Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves

Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5163 - 9
Main Authors Adhikari, Yuwaraj, Liu, Tianhan, Wang, Hailong, Hua, Zhenqi, Liu, Haoyang, Lochner, Eric, Schlottmann, Pedro, Yan, Binghai, Zhao, Jianhua, Xiong, Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments.
AbstractList Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments.
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments.
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
ArticleNumber 5163
Author Schlottmann, Pedro
Zhao, Jianhua
Liu, Tianhan
Xiong, Peng
Liu, Haoyang
Adhikari, Yuwaraj
Wang, Hailong
Hua, Zhenqi
Yan, Binghai
Lochner, Eric
Author_xml – sequence: 1
  givenname: Yuwaraj
  surname: Adhikari
  fullname: Adhikari, Yuwaraj
  organization: Department of Physics, Florida State University
– sequence: 2
  givenname: Tianhan
  orcidid: 0000-0003-3934-0785
  surname: Liu
  fullname: Liu, Tianhan
  organization: Department of Physics, Florida State University
– sequence: 3
  givenname: Hailong
  orcidid: 0000-0001-9884-4460
  surname: Wang
  fullname: Wang, Hailong
  organization: State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhenqi
  surname: Hua
  fullname: Hua, Zhenqi
  organization: Department of Physics, Florida State University
– sequence: 5
  givenname: Haoyang
  surname: Liu
  fullname: Liu, Haoyang
  organization: Department of Physics, Florida State University
– sequence: 6
  givenname: Eric
  surname: Lochner
  fullname: Lochner, Eric
  organization: Department of Physics, Florida State University
– sequence: 7
  givenname: Pedro
  surname: Schlottmann
  fullname: Schlottmann, Pedro
  organization: Department of Physics, Florida State University
– sequence: 8
  givenname: Binghai
  orcidid: 0000-0003-2164-5839
  surname: Yan
  fullname: Yan, Binghai
  email: binghai.yan@weizmann.ac.il
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 9
  givenname: Jianhua
  surname: Zhao
  fullname: Zhao, Jianhua
  email: jhzhao@semi.ac.cn
  organization: State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences
– sequence: 10
  givenname: Peng
  orcidid: 0000-0003-1746-1404
  surname: Xiong
  fullname: Xiong, Peng
  email: pxiong@fsu.edu
  organization: Department of Physics, Florida State University
BookMark eNp9kk2PFCEQholZ4364f8BTJ1482AoNNHAyZqPrJJt40TOh6eoZJgyMQE8y_36Z7TW6e1guRaj3eamq1CU6CzEAQu8I_kQwlZ8zI6wXLe5oy7CUrFWv0EWHGWmJ6OjZf_dzdJ3zFtdDFZGMvUHnVPQdpkJeoM0qFEh7b45NnJpc0mzLnIxv7MbV4MrxYwMebEkxNHnvQmPC2JS4jz6una3CmAZXaqyphWl2sQKzN2kBDsYfIL9FryfjM1w_xiv0-_u3Xzc_2ruft6ubr3et5USW1gKZ8GQwKG5Er0g_TSMoYJSzAauRDsLYgUtKleHjwKzppByo7SXwUQk20Su0WnzHaLZ6n9zOpKOOxumHh5jW2qTirAdNmcATZ5IQIKwTXI69VHyscwPeKdZXry-L134edjBaCKX298T0aSa4jV7HgyaYMSXFyeHDo0OKf2bIRe9ctuC9CRDnrDvJhaSSY1Gl759Jt3FOoc7qpOp7rmRPqkouKptizgkmbev0i4unApyvP-vTeuhlPXRdD_2wHlpVtHuG_m3kRYguUK7isIb0r6oXqHs71c6P
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00661
crossref_primary_10_1364_OE_537264
crossref_primary_10_1063_5_0227365
crossref_primary_10_1038_s41560_024_01674_9
crossref_primary_10_1002_cphc_202300726
crossref_primary_10_1002_aelm_202400554
crossref_primary_10_1007_s00601_024_01880_x
crossref_primary_10_1016_j_ijhydene_2025_01_221
crossref_primary_10_1016_j_jpowsour_2025_236839
crossref_primary_10_1021_acs_jpcc_4c05942
crossref_primary_10_1146_annurev_matsci_080222_033548
crossref_primary_10_1038_s41467_025_56718_9
crossref_primary_10_1002_chem_202400436
crossref_primary_10_1021_acsaelm_4c00415
crossref_primary_10_1126_sciadv_ado4285
crossref_primary_10_1016_j_matt_2024_11_018
crossref_primary_10_1002_ange_202416221
crossref_primary_10_1002_adma_202406347
crossref_primary_10_1021_acs_nanolett_4c00383
crossref_primary_10_1016_j_newton_2025_100015
crossref_primary_10_1063_5_0165806
crossref_primary_10_1103_PhysRevResearch_6_023200
crossref_primary_10_1103_PhysRevB_109_024407
crossref_primary_10_1002_smll_202406631
crossref_primary_10_1021_acsnano_3c12925
crossref_primary_10_1126_sciadv_ado4875
crossref_primary_10_1088_1361_648X_adb674
crossref_primary_10_1021_jacs_4c04186
crossref_primary_10_1038_s41467_024_55433_1
crossref_primary_10_1002_anie_202416221
Cites_doi 10.1021/acs.nanolett.2c01953
10.1146/annurev-physchem-040214-121554
10.1103/PhysRevB.73.195331
10.1021/jacs.1c05637
10.1126/science.aar4265
10.1063/1.1729774
10.1021/acsnano.1c10155
10.1038/s41570-019-0087-1
10.1073/pnas.0701472104
10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z
10.1038/s41563-021-00924-5
10.1021/acs.nanolett.0c02417
10.1038/nmat1526
10.1021/acs.jpcc.0c02291
10.1002/adma.202106629
10.1073/pnas.1407716111
10.1103/PhysRevB.102.214303
10.1021/acsnano.7b04165
10.1038/s41467-018-05759-4
10.1021/acs.jpclett.8b00208
10.1146/annurev-conmatphys-031016-025458
10.1021/acs.nanolett.1c00183
10.1103/PhysRevB.93.075407
10.1021/acsnano.5b00832
10.1021/acs.jpcc.1c10550
10.1038/nnano.2015.255
10.1209/0295-5075/99/17006
10.1103/PhysRevLett.96.036101
10.1021/acs.nanolett.9b01707
10.1103/RevModPhys.82.3045
10.1002/adma.201904965
10.1038/s41557-023-01212-2
10.1063/5.0049150
10.1126/science.1199339
10.1021/acs.jpclett.9b02929
10.1103/PhysRevLett.87.236602
10.1021/acs.accounts.0c00485
10.1103/PhysRevB.98.214513
10.1021/acs.nanolett.0c02349
10.1063/1.1702682
10.1126/science.abf5291
10.1021/ja9048898
10.1021/jacs.1c02983
10.1021/jp066846s
10.1021/nl2021637
10.1002/adma.201503547
10.1063/1.4820907
10.1021/jacs.6b10538
10.1021/jacs.8b08421
10.1103/PhysRevB.85.081404
10.1103/RevModPhys.90.015001
10.1021/acsnano.9b01876
10.1103/PhysRevLett.108.218102
10.1126/sciadv.aay0571
10.1063/1.3167404
10.1073/pnas.1311493110
10.1103/PhysRevB.99.024418
10.1103/PhysRevB.101.026403
10.1038/s42254-021-00302-9
10.1021/acsami.7b14113
10.1021/jp509974z
10.1021/acs.nanolett.9b01552
10.1007/s00706-016-1795-6
10.1021/acs.jpcc.9b05020
10.1021/acs.jpclett.8b02196
10.1021/acsnano.0c07438
10.1063/1.4921310
10.1103/PhysRevB.102.035431
10.1103/PhysRevB.99.245153
10.1103/RevModPhys.83.1057
10.1039/D2NH00502F
10.1038/s41586-022-04846-3
10.1002/adma.201402810
10.1103/PhysRevB.104.024430
10.1038/s41467-020-20831-8
10.21203/rs.3.rs-1664101/v1
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-40884-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_3470f54811e142758d6895d041e52946
PMC10449876
10_1038_s41467_023_40884_9
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DMR_1905843
  funderid: https://doi.org/10.13039/100000001
– fundername: Chinese Ministry of Science and Technology | Department of S and T for Social Development (Department of S&T for Social Development)
  grantid: 2021YFA1202200
  funderid: https://doi.org/10.13039/501100004751
– fundername: ;
  grantid: 2021YFA1202200
– fundername: ;
  grantid: DMR_1905843
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-ce1f0fa0e95a76916ffde9e4354b09d3b7acb58339a5db4ca288b3c68e5d974f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:22 EDT 2025
Thu Aug 21 18:36:37 EDT 2025
Fri Jul 11 11:00:53 EDT 2025
Wed Aug 13 01:50:56 EDT 2025
Tue Jul 01 02:10:32 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Fri Feb 21 02:39:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-ce1f0fa0e95a76916ffde9e4354b09d3b7acb58339a5db4ca288b3c68e5d974f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2164-5839
0000-0003-1746-1404
0000-0003-3934-0785
0000-0001-9884-4460
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40884-9
PMID 37620378
PQID 2856659861
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_3470f54811e142758d6895d041e52946
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10449876
proquest_miscellaneous_2857838507
proquest_journals_2856659861
crossref_citationtrail_10_1038_s41467_023_40884_9
crossref_primary_10_1038_s41467_023_40884_9
springer_journals_10_1038_s41467_023_40884_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-24
PublicationDateYYYYMMDD 2023-08-24
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR56) 2015; 27
Hasan, Kane (CR1) 2010; 82
Gersten, Kaasbjerg, Nitzan (CR39) 2013; 139
He (CR72) 2006; 5
Naaman, Waldeck (CR71) 2020; 101
Simmons (CR62) 1963; 34
Volosniev (CR47) 2021; 104
Yang, van der Wal, van Wees (CR70) 2019; 99
Naaman, Waldeck (CR30) 2015; 66
Kim (CR19) 2021; 371
Liu (CR52) 2020; 14
Ray, Daube, Leitus, Vager, Naaman (CR13) 2006; 96
Mondal (CR16) 2021; 143
Rikken, Fölling, Wyder (CR65) 2001; 87
Díaz, Domínguez-Adame, Gutierrez, Cuniberti, Mujica (CR42) 2018; 9
Naaman, Paltiel, Waldeck (CR5) 2019; 3
Yang, Naaman, Paltiel, Parkin (CR6) 2021; 3
Simmons (CR61) 1963; 34
Alpern (CR28) 2019; 19
Fransson (CR44) 2021; 21
Liu, Xiao, Koo, Yan (CR49) 2021; 20
Rikken, Avarvari (CR67) 2019; 99
Abendroth (CR23) 2017; 11
Al-Bustami (CR21) 2022; 22
Gutierrez, Díaz, Naaman, Cuniberti (CR35) 2012; 85
Banerjee-Ghosh (CR27) 2018; 360
Medina, López, Ratner, Mujica (CR36) 2012; 99
Zhang, Hao, Qin, Xie, Qu (CR46) 2020; 102
Waldeck, Naaman, Paltiel (CR7) 2021; 9
Göhler (CR8) 2011; 331
Kettner (CR10) 2015; 119
Das, Tassinari, Naaman, Fransson (CR32) 2021; 126
Alwan, Dubi (CR50) 2021; 143
Kastlunger, Stadler (CR76) 2016; 147
Mondal, Fontanesi, Waldeck, Naaman (CR25) 2015; 9
Abendroth (CR24) 2019; 141
Xie (CR51) 2011; 11
Yang, van der Wal, van Wees (CR60) 2020; 20
Akkerman (CR64) 2007; 104
Du, Fu, Wu (CR45) 2020; 102
Dalum, Hedegård (CR59) 2019; 19
Fransson (CR43) 2019; 10
Schwarz (CR74) 2016; 11
CR55
CR53
Wu, Subotnik (CR48) 2021; 12
Yan, Felser (CR3) 2017; 8
Park (CR75) 2022; 16
Hossain (CR77) 2023; 8
Vilan (CR63) 2007; 111
Nijhuis, Reus, Whitesides (CR73) 2009; 131
Carmeli, Skakalova, Naaman, Vager (CR9) 2002; 41
Thevenard (CR54) 2006; 73
Liu (CR57) 2017; 9
Kettner (CR15) 2018; 9
Shapira (CR29) 2018; 98
Evers (CR31) 2021; 34
Abendroth (CR12) 2019; 13
Armitage, Mele, Vishwanath (CR4) 2018; 90
Yang (CR69) 2023; 15
Mishra (CR11) 2013; 110
Guo, Sun (CR37) 2014; 111
Zwang, Hürlimann, Hill, Barton (CR22) 2016; 138
Qi, Zhang (CR2) 2011; 83
Niño (CR14) 2014; 26
Guo, Sun (CR34) 2012; 108
Qian (CR20) 2022; 606
Mishra (CR58) 2020; 124
Huizi-Rayo (CR17) 2020; 20
Yeganeh, Ratner, Medina, Mujica (CR33) 2009; 131
Lu (CR18) 2019; 5
Kulkarni (CR68) 2020; 32
Naaman, Paltiel, Waldeck (CR26) 2020; 53
Michaeli, Naaman (CR40) 2019; 123
Tokura, Nagaosa (CR66) 2018; 9
Medina, González-Arraga, Finkelstein-Shapiro, Berche, Mujica (CR38) 2015; 142
Matityahu, Utsumi, Aharony, Entin-Wohlman, Balseiro (CR41) 2016; 93
40884_CR53
JM Abendroth (40884_CR24) 2019; 141
40884_CR55
DH Waldeck (40884_CR7) 2021; 9
R Naaman (40884_CR30) 2015; 66
M Kettner (40884_CR15) 2018; 9
J Gersten (40884_CR39) 2013; 139
I Carmeli (40884_CR9) 2002; 41
S Yeganeh (40884_CR33) 2009; 131
S Alwan (40884_CR50) 2021; 143
JG Simmons (40884_CR61) 1963; 34
AM Guo (40884_CR34) 2012; 108
Y Wu (40884_CR48) 2021; 12
H Lu (40884_CR18) 2019; 5
Y-H Kim (40884_CR19) 2021; 371
B Göhler (40884_CR8) 2011; 331
J Fransson (40884_CR43) 2019; 10
S Mishra (40884_CR58) 2020; 124
AK Mondal (40884_CR16) 2021; 143
R Naaman (40884_CR26) 2020; 53
G Kastlunger (40884_CR76) 2016; 147
AG Volosniev (40884_CR47) 2021; 104
JM Abendroth (40884_CR23) 2017; 11
T Liu (40884_CR57) 2017; 9
F Schwarz (40884_CR74) 2016; 11
GLJA Rikken (40884_CR65) 2001; 87
R Naaman (40884_CR5) 2019; 3
S-H Yang (40884_CR6) 2021; 3
Q Qian (40884_CR20) 2022; 606
R Gutierrez (40884_CR35) 2012; 85
L Thevenard (40884_CR54) 2006; 73
E Medina (40884_CR38) 2015; 142
MA Hossain (40884_CR77) 2023; 8
HB Akkerman (40884_CR64) 2007; 104
SG Ray (40884_CR13) 2006; 96
X Yang (40884_CR60) 2020; 20
Z Xie (40884_CR51) 2011; 11
M Kettner (40884_CR10) 2015; 119
Y Liu (40884_CR49) 2021; 20
TK Das (40884_CR32) 2021; 126
C Yang (40884_CR69) 2023; 15
JM Abendroth (40884_CR12) 2019; 13
J Fransson (40884_CR44) 2021; 21
R Naaman (40884_CR71) 2020; 101
F Evers (40884_CR31) 2021; 34
A-M Guo (40884_CR37) 2014; 111
GLJA Rikken (40884_CR67) 2019; 99
H Al-Bustami (40884_CR21) 2022; 22
S Dalum (40884_CR59) 2019; 19
A Vilan (40884_CR63) 2007; 111
D Mishra (40884_CR11) 2013; 110
MÁ Niño (40884_CR14) 2014; 26
CA Nijhuis (40884_CR73) 2009; 131
T Liu (40884_CR52) 2020; 14
K Banerjee-Ghosh (40884_CR27) 2018; 360
Y Tokura (40884_CR66) 2018; 9
C Kulkarni (40884_CR68) 2020; 32
E Díaz (40884_CR42) 2018; 9
L Zhang (40884_CR46) 2020; 102
X Wang (40884_CR56) 2015; 27
PC Mondal (40884_CR25) 2015; 9
NP Armitage (40884_CR4) 2018; 90
G-F Du (40884_CR45) 2020; 102
K Michaeli (40884_CR40) 2019; 123
S Matityahu (40884_CR41) 2016; 93
JG Simmons (40884_CR62) 1963; 34
TJ Zwang (40884_CR22) 2016; 138
X Yang (40884_CR70) 2019; 99
U Huizi-Rayo (40884_CR17) 2020; 20
MZ Hasan (40884_CR1) 2010; 82
B Yan (40884_CR3) 2017; 8
H Alpern (40884_CR28) 2019; 19
J Park (40884_CR75) 2022; 16
E Medina (40884_CR36) 2012; 99
X-L Qi (40884_CR2) 2011; 83
T Shapira (40884_CR29) 2018; 98
J He (40884_CR72) 2006; 5
References_xml – volume: 22
  start-page: 5022
  year: 2022
  ident: CR21
  article-title: Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01953
– volume: 66
  start-page: 263
  year: 2015
  ident: CR30
  article-title: Spintronics and chirality: Spin selectivity in electron transport through chiral molecules
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040214-121554
– volume: 73
  start-page: 195331
  year: 2006
  ident: CR54
  article-title: Magnetic properties and domain structure of (Ga,Mn)as films with perpendicular anisotropy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.195331
– volume: 143
  start-page: 14235
  year: 2021
  ident: CR50
  article-title: Spinterface origin for the chirality-induced spin-selectivity effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05637
– volume: 360
  start-page: 1331
  year: 2018
  ident: CR27
  article-title: Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates
  publication-title: Science
  doi: 10.1126/science.aar4265
– volume: 34
  start-page: 2581
  year: 1963
  ident: CR62
  article-title: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729774
– volume: 16
  start-page: 4206
  year: 2022
  ident: CR75
  article-title: Controlled hysteresis of conductance in molecular tunneling junctions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10155
– volume: 3
  start-page: 250
  year: 2019
  ident: CR5
  article-title: Chiral molecules and the electron spin
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0087-1
– volume: 104
  start-page: 11161
  year: 2007
  ident: CR64
  article-title: Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0701472104
– volume: 41
  start-page: 761
  year: 2002
  ident: CR9
  article-title: Magnetization of chiral monolayers of polypeptide: A possible source of magnetism in some biological membranes
  publication-title: Angew. Chem.
  doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z
– volume: 20
  start-page: 638
  year: 2021
  ident: CR49
  article-title: Chirality-driven topological electronic structure of DNA-like materials.
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00924-5
– volume: 20
  start-page: 6148
  year: 2020
  ident: CR60
  article-title: Detecting chirality in two-terminal electronic nanodevices
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02417
– volume: 5
  start-page: 63
  year: 2006
  ident: CR72
  article-title: Metal-free silicon-molecule-nanotube testbed and memory device
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1526
– volume: 124
  start-page: 10776
  year: 2020
  ident: CR58
  article-title: Length-dependent electron spin polarization in oligopeptides and DNA
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c02291
– volume: 34
  start-page: 2106629
  year: 2021
  ident: CR31
  article-title: Theory of chirality induced spin selectivity: Progress and challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106629
– volume: 111
  start-page: 11658
  year: 2014
  ident: CR37
  article-title: Spin-dependent electron transport in protein-like single-helical molecules
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1407716111
– volume: 102
  start-page: 214303
  year: 2020
  ident: CR46
  article-title: Chiral-induced spin selectivity: A polaron transport model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.214303
– volume: 11
  start-page: 7516
  year: 2017
  ident: CR23
  article-title: Analyzing spin selectivity in DNA-mediated charge transfer via fluorescence microscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04165
– volume: 9
  year: 2018
  ident: CR66
  article-title: Nonreciprocal responses from non-centrosymmetric quantum materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05759-4
– volume: 9
  start-page: 2025
  year: 2018
  ident: CR15
  article-title: Chirality-dependent electron spin filtering by molecular monolayers of helicenes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00208
– volume: 8
  start-page: 337
  year: 2017
  ident: CR3
  article-title: Topological materials: Weyl semimetals
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031016-025458
– volume: 21
  start-page: 3026
  year: 2021
  ident: CR44
  article-title: Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00183
– volume: 93
  start-page: 075407
  year: 2016
  ident: CR41
  article-title: Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.075407
– volume: 9
  start-page: 3377
  year: 2015
  ident: CR25
  article-title: Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00832
– volume: 126
  start-page: 3257
  year: 2021
  ident: CR32
  article-title: The temperature-dependent chiral-induced spin selectivity effect: Experiments and theory
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c10550
– volume: 11
  start-page: 170
  year: 2016
  ident: CR74
  article-title: Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.255
– volume: 99
  start-page: 17006
  year: 2012
  ident: CR36
  article-title: Chiral molecular films as electron polarizers and polarization modulators
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/99/17006
– volume: 96
  start-page: 036101
  year: 2006
  ident: CR13
  article-title: Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.036101
– volume: 19
  start-page: 5253
  year: 2019
  ident: CR59
  article-title: Theory of chiral induced spin selectivity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01707
– volume: 82
  start-page: 3045
  year: 2010
  ident: CR1
  article-title: Colloquium: Topological insulators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 32
  start-page: 1904965
  year: 2020
  ident: CR68
  article-title: Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904965
– volume: 15
  start-page: 972
  year: 2023
  end-page: 979
  ident: CR69
  article-title: Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-023-01212-2
– volume: 9
  start-page: 040902
  year: 2021
  ident: CR7
  article-title: The spin selectivity effect in chiral materials
  publication-title: APL Mater.
  doi: 10.1063/5.0049150
– volume: 331
  start-page: 894
  year: 2011
  ident: CR8
  article-title: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA
  publication-title: Science
  doi: 10.1126/science.1199339
– volume: 10
  start-page: 7126
  year: 2019
  ident: CR43
  article-title: Chirality-induced spin selectivity: The role of electron correlations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02929
– volume: 87
  start-page: 236602
  year: 2001
  ident: CR65
  article-title: Electrical magnetochiral anisotropy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.236602
– volume: 53
  start-page: 2659
  year: 2020
  ident: CR26
  article-title: Chiral induced spin selectivity gives a new twist on spin-control in chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00485
– volume: 98
  start-page: 214513
  year: 2018
  ident: CR29
  article-title: Unconventional order parameter induced by helical chiral molecules adsorbed on a metal proximity coupled to a superconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.214513
– volume: 20
  start-page: 8476
  year: 2020
  ident: CR17
  article-title: An ideal spin filter: Long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02349
– volume: 34
  start-page: 1793
  year: 1963
  ident: CR61
  article-title: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702682
– ident: CR53
– volume: 371
  start-page: 1129
  year: 2021
  ident: CR19
  article-title: Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode
  publication-title: Science
  doi: 10.1126/science.abf5291
– volume: 131
  start-page: 17814
  year: 2009
  ident: CR73
  article-title: Molecular rectification in Metal-SAM-metal oxide-metal junctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9048898
– volume: 143
  start-page: 7189
  year: 2021
  ident: CR16
  article-title: Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02983
– volume: 111
  start-page: 4431
  year: 2007
  ident: CR63
  article-title: Analyzing molecular current-voltage characteristics with the Simmons tunneling model: Scaling and linearization
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp066846s
– volume: 11
  start-page: 4652
  year: 2011
  ident: CR51
  article-title: Spin specific electron conduction through DNA oligomers
  publication-title: Nano Lett.
  doi: 10.1021/nl2021637
– volume: 27
  start-page: 8043
  year: 2015
  ident: CR56
  article-title: Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503547
– volume: 139
  start-page: 114111
  year: 2013
  ident: CR39
  article-title: Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4820907
– volume: 138
  start-page: 15551
  year: 2016
  ident: CR22
  article-title: Helix-dependent spin filtering through the DNA duplex
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10538
– volume: 141
  start-page: 3863
  year: 2019
  ident: CR24
  article-title: Spin-dependent ionization of chiral molecular films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08421
– volume: 85
  start-page: 081404
  year: 2012
  ident: CR35
  article-title: Spin-selective transport through helical molecular systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.081404
– volume: 90
  start-page: 015001
  year: 2018
  ident: CR4
  article-title: Weyl and dirac semimetals in three-dimensional solids
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015001
– volume: 13
  start-page: 4928
  year: 2019
  ident: CR12
  article-title: Spin selectivity in photoinduced charge-transfer mediated by chiral molecules
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01876
– volume: 108
  start-page: 218102
  year: 2012
  ident: CR34
  article-title: Spin-selective transport of electrons in DNA double helix
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.218102
– volume: 5
  start-page: 0571
  year: 2019
  ident: CR18
  article-title: Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay0571
– volume: 131
  start-page: 014707
  year: 2009
  ident: CR33
  article-title: Chiral electron transport: Scattering through Helical potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3167404
– volume: 110
  start-page: 14872
  year: 2013
  ident: CR11
  article-title: Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1311493110
– volume: 99
  start-page: 024418
  year: 2019
  ident: CR70
  article-title: Spin-dependent electron transmission model for chiral molecules in mesoscopic devices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.024418
– volume: 101
  start-page: 026403
  year: 2020
  ident: CR71
  article-title: Comment on “Spin-Dependent Electron Transmission Model for Chiral Molecules in Mesoscopic Devices,”
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.026403
– volume: 3
  start-page: 328
  year: 2021
  ident: CR6
  article-title: Chiral spintronics
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00302-9
– volume: 9
  start-page: 43363
  year: 2017
  ident: CR57
  article-title: Molecular patterning and directed self-assembly of gold nanoparticles on GaAs
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14113
– volume: 119
  start-page: 14542
  year: 2015
  ident: CR10
  article-title: Spin filtering in electron transport through chiral oligopeptides
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp509974z
– volume: 19
  start-page: 5167
  year: 2019
  ident: CR28
  article-title: Magnetic-related states and order parameter induced in a conventional superconductor by nonmagnetic chiral molecules
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01552
– volume: 147
  start-page: 1675
  year: 2016
  ident: CR76
  article-title: Bias-induced conductance switching in single molecule junctions containing a redox-active transition metal complex
  publication-title: Monatshefte F.ür. Chem. - Chem. Monthly
  doi: 10.1007/s00706-016-1795-6
– volume: 123
  start-page: 17043
  year: 2019
  ident: CR40
  article-title: Origin of spin-dependent tunneling through chiral molecules
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b05020
– volume: 9
  start-page: 5753
  year: 2018
  ident: CR42
  article-title: Thermal decoherence and disorder effects on chiral-induced spin selectivity
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02196
– volume: 14
  start-page: 15983
  year: 2020
  ident: CR52
  article-title: Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07438
– volume: 142
  start-page: 194308
  year: 2015
  ident: CR38
  article-title: Continuum model for chiral induced spin selectivity in helical molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4921310
– volume: 102
  start-page: 035431
  year: 2020
  ident: CR45
  article-title: Vibration-enhanced spin-selective transport of electrons in the DNA double helix
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.035431
– ident: CR55
– volume: 99
  start-page: 245153
  year: 2019
  ident: CR67
  article-title: Strong electrical magnetochiral anisotropy in tellurium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.245153
– volume: 83
  start-page: 1057
  year: 2011
  ident: CR2
  article-title: Topological insulators and superconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 8
  start-page: 320
  year: 2023
  ident: CR77
  article-title: Transverse magnetoconductance in two-terminal chiral spin-selective devices
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D2NH00502F
– volume: 606
  start-page: 902
  year: 2022
  ident: CR20
  article-title: Chiral molecular intercalation superlattices
  publication-title: Nature
  doi: 10.1038/s41586-022-04846-3
– volume: 26
  start-page: 7474
  year: 2014
  ident: CR14
  article-title: Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402810
– volume: 104
  start-page: 024430
  year: 2021
  ident: CR47
  article-title: Interplay between friction and spin-orbit coupling as a source of spin polarization
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.024430
– volume: 12
  start-page: 700
  year: 2021
  ident: CR48
  article-title: Electronic spin separation induced by nuclear motion near conical intersections
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20831-8
– volume: 19
  start-page: 5167
  year: 2019
  ident: 40884_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01552
– volume: 11
  start-page: 4652
  year: 2011
  ident: 40884_CR51
  publication-title: Nano Lett.
  doi: 10.1021/nl2021637
– volume: 34
  start-page: 1793
  year: 1963
  ident: 40884_CR61
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702682
– volume: 110
  start-page: 14872
  year: 2013
  ident: 40884_CR11
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1311493110
– volume: 9
  start-page: 5753
  year: 2018
  ident: 40884_CR42
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02196
– volume: 27
  start-page: 8043
  year: 2015
  ident: 40884_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503547
– volume: 131
  start-page: 014707
  year: 2009
  ident: 40884_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3167404
– volume: 102
  start-page: 035431
  year: 2020
  ident: 40884_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.035431
– volume: 20
  start-page: 6148
  year: 2020
  ident: 40884_CR60
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02417
– volume: 90
  start-page: 015001
  year: 2018
  ident: 40884_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015001
– volume: 104
  start-page: 024430
  year: 2021
  ident: 40884_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.024430
– volume: 85
  start-page: 081404
  year: 2012
  ident: 40884_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.081404
– volume: 141
  start-page: 3863
  year: 2019
  ident: 40884_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08421
– volume: 360
  start-page: 1331
  year: 2018
  ident: 40884_CR27
  publication-title: Science
  doi: 10.1126/science.aar4265
– volume: 102
  start-page: 214303
  year: 2020
  ident: 40884_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.214303
– volume: 14
  start-page: 15983
  year: 2020
  ident: 40884_CR52
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07438
– volume: 9
  start-page: 43363
  year: 2017
  ident: 40884_CR57
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14113
– volume: 96
  start-page: 036101
  year: 2006
  ident: 40884_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.036101
– volume: 15
  start-page: 972
  year: 2023
  ident: 40884_CR69
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-023-01212-2
– volume: 99
  start-page: 17006
  year: 2012
  ident: 40884_CR36
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/99/17006
– volume: 20
  start-page: 638
  year: 2021
  ident: 40884_CR49
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00924-5
– volume: 108
  start-page: 218102
  year: 2012
  ident: 40884_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.218102
– volume: 8
  start-page: 320
  year: 2023
  ident: 40884_CR77
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D2NH00502F
– volume: 126
  start-page: 3257
  year: 2021
  ident: 40884_CR32
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c10550
– volume: 8
  start-page: 337
  year: 2017
  ident: 40884_CR3
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031016-025458
– volume: 87
  start-page: 236602
  year: 2001
  ident: 40884_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.236602
– volume: 16
  start-page: 4206
  year: 2022
  ident: 40884_CR75
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10155
– volume: 119
  start-page: 14542
  year: 2015
  ident: 40884_CR10
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp509974z
– volume: 101
  start-page: 026403
  year: 2020
  ident: 40884_CR71
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.026403
– volume: 82
  start-page: 3045
  year: 2010
  ident: 40884_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 371
  start-page: 1129
  year: 2021
  ident: 40884_CR19
  publication-title: Science
  doi: 10.1126/science.abf5291
– volume: 142
  start-page: 194308
  year: 2015
  ident: 40884_CR38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4921310
– volume: 34
  start-page: 2581
  year: 1963
  ident: 40884_CR62
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729774
– volume: 606
  start-page: 902
  year: 2022
  ident: 40884_CR20
  publication-title: Nature
  doi: 10.1038/s41586-022-04846-3
– ident: 40884_CR55
– volume: 9
  start-page: 2025
  year: 2018
  ident: 40884_CR15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00208
– volume: 143
  start-page: 7189
  year: 2021
  ident: 40884_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02983
– volume: 32
  start-page: 1904965
  year: 2020
  ident: 40884_CR68
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904965
– volume: 9
  start-page: 040902
  year: 2021
  ident: 40884_CR7
  publication-title: APL Mater.
  doi: 10.1063/5.0049150
– volume: 138
  start-page: 15551
  year: 2016
  ident: 40884_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10538
– volume: 331
  start-page: 894
  year: 2011
  ident: 40884_CR8
  publication-title: Science
  doi: 10.1126/science.1199339
– volume: 34
  start-page: 2106629
  year: 2021
  ident: 40884_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106629
– volume: 13
  start-page: 4928
  year: 2019
  ident: 40884_CR12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01876
– volume: 5
  start-page: 0571
  year: 2019
  ident: 40884_CR18
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay0571
– volume: 9
  year: 2018
  ident: 40884_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05759-4
– volume: 99
  start-page: 024418
  year: 2019
  ident: 40884_CR70
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.024418
– volume: 10
  start-page: 7126
  year: 2019
  ident: 40884_CR43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02929
– volume: 111
  start-page: 4431
  year: 2007
  ident: 40884_CR63
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp066846s
– volume: 147
  start-page: 1675
  year: 2016
  ident: 40884_CR76
  publication-title: Monatshefte F.ür. Chem. - Chem. Monthly
  doi: 10.1007/s00706-016-1795-6
– volume: 83
  start-page: 1057
  year: 2011
  ident: 40884_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1057
– volume: 99
  start-page: 245153
  year: 2019
  ident: 40884_CR67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.245153
– volume: 3
  start-page: 250
  year: 2019
  ident: 40884_CR5
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0087-1
– volume: 93
  start-page: 075407
  year: 2016
  ident: 40884_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.075407
– volume: 124
  start-page: 10776
  year: 2020
  ident: 40884_CR58
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c02291
– volume: 66
  start-page: 263
  year: 2015
  ident: 40884_CR30
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040214-121554
– volume: 9
  start-page: 3377
  year: 2015
  ident: 40884_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00832
– ident: 40884_CR53
  doi: 10.21203/rs.3.rs-1664101/v1
– volume: 20
  start-page: 8476
  year: 2020
  ident: 40884_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02349
– volume: 11
  start-page: 170
  year: 2016
  ident: 40884_CR74
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.255
– volume: 26
  start-page: 7474
  year: 2014
  ident: 40884_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402810
– volume: 21
  start-page: 3026
  year: 2021
  ident: 40884_CR44
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00183
– volume: 131
  start-page: 17814
  year: 2009
  ident: 40884_CR73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9048898
– volume: 139
  start-page: 114111
  year: 2013
  ident: 40884_CR39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4820907
– volume: 3
  start-page: 328
  year: 2021
  ident: 40884_CR6
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00302-9
– volume: 111
  start-page: 11658
  year: 2014
  ident: 40884_CR37
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1407716111
– volume: 98
  start-page: 214513
  year: 2018
  ident: 40884_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.214513
– volume: 53
  start-page: 2659
  year: 2020
  ident: 40884_CR26
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00485
– volume: 73
  start-page: 195331
  year: 2006
  ident: 40884_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.195331
– volume: 19
  start-page: 5253
  year: 2019
  ident: 40884_CR59
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01707
– volume: 41
  start-page: 761
  year: 2002
  ident: 40884_CR9
  publication-title: Angew. Chem.
  doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z
– volume: 22
  start-page: 5022
  year: 2022
  ident: 40884_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01953
– volume: 11
  start-page: 7516
  year: 2017
  ident: 40884_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04165
– volume: 104
  start-page: 11161
  year: 2007
  ident: 40884_CR64
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0701472104
– volume: 12
  start-page: 700
  year: 2021
  ident: 40884_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20831-8
– volume: 5
  start-page: 63
  year: 2006
  ident: 40884_CR72
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1526
– volume: 123
  start-page: 17043
  year: 2019
  ident: 40884_CR40
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b05020
– volume: 143
  start-page: 14235
  year: 2021
  ident: 40884_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05637
SSID ssj0000391844
Score 2.601664
Snippet Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin...
Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5163
SubjectTerms 147/135
639/301/357/404
639/766/119/1001
639/925/927/998
Chirality
Coupling (molecular)
Crystals
Electrode polarization
Electrodes
Electron spin
Electrons
Heavy metals
Humanities and Social Sciences
Hybrids
Magnetic semiconductors
Metals
Molecular structure
multidisciplinary
Organic chemistry
Polarization
Polarization (spin alignment)
Science
Science (multidisciplinary)
Spin valves
Spin-orbit interactions
Topology
Valves
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBFPD-weicRfPPKNk3aJo-nuByCPrlwbyGf7MLaXW73hPvvb5K063VBffG1SdomM5n5DZP8BuADZdYGjHzKzmhecup1aXzryuBF0EZI15mY0f32vb1a8K_XzfWDUl_xTFimB84LN2O8qwLCako95TWiW9cK2bgKX9vUkieybfR5D4KpZIOZxNCFD7dkKiZmO55sArooDJmE4KWceKJE2D9BmcdnJI8Spcn_zJ_B0wE4ksv8w6fwyPfP4XEuJXn3Apb59OBa35FNIJkVNjJqELtc3SSsfUHGkjdkt131RPeO7HOJhCgosrkxsYAIwaY8hvwcS-fmAaiTv_zuJSzmX358viqHKgqlbajYl9bTUAVdednorkU0GILz0iNM4qaSjplOWxPvXkndOMOtroUwzLbCNw6DjcBewUm_6f1rIGgdgompO-c1p4ZLE7pgTVXrgIFNowug44oqO1CMx0oXa5VS3UyoLAWFUlBJCkoW8PEwZpsJNv7a-1MU1KFnJMdOD1Bl1KAy6l8qU8DZKGY17NidqgUC20hWTwt4f2jGvRYTKLr3m9vUpxNMIIQuQEzUY_JD05Z-tUys3Rj3com-p4CLUZN-f_3PM37zP2b8Fp7UUfMrtIr8DE5QCf05gqm9eZf2zT2whBqA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwRNxWr28jANxfWtGmbPIkTr0PQJwd7C_n0Xtja6-1V2H_vyUfv6MC9NglNe07OR07y-yH0ntbGeMh8SKcVI4w6RbRrLfGOe6W5sJ0OFd3vP9qLS_btqrnKG25jPlY52cRoqO1gwh75WcUh8Ahg4vTj-jcJrFGhupopNB6jJxQ8TTjSxRdfd3ssAf2cM5bvypQ1PxtZtAzgqCBx4pwRMfNHEbZ_FmvePyl5r1wavdDiBXqew0f8Kcl7Hz1y_QF6mgglb1-iZTpDeK1u8eBxwoYNuBrYLFebGHGf4on4Bo_rVY9Vb_E2ESUEceFhowONCIamNAbfTAS6aQBo5l83vkKXiy8_P1-QzKVATEP5lhhHfelV6USjuhZiQu-tEw6CJaZLYWvdKaPDDSyhGquZURXnujYtd42FlMPXr9FeP_TuDcJgI7wOBTzrFKOaCe07b3RZKQ_pTaMKRKc_Kk0GGg98F9cyFrxrLpMUJEhBRilIUaAPuzHrBLPxYO_zIKhdzwCRHR8Mm18yrzhZs670kI9R6iirIC2yLReNLUEfm0qwtkCHk5hlXrejvNOyAp3smmHFhTKK6t3wJ_bpeM0hkC4Qn6nHbELzln61jNjdkP0yAR6oQKeTJt29_f9f_Pbhyb5Dz6qg0yVYPXaI9kC93BEES1t9HFfEPyWIFIo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddS2EvZVs7ln4MD_a2hsWJk9iPt7JSDraXrdA348_dQZeUu9ug_31lO7mSsg32GkvkQ5IlRfJPAO9pZYzHzCdvtWI5o07l2jU29457pbmwrQ4V3S9fm6trNr-pb3agHM_CxKb9CGkZt-mxO-zjmkWTRg-DGQ_nLBfPYC9AtaNu781m82_z7Z-VgHnOGRtOyBQV_wPzxAtFsP5JhPm0P_JJkTT6nssXcDAEjWSWHvMl7LjuFeynMZL3h7BInYO36p70niRE2ICmQcxiuYpx9jkZx92Q9d2yI6qzZJPGIwQhkX6lw_AQgkuJh_wcx-YmBtTH3259BNeXn79fXOXDBIXc1JRvcuOoL7wqnKhV22Ak6L11wmGIxHQhbKVbZXQ4dyVUbTUzquRcV6bhrraYaPjqNex2fefeAMGdwetQtrNOMaqZ0L71Rhel8pjU1CoDOn5RaQZ48TDl4lbGMnfFZZKCRCnIKAUpMviw5blL4Br_pP4UBLWlDMDY8UK_-iEHRZEVawuPWRiljrISkyHbcFHbArWwLgVrMjgdxSwHa13LkmNQG4DqaQbvtstoZ6F4ojrX_4o0La84hs8Z8Il6TB5outItFxGxG3NeJtDvZHA-atLj3f_-xsf_R34Cz8ug4wXufewUdlHd3BmGTBv9drCRBxz1E6U
  priority: 102
  providerName: Springer Nature
Title Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves
URI https://link.springer.com/article/10.1038/s41467-023-40884-9
https://www.proquest.com/docview/2856659861
https://www.proquest.com/docview/2857838507
https://pubmed.ncbi.nlm.nih.gov/PMC10449876
https://doaj.org/article/3470f54811e142758d6895d041e52946
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8ID5FYFRG4o0F4sRJ7AeEumplqrQJAZX6ZtmOTSuVZLQF0f-es5MUdRpIvLRSbDep7873u5x9P4BXNDPGYeQTl1qxmFGrYm2LKnaWO6W5qErtM7qXV8XFlE1m-ewAerqjbgLXt4Z2nk9qulq--fV9-x4N_l17ZJy_XbNg7uh9MBrinMXiEI7RM5We0eCyg_thZc4EBjQ-0ZwmjMbYIevO0dz-M3u-KpT038OhN3dR3kilBg81vg_3OmhJhq0uPIADWz-EOy3Z5PYRzNv9hUu1JY0jbd1YX3ODmPliFdD4KelJccj6elETVVdk05IoeFGSZqU9xQjBpnYM-daT67YDUGt_2vVjmI7Pv4wu4o5nITY55ZvYWOoSpxIrclUWiBedq6ywCKSYTkSV6VIZ7U9nCZVXmhmVcq4zU3CbVxiOuOwJHNVNbZ8CwfXDaZ_cq6xiVDOhXemMTlLlMPTJVQS0n1FpuiLkngtjKUMyPOOylYJEKcggBSkieL0bc92W4Phn7zMvqF1PXz47XGhWX2VnjTJjZeIwVqPUUpZiyFQVXOQVKoXNU8GKCE56McteJWXKEfr6cvY0gpe7ZrRGn2JRtW1-hD4lzziC7Aj4nnrsPdB-S72Yh7reGBkzgd4pgtNek_7c_e__-Nl_zc9zuJt6FU9wgWQncITaZl8grtroARyWsxI_-fjDAI6Hw8nnCX6fnV99_IRXR8VoEN5YDIJR_QYZjCQP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiFUNLWAkONGoWZzEPiDENkzpcmql3oxXZqSSTGcG0PwpfiPPTjJVKtFbr7Gd7S3-np_9PoDXaa61w8gnrpSkMU2tjJUtTewsc1IxbirlM7pHx-X4lH47K8424G9_FsZvq-x9YnDUptF-jXwvYwg8fDHx9P3sIvasUT672lNotGpxYFd_MGRbvNv_jPJ9k2WjLyefxnHHKhDrImXLWNvUJU4mlheyKhEdOWcstwgbqEq4yVUltfJnkbgsjKJaZoypXJfMFgbBt8vxvrfgNsUOPthjo6_rNR1fbZ1R2p3NSXK2t6DBE-HEiIEaYzTmg_kv0AQMsO3VnZlX0rNh1hs9gPsdXCUfWv16CBu2fgR3WgLL1WOYtHsWz-WKNI60tWh9HQ-iJ9N5QPi7pCfaIYvZtCayNmTZEjN49SDNXHnaEoJN7RjysyfsbQegJfy2iydweiN_-Sls1k1tt4CgT3LKJwyNlTRVlCtXOa2STDoMpwoZQdr_UaG7wuaeX-NchAR7zkQrBYFSEEEKgkfwdj1m1pb1uLb3Ry-odU9fkjtcaOY_RGfhIqdV4jD-S1Ob0gzDMFMyXpgE9b_IOC0j2OnFLDo_sRCXWh3Bq3UzWrhP28jaNr9Cn4rlDIF7BGygHoMXGrbU00moFY7RNuU440Ww22vS5dP__8XPrn_Zl3B3fHJ0KA73jw-24V7m9TtBj0t3YBNVzT5HoLZUL4J1EPh-0-b4D5zyUuY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU4G4IFYRKGAkONFosjiJfUCI0o5aCqMKUak345UZqSTDZADNX-PX8ZxlqlSit15jO9tb_D0_-30Ar-JUa4eRT1goSUMaWxkqm5vQWeakYtwUymd0P0_zw1P68Sw724K__VkYv62y94mNozaV9mvk44Qh8PDFxOOx67ZFnOxP3i1-hp5BymdaezqNVkWO7foPhm_126N9lPXrJJkcfP1wGHYMA6HOYrYKtY1d5GRkeSaLHJGSc8ZyixCCqoibVBVSK38uicvMKKplwphKdc5sZhCIuxTvewO2Cx8VjWB772B68mWzwuNrrzNKu5M6UcrGNW38Ek6TGLYxRkM-mA0b0oAB0r28T_NSsraZAyd34U4HXsn7VtvuwZYt78PNls5y_QBm7Q7Gc7kmlSNtZVpf1YPo2XzZ4P1d0tPukHoxL4ksDVm1NA1eWUi1VJ7EhGBTO4b86Ol72wFoF79t_RBOr-U_P4JRWZX2MRD0UE759KGxksaKcuUKp1WUSIfBVSYDiPs_KnRX5tyzbZyLJt2eMtFKQaAURCMFwQN4sxmzaIt8XNl7zwtq09MX6G4uVMvvorN3kdIichgNxrGNaYJBmckZz0yE1pAlnOYB7PRiFp3XqMWFjgfwctOM9u6TOLK01a-mT8FShjA-ADZQj8ELDVvK-aypHI6xN-U4_wWw22vSxdP__8VPrn7ZF3ALTVF8OpoeP4XbiVfvCN0v3YERapp9hqhtpZ535kHg23Vb5D_uiFh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interplay+of+structural+chirality%2C+electron+spin+and+topological+orbital+in+chiral+molecular+spin+valves&rft.jtitle=Nature+communications&rft.au=Adhikari%2C+Yuwaraj&rft.au=Liu%2C+Tianhan&rft.au=Wang%2C+Hailong&rft.au=Hua%2C+Zhenqi&rft.date=2023-08-24&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40884-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_40884_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon