmj_m3658
crossref_primary_10_1093_bioinformatics_btae589
crossref_primary_10_1007_s13042_024_02318_w
crossref_primary_10_1016_j_jbi_2022_104120
crossref_primary_10_1093_bioinformatics_btab083
crossref_primary_10_2196_42630
crossref_primary_10_32604_cmc_2022_025711
crossref_primary_10_1016_j_inffus_2022_08_024
crossref_primary_10_1016_j_patter_2021_100290
crossref_primary_10_1177_03611981221125744
crossref_primary_10_3389_fdgth_2023_1186516
crossref_primary_10_1017_S174849952100004X
crossref_primary_10_1007_s42979_022_01563_6
crossref_primary_10_1093_jamia_ocaa155
crossref_primary_10_1080_10810730_2024_2426810
crossref_primary_10_1016_j_jksuci_2022_08_016
crossref_primary_10_3934_mbe_2023391
crossref_primary_10_1016_j_compind_2020_103347
crossref_primary_10_1016_j_patter_2023_100887
crossref_primary_10_1039_D3TA02780E
crossref_primary_10_3390_su14052802
crossref_primary_10_1093_cvr_cvac018
crossref_primary_10_1186_s13643_021_01763_w
crossref_primary_10_1080_07853890_2021_2025418
crossref_primary_10_1109_TCBB_2022_3171388
crossref_primary_10_1109_TCBB_2022_3173562
crossref_primary_10_1016_j_infsof_2021_106542
crossref_primary_10_1186_s13326_021_00251_3
crossref_primary_10_1016_j_jbi_2024_104703
crossref_primary_10_1016_j_eswa_2024_125701
crossref_primary_10_2196_52482
crossref_primary_10_3390_biomedinformatics3030034
crossref_primary_10_1016_j_iswa_2022_200091
crossref_primary_10_1016_j_compbiomed_2021_104821
crossref_primary_10_1186_s12911_024_02557_5
crossref_primary_10_1016_j_immuno_2024_100040
crossref_primary_10_3390_ijerph19105959
crossref_primary_10_1016_j_engappai_2024_108339
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1007_s10462_023_10484_6
crossref_primary_10_1007_s12145_023_01112_6
crossref_primary_10_2196_44876
crossref_primary_10_1155_2021_5589829
crossref_primary_10_3389_fdgth_2022_1065581
crossref_primary_10_1093_jamia_ocaa136
crossref_primary_10_1109_ACCESS_2022_3228802
crossref_primary_10_61186_jsdp_20_3_103
crossref_primary_10_2196_54653
crossref_primary_10_2196_56831
crossref_primary_10_1016_j_eswa_2022_118841
crossref_primary_10_1016_j_imu_2023_101326
crossref_primary_10_1038_s41598_024_67146_y
crossref_primary_10_1111_lnc3_12402
crossref_primary_10_3390_electronics14050967
crossref_primary_10_1093_jamia_ocaa128
crossref_primary_10_1007_s13755_023_00253_8
crossref_primary_10_1093_bioadv_vbaf043
crossref_primary_10_1016_j_eswa_2023_121054
crossref_primary_10_1007_s42979_023_02392_x
crossref_primary_10_1016_j_commatsci_2023_112441
crossref_primary_10_1007_s12530_024_09573_w
crossref_primary_10_1145_3474831
crossref_primary_10_1016_j_artmed_2024_102889
crossref_primary_10_1002_hcs2_61
crossref_primary_10_1007_s11280_023_01144_4
crossref_primary_10_1186_s12911_023_02369_z
crossref_primary_10_2196_41342
crossref_primary_10_1109_JBHI_2024_3438885
crossref_primary_10_1142_S0218001424500095
crossref_primary_10_1371_journal_pdig_0000568
crossref_primary_10_1155_2022_4414207
crossref_primary_10_1098_rspb_2021_2721
crossref_primary_10_1109_TCBB_2024_3429234
crossref_primary_10_1002_2211_5463_70003
crossref_primary_10_1038_s43856_021_00008_0
crossref_primary_10_1007_s40264_023_01322_3
crossref_primary_10_1016_j_dss_2025_114411
crossref_primary_10_1038_s41598_024_51615_5
crossref_primary_10_1109_TKDE_2024_3377229
crossref_primary_10_1109_JBHI_2023_3244044
crossref_primary_10_1007_s10489_023_04944_3
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_1093_bioinformatics_btae163
crossref_primary_10_1186_s13326_021_00238_0
crossref_primary_10_1093_bioadv_vbae133
crossref_primary_10_1186_s12911_022_01829_2
crossref_primary_10_1016_j_eswa_2024_123572
crossref_primary_10_1016_j_imu_2023_101381
crossref_primary_10_1021_acssynbio_1c00611
crossref_primary_10_1016_j_array_2024_100355
crossref_primary_10_1038_s41597_023_02617_x
crossref_primary_10_3389_frma_2021_674205
crossref_primary_10_1007_s00330_021_08412_9
crossref_primary_10_1007_s10506_025_09449_7
crossref_primary_10_1016_j_imu_2020_100456
crossref_primary_10_1007_s00521_022_07366_3
crossref_primary_10_1186_s12859_021_04260_y
crossref_primary_10_1007_s41666_023_00146_1
crossref_primary_10_1109_ACCESS_2024_3414184
crossref_primary_10_1089_cmb_2023_0080
crossref_primary_10_1109_ACCESS_2022_3180830
crossref_primary_10_1016_j_techfore_2022_122160
crossref_primary_10_1109_ACCESS_2024_3360705
crossref_primary_10_1093_jamiaopen_ooab104
crossref_primary_10_1177_10732748231197915
crossref_primary_10_5114_bta_200803
crossref_primary_10_3390_biomedicines12071535
crossref_primary_10_1007_s00398_024_00664_z
crossref_primary_10_1016_j_neucom_2023_127079
crossref_primary_10_1093_bioinformatics_btae185
crossref_primary_10_3390_nu15020270
crossref_primary_10_1038_s41598_023_48564_w
crossref_primary_10_1109_TKDE_2021_3090253
crossref_primary_10_1021_acs_chemmater_4c02726
crossref_primary_10_3390_electronics13152892
crossref_primary_10_1155_2021_8893270
crossref_primary_10_1186_s12859_019_3000_5
crossref_primary_10_32604_cmes_2024_052256
crossref_primary_10_1016_j_procs_2021_06_082
crossref_primary_10_1007_s00330_023_10224_y
crossref_primary_10_1016_j_cmpbup_2024_100158
crossref_primary_10_1109_ACCESS_2021_3131386
crossref_primary_10_1016_j_knosys_2023_111160
crossref_primary_10_1016_j_drudis_2024_104018
crossref_primary_10_3390_app12063191
crossref_primary_10_1109_TAI_2021_3086435
crossref_primary_10_1016_j_energy_2024_134352
crossref_primary_10_3390_app142411529
crossref_primary_10_1177_20563051211043212
crossref_primary_10_1039_D3DD00159H
crossref_primary_10_1145_3609483
crossref_primary_10_1016_j_dss_2024_114172
crossref_primary_10_1016_j_compbiomed_2025_109834
crossref_primary_10_1016_j_ymeth_2024_04_003
crossref_primary_10_1016_j_ymeth_2024_04_005
crossref_primary_10_3389_frai_2022_999289
crossref_primary_10_1038_s41597_023_02487_3
crossref_primary_10_2196_52897
crossref_primary_10_1109_ACCESS_2024_3367360
crossref_primary_10_1002_widm_1570
crossref_primary_10_1093_database_baac098
crossref_primary_10_1093_jamia_ocae081
crossref_primary_10_1007_s42001_024_00276_5
crossref_primary_10_1007_s42979_024_03553_2
crossref_primary_10_1093_bib_bbad349
crossref_primary_10_1093_database_baac090
crossref_primary_10_1038_s41598_020_77258_w
crossref_primary_10_1109_JBHI_2022_3172479
crossref_primary_10_1587_transinf_2022DAP0010
crossref_primary_10_2196_17638
crossref_primary_10_1016_j_compmedimag_2023_102320
crossref_primary_10_1109_JBHI_2023_3338356
crossref_primary_10_1007_s10115_023_01957_9
crossref_primary_10_1016_j_nbt_2023_09_001
crossref_primary_10_1038_s43856_024_00470_6
crossref_primary_10_1093_bib_bbac497
crossref_primary_10_1016_j_mcpro_2023_100682
crossref_primary_10_1016_j_psychres_2024_115896
crossref_primary_10_1016_j_knosys_2024_112373
crossref_primary_10_1093_jamia_ocae092
crossref_primary_10_3390_app14209302
crossref_primary_10_3390_healthcare10081478
crossref_primary_10_1093_jamia_ocae095
crossref_primary_10_1186_s12864_021_08239_0
crossref_primary_10_1007_s11192_023_04821_3
crossref_primary_10_3233_THC
crossref_primary_10_2196_37237
crossref_primary_10_3390_ijerph19169974
crossref_primary_10_1093_bioadv_vbae106
crossref_primary_10_1108_DTS_05_2022_0013
crossref_primary_10_2196_40408
crossref_primary_10_1021_acs_jpclett_0c02393
crossref_primary_10_1109_TVCG_2024_3456325
crossref_primary_10_1186_s13643_022_02074_4
crossref_primary_10_2196_50209
crossref_primary_10_1186_s12859_023_05209_z
crossref_primary_10_1109_TMM_2024_3384057
crossref_primary_10_1016_j_inffus_2024_102888
crossref_primary_10_1111_test_12367
crossref_primary_10_1016_j_compbiomed_2023_107262
crossref_primary_10_3389_fcvm_2022_800864
crossref_primary_10_1016_j_array_2024_100372
crossref_primary_10_1021_acs_jnatprod_4c00581
crossref_primary_10_35713_aic_v2_i1_1
crossref_primary_10_1038_s41597_023_02781_0
crossref_primary_10_1093_bioadv_vbae116
crossref_primary_10_1186_s12859_022_04688_w
crossref_primary_10_1016_j_cmpb_2021_106446
crossref_primary_10_1038_s41746_020_0285_8
crossref_primary_10_1186_s12859_023_05601_9
crossref_primary_10_1016_j_ijmedinf_2024_105500
crossref_primary_10_1016_j_nlp_2024_100123
crossref_primary_10_1016_j_compbiomed_2025_109808
crossref_primary_10_2208_jscejj_22_22042
crossref_primary_10_2196_23099
crossref_primary_10_1161_JAHA_122_028120
crossref_primary_10_1109_TVCG_2024_3456339
crossref_primary_10_1093_bioadv_vbae120
crossref_primary_10_21923_jesd_973181
crossref_primary_10_3390_math12172717
crossref_primary_10_1145_3423209
crossref_primary_10_1016_j_ijmedinf_2022_104928
crossref_primary_10_1007_s11431_020_1647_3
crossref_primary_10_1093_bioadv_vbab015
crossref_primary_10_1093_jamia_ocad068
crossref_primary_10_1016_j_jmoldx_2022_06_001
crossref_primary_10_1093_jamia_ocad062
crossref_primary_10_1145_3555176
crossref_primary_10_1007_s10278_022_00714_8
crossref_primary_10_1016_j_artmed_2020_101939
crossref_primary_10_3390_metabo12040276
crossref_primary_10_1007_s12559_021_09917_7
crossref_primary_10_1146_annurev_statistics_040522_022138
crossref_primary_10_1038_s41540_024_00358_0
crossref_primary_10_1016_j_fhj_2024_100168
crossref_primary_10_1109_TASLP_2022_3161146
crossref_primary_10_1016_j_ipm_2021_102564
crossref_primary_10_3390_app11146421
crossref_primary_10_1016_j_commatsci_2024_113014
crossref_primary_10_1016_j_bspc_2023_105873
crossref_primary_10_1002_mgea_70001
crossref_primary_10_1088_1742_6596_1963_1_012173
crossref_primary_10_3390_bioengineering10050586
crossref_primary_10_1016_j_rvsc_2022_04_010
crossref_primary_10_1038_s41586_024_08167_5
crossref_primary_10_1016_j_ajpath_2021_01_015
crossref_primary_10_1016_j_neucom_2022_04_009
crossref_primary_10_2196_49607
crossref_primary_10_1016_j_ijmedinf_2020_104351
crossref_primary_10_1001_jamasurg_2023_4679
crossref_primary_10_1093_bib_bbae420
crossref_primary_10_1016_j_patrec_2020_12_013
crossref_primary_10_1093_jamia_ocad041
crossref_primary_10_3389_fpsyt_2022_861930
crossref_primary_10_1016_j_eswa_2023_120964
crossref_primary_10_3389_fbinf_2023_1332902
crossref_primary_10_1016_j_patrec_2023_02_016
crossref_primary_10_1109_ACCESS_2024_3524588
crossref_primary_10_1016_j_habitatint_2025_103357
crossref_primary_10_1093_gerona_glae176
crossref_primary_10_1021_acs_jcim_4c00572
crossref_primary_10_35711_aimi_v3_i3_55
crossref_primary_10_1002_pmic_202300471
crossref_primary_10_2196_14502
crossref_primary_10_1371_journal_pone_0291142
crossref_primary_10_1093_bib_bbaa057
crossref_primary_10_1007_s12539_024_00605_2
crossref_primary_10_1109_JBHI_2023_3308064
crossref_primary_10_1093_bib_bbac229
crossref_primary_10_1016_j_isatra_2022_03_013
crossref_primary_10_1016_j_isci_2021_102155
crossref_primary_10_7717_peerj_cs_384
crossref_primary_10_3389_fimmu_2024_1293706
crossref_primary_10_1016_j_eswa_2024_125241
crossref_primary_10_1162_tacl_a_00585
crossref_primary_10_1016_j_jbi_2021_103982
crossref_primary_10_1177_01655515231193845
crossref_primary_10_1186_s12967_023_04011_y
crossref_primary_10_3389_fphar_2023_1205144
crossref_primary_10_1016_j_jbi_2021_103984
crossref_primary_10_1016_j_ijmedinf_2020_104321
crossref_primary_10_1075_li_00107_mor
crossref_primary_10_1016_j_jbi_2025_104792
crossref_primary_10_3390_app14167031
crossref_primary_10_1016_j_cmpb_2024_108329
crossref_primary_10_1186_s40537_025_01077_x
crossref_primary_10_12720_jait_15_6_723_734
crossref_primary_10_1016_j_infsof_2022_106886
crossref_primary_10_1186_s13677_020_00218_2
crossref_primary_10_1016_j_neunet_2025_107250
crossref_primary_10_1093_bioinformatics_btac508
crossref_primary_10_1016_j_jii_2024_100748
crossref_primary_10_3389_fdgth_2021_620828
crossref_primary_10_3390_app11020690
crossref_primary_10_1038_s41467_024_53081_z
crossref_primary_10_2478_seeur_2023_0035
crossref_primary_10_1186_s13326_024_00311_4
crossref_primary_10_1016_j_jbi_2021_103960
crossref_primary_10_1016_j_compbiomed_2024_109337
crossref_primary_10_3390_make4020021
crossref_primary_10_1038_s42003_025_07615_w
crossref_primary_10_1093_jamia_ocad081
crossref_primary_10_1007_s41060_025_00724_z
crossref_primary_10_1016_j_ins_2021_04_021
crossref_primary_10_1093_database_baad005
crossref_primary_10_1016_j_compbiolchem_2022_107808
crossref_primary_10_1016_j_gene_2023_147435
crossref_primary_10_1016_j_jbi_2021_103971
crossref_primary_10_3390_diagnostics12071726
crossref_primary_10_1016_j_jbi_2021_103970
crossref_primary_10_1017_S1351324923000165
crossref_primary_10_1016_j_jbi_2025_104789
crossref_primary_10_1155_2021_5517145
crossref_primary_10_1093_jamia_ocad075
crossref_primary_10_1093_bioinformatics_btab671
crossref_primary_10_1016_j_jbi_2025_104783
crossref_primary_10_1093_jamia_ocad071
crossref_primary_10_1055_a_2405_2489
crossref_primary_10_1016_j_jbi_2021_103968
crossref_primary_10_1016_j_jbi_2021_103969
crossref_primary_10_1093_bioadv_vbab012
crossref_primary_10_1186_s11689_022_09442_0
crossref_primary_10_1109_RBME_2022_3210270
crossref_primary_10_3390_info16030225
crossref_primary_10_1016_j_compag_2024_109349
crossref_primary_10_1186_s42466_023_00270_8
crossref_primary_10_1186_s40537_020_00392_9
crossref_primary_10_1093_bioinformatics_btac539
crossref_primary_10_1007_s11227_024_06698_2
crossref_primary_10_1016_j_neunet_2024_106492
crossref_primary_10_1016_j_jmgm_2022_108344
crossref_primary_10_1016_j_drudis_2020_10_002
crossref_primary_10_1016_j_joi_2023_101376
crossref_primary_10_1016_j_acags_2024_100164
crossref_primary_10_1016_j_artmed_2021_102224
crossref_primary_10_3389_fdgth_2022_878369
crossref_primary_10_1016_j_inffus_2023_101817
crossref_primary_10_1093_jamia_ocae326
crossref_primary_10_1109_TSE_2022_3178469
crossref_primary_10_1093_jamia_ocab279
crossref_primary_10_2196_54580
crossref_primary_10_2196_22508
crossref_primary_10_1007_s10115_025_02338_0
crossref_primary_10_1371_journal_pone_0295925
crossref_primary_10_1007_s11063_023_11201_8
crossref_primary_10_1371_journal_pcbi_1012426
crossref_primary_10_2196_22982
crossref_primary_10_1093_gigascience_giad054
crossref_primary_10_1007_s10664_024_10576_z
crossref_primary_10_1016_j_compchemeng_2023_108446
crossref_primary_10_1109_TCBB_2023_3236477
crossref_primary_10_1109_ACCESS_2021_3130956
crossref_primary_10_1016_j_heliyon_2024_e30373
crossref_primary_10_1016_j_mcpdig_2024_11_005
crossref_primary_10_1016_j_heliyon_2023_e19265
crossref_primary_10_5715_jnlp_27_969
crossref_primary_10_1093_database_baac108
crossref_primary_10_1148_ryai_220281
crossref_primary_10_1093_database_baac107
crossref_primary_10_1016_j_engappai_2025_110365
crossref_primary_10_1115_1_4054203
crossref_primary_10_3390_info13030117
crossref_primary_10_5715_jnlp_31_984
crossref_primary_10_1109_JBHI_2021_3117238
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_1016_j_jbi_2021_103918
crossref_primary_10_1016_j_ymeth_2022_03_012
crossref_primary_10_1016_j_heliyon_2024_e41488
crossref_primary_10_1002_qub2_32
crossref_primary_10_1016_j_jbi_2020_103631
crossref_primary_10_1016_j_jbi_2021_103931
crossref_primary_10_34133_2021_9819851
crossref_primary_10_2139_ssrn_4049602
crossref_primary_10_1109_ACCESS_2023_3258973
crossref_primary_10_3390_app12115720
crossref_primary_10_1093_database_baac103
crossref_primary_10_1371_journal_pcbi_1009283
crossref_primary_10_1186_s12859_024_05903_6
crossref_primary_10_1145_3421509
crossref_primary_10_1016_j_jbi_2020_103628
crossref_primary_10_3390_su16020809
crossref_primary_10_1001_jamaneurol_2022_2514
crossref_primary_10_1186_s13321_022_00590_y
crossref_primary_10_1016_j_ipm_2023_103574
crossref_primary_10_1016_j_jbi_2022_104279
crossref_primary_10_3390_ai5040126
crossref_primary_10_1016_j_jbi_2023_104557
crossref_primary_10_1093_nar_gkac1000
crossref_primary_10_1007_s10115_023_01862_1
crossref_primary_10_1002_slct_202304359
crossref_primary_10_1093_bioinformatics_btac578
crossref_primary_10_1186_s12911_023_02121_7
crossref_primary_10_1038_s41598_025_87724_y
crossref_primary_10_1128_msystems_01258_24
crossref_primary_10_1186_s12911_022_02059_2
crossref_primary_10_1371_journal_pdig_0000152
crossref_primary_10_3390_electronics13030648
crossref_primary_10_1016_j_ajhg_2023_08_018
crossref_primary_10_14801_jkiit_2024_22_1_51
crossref_primary_10_1038_s41598_023_35482_0
crossref_primary_10_1007_s11063_025_11725_1
crossref_primary_10_1016_j_cjche_2023_02_026
crossref_primary_10_4103_singaporemedj_SMJ_2021_438
crossref_primary_10_1093_jamia_ocad012
crossref_primary_10_1016_j_ipm_2023_103560
crossref_primary_10_1016_j_engappai_2024_109028
crossref_primary_10_1145_3462476
crossref_primary_10_1145_3462475
crossref_primary_10_1016_j_ijmedinf_2022_104956
crossref_primary_10_1016_j_jbi_2022_104265
crossref_primary_10_1080_2326263X_2024_2413214
crossref_primary_10_1145_3524887
crossref_primary_10_3390_app11167318
crossref_primary_10_1186_s12911_021_01495_w
crossref_primary_10_1016_j_ins_2022_10_063
crossref_primary_10_3390_computation9120140
crossref_primary_10_1016_j_jbi_2021_103902
crossref_primary_10_1109_JBHI_2024_3383610
crossref_primary_10_3389_frma_2021_689059
crossref_primary_10_1007_s44196_024_00456_1
crossref_primary_10_1109_ACCESS_2024_3350190
crossref_primary_10_1016_j_jbi_2020_103607
crossref_primary_10_1016_j_jbi_2020_103609
crossref_primary_10_1200_CCI_20_00060
crossref_primary_10_1016_j_measurement_2024_114123
crossref_primary_10_1007_s10115_023_02059_2
crossref_primary_10_3390_app122111084
crossref_primary_10_1016_j_ymeth_2024_08_007
crossref_primary_10_2196_58977
crossref_primary_10_3390_ijms231911498
crossref_primary_10_1093_bioinformatics_btac598
crossref_primary_10_1126_science_adh1114
crossref_primary_10_1016_j_gim_2022_04_025
crossref_primary_10_1093_comjnl_bxae131
crossref_primary_10_1017_nlp_2024_52
crossref_primary_10_1093_comjnl_bxae132
crossref_primary_10_1111_2041_210X_13778
crossref_primary_10_3390_jcp1040031
crossref_primary_10_1038_s41746_024_01323_1
crossref_primary_10_1186_s13040_024_00414_9
crossref_primary_10_1093_nar_gkae1030
crossref_primary_10_1016_j_powtec_2023_118960
crossref_primary_10_1145_3600088
crossref_primary_10_3390_sym16121629
crossref_primary_10_1016_j_commatsci_2024_113431
crossref_primary_10_1109_ACCESS_2021_3135381
crossref_primary_10_1186_s12911_024_02592_2
crossref_primary_10_1371_journal_pone_0304329
crossref_primary_10_3390_jcm11112967
crossref_primary_10_1016_j_ijmedinf_2021_104676
crossref_primary_10_1109_JBHI_2023_3294249
crossref_primary_10_1016_j_ijmedinf_2021_104678
crossref_primary_10_1016_j_ijmedinf_2022_104979
crossref_primary_10_1177_20552076241305168
crossref_primary_10_1016_j_seta_2022_102896
crossref_primary_10_1109_TCBB_2022_3161032
crossref_primary_10_1158_2767_9764_CRC_24_0064
crossref_primary_10_12688_wellcomeopenres_16718_1
crossref_primary_10_1145_3648471
crossref_primary_10_1038_s41598_022_08667_2
crossref_primary_10_2196_43483
crossref_primary_10_26599_TST_2022_9010012
crossref_primary_10_1109_ACCESS_2021_3054479
crossref_primary_10_1093_jamia_ocae311
crossref_primary_10_2139_ssrn_4183577
crossref_primary_10_1021_acs_jcim_2c00035
crossref_primary_10_1093_jamia_ocae314
crossref_primary_10_3390_e26040344
crossref_primary_10_1186_s12859_021_04504_x
crossref_primary_10_1007_s13042_024_02304_2
crossref_primary_10_1038_s41597_024_03841_9
crossref_primary_10_1093_nar_gkac1046
crossref_primary_10_1145_3723352
crossref_primary_10_7326_M23_2772
crossref_primary_10_2196_18417
crossref_primary_10_1093_bioinformatics_btae679
crossref_primary_10_3390_electronics11193048
crossref_primary_10_1016_j_cmpb_2019_105117
crossref_primary_10_1038_s41597_022_01350_1
crossref_primary_10_1007_s41666_024_00171_8
crossref_primary_10_2196_28212
crossref_primary_10_1016_j_jenvman_2024_123320
crossref_primary_10_3389_ebm_2025_10389
crossref_primary_10_1186_s13326_024_00306_1
crossref_primary_10_1371_journal_pcbi_1011989
crossref_primary_10_7232_JKIIE_2021_47_4_342
crossref_primary_10_5715_jnlp_28_1089
crossref_primary_10_1016_j_jbi_2023_104527
crossref_primary_10_1088_1752_7163_acf065
crossref_primary_10_1109_TMI_2022_3185008
crossref_primary_10_1016_j_jbi_2022_104229
crossref_primary_10_1186_s12859_020_3393_1
crossref_primary_10_3389_fbinf_2022_835805
crossref_primary_10_3390_app15031252
crossref_primary_10_1038_s41746_022_00742_2
crossref_primary_10_1016_j_ymben_2024_09_001
crossref_primary_10_1038_s42256_023_00637_1
crossref_primary_10_1016_j_jbi_2022_104220
crossref_primary_10_2196_19735
crossref_primary_10_3390_s21092893
crossref_primary_10_1109_JTEHM_2023_3307794
crossref_primary_10_1093_bioinformatics_btad361
crossref_primary_10_1016_j_artint_2023_104019
crossref_primary_10_3390_su13042276
crossref_primary_10_2196_41205
crossref_primary_10_1109_ACCESS_2020_3014862
crossref_primary_10_1016_j_heliyon_2023_e21502
crossref_primary_10_3390_s23063064
crossref_primary_10_1007_s11192_020_03718_9
crossref_primary_10_1002_int_22533
crossref_primary_10_1145_3448253
crossref_primary_10_1017_dsj_2022_16
crossref_primary_10_1093_bioinformatics_btad369
crossref_primary_10_1007_s00521_024_10711_3
crossref_primary_10_2196_27386
crossref_primary_10_1016_j_ejrad_2022_110366
crossref_primary_10_1371_journal_pone_0262182
crossref_primary_10_1007_s11063_024_11574_4
crossref_primary_10_3390_electronics13152949
crossref_primary_10_2196_53636
crossref_primary_10_1038_s42256_025_01014_w
crossref_primary_10_1038_s41598_024_60256_7
crossref_primary_10_1038_s41587_020_0686_x
crossref_primary_10_1515_lpp_2023_0002
crossref_primary_10_1109_ACCESS_2022_3141161
crossref_primary_10_1007_s11280_023_01169_9
crossref_primary_10_2196_28229
crossref_primary_10_1016_j_eswa_2024_123894
crossref_primary_10_1016_j_autcon_2023_104890
crossref_primary_10_3389_fimmu_2025_1502484
crossref_primary_10_1177_15353702231215895
crossref_primary_10_1109_JBHI_2023_3271580
crossref_primary_10_3390_jcp2020022
crossref_primary_10_1038_s41746_022_00590_0
crossref_primary_10_1016_j_engappai_2024_109561
crossref_primary_10_1016_j_engappai_2024_108231
crossref_primary_10_1515_mr_2023_0011
crossref_primary_10_1093_g3journal_jkae161
crossref_primary_10_1109_TCBB_2022_3173447
crossref_primary_10_3390_info13030137
crossref_primary_10_1007_s10462_022_10183_8
crossref_primary_10_1007_s10278_023_00894_x
crossref_primary_10_32604_csse_2023_027481
crossref_primary_10_3390_rs14153808
crossref_primary_10_1016_j_ifacol_2022_07_568
crossref_primary_10_1080_21645515_2022_2114422
crossref_primary_10_1016_j_ecoinf_2024_102742
crossref_primary_10_3389_fncom_2024_1389475
crossref_primary_10_1155_2023_2989791
crossref_primary_10_1016_j_yjbinx_2019_100058
crossref_primary_10_1093_bib_bbad065
crossref_primary_10_1109_TCBB_2024_3442199
crossref_primary_10_1109_TMI_2022_3163232
crossref_primary_10_1016_j_nlp_2025_100129
crossref_primary_10_1007_s41666_024_00162_9
crossref_primary_10_1186_s12911_019_0992_8
crossref_primary_10_4258_hir_2024_30_4_355
crossref_primary_10_3390_app11188319
crossref_primary_10_1016_j_ins_2021_11_061
crossref_primary_10_1016_j_jbi_2022_104215
crossref_primary_10_1109_TASLP_2023_3275040
crossref_primary_10_1186_s12885_025_13596_0
crossref_primary_10_1093_bib_bbad099
crossref_primary_10_1109_ACCESS_2022_3213676
crossref_primary_10_3390_s23104812
crossref_primary_10_1016_j_compbiomed_2024_108926
crossref_primary_10_1093_bioinformatics_btac085
crossref_primary_10_1371_journal_pdig_0000692
crossref_primary_10_7759_cureus_71744
crossref_primary_10_1007_s00799_023_00368_z
crossref_primary_10_3389_frai_2023_1023281
crossref_primary_10_2196_38052
crossref_primary_10_1109_TEM_2023_3306569
crossref_primary_10_2174_1574893618666230224142324
crossref_primary_10_1109_JBHI_2023_3288768
crossref_primary_10_3390_su15054216
crossref_primary_10_1038_s41597_020_0543_2
crossref_primary_10_1016_j_patter_2023_100729
crossref_primary_10_1016_j_patter_2023_100726
crossref_primary_10_1007_s41666_023_00141_6
crossref_primary_10_1016_j_jbi_2019_103354
crossref_primary_10_1007_s10489_024_05974_1
crossref_primary_10_2514_1_I011251
crossref_primary_10_1016_j_aei_2024_102664
crossref_primary_10_1007_s42979_024_03472_2
crossref_primary_10_1186_s12911_022_01819_4
crossref_primary_10_1016_j_knosys_2024_111542
crossref_primary_10_1109_TMM_2021_3132724
crossref_primary_10_7759_cureus_43292
crossref_primary_10_1162_coli_a_00462
crossref_primary_10_1007_s11704_024_3900_z
crossref_primary_10_1145_3652594
crossref_primary_10_1016_j_csbj_2022_07_049
crossref_primary_10_2196_52730
crossref_primary_10_1039_D4DD00335G
crossref_primary_10_1007_s11042_023_15224_0
crossref_primary_10_1016_j_compbiolchem_2024_108058
crossref_primary_10_3389_frma_2021_689803
crossref_primary_10_1049_cje_2020_00_326
crossref_primary_10_1002_cpt_3053
crossref_primary_10_1186_s13073_024_01330_7
crossref_primary_10_2196_34072
crossref_primary_10_1038_s41591_023_02448_8
crossref_primary_10_2196_40743
crossref_primary_10_1017_S1351324923000542
crossref_primary_10_1371_journal_pbio_3000716
crossref_primary_10_1093_bib_bbae354
crossref_primary_10_1186_s12859_024_05712_x
crossref_primary_10_1007_s11042_023_15477_9
crossref_primary_10_1109_ACCESS_2023_3323574
crossref_primary_10_1089_apb_2023_0020
crossref_primary_10_1162_coli_a_00458
crossref_primary_10_1007_s10462_024_10921_0
crossref_primary_10_1148_ryai_230415
crossref_primary_10_1016_j_compbiolchem_2024_108063
crossref_primary_10_1016_j_psychres_2023_115667
crossref_primary_10_1016_j_cmpb_2025_108638
crossref_primary_10_1145_3655619
crossref_primary_10_1038_s41598_023_39543_2
crossref_primary_10_3390_jpm12010086
crossref_primary_10_1007_s00521_020_05335_2
crossref_primary_10_1038_s41524_022_00784_w
crossref_primary_10_1145_3665899
crossref_primary_10_2196_37557
crossref_primary_10_5715_jnlp_31_1717
crossref_primary_10_1016_j_artmed_2023_102498
crossref_primary_10_3390_toxics11090785
crossref_primary_10_1007_s41666_022_00115_0
crossref_primary_10_1136_bmjhci_2022_100659
crossref_primary_10_3390_ai6020031
crossref_primary_10_1038_s41467_025_56526_1
crossref_primary_10_1371_journal_pcbi_1008757
crossref_primary_10_1016_j_imu_2024_101519
crossref_primary_10_1109_ACCESS_2023_3299824
crossref_primary_10_1186_s12874_022_01583_z
crossref_primary_10_1007_s00234_024_03427_7
crossref_primary_10_15302_J_QB_022_0302
crossref_primary_10_1109_TCSS_2022_3143768
crossref_primary_10_1155_2023_3106631
crossref_primary_10_1007_s10579_024_09738_8
crossref_primary_10_1109_ACCESS_2024_3521596
crossref_primary_10_2196_28632
crossref_primary_10_1016_j_datak_2023_102155
crossref_primary_10_52361_fsbh_2023_3_e17
crossref_primary_10_1109_TCSVT_2024_3432095
crossref_primary_10_1080_27660400_2022_2124831
crossref_primary_10_3389_fgene_2024_1464976
crossref_primary_10_3389_fpsyt_2024_1181739
crossref_primary_10_1093_bib_bbac194
crossref_primary_10_1145_3653450
crossref_primary_10_1109_TNNLS_2023_3265173
crossref_primary_10_3390_jpm11040300
crossref_primary_10_2196_49546
crossref_primary_10_32604_cmc_2023_041520
crossref_primary_10_1007_s41060_021_00305_w
crossref_primary_10_3390_math10030447
crossref_primary_10_1186_s13326_022_00280_6
crossref_primary_10_3389_frai_2024_1487335
crossref_primary_10_1007_s11135_025_02077_y
crossref_primary_10_1007_s11192_023_04833_z
crossref_primary_10_1007_s12539_020_00412_5
crossref_primary_10_1093_nar_gkaa1074
crossref_primary_10_1109_ACCESS_2024_3522465
crossref_primary_10_1016_j_patter_2022_100483
crossref_primary_10_1109_JBHI_2021_3116769
crossref_primary_10_3390_info14030187
crossref_primary_10_1007_s41095_021_0229_5
crossref_primary_10_23919_ICN_2024_0004
crossref_primary_10_1093_bib_bbab282
crossref_primary_10_1136_rapm_2021_103261
crossref_primary_10_1186_s12911_023_02117_3
crossref_primary_10_21105_joss_05017
crossref_primary_10_1016_j_techfore_2023_122546
crossref_primary_10_1093_database_baad054
crossref_primary_10_1007_s11042_023_15509_4
crossref_primary_10_1093_bib_bbae304
crossref_primary_10_3390_bs15030352
crossref_primary_10_1007_s00261_024_04708_8
crossref_primary_10_1007_s40290_022_00434_y
crossref_primary_10_1186_s12859_023_05539_y
crossref_primary_10_2196_63881
crossref_primary_10_1016_j_compbiomed_2021_104998
crossref_primary_10_1093_bib_bbad493
crossref_primary_10_1002_widm_1470
crossref_primary_10_1002_pmic_202100197
crossref_primary_10_1007_s11192_022_04607_z
crossref_primary_10_1002_capr_12766
crossref_primary_10_1093_database_baad080
crossref_primary_10_1007_s10844_024_00844_1
crossref_primary_10_1007_s40120_022_00355_7
crossref_primary_10_1038_s41598_022_20752_0
crossref_primary_10_1038_s41598_022_07545_1
crossref_primary_10_1016_j_jhydrol_2022_128597
crossref_primary_10_1145_3611651
crossref_primary_10_1038_s43856_024_00495_x
crossref_primary_10_1038_s41746_024_01274_7
crossref_primary_10_1038_s41598_023_34294_6
crossref_primary_10_1109_ACCESS_2020_3024238
crossref_primary_10_3390_cancers17030516
crossref_primary_10_1016_j_compbiomed_2024_108539
crossref_primary_10_1002_advs_202307647
crossref_primary_10_2196_25157
crossref_primary_10_1145_3715318
crossref_primary_10_1002_advs_202100707
crossref_primary_10_1007_s10462_023_10650_w
crossref_primary_10_1109_TCBB_2022_3170301
crossref_primary_10_1186_s12911_024_02698_7
crossref_primary_10_1093_database_baad070
crossref_primary_10_1016_j_jtcvs_2023_01_022
crossref_primary_10_1016_j_aiopen_2021_08_002
crossref_primary_10_1155_2022_3133096
crossref_primary_10_7717_peerj_18509
crossref_primary_10_1016_j_isci_2024_109309
crossref_primary_10_3390_app122211469
crossref_primary_10_1093_bib_bbac342
crossref_primary_10_1016_j_jbi_2020_103381
crossref_primary_10_1016_j_compbiomed_2024_108548
crossref_primary_10_1016_j_jbi_2020_103382
crossref_primary_10_1186_s12859_023_05411_z
crossref_primary_10_1109_TBME_2023_3280987
crossref_primary_10_1055_s_0040_1702001
crossref_primary_10_1038_s41698_024_00573_2
crossref_primary_10_1093_jamia_ocae287
crossref_primary_10_1038_s41598_025_91187_6
crossref_primary_10_1016_j_jpowsour_2022_231946
crossref_primary_10_3389_fgene_2022_858252
crossref_primary_10_1016_j_jbi_2024_104588
crossref_primary_10_1186_s12911_024_02444_z
crossref_primary_10_1007_s10916_024_02132_5
crossref_primary_10_1016_j_inffus_2025_103033
crossref_primary_10_3390_informatics11040072
crossref_primary_10_1177_13524585241277376
crossref_primary_10_1371_journal_pone_0248663
crossref_primary_10_1007_s11063_023_11266_5
crossref_primary_10_32604_cmc_2023_035594
crossref_primary_10_1007_s00521_023_08635_5
crossref_primary_10_2196_62924
crossref_primary_10_3233_IDT_200048
crossref_primary_10_4018_IJSWIS_295552
crossref_primary_10_1371_journal_pone_0270595
crossref_primary_10_1016_j_csbj_2024_12_011
crossref_primary_10_1186_s12911_022_01946_y
crossref_primary_10_3389_frai_2024_1450477
crossref_primary_10_1016_j_xops_2023_100371
crossref_primary_10_1136_bmjhci_2023_100775
crossref_primary_10_1186_s12859_025_06086_4
crossref_primary_10_1108_IDD_08_2020_090
crossref_primary_10_1007_s11227_024_06597_6
crossref_primary_10_1109_ACCESS_2023_3341612
crossref_primary_10_1016_j_knosys_2021_108072
crossref_primary_10_3390_app132413117
crossref_primary_10_1038_s41524_023_01171_9
crossref_primary_10_31818_JKNST_2023_06_6_2_201
crossref_primary_10_1016_j_heliyon_2024_e31158
crossref_primary_10_3390_info15020091
crossref_primary_10_3389_frma_2021_654438
crossref_primary_10_1016_j_seizure_2025_01_008
crossref_primary_10_1093_nar_gkac936
crossref_primary_10_1109_TIM_2022_3189630
crossref_primary_10_1371_journal_pone_0292356
crossref_primary_10_1007_s00330_023_10061_z
crossref_primary_10_1109_TCBB_2024_3447273
crossref_primary_10_34197_ats_scholar_2023_0036PS
crossref_primary_10_1007_s10796_024_10566_y
crossref_primary_10_1088_1742_6596_2062_1_012027
crossref_primary_10_1515_hsz_2021_0125
crossref_primary_10_1007_s11063_024_11526_y
crossref_primary_10_1007_s11227_023_05647_9
crossref_primary_10_1109_JBHI_2022_3207502
crossref_primary_10_3390_ijms232314934
crossref_primary_10_1001_jamanetworkopen_2022_25593
crossref_primary_10_1111_jebm_70004
crossref_primary_10_1162_qss_a_00303
crossref_primary_10_1093_bib_bbab451
crossref_primary_10_1109_TC_2023_3257518
crossref_primary_10_1007_s41666_023_00136_3
crossref_primary_10_1016_j_acags_2022_100084
crossref_primary_10_1155_2021_6631837
crossref_primary_10_3758_s13428_023_02294_z
crossref_primary_10_1177_10732748231209892
crossref_primary_10_2196_49997
crossref_primary_10_3390_s24216878
crossref_primary_10_3390_a18030124
crossref_primary_10_1016_j_neunet_2025_107389
crossref_primary_10_1016_j_isci_2024_109352
crossref_primary_10_1016_j_isci_2024_109334
crossref_primary_10_2196_59792
crossref_primary_10_1007_s41666_023_00149_y
crossref_primary_10_1007_s00778_023_00779_z
crossref_primary_10_1109_ACCESS_2025_3538325
crossref_primary_10_1016_j_jbi_2023_104286
crossref_primary_10_1145_3465221
crossref_primary_10_1016_j_jbi_2023_104285
crossref_primary_10_2147_JMDH_S467877
crossref_primary_10_1007_s10579_023_09676_x
crossref_primary_10_1016_j_patrec_2024_05_007
crossref_primary_10_3390_diagnostics13071251
crossref_primary_10_1007_s10489_025_06349_w
crossref_primary_10_32604_cmc_2022_027236
crossref_primary_10_1049_rpg2_13151
crossref_primary_10_2196_23357
crossref_primary_10_1038_s41746_024_01074_z
crossref_primary_10_2196_59782
crossref_primary_10_1186_s12911_021_01633_4
crossref_primary_10_1186_s12859_021_04236_y
crossref_primary_10_1016_j_jbi_2023_104297
crossref_primary_10_3389_fpsyt_2024_1304916
crossref_primary_10_1111_exsy_13513
crossref_primary_10_1021_acs_jcim_4c00882
crossref_primary_10_1145_3707650
crossref_primary_10_1093_bib_bbab470
crossref_primary_10_1016_j_jss_2021_111160
crossref_primary_10_1038_s41598_023_29213_8
crossref_primary_10_1108_K_03_2024_0554
crossref_primary_10_1108_EL_01_2024_0022
crossref_primary_10_1371_journal_pone_0259763
crossref_primary_10_2200_S01123ED1V01Y202108HLT053
crossref_primary_10_1186_s12911_024_02814_7
crossref_primary_10_1002_spe_3408
crossref_primary_10_1007_s10799_024_00428_z
crossref_primary_10_3389_fphar_2020_584875
crossref_primary_10_1186_s40246_025_00718_9
crossref_primary_10_1038_s41746_023_00952_2
crossref_primary_10_1186_s13326_023_00292_w
crossref_primary_10_3390_electronics11234008
crossref_primary_10_2196_26407
crossref_primary_10_2196_44293
crossref_primary_10_1007_s00521_021_06614_2
crossref_primary_10_2139_ssrn_4053575
crossref_primary_10_1007_s10601_024_09376_5
crossref_primary_10_1021_acs_jcim_4c00063
crossref_primary_10_1007_s10115_022_01779_1
crossref_primary_10_7554_eLife_58227
crossref_primary_10_2139_ssrn_4147127
crossref_primary_10_1371_journal_pone_0305362
crossref_primary_10_2196_56655
crossref_primary_10_3233_JIFS_219349
crossref_primary_10_1186_s13321_024_00928_8
crossref_primary_10_1109_TASLP_2023_3293047
crossref_primary_10_1038_s41746_021_00455_y
crossref_primary_10_1108_DTA_04_2022_0151
crossref_primary_10_3390_bdcc6010004
crossref_primary_10_1109_ACCESS_2023_3281845
crossref_primary_10_5715_jnlp_30_800
crossref_primary_10_1016_j_inffus_2023_101939
crossref_primary_10_1097_CORR_0000000000002995
crossref_primary_10_1186_s13321_023_00771_3
crossref_primary_10_1155_2021_5753693
crossref_primary_10_3390_app15052573
crossref_primary_10_1038_s41598_024_81646_x
crossref_primary_10_1016_j_csbj_2024_03_021
crossref_primary_10_1109_ACCESS_2022_3233228
crossref_primary_10_1093_bioinformatics_btab331
crossref_primary_10_2196_32698
crossref_primary_10_1093_bioinformatics_btaa491
crossref_primary_10_1162_tacl_a_00602
crossref_primary_10_1016_j_aiopen_2021_06_003
crossref_primary_10_1039_D4DD00051J
crossref_primary_10_3390_s22249609
crossref_primary_10_1186_s12859_024_05902_7
crossref_primary_10_3390_bdcc6010010
crossref_primary_10_1038_s41591_024_02959_y
crossref_primary_10_1016_j_heliyon_2024_e39038
crossref_primary_10_1155_2023_4919371
crossref_primary_10_1200_CCI_24_00149
crossref_primary_10_1007_s10796_020_10035_2
crossref_primary_10_1016_j_csbj_2024_03_017
crossref_primary_10_1007_s40264_024_01468_8
crossref_primary_10_1093_bioinformatics_btac675
crossref_primary_10_1109_TCBB_2023_3261315
crossref_primary_10_3390_app12062891
crossref_primary_10_3390_computers12010017
crossref_primary_10_1109_TCSS_2022_3159677
crossref_primary_10_1186_s12911_022_01977_5
crossref_primary_10_3390_app13052858
crossref_primary_10_1007_s41666_024_00159_4
crossref_primary_10_1186_s12859_023_05597_2
crossref_primary_10_3233_JIFS_210982
crossref_primary_10_1002_aaai_12140
crossref_primary_10_1186_s12859_022_04803_x
crossref_primary_10_2196_22898
crossref_primary_10_2196_41137
crossref_primary_10_2196_68618
crossref_primary_10_3390_fi17030129
crossref_primary_10_1093_glycob_cwad033
crossref_primary_10_1177_20552076231212296
crossref_primary_10_1162_tacl_a_00616
crossref_primary_10_1055_s_0040_1701997
crossref_primary_10_2196_56627
crossref_primary_10_3390_electronics11203336
crossref_primary_10_3934_mbe_2022640
crossref_primary_10_2139_ssrn_3910214
crossref_primary_10_7717_peerj_cs_1888
crossref_primary_10_1016_j_imed_2024_12_001
crossref_primary_10_1016_j_ins_2022_06_089
crossref_primary_10_1177_15353702231220669
crossref_primary_10_1038_s41598_024_72130_7
crossref_primary_10_1038_s41587_023_01872_y
crossref_primary_10_1371_journal_pone_0260712
crossref_primary_10_1109_JBHI_2022_3220924
crossref_primary_10_1155_2022_7088126
crossref_primary_10_1016_j_compbiomed_2024_108189
crossref_primary_10_1007_s10579_022_09590_8
crossref_primary_10_1093_bioinformatics_btad542
crossref_primary_10_1016_j_xops_2023_100394
crossref_primary_10_1093_bioinformatics_btab365
crossref_primary_10_3390_info12040139
crossref_primary_10_1007_s11192_024_05040_0
crossref_primary_10_1109_ACCESS_2024_3365742
crossref_primary_10_3389_fdgth_2020_569261
crossref_primary_10_3390_informatics12010028
crossref_primary_10_1007_s11432_023_4127_5
crossref_primary_10_1038_s41746_024_01190_w
crossref_primary_10_1016_j_knosys_2022_110220
crossref_primary_10_2196_47739
crossref_primary_10_1186_s12859_022_05116_9
crossref_primary_10_2139_ssrn_4352931
crossref_primary_10_1093_bioinformatics_btae406
crossref_primary_10_1016_j_ipm_2023_103442
crossref_primary_10_1007_s12539_024_00665_4
crossref_primary_10_1016_j_csbj_2024_10_017
crossref_primary_10_1093_jamia_ocac040
crossref_primary_10_1007_s10278_024_01126_6
crossref_primary_10_1093_bioinformatics_btae402
crossref_primary_10_1109_ACCESS_2024_3384496
crossref_primary_10_1016_j_techfore_2024_123455
crossref_primary_10_1016_j_cie_2025_111034
crossref_primary_10_1109_TCBB_2024_3412174
crossref_primary_10_1371_journal_pdig_0000269
crossref_primary_10_2196_22422
crossref_primary_10_1111_cgf_14195
crossref_primary_10_1038_s41591_021_01614_0
crossref_primary_10_1007_s40264_022_01176_1
crossref_primary_10_1007_s12598_024_02766_x
crossref_primary_10_1055_s_0041_1726528
crossref_primary_10_1186_s40537_024_00903_y
crossref_primary_10_1016_j_survophthal_2025_02_009
crossref_primary_10_1093_jamiaopen_ooad014
crossref_primary_10_1002_ctd2_323
crossref_primary_10_1016_j_jpainsymman_2024_05_015
crossref_primary_10_5715_jnlp_29_23
crossref_primary_10_1016_j_jbi_2025_104806
crossref_primary_10_3390_bioengineering10040420
crossref_primary_10_1109_TVCG_2022_3225114
crossref_primary_10_3389_frai_2021_711467
crossref_primary_10_1200_CCI_24_00110
crossref_primary_10_1093_bioinformatics_btae429
crossref_primary_10_1093_jamia_ocab176
crossref_primary_10_1016_j_compind_2021_103497
crossref_primary_10_1016_j_aichem_2024_100060
crossref_primary_10_1007_s10238_022_00975_1
crossref_primary_10_3389_frai_2021_732381
crossref_primary_10_3390_math10091386
crossref_primary_10_1109_TIP_2022_3186759
crossref_primary_10_1186_s13643_024_02470_y
crossref_primary_10_3389_fcell_2020_00673
crossref_primary_10_1109_ACCESS_2020_2993169
crossref_primary_10_1016_j_eswa_2025_127241
crossref_primary_10_1186_s13018_024_04774_0
crossref_primary_10_1016_j_eswa_2024_126099
crossref_primary_10_1007_s11633_024_1515_3
crossref_primary_10_3233_SW_243568
crossref_primary_10_1109_ACCESS_2024_3521857
crossref_primary_10_1109_TII_2022_3159710
crossref_primary_10_1016_j_rtbm_2024_101197
crossref_primary_10_1200_CCI_21_00129
crossref_primary_10_3390_info15080509
crossref_primary_10_3390_app13095609
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1007_s00521_022_07747_8
crossref_primary_10_1186_s44247_023_00035_y
crossref_primary_10_2196_42884
crossref_primary_10_1186_s12911_024_02600_5
crossref_primary_10_1038_s41524_023_01003_w
crossref_primary_10_1001_jamanetworkopen_2023_1204
crossref_primary_10_1016_j_compbiomed_2024_109089
crossref_primary_10_1016_j_cose_2024_103998
crossref_primary_10_1016_j_drudis_2021_06_009
crossref_primary_10_1186_s12911_020_1078_3
crossref_primary_10_1109_ACCESS_2023_3272056
crossref_primary_10_1109_ACCESS_2022_3179685
crossref_primary_10_3389_fmmed_2021_734659
crossref_primary_10_3390_info16010054
crossref_primary_10_1007_s12539_021_00425_8
crossref_primary_10_3389_fpsyt_2023_1258887
crossref_primary_10_3233_IDA_227129
crossref_primary_10_3390_app14062456
crossref_primary_10_1186_s40708_022_00174_4
crossref_primary_10_1007_s13278_023_01102_y
crossref_primary_10_1016_j_ebiom_2023_104512
crossref_primary_10_1016_j_ipm_2023_103511
crossref_primary_10_1038_s41598_023_45155_7
crossref_primary_10_1186_s12911_024_02439_w
crossref_primary_10_3390_s23020651
crossref_primary_10_1016_j_cmpbup_2021_100042
crossref_primary_10_1016_j_jbi_2019_103267
crossref_primary_10_1145_3657305
crossref_primary_10_2196_30401
crossref_primary_10_1371_journal_pone_0274042
crossref_primary_10_1038_s41598_023_35597_4
crossref_primary_10_1109_TEM_2021_3078231
crossref_primary_10_1038_s41598_023_34981_4
crossref_primary_10_1109_JBHI_2021_3123192
crossref_primary_10_3389_fmolb_2022_928530
crossref_primary_10_1016_j_ailsci_2023_100078
crossref_primary_10_1016_j_csbj_2024_01_015
crossref_primary_10_1016_j_csbj_2024_01_014
crossref_primary_10_1038_s41597_023_01960_3
crossref_primary_10_1208_s12248_021_00593_x
crossref_primary_10_1093_bioinformatics_btad496
crossref_primary_10_2196_49031
crossref_primary_10_52846_stccj_2021_1_2_26
crossref_primary_10_3233_JAD_240116
crossref_primary_10_1093_bioinformatics_btae349
crossref_primary_10_1093_infdis_jiad158
crossref_primary_10_3389_fmicb_2024_1474078
crossref_primary_10_1186_s12911_022_01897_4
crossref_primary_10_3390_make5020036
crossref_primary_10_1016_j_omtn_2024_102255
crossref_primary_10_1109_TCBB_2022_3219375
crossref_primary_10_5715_jnlp_31_1691
crossref_primary_10_1007_s10844_024_00885_6
crossref_primary_10_1016_j_ipm_2025_104148
crossref_primary_10_1109_ACCESS_2024_3463717
crossref_primary_10_1109_JBHI_2020_2984931
crossref_primary_10_1148_ryai_220097
crossref_primary_10_1186_s12859_020_03905_8
crossref_primary_10_1093_bioinformatics_btad035
crossref_primary_10_3389_frai_2021_625341
crossref_primary_10_1007_s41666_023_00140_7
crossref_primary_10_1016_j_patter_2024_100933
crossref_primary_10_1016_j_jpi_2022_100154
crossref_primary_10_1167_tvst_11_3_37
crossref_primary_10_1001_jamasurg_2023_6496
crossref_primary_10_1038_s41598_024_66160_4
crossref_primary_10_1007_s00521_022_07734_z
crossref_primary_10_3390_s21196430
crossref_primary_10_1016_j_iswa_2024_200416
crossref_primary_10_1093_bioadv_vbad096
crossref_primary_10_7232_JKIIE_2023_49_2_133
crossref_primary_10_1016_j_eng_2023_01_014
crossref_primary_10_1038_s41598_021_94897_9
crossref_primary_10_1038_s42256_024_00899_3
crossref_primary_10_1016_j_ipm_2022_103194
crossref_primary_10_1016_j_compbiomed_2023_107421
crossref_primary_10_1049_cim2_70003
crossref_primary_10_1371_journal_pone_0311238
crossref_primary_10_1007_s10462_024_11042_4
crossref_primary_10_3390_app10217831
crossref_primary_10_1016_j_knosys_2024_111650
crossref_primary_10_3390_app12168373
crossref_primary_10_1109_ACCESS_2022_3170466
crossref_primary_10_1200_CCI_22_00096
crossref_primary_10_3390_app132011207
crossref_primary_10_1109_TMM_2024_3397191
crossref_primary_10_3390_electronics13112123
crossref_primary_10_1016_j_euf_2024_01_009
crossref_primary_10_1186_s13321_024_00874_5
crossref_primary_10_1016_j_wpi_2022_102112
crossref_primary_10_2196_41100
crossref_primary_10_3390_app13169450
crossref_primary_10_1109_JBHI_2021_3095478
crossref_primary_10_1016_j_procs_2023_08_022
crossref_primary_10_1136_bmjopen_2021_052911
crossref_primary_10_1109_ACCESS_2020_2987399
crossref_primary_10_3389_fnagi_2022_798132
crossref_primary_10_1109_TKDE_2024_3469578
crossref_primary_10_1093_database_baae079
crossref_primary_10_3390_s23239355
crossref_primary_10_1021_acs_jcim_4c00857
crossref_primary_10_1016_j_nlp_2023_100037
crossref_primary_10_1093_ehjdh_ztae066
crossref_primary_10_3346_jkms_2024_39_e291
crossref_primary_10_1145_3643514
crossref_primary_10_3390_diagnostics15060756
crossref_primary_10_1259_bjr_20220769
crossref_primary_10_1002_asi_24714
crossref_primary_10_1016_j_seps_2024_101995
crossref_primary_10_3389_fpubh_2023_1166120
crossref_primary_10_1016_j_xops_2022_100127
crossref_primary_10_1109_ACCESS_2021_3110683
crossref_primary_10_1093_bib_bbac298
crossref_primary_10_1016_j_cmpb_2024_108013
crossref_primary_10_1016_j_patter_2024_100968
crossref_primary_10_2196_48115
crossref_primary_10_3233_JID_220013
crossref_primary_10_1093_database_baae069
crossref_primary_10_1093_database_baae066
crossref_primary_10_9728_dcs_2022_23_4_765
crossref_primary_10_1016_j_nlp_2023_100048
crossref_primary_10_1016_j_infsof_2023_107202
crossref_primary_10_1038_s44222_024_00152_x
crossref_primary_10_1016_j_nlp_2023_100046
crossref_primary_10_1016_j_nlp_2023_100045
crossref_primary_10_3390_electronics13173563
crossref_primary_10_1016_j_ins_2024_121625
crossref_primary_10_1109_JBHI_2023_3316750
crossref_primary_10_3390_app112210717
crossref_primary_10_3390_bdcc8080087
crossref_primary_10_1016_j_compbiolchem_2022_107732
crossref_primary_10_3389_fgene_2022_893409
crossref_primary_10_1109_TEM_2023_3312923
crossref_primary_10_1109_ACCESS_2022_3152159
crossref_primary_10_1016_j_ijrobp_2021_01_044
crossref_primary_10_3390_electronics12081848
crossref_primary_10_1093_database_baae094
crossref_primary_10_1016_j_nlp_2023_100015
crossref_primary_10_1038_s41598_025_94778_5
crossref_primary_10_1093_database_baae095
crossref_primary_10_1186_s13326_023_00301_y
crossref_primary_10_1109_JBHI_2024_3466294
crossref_primary_10_1007_s13755_023_00251_w
crossref_primary_10_1016_j_apjo_2024_100090
crossref_primary_10_1159_000539306
crossref_primary_10_1080_09540091_2021_1985968
crossref_primary_10_3390_app11198812
crossref_primary_10_3233_THC_236011
crossref_primary_10_54097_jceim_v10i3_8715
crossref_primary_10_1145_3651159
crossref_primary_10_1145_3604811
crossref_primary_10_1109_ACCESS_2022_3157854
crossref_primary_10_1039_D4SC00966E
crossref_primary_10_1038_s41586_023_06291_2
crossref_primary_10_1002_cpt_3161
crossref_primary_10_1007_s12539_021_00443_6
crossref_primary_10_1016_j_eswa_2023_123046
crossref_primary_10_1109_ACCESS_2022_3190408
crossref_primary_10_3390_s22010003
crossref_primary_10_2174_0118741207289680240510045617
crossref_primary_10_2196_41516
crossref_primary_10_1038_s41598_023_39986_7
crossref_primary_10_1021_acs_iecr_4c01656
crossref_primary_10_1093_bioinformatics_btaa837
crossref_primary_10_1016_j_neucom_2020_03_105
crossref_primary_10_2196_60272
crossref_primary_10_1186_s12911_022_02085_0
crossref_primary_10_1038_s41597_024_03317_w
crossref_primary_10_2478_jdis_2021_0013
crossref_primary_10_2196_48145
crossref_primary_10_3390_app11010024
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_1016_j_asoc_2021_107230
crossref_primary_10_3390_electronics14010205
crossref_primary_10_1186_s12859_024_05951_y
crossref_primary_10_3390_min13060770
crossref_primary_10_2196_60263
crossref_primary_10_1177_20552076241288681
crossref_primary_10_1016_j_ijmedinf_2024_105764
crossref_primary_10_2106_JBJS_23_01417
crossref_primary_10_3390_info16010013
crossref_primary_10_1016_j_jbi_2019_103294
crossref_primary_10_59324_ejtas_2024_2_6__37
crossref_primary_10_1080_10543406_2024_2403442
crossref_primary_10_4108_eetsis_4185
crossref_primary_10_1109_JBHI_2022_3173558
crossref_primary_10_1093_bib_bbac282
crossref_primary_10_1021_acsomega_3c05114
crossref_primary_10_1124_pharmrev_122_000715
crossref_primary_10_1109_JBHI_2021_3056748
crossref_primary_10_3934_mbe_2024064
crossref_primary_10_3390_en17236063
crossref_primary_10_1109_JBHI_2020_3005016
crossref_primary_10_1016_j_procs_2021_05_078
crossref_primary_10_1145_3490238
crossref_primary_10_1007_s41666_023_00157_y
crossref_primary_10_1016_j_inffus_2025_102963
crossref_primary_10_1109_TITS_2022_3140355
crossref_primary_10_1016_j_eng_2025_02_010
crossref_primary_10_1017_S1351324922000213
crossref_primary_10_15188_kjopp_2024_04_38_2_49
crossref_primary_10_1371_journal_pone_0283342
crossref_primary_10_1186_s12859_022_04642_w
crossref_primary_10_3934_mbe_2024073
crossref_primary_10_1002_iis2_13105
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_37661_1816_0301_2020_17_4_61_72
crossref_primary_10_1007_s00330_025_11500_9
crossref_primary_10_1007_s00330_023_10213_1
crossref_primary_10_1016_j_mcpdig_2024_02_003
crossref_primary_10_1109_JBHI_2022_3193365
crossref_primary_10_1093_database_baae049
crossref_primary_10_1186_s12859_021_04534_5
crossref_primary_10_2196_27210
crossref_primary_10_1007_s11192_020_03648_6
crossref_primary_10_1186_s12859_022_04993_4
crossref_primary_10_1186_s12874_024_02224_3
crossref_primary_10_24857_rgsa_v18n12_039
crossref_primary_10_1109_ACCESS_2022_3217492
crossref_primary_10_1111_1911_3846_12832
crossref_primary_10_1186_s13326_023_00282_y
crossref_primary_10_1093_bib_bbae641
crossref_primary_10_3390_app12062953
crossref_primary_10_1093_bib_bbae644
crossref_primary_10_1186_s13321_024_00925_x
crossref_primary_10_1007_s44196_024_00521_9
crossref_primary_10_1016_j_eswa_2023_122918
crossref_primary_10_3390_math11020354
crossref_primary_10_1186_s40537_023_00818_0
crossref_primary_10_1007_s10462_024_10902_3
crossref_primary_10_1016_j_cmpb_2024_108524
crossref_primary_10_1371_journal_pone_0318726
crossref_primary_10_3390_app13074115
crossref_primary_10_1007_s12539_021_00497_6
crossref_primary_10_1016_j_artmed_2022_102346
crossref_primary_10_1093_jamia_ocae166
crossref_primary_10_1186_s42162_023_00277_0
crossref_primary_10_32604_csse_2023_032104
crossref_primary_10_1007_s40593_024_00414_0
crossref_primary_10_1016_j_compag_2022_106776
crossref_primary_10_3389_fdgth_2021_711941
crossref_primary_10_1016_j_jbi_2021_103799
crossref_primary_10_1186_s12859_021_04248_8
crossref_primary_10_3390_electronics13234643
crossref_primary_10_1016_j_procs_2022_07_107
crossref_primary_10_1371_journal_pbio_3002612
crossref_primary_10_1016_j_artmed_2024_102900
crossref_primary_10_1007_s44163_024_00197_2
crossref_primary_10_1016_j_neucom_2022_05_049
crossref_primary_10_1016_j_artmed_2024_102904
crossref_primary_10_1038_s41598_025_87161_x
crossref_primary_10_1007_s10479_023_05545_6
crossref_primary_10_3389_fonc_2021_747250
crossref_primary_10_1016_j_jksuci_2024_101933
crossref_primary_10_1093_database_baab077
crossref_primary_10_1162_tacl_a_00328
crossref_primary_10_3389_fdgth_2023_1154133
crossref_primary_10_1007_s42001_024_00286_3
crossref_primary_10_1093_database_baae106
crossref_primary_10_3389_fphy_2021_763081
crossref_primary_10_1007_s10462_025_11162_5
crossref_primary_10_1007_s10664_021_10084_4
crossref_primary_10_1016_j_artmed_2021_102053
crossref_primary_10_1016_j_eswa_2025_126622
crossref_primary_10_1016_j_drudis_2025_104332
crossref_primary_10_1016_j_csbr_2024_100003
crossref_primary_10_1016_j_jbi_2020_103481
crossref_primary_10_3389_fphar_2023_1218679
crossref_primary_10_1038_s41368_023_00239_y
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_1002_pmic_202400058
crossref_primary_10_1108_AJIM_01_2023_0002
crossref_primary_10_32604_csse_2023_030385
crossref_primary_10_1145_3580393
crossref_primary_10_1186_s40537_024_00946_1
crossref_primary_10_1007_s10489_023_05040_2
crossref_primary_10_1007_s11280_024_01322_y
crossref_primary_10_1093_jamia_ocaf037
crossref_primary_10_1016_j_tjpad_2024_100002
crossref_primary_10_1016_j_artmed_2021_102086
crossref_primary_10_1016_j_health_2022_100078
crossref_primary_10_1016_j_artmed_2023_102661
crossref_primary_10_1016_j_artmed_2023_102662
crossref_primary_10_1371_journal_pone_0253905
crossref_primary_10_1016_j_artmed_2022_102380
crossref_primary_10_1371_journal_pone_0246310
crossref_primary_10_1016_j_artmed_2023_102667
crossref_primary_10_1186_s13040_024_00371_3
crossref_primary_10_3389_fphar_2022_1020759
crossref_primary_10_1093_bib_bbaa296
crossref_primary_10_1093_jamia_ocab090
crossref_primary_10_1038_s41597_024_03793_0
crossref_primary_10_1093_bioinformatics_btac721
crossref_primary_10_1186_s12911_023_02328_8
crossref_primary_10_1016_j_farma_2024_04_001
crossref_primary_10_1021_acssuschemeng_3c03162
crossref_primary_10_1186_s12859_021_04551_4
crossref_primary_10_1038_s41598_025_93334_5
crossref_primary_10_1093_database_baae125
crossref_primary_10_3390_make4010012
crossref_primary_10_1145_3510033
crossref_primary_10_2196_60601
crossref_primary_10_3389_fpsyt_2022_946387
crossref_primary_10_1186_s13643_023_02247_9
crossref_primary_10_3390_informatics7010003
crossref_primary_10_1038_s41597_025_04417_x
crossref_primary_10_1016_j_chbr_2025_100652
crossref_primary_10_1186_s12859_020_03834_6
crossref_primary_10_1016_j_heliyon_2024_e26973
crossref_primary_10_1016_j_jbi_2023_104392
crossref_primary_10_1016_j_simpa_2023_100543
crossref_primary_10_1007_s11063_022_11102_2
crossref_primary_10_1186_s12911_022_01967_7
crossref_primary_10_3390_ai3010013
crossref_primary_10_1155_2022_6334435
crossref_primary_10_1007_s12559_023_10112_z
crossref_primary_10_1109_ACCESS_2021_3102685
crossref_primary_10_1016_j_eswa_2023_122964
crossref_primary_10_1093_jamia_ocae122
crossref_primary_10_3390_sym16050587
crossref_primary_10_1109_TCBB_2022_3157630
crossref_primary_10_3389_frma_2021_688353
crossref_primary_10_1016_j_jbi_2020_103451
crossref_primary_10_1016_j_jbi_2020_103452
crossref_primary_10_1007_s00167_022_07272_0
crossref_primary_10_1021_acs_jcim_4c01647
crossref_primary_10_1007_s00530_020_00710_4
crossref_primary_10_1016_j_csbj_2022_08_041
crossref_primary_10_2196_51711
crossref_primary_10_7717_peerj_cs_559
crossref_primary_10_1093_bib_bbac404
crossref_primary_10_2196_23230
crossref_primary_10_1111_ggi_14709
crossref_primary_10_32604_iasc_2022_028352
crossref_primary_10_1016_j_eswa_2025_126651
crossref_primary_10_1093_bib_bbac409
crossref_primary_10_1093_bioinformatics_btad603
crossref_primary_10_1093_ehjdh_ztae008
crossref_primary_10_1016_j_ccrj_2024_06_008
crossref_primary_10_1186_s13040_022_00311_z
crossref_primary_10_1016_j_compbiomed_2024_109576
crossref_primary_10_1007_s10506_025_09437_x
crossref_primary_10_1021_acs_jcim_4c00765
crossref_primary_10_1016_j_copbio_2020_09_002
crossref_primary_10_1093_jamia_ocae144
crossref_primary_10_1007_s42979_022_01415_3
crossref_primary_10_1109_TKDE_2023_3327777
crossref_primary_10_1093_jamia_ocae147
crossref_primary_10_1016_j_compmedimag_2024_102339
crossref_primary_10_3390_jimaging8050131
crossref_primary_10_1007_s10916_024_02090_y
crossref_primary_10_1016_j_jbi_2021_103717
crossref_primary_10_1016_j_ipm_2024_103678
crossref_primary_10_2196_26777
crossref_primary_10_3390_make4030030
crossref_primary_10_1109_ACCESS_2023_3295776
crossref_primary_10_1038_s41597_023_02869_7
crossref_primary_10_3390_app9194062
crossref_primary_10_1109_JBHI_2021_3133103
crossref_primary_10_3390_app14198652
crossref_primary_10_1360_SSV_2022_0298
crossref_primary_10_1371_journal_pone_0282882
crossref_primary_10_1021_acs_jproteome_4c00535
crossref_primary_10_1016_j_jbi_2021_103728
crossref_primary_10_1038_s41598_022_17806_8
crossref_primary_10_1016_j_pbi_2024_102665
crossref_primary_10_1016_j_jbi_2020_103422
crossref_primary_10_2147_PGPM_S396971
crossref_primary_10_1021_jacsau_4c01160
crossref_primary_10_2196_29398
crossref_primary_10_1016_j_compbiomed_2024_109598
crossref_primary_10_1109_JBHI_2024_3450118
crossref_primary_10_3390_app12125775
crossref_primary_10_1016_j_jbi_2022_104073
crossref_primary_10_1007_s00432_023_04824_w
crossref_primary_10_1109_ACCESS_2020_3039182
crossref_primary_10_1109_ACCESS_2023_3235265
crossref_primary_10_1148_ryai_210258
crossref_primary_10_1016_j_joen_2024_02_011
crossref_primary_10_1016_j_knosys_2025_113017
crossref_primary_10_1007_s41060_022_00310_7
crossref_primary_10_1109_JBHI_2024_3368288
crossref_primary_10_2196_48904
crossref_primary_10_1186_s12874_022_01665_y
crossref_primary_10_1093_jamia_ocad216
crossref_primary_10_1016_j_ipm_2023_103367
crossref_primary_10_1093_jamia_ocaa189
crossref_primary_10_1186_s12911_021_01395_z
crossref_primary_10_1111_bjet_13288
crossref_primary_10_1016_j_artmed_2024_102985
crossref_primary_10_1186_s12859_022_04768_x
crossref_primary_10_1186_s44342_024_00036_x
crossref_primary_10_1016_j_jbi_2024_104624
crossref_primary_10_1161_JAHA_123_030046
crossref_primary_10_1016_j_compbiomed_2024_109127
crossref_primary_10_1016_j_cosrev_2022_100511
crossref_primary_10_1016_j_jbi_2022_104062
crossref_primary_10_1016_j_jbi_2023_104361
crossref_primary_10_1371_journal_pone_0305475
crossref_primary_10_1109_ACCESS_2025_3532308
crossref_primary_10_1038_s41598_022_20474_3
crossref_primary_10_1145_3564275
crossref_primary_10_1109_TITS_2024_3373507
crossref_primary_10_1200_CCI_23_00148
crossref_primary_10_2196_42379
crossref_primary_10_1016_j_artmed_2024_102970
crossref_primary_10_1109_TASLP_2022_3178204
crossref_primary_10_3389_fmolb_2023_1136071
crossref_primary_10_1109_JBHI_2022_3217810
crossref_primary_10_1016_j_ipm_2023_103352
crossref_primary_10_1080_17543266_2024_2375654
crossref_primary_10_1016_j_jbi_2023_104370
crossref_primary_10_1088_1742_6596_1651_1_012108
crossref_primary_10_1002_cam4_6523
crossref_primary_10_1007_s10796_022_10295_0
crossref_primary_10_3390_ijerph19042173
crossref_primary_10_3390_computers14020036
crossref_primary_10_1093_jamiaopen_ooac087
crossref_primary_10_3389_fcomp_2021_672867
crossref_primary_10_1016_j_ijmedinf_2021_104464
crossref_primary_10_3389_frai_2023_1072329
crossref_primary_10_3390_app122412942
crossref_primary_10_1016_j_eswa_2024_125096
crossref_primary_10_1109_TNSM_2022_3192756
crossref_primary_10_1093_jamia_ocab014
crossref_primary_10_1186_s12859_021_04200_w
crossref_primary_10_3389_fgene_2022_867946
crossref_primary_10_1016_j_artmed_2024_102965
crossref_primary_10_1109_JSTSP_2022_3197315
crossref_primary_10_1093_database_baab005
crossref_primary_10_1007_s10115_023_01918_2
crossref_primary_10_3390_ani15060822
crossref_primary_10_1093_bioinformatics_btab474
crossref_primary_10_1109_TKDE_2023_3310002
crossref_primary_10_1016_j_jbi_2023_104382
crossref_primary_10_1016_j_jbi_2023_104384
crossref_primary_10_3390_app12030976
crossref_primary_10_1016_j_jss_2024_111961
crossref_primary_10_3390_biochem1020007
crossref_primary_10_1016_j_ijmedinf_2024_105380
crossref_primary_10_1186_s12859_022_04590_5
crossref_primary_10_1186_s12859_024_05949_6
crossref_primary_10_1109_ACCESS_2020_3040182
crossref_primary_10_1200_CCI_23_00166
crossref_primary_10_3390_app122211709
crossref_primary_10_1016_j_jbi_2023_104317
crossref_primary_10_1007_s11042_024_19209_5
crossref_primary_10_1016_j_jbi_2023_104318
crossref_primary_10_1016_j_artmed_2024_102951
crossref_primary_10_1016_j_jbi_2024_104676
crossref_primary_10_1016_j_jbi_2024_104674
crossref_primary_10_2196_37817
crossref_primary_10_1093_database_baaa104
crossref_primary_10_3389_fnut_2024_1429259
crossref_primary_10_1016_j_ijmedinf_2022_104724
crossref_primary_10_1016_j_jbi_2022_104035
crossref_primary_10_1007_s11227_023_05619_z
crossref_primary_10_1016_j_asoc_2022_109251
crossref_primary_10_1016_j_farma_2024_02_007
crossref_primary_10_1016_j_heliyon_2023_e16819
crossref_primary_10_1016_j_heliyon_2023_e16818
crossref_primary_10_12688_f1000research_24552_1
crossref_primary_10_1109_ACCESS_2020_3018688
crossref_primary_10_3390_app122312012
crossref_primary_10_1016_j_measurement_2023_114032
crossref_primary_10_1186_s13326_024_00304_3
crossref_primary_10_1093_jamia_ocad259
crossref_primary_10_1093_bioinformatics_btab019
crossref_primary_10_1093_jamia_ocad256
crossref_primary_10_1016_j_jbi_2024_104668
crossref_primary_10_1017_rsm_2025_1
crossref_primary_10_1093_jamia_ocab077
crossref_primary_10_1117_1_JEI_33_4_043021
crossref_primary_10_3389_frai_2024_1408843
crossref_primary_10_7759_cureus_39305
crossref_primary_10_1109_OJCOMS_2024_3456549
crossref_primary_10_1017_rsm_2025_3
crossref_primary_10_3390_lubricants10020018
crossref_primary_10_1109_ACCESS_2023_3279205
crossref_primary_10_1021_acs_iecr_4c03293
crossref_primary_10_2196_44597
crossref_primary_10_3389_fdgth_2025_1495040
crossref_primary_10_1007_s12553_021_00607_w
crossref_primary_10_1016_j_artmed_2022_102311
crossref_primary_10_1109_ACCESS_2023_3266377
crossref_primary_10_1093_biostatistics_kxae028
crossref_primary_10_1053_j_ackd_2022_07_001
crossref_primary_10_1098_rspb_2024_0423
crossref_primary_10_1186_s12864_020_07315_1
crossref_primary_10_1002_jrsm_1533
crossref_primary_10_1016_j_jbi_2024_104658
crossref_primary_10_2196_57400
crossref_primary_10_1016_j_artmed_2023_102611
crossref_primary_10_1038_s41598_025_87722_0
crossref_primary_10_1007_s11227_024_06776_5
crossref_primary_10_1002_mef2_43
crossref_primary_10_1111_ejn_15854
crossref_primary_10_1016_j_jbi_2022_104050
crossref_primary_10_1016_j_procs_2022_09_122
crossref_primary_10_5715_jnlp_31_707
crossref_primary_10_1186_s12859_022_05096_w
crossref_primary_10_1093_bioinformatics_btad689
crossref_primary_10_1186_s12911_023_02398_8
crossref_primary_10_1186_s13321_022_00633_4
crossref_primary_10_1016_j_ajpath_2022_07_012
crossref_primary_10_1109_ACCESS_2024_3504378
crossref_primary_10_1016_j_knosys_2025_113079
crossref_primary_10_1109_TCBB_2023_3318209
crossref_primary_10_2196_22333
crossref_primary_10_2139_ssrn_4138310
crossref_primary_10_1002_smtd_202301243
crossref_primary_10_1093_jamiaopen_ooac043
crossref_primary_10_1186_s12859_022_05083_1
crossref_primary_10_7717_peerj_cs_2662
crossref_primary_10_1038_s41467_022_29993_z
crossref_primary_10_1148_ryai_220007
crossref_primary_10_1186_s12911_021_01614_7
crossref_primary_10_1007_s12021_022_09571_w
crossref_primary_10_1038_s41598_024_73338_3
crossref_primary_10_1371_journal_pone_0290899
crossref_primary_10_1016_j_jocs_2024_102393
crossref_primary_10_2196_37804
crossref_primary_10_1016_j_jbi_2024_104640
crossref_primary_10_3390_electronics12153281
crossref_primary_10_1016_j_jclinepi_2021_01_010
crossref_primary_10_1371_journal_pone_0303231
crossref_primary_10_1038_s41540_024_00343_7
crossref_primary_10_1145_3674501
crossref_primary_10_1093_comjnl_bxad051
crossref_primary_10_1109_TCBB_2021_3086090
crossref_primary_10_3389_frma_2021_691105
crossref_primary_10_1007_s13369_024_09409_4
crossref_primary_10_1021_acs_jcim_1c00284
crossref_primary_10_3390_electronics13071395
crossref_primary_10_1016_j_knosys_2023_110675
crossref_primary_10_3389_fpsyg_2022_865841
crossref_primary_10_3390_asi4010023
crossref_primary_10_3390_prosthesis4010012
crossref_primary_10_1056_AIoa2300068
crossref_primary_10_1200_CCI_23_00122
crossref_primary_10_2196_48933
crossref_primary_10_1186_s13321_020_00461_4
crossref_primary_10_3390_healthcare10112270
crossref_primary_10_1038_s41598_025_94085_z
crossref_primary_10_1109_TR_2023_3330733
crossref_primary_10_2196_51240
crossref_primary_10_1002_etc_5634
crossref_primary_10_2196_56932
crossref_primary_10_1093_bioinformatics_btad103
crossref_primary_10_2106_JBJS_23_00473
crossref_primary_10_3390_ijerph19105893
crossref_primary_10_1038_s41578_024_00754_2
crossref_primary_10_1109_TEM_2023_3327209
crossref_primary_10_3390_electronics9091364
crossref_primary_10_12677_sa_2025_142041
crossref_primary_10_1016_j_inffus_2023_102069
crossref_primary_10_1007_s00500_022_07573_z
crossref_primary_10_1109_ACCESS_2024_3405997
crossref_primary_10_3390_biomedinformatics4020062
crossref_primary_10_1155_2021_5551318
crossref_primary_10_1016_j_schres_2024_07_016
crossref_primary_10_3322_caac_21608
crossref_primary_10_3390_app14062571
crossref_primary_10_1088_1742_6596_1646_1_012072
crossref_primary_10_1016_j_crmeth_2024_100707
crossref_primary_10_1109_TPAMI_2022_3211006
crossref_primary_10_1016_j_ipm_2023_103408
crossref_primary_10_1186_s41239_022_00353_7
crossref_primary_10_1186_s12859_021_04176_7
crossref_primary_10_1038_s41598_024_67114_6
crossref_primary_10_1109_TCE_2024_3419447
crossref_primary_10_1371_journal_pdig_0000409
crossref_primary_10_3233_IDT_230129
crossref_primary_10_3390_biom11111591
crossref_primary_10_7717_peerj_cs_2222
crossref_primary_10_1109_ACCESS_2023_3289863
crossref_primary_10_3389_frai_2022_970517
crossref_primary_10_1016_j_hfc_2021_12_002
crossref_primary_10_1109_ACCESS_2022_3164098
crossref_primary_10_1016_j_jma_2024_08_010
crossref_primary_10_1016_j_wneu_2025_123808
crossref_primary_10_1016_j_iswa_2022_200150
crossref_primary_10_1016_j_cie_2021_107236
crossref_primary_10_1016_j_gep_2022_119261
crossref_primary_10_1109_MSMC_2024_3417910
crossref_primary_10_1038_s41746_024_01219_0
crossref_primary_10_1016_j_bvth_2025_100052
crossref_primary_10_3390_agriculture11100912
crossref_primary_10_2478_ijanmc_2024_0039
crossref_primary_10_5715_jnlp_31_1563
crossref_primary_10_1038_s41592_024_02354_y
crossref_primary_10_1016_j_neucom_2024_127881
crossref_primary_10_1016_j_neucom_2022_09_081
crossref_primary_10_1186_s12859_023_05350_9
crossref_primary_10_1145_3497842
crossref_primary_10_1016_j_eswa_2024_123657
crossref_primary_10_1016_j_is_2025_102539
crossref_primary_10_1109_ACCESS_2023_3251664
crossref_primary_10_1093_bioinformatics_btac297
crossref_primary_10_1007_s40747_023_01228_8
crossref_primary_10_1007_s10115_022_01665_w
crossref_primary_10_3390_bioengineering12030308
crossref_primary_10_1109_JBHI_2021_3110805
crossref_primary_10_1016_j_ecoenv_2024_116671
crossref_primary_10_1038_s41746_024_01339_7
crossref_primary_10_1371_journal_pdig_0000416
crossref_primary_10_1007_s10579_024_09754_8
crossref_primary_10_1007_s10462_024_10834_y
crossref_primary_10_1016_j_cherd_2022_05_018
crossref_primary_10_1016_j_imu_2022_101109
crossref_primary_10_1371_journal_pone_0273476
crossref_primary_10_1038_s43856_023_00370_1
crossref_primary_10_2139_ssrn_4145954
crossref_primary_10_1148_ryai_210185
crossref_primary_10_1148_rycan_240038
crossref_primary_10_1016_j_compbiomed_2023_106683
crossref_primary_10_1016_j_imed_2022_03_003
crossref_primary_10_1016_j_is_2021_101718
crossref_primary_10_1007_s11277_021_09323_0
crossref_primary_10_1109_JIOT_2024_3421918
crossref_primary_10_3390_ijms252111811
crossref_primary_10_2147_POR_S468253
crossref_primary_10_1371_journal_pone_0276539
crossref_primary_10_1093_bioinformatics_btad169
crossref_primary_10_1093_nar_gkad1071
crossref_primary_10_3390_bdcc7020085
crossref_primary_10_1016_j_asoc_2023_110498
crossref_primary_10_1016_j_jpi_2022_100003
crossref_primary_10_2174_0115748936278299231213045441
crossref_primary_10_1093_bioinformatics_btad174
crossref_primary_10_1093_bioinformatics_btae021
crossref_primary_10_1016_j_neunet_2024_106672
crossref_primary_10_1016_j_softx_2024_101670
crossref_primary_10_1186_s12859_021_04141_4
crossref_primary_10_1186_s12911_021_01618_3
crossref_primary_10_1007_s10278_022_00666_z
crossref_primary_10_5715_jnlp_30_507
crossref_primary_10_3390_app13169338
crossref_primary_10_1016_j_asoc_2021_107975
crossref_primary_10_3390_math11030623
crossref_primary_10_1093_bib_bbaf025
crossref_primary_10_1109_TASLP_2021_3105013
crossref_primary_10_1016_j_jiph_2021_01_019
crossref_primary_10_3390_app122111250
crossref_primary_10_1016_j_sasc_2024_200075
crossref_primary_10_1007_s10489_024_05282_8
crossref_primary_10_1016_j_imu_2022_101139
crossref_primary_10_1002_cns3_5
crossref_primary_10_1109_TVCG_2022_3219762
crossref_primary_10_1038_s41467_023_36476_2
crossref_primary_10_22363_2658_4670_2023_31_1_64_74
crossref_primary_10_1016_j_eswa_2023_121186
crossref_primary_10_3390_jpm12050768
crossref_primary_10_1016_j_infsof_2023_107302
crossref_primary_10_1145_3663481
crossref_primary_10_1007_s10896_023_00517_7
crossref_primary_10_1016_j_dss_2022_113832
crossref_primary_10_1080_10572252_2022_2077452
crossref_primary_10_1186_s12859_022_05035_9
crossref_primary_10_1109_ACCESS_2025_3546131
crossref_primary_10_2196_27527
crossref_primary_10_3390_healthcare10040618
crossref_primary_10_1016_j_patrec_2021_08_009
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_1016_j_aiopen_2024_08_002
crossref_primary_10_3390_ai4010016
crossref_primary_10_1016_j_procs_2023_10_644
crossref_primary_10_1080_03610918_2024_2331083
crossref_primary_10_1145_3627820
crossref_primary_10_1016_j_isci_2024_109393
crossref_primary_10_1016_j_knosys_2024_112682
crossref_primary_10_1038_s41598_024_73561_y
crossref_primary_10_1109_TAI_2024_3364586
crossref_primary_10_1063_5_0238090
crossref_primary_10_1186_s12859_021_04435_7
crossref_primary_10_1021_acs_jpcc_4c01974
crossref_primary_10_1136_jitc_2023_007841
crossref_primary_10_1371_journal_pcbi_1008967
crossref_primary_10_1093_nar_gkab1079
crossref_primary_10_1109_TMI_2024_3429471
crossref_primary_10_3390_ai4010004
crossref_primary_10_3390_app122111220
crossref_primary_10_1007_s11280_022_01013_6
crossref_primary_10_1186_s12859_021_04511_y
crossref_primary_10_1007_s11042_023_14981_2
crossref_primary_10_1016_j_jtumed_2022_12_015
crossref_primary_10_1038_s41591_024_03233_x
crossref_primary_10_3233_SW_223085
crossref_primary_10_18287_2223_9537_2023_13_2_282_293
crossref_primary_10_1002_asi_24612
crossref_primary_10_3934_mbe_2023047
crossref_primary_10_1109_ACCESS_2021_3108445
crossref_primary_10_2196_49771
crossref_primary_10_1109_TCBB_2021_3135844
crossref_primary_10_1093_bib_bbae132
crossref_primary_10_1038_s41746_024_01276_5
crossref_primary_10_3390_diagnostics12040887
crossref_primary_10_1016_j_jare_2025_02_011
crossref_primary_10_1016_j_procs_2023_08_150
crossref_primary_10_1109_JBHI_2022_3221988
crossref_primary_10_1080_10903127_2024_2352583
crossref_primary_10_1109_ACCESS_2024_3406426
crossref_primary_10_3390_a17040144
crossref_primary_10_1021_acs_energyfuels_4c01247
crossref_primary_10_1155_2021_6633213
crossref_primary_10_1007_s12028_022_01513_3
crossref_primary_10_2196_24020
crossref_primary_10_3389_fdgth_2021_779091
crossref_primary_10_1145_3689629
crossref_primary_10_3390_v14122761
crossref_primary_10_1016_j_heliyon_2023_e21723
crossref_primary_10_1016_j_artmed_2024_103002
crossref_primary_10_3390_electronics13091753
crossref_primary_10_1016_j_artmed_2024_103003
crossref_primary_10_2217_fmai_2024_0001
crossref_primary_10_1007_s10669_021_09830_2
crossref_primary_10_1016_j_jbi_2022_103985
crossref_primary_10_1093_bib_bbad236
crossref_primary_10_1093_bib_bbad235
crossref_primary_10_1371_journal_pone_0308155
crossref_primary_10_3389_fpubh_2025_1540946
crossref_primary_10_1017_S1351324923000335
crossref_primary_10_1186_s12859_023_05439_1
crossref_primary_10_1007_s11704_022_1563_1
crossref_primary_10_1093_bib_bbad226
crossref_primary_10_1093_bioadv_vbac035
crossref_primary_10_1098_rsta_2021_0125
crossref_primary_10_1152_physiolgenomics_00011_2024
crossref_primary_10_1016_j_knosys_2024_111395
crossref_primary_10_3390_info10080248
crossref_primary_10_3390_electronics13234618
crossref_primary_10_1002_sim_10148
crossref_primary_10_1016_j_aei_2020_101235
crossref_primary_10_1016_j_neucom_2021_05_103
crossref_primary_10_1093_nar_gkaa979
crossref_primary_10_1109_ACCESS_2024_3427369
crossref_primary_10_2196_30753
crossref_primary_10_3390_app11031090
crossref_primary_10_36535_0203_6460_2021_01_4
crossref_primary_10_1093_bib_bbae548
crossref_primary_10_1371_journal_pone_0317042
crossref_primary_10_1186_s12859_022_04994_3
crossref_primary_10_1016_S2589_7500_24_00114_6
crossref_primary_10_1017_S1351324921000322
crossref_primary_10_1182_bloodadvances_2023012200
crossref_primary_10_1016_j_jbi_2021_103683
crossref_primary_10_1109_ACCESS_2021_3083583
crossref_primary_10_3389_fgene_2022_799349
crossref_primary_10_1109_JBHI_2021_3112130
crossref_primary_10_1186_s12911_022_01924_4
crossref_primary_10_2196_17787
crossref_primary_10_1016_j_csbj_2024_09_031
crossref_primary_10_2196_32903
crossref_primary_10_1111_coin_12596
crossref_primary_10_1007_s10489_024_05808_0
crossref_primary_10_1109_TMI_2023_3253760
crossref_primary_10_1145_3641279
crossref_primary_10_1016_j_jbi_2021_103696
crossref_primary_10_1016_j_ins_2024_121759
crossref_primary_10_2196_39547
crossref_primary_10_1016_j_jbi_2022_103999
crossref_primary_10_1186_s12911_023_02239_8
crossref_primary_10_1093_nar_gkaa952
crossref_primary_10_1016_j_engappai_2024_108877
crossref_primary_10_1016_j_jbi_2020_103392
crossref_primary_10_1055_s_0042_1742388
crossref_primary_10_1016_j_compbiomed_2025_109925
crossref_primary_10_3389_fgene_2023_1154198
crossref_primary_10_1186_s12911_020_01227_6
crossref_primary_10_1007_s40747_024_01717_4
Cites_doi 10.18653/v1/W19-1908
10.1371/journal.pone.0065390
10.18653/v1/W19-1909
10.1016/j.compbiomed.2019.04.002
10.1186/s12859-019-2813-6
10.1093/bioinformatics/btx172
10.1186/s12859-015-0472-9
10.1016/j.jbi.2012.04.004
10.1136/amiajnl-2011-000203
10.1093/bioinformatics/btx761
10.1186/gb-2008-9-s2-s2
10.1186/1471-2105-11-85
10.1093/bioinformatics/bty449
10.1016/j.jbi.2013.12.006
10.1186/s12859-015-0564-6
10.1371/journal.pone.0200699
10.1186/1758-2946-7-S1-S2
10.3115/v1/D14-1162
10.1093/database/bay060
10.1093/bioinformatics/btx228
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2019
The Author(s) 2019. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2019
– notice: The Author(s) 2019. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz682
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1240
ExternalDocumentID PMC7703786
31501885
10_1093_bioinformatics_btz682
10.1093/bioinformatics/btz682
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea(NRF) funded by the Korea government
  grantid: NRF-2017R1A2A1A17069645; NRF-2017M3C4A7065887; NRF-2014M3C9A3063541
– fundername: ;
  grantid: NRF-2017R1A2A1A17069645; NRF-2017M3C4A7065887; NRF-2014M3C9A3063541
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c518t-ce9cf7a8b0b0613957c9184da973ce8b6cf192b29b652906bc06be04f3727d683
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:01:12 EDT 2025
Fri Jul 11 09:33:11 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Tue Jul 01 02:33:50 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Wed Aug 28 03:17:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-ce9cf7a8b0b0613957c9184da973ce8b6cf192b29b652906bc06be04f3727d683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Jinhyuk Lee and Wonjin Yoon wish it to be known that the first two authors contributed equally.
ORCID 0000-0002-0240-6210
0000-0001-7633-1074
0000-0002-8224-8354
0000-0001-6798-9106
0000-0002-6435-548X
0000-0003-4972-239X
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btz682
PMID 31501885
PQID 2288007289
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703786
proquest_miscellaneous_2288007289
pubmed_primary_31501885
crossref_citationtrail_10_1093_bioinformatics_btz682
crossref_primary_10_1093_bioinformatics_btz682
oup_primary_10_1093_bioinformatics_btz682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Doğan (2023013110145762300_btz682-B5) 2014; 47
Pennington (2023013110145762300_btz682-B21) 2014
Mohan (2023013110145762300_btz682-B19) 2019
Uzuner (2023013110145762300_btz682-B30) 2011; 18
Lou (2023013110145762300_btz682-B15) 2017; 33
Sousa (2023013110145762300_btz682-B27) 2019
Krallinger (2023013110145762300_btz682-B10) 2015; 7
Habibi (2023013110145762300_btz682-B8) 2017; 33
Wu (2023013110145762300_btz682-B35) 2016
Li (2023013110145762300_btz682-B12) 2016; 2016
Kim (2023013110145762300_btz682-B9) 2004
McCann (2023013110145762300_btz682-B17) 2017
Bravo (2023013110145762300_btz682-B3) 2015; 16
Giorgi (2023013110145762300_btz682-B7) 2018; 34
Lim (2023013110145762300_btz682-B13) 2018; 2018
Van Mulligen (2023013110145762300_btz682-B31) 2012; 45
Wiese (2023013110145762300_btz682-B34) 2017
Wang (2023013110145762300_btz682-B33) 2018
Devlin (2023013110145762300_btz682-B4) 2019
Sachan (2023013110145762300_btz682-B25) 2018
Xu (2023013110145762300_btz682-B36) 2019; 108
Yoon (2023013110145762300_btz682-B37) 2019; 20
Mikolov (2023013110145762300_btz682-B18) 2013
Pafilis (2023013110145762300_btz682-B20) 2013; 8
Peters (2023013110145762300_btz682-B22) 2018
Rajpurkar (2023013110145762300_btz682-B24) 2016
Sung (2023013110145762300_btz682-B28) 2017
Smith (2023013110145762300_btz682-B26) 2008; 9
Tsatsaronis (2023013110145762300_btz682-B29) 2015; 16
Pyysalo (2023013110145762300_btz682-B23) 2013
Krallinger (2023013110145762300_btz682-B11) 2017
Zhu (2023013110145762300_btz682-B38) 2018
Alsentzer (2023013110145762300_btz682-B1) 2019
Vaswani (2023013110145762300_btz682-B32) 2017
Bhasuran (2023013110145762300_btz682-B2) 2018; 13
Gerner (2023013110145762300_btz682-B6) 2010; 11
Luo (2023013110145762300_btz682-B16) 2018; 34
Lin (2023013110145762300_btz682-B14) 2019
References_xml – start-page: 65
  year: 2019
  ident: 2023013110145762300_btz682-B14
  article-title: A bert-based universal model for both within-and cross-sentence clinical temporal relation extraction
  publication-title: Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA.
  doi: 10.18653/v1/W19-1908
– volume: 8
  start-page: e65390
  year: 2013
  ident: 2023013110145762300_btz682-B20
  article-title: The species and organisms resources for fast and accurate identification of taxonomic names in text
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065390
– start-page: 72
  year: 2019
  ident: 2023013110145762300_btz682-B1
  article-title: Publicly available clinical bert embeddings
  publication-title: Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA
  doi: 10.18653/v1/W19-1909
– year: 2018
  ident: 2023013110145762300_btz682-B38
– volume: 108
  start-page: 122
  year: 2019
  ident: 2023013110145762300_btz682-B36
  article-title: Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2019.04.002
– volume: 20
  start-page: 249
  year: 2019
  ident: 2023013110145762300_btz682-B37
  article-title: Collabonet: collaboration of deep neural networks for biomedical named entity recognition
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2813-6
– volume: 33
  start-page: 2363
  year: 2017
  ident: 2023013110145762300_btz682-B15
  article-title: A transition-based joint model for disease named entity recognition and normalization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx172
– volume: 16
  start-page: 55
  year: 2015
  ident: 2023013110145762300_btz682-B3
  article-title: Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0472-9
– start-page: 3111
  year: 2013
  ident: 2023013110145762300_btz682-B18
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in Neural Information Processing Systems 26
– volume: 45
  start-page: 879
  year: 2012
  ident: 2023013110145762300_btz682-B31
  article-title: The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships
  publication-title: J. Biomed. Inform
  doi: 10.1016/j.jbi.2012.04.004
– year: 2004
  ident: 2023013110145762300_btz682-B9
– start-page: 4171
  year: 2019
  ident: 2023013110145762300_btz682-B4
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA
– year: 2018
  ident: 2023013110145762300_btz682-B22
– volume: 18
  start-page: 552
  year: 2011
  ident: 2023013110145762300_btz682-B30
  article-title: 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
  publication-title: J. Am. Med. Inform. Assoc
  doi: 10.1136/amiajnl-2011-000203
– year: 2019
  ident: 2023013110145762300_btz682-B19
– year: 2016
  ident: 2023013110145762300_btz682-B24
– volume: 2016
  year: 2016
  ident: 2023013110145762300_btz682-B12
  article-title: Biocreative V CDR task corpus: a resource for chemical disease relation extraction
  publication-title: Database
– volume: 34
  start-page: 1381
  year: 2018
  ident: 2023013110145762300_btz682-B16
  article-title: An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx761
– volume: 9
  start-page: S2
  year: 2008
  ident: 2023013110145762300_btz682-B26
  article-title: Overview of biocreative ii gene mention recognition
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s2
– year: 2017
  ident: 2023013110145762300_btz682-B34
– start-page: 141
  year: 2017
  ident: 2023013110145762300_btz682-B11
  article-title: Overview of the BioCreative VI chemical-protein interaction track
  publication-title: Proceedings of the BioCreative VI Workshop, Bethesda, MD, USA
– start-page: 6294
  year: 2017
  ident: 2023013110145762300_btz682-B17
  article-title: Learned in translation: contextualized word vectors
  publication-title: Advances in Neural Information Processing Systems 30
– start-page: 1487
  year: 2019
  ident: 2023013110145762300_btz682-B27
  article-title: A silver standard corpus of human phenotype-gene relations
  publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN
– volume: 11
  start-page: 85
  year: 2010
  ident: 2023013110145762300_btz682-B6
  article-title: Linnaeus: a species name identification system for biomedical literature
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-85
– start-page: 5998
  year: 2017
  ident: 2023013110145762300_btz682-B32
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 4087
  year: 2018
  ident: 2023013110145762300_btz682-B7
  article-title: Transfer learning for biomedical named entity recognition with neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty449
– year: 2017
  ident: 2023013110145762300_btz682-B28
– volume: 47
  start-page: 1
  year: 2014
  ident: 2023013110145762300_btz682-B5
  article-title: NCBI disease corpus: a resource for disease name recognition and concept normalization
  publication-title: J. Biomed. Inform
  doi: 10.1016/j.jbi.2013.12.006
– start-page: 39
  year: 2013
  ident: 2023013110145762300_btz682-B23
  article-title: Distributional semantics resources for biomedical text processing
  publication-title: Proceedings of the 5th International Symposium on Languages in Biology and Medicine, Tokyo, Japan
– volume: 16
  start-page: 138
  year: 2015
  ident: 2023013110145762300_btz682-B29
  article-title: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0564-6
– volume: 13
  start-page: e0200699
  year: 2018
  ident: 2023013110145762300_btz682-B2
  article-title: Automatic extraction of gene-disease associations from literature using joint ensemble learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200699
– volume: 7
  year: 2015
  ident: 2023013110145762300_btz682-B10
  article-title: The chemdner corpus of chemicals and drugs and its annotation principles
  publication-title: J. Cheminform
  doi: 10.1186/1758-2946-7-S1-S2
– start-page: 1532
  year: 2014
  ident: 2023013110145762300_btz682-B21
  article-title: Glove: Global vectors for word representation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar
  doi: 10.3115/v1/D14-1162
– year: 2018
  ident: 2023013110145762300_btz682-B33
– year: 2016
  ident: 2023013110145762300_btz682-B35
– volume: 2018
  year: 2018
  ident: 2023013110145762300_btz682-B13
  article-title: Chemical–gene relation extraction using recursive neural network
  publication-title: Database
  doi: 10.1093/database/bay060
– volume: 33
  start-page: i37
  year: 2017
  ident: 2023013110145762300_btz682-B8
  article-title: Deep learning with word embeddings improves biomedical named entity recognition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx228
– year: 2018
  ident: 2023013110145762300_btz682-B25
SSID ssj0051444
ssj0005056
Score 2.7373486
Snippet Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural...
Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1234
SubjectTerms Original Papers
Title BioBERT: a pre-trained biomedical language representation model for biomedical text mining
URI https://www.ncbi.nlm.nih.gov/pubmed/31501885
https://www.proquest.com/docview/2288007289
https://pubmed.ncbi.nlm.nih.gov/PMC7703786
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jIHgRv61fRPDioa5rmjT1prIxBBVkg-GlNGmKA-1Eu4P-9b7XtHMdiHootDQJaV77Ppr3fj9CTkHncSSudlPNMzcAg-xGSRq4mY8GNlWBKLMqb-_EYBTcjPm4Rby6FmZ5Cz9iHTWZViCiCFzcUcWnkKh0wRAjWP7wfvyd0-EhMoy9AE8gsJS2iOwtPVbX7_w0ZMMyNardFpzO5dzJBWPUXydrlRdJL63YN0jL5JtkxfJKfmyRRzi76j0ML2hCMc2j5IEwKbW19igWWv-npCWqZV2BlNOSGYfCpBcbY3YIfSmpJLbJqN8bXg_cikTB1bwrC1ebSGdhIpWn0HRHPNQRRHVpEoVMG6mEzsDJU36kBEfod6XhMF6QMfBsUiHZDmnn09zsEcpEFqBH3kXAnSw0inOlRMo8A0ZeSOOQoF7AWFcI4_iAz7Hd6WZxc91ju-4OOZ93e7UQG791OAPp_LXtSS3DGD4c3A1JcjOdvce-D6rLCyHgdMiulel8SNZFnEPJHRI2pD1vgKDczTv55KkE5w5BhYZS7P9jjgdk1ccoHmlm-CFpF28zcwSuTqGOy9f7CxV0AfQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioBERT%3A+a+pre-trained+biomedical+language+representation+model+for+biomedical+text+mining&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Lee%2C+Jinhyuk&rft.au=Yoon%2C+Wonjin&rft.au=Kim%2C+Sungdong&rft.au=Kim%2C+Donghyeon&rft.date=2020-02-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=4&rft.spage=1234&rft.epage=1240&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz682&rft_id=info%3Apmid%2F31501885&rft.externalDocID=PMC7703786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon