Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5163 - 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to
spin
polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments. |
---|---|
AbstractList | Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to
spin
polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments. Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.Chirality induced spin selectivity is a process whereby a chiral molecule induces a spin-polarization to a current passing along the chiral molecule. The exact physical origin of the effect is still debated despite extensive experimental result. Here, Adhikari et al provide evidence for the important role of spin-orbit coupling in the normal metals that connect to the chiral molecule in CISS experiments. Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. |
ArticleNumber | 5163 |
Author | Schlottmann, Pedro Zhao, Jianhua Liu, Tianhan Xiong, Peng Liu, Haoyang Adhikari, Yuwaraj Wang, Hailong Hua, Zhenqi Yan, Binghai Lochner, Eric |
Author_xml | – sequence: 1 givenname: Yuwaraj surname: Adhikari fullname: Adhikari, Yuwaraj organization: Department of Physics, Florida State University – sequence: 2 givenname: Tianhan orcidid: 0000-0003-3934-0785 surname: Liu fullname: Liu, Tianhan organization: Department of Physics, Florida State University – sequence: 3 givenname: Hailong orcidid: 0000-0001-9884-4460 surname: Wang fullname: Wang, Hailong organization: State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 4 givenname: Zhenqi surname: Hua fullname: Hua, Zhenqi organization: Department of Physics, Florida State University – sequence: 5 givenname: Haoyang surname: Liu fullname: Liu, Haoyang organization: Department of Physics, Florida State University – sequence: 6 givenname: Eric surname: Lochner fullname: Lochner, Eric organization: Department of Physics, Florida State University – sequence: 7 givenname: Pedro surname: Schlottmann fullname: Schlottmann, Pedro organization: Department of Physics, Florida State University – sequence: 8 givenname: Binghai orcidid: 0000-0003-2164-5839 surname: Yan fullname: Yan, Binghai email: binghai.yan@weizmann.ac.il organization: Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 9 givenname: Jianhua surname: Zhao fullname: Zhao, Jianhua email: jhzhao@semi.ac.cn organization: State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences – sequence: 10 givenname: Peng orcidid: 0000-0003-1746-1404 surname: Xiong fullname: Xiong, Peng email: pxiong@fsu.edu organization: Department of Physics, Florida State University |
BookMark | eNp9kk2PFCEQholZ4364f8BTJ1482AoNNHAyZqPrJJt40TOh6eoZJgyMQE8y_36Z7TW6e1guRaj3eamq1CU6CzEAQu8I_kQwlZ8zI6wXLe5oy7CUrFWv0EWHGWmJ6OjZf_dzdJ3zFtdDFZGMvUHnVPQdpkJeoM0qFEh7b45NnJpc0mzLnIxv7MbV4MrxYwMebEkxNHnvQmPC2JS4jz6una3CmAZXaqyphWl2sQKzN2kBDsYfIL9FryfjM1w_xiv0-_u3Xzc_2ruft6ubr3et5USW1gKZ8GQwKG5Er0g_TSMoYJSzAauRDsLYgUtKleHjwKzppByo7SXwUQk20Su0WnzHaLZ6n9zOpKOOxumHh5jW2qTirAdNmcATZ5IQIKwTXI69VHyscwPeKdZXry-L134edjBaCKX298T0aSa4jV7HgyaYMSXFyeHDo0OKf2bIRe9ctuC9CRDnrDvJhaSSY1Gl759Jt3FOoc7qpOp7rmRPqkouKptizgkmbev0i4unApyvP-vTeuhlPXRdD_2wHlpVtHuG_m3kRYguUK7isIb0r6oXqHs71c6P |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00661 crossref_primary_10_1364_OE_537264 crossref_primary_10_1063_5_0227365 crossref_primary_10_1038_s41560_024_01674_9 crossref_primary_10_1002_cphc_202300726 crossref_primary_10_1002_aelm_202400554 crossref_primary_10_1007_s00601_024_01880_x crossref_primary_10_1016_j_ijhydene_2025_01_221 crossref_primary_10_1016_j_jpowsour_2025_236839 crossref_primary_10_1021_acs_jpcc_4c05942 crossref_primary_10_1146_annurev_matsci_080222_033548 crossref_primary_10_1038_s41467_025_56718_9 crossref_primary_10_1002_chem_202400436 crossref_primary_10_1021_acsaelm_4c00415 crossref_primary_10_1126_sciadv_ado4285 crossref_primary_10_1016_j_matt_2024_11_018 crossref_primary_10_1002_ange_202416221 crossref_primary_10_1002_adma_202406347 crossref_primary_10_1021_acs_nanolett_4c00383 crossref_primary_10_1016_j_newton_2025_100015 crossref_primary_10_1063_5_0165806 crossref_primary_10_1103_PhysRevResearch_6_023200 crossref_primary_10_1103_PhysRevB_109_024407 crossref_primary_10_1002_smll_202406631 crossref_primary_10_1021_acsnano_3c12925 crossref_primary_10_1126_sciadv_ado4875 crossref_primary_10_1088_1361_648X_adb674 crossref_primary_10_1021_jacs_4c04186 crossref_primary_10_1038_s41467_024_55433_1 crossref_primary_10_1002_anie_202416221 |
Cites_doi | 10.1021/acs.nanolett.2c01953 10.1146/annurev-physchem-040214-121554 10.1103/PhysRevB.73.195331 10.1021/jacs.1c05637 10.1126/science.aar4265 10.1063/1.1729774 10.1021/acsnano.1c10155 10.1038/s41570-019-0087-1 10.1073/pnas.0701472104 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z 10.1038/s41563-021-00924-5 10.1021/acs.nanolett.0c02417 10.1038/nmat1526 10.1021/acs.jpcc.0c02291 10.1002/adma.202106629 10.1073/pnas.1407716111 10.1103/PhysRevB.102.214303 10.1021/acsnano.7b04165 10.1038/s41467-018-05759-4 10.1021/acs.jpclett.8b00208 10.1146/annurev-conmatphys-031016-025458 10.1021/acs.nanolett.1c00183 10.1103/PhysRevB.93.075407 10.1021/acsnano.5b00832 10.1021/acs.jpcc.1c10550 10.1038/nnano.2015.255 10.1209/0295-5075/99/17006 10.1103/PhysRevLett.96.036101 10.1021/acs.nanolett.9b01707 10.1103/RevModPhys.82.3045 10.1002/adma.201904965 10.1038/s41557-023-01212-2 10.1063/5.0049150 10.1126/science.1199339 10.1021/acs.jpclett.9b02929 10.1103/PhysRevLett.87.236602 10.1021/acs.accounts.0c00485 10.1103/PhysRevB.98.214513 10.1021/acs.nanolett.0c02349 10.1063/1.1702682 10.1126/science.abf5291 10.1021/ja9048898 10.1021/jacs.1c02983 10.1021/jp066846s 10.1021/nl2021637 10.1002/adma.201503547 10.1063/1.4820907 10.1021/jacs.6b10538 10.1021/jacs.8b08421 10.1103/PhysRevB.85.081404 10.1103/RevModPhys.90.015001 10.1021/acsnano.9b01876 10.1103/PhysRevLett.108.218102 10.1126/sciadv.aay0571 10.1063/1.3167404 10.1073/pnas.1311493110 10.1103/PhysRevB.99.024418 10.1103/PhysRevB.101.026403 10.1038/s42254-021-00302-9 10.1021/acsami.7b14113 10.1021/jp509974z 10.1021/acs.nanolett.9b01552 10.1007/s00706-016-1795-6 10.1021/acs.jpcc.9b05020 10.1021/acs.jpclett.8b02196 10.1021/acsnano.0c07438 10.1063/1.4921310 10.1103/PhysRevB.102.035431 10.1103/PhysRevB.99.245153 10.1103/RevModPhys.83.1057 10.1039/D2NH00502F 10.1038/s41586-022-04846-3 10.1002/adma.201402810 10.1103/PhysRevB.104.024430 10.1038/s41467-020-20831-8 10.21203/rs.3.rs-1664101/v1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40884-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_3470f54811e142758d6895d041e52946 PMC10449876 10_1038_s41467_023_40884_9 |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMR_1905843 funderid: https://doi.org/10.13039/100000001 – fundername: Chinese Ministry of Science and Technology | Department of S and T for Social Development (Department of S&T for Social Development) grantid: 2021YFA1202200 funderid: https://doi.org/10.13039/501100004751 – fundername: ; grantid: 2021YFA1202200 – fundername: ; grantid: DMR_1905843 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-ce1f0fa0e95a76916ffde9e4354b09d3b7acb58339a5db4ca288b3c68e5d974f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:22 EDT 2025 Thu Aug 21 18:36:37 EDT 2025 Fri Jul 11 11:00:53 EDT 2025 Wed Aug 13 01:50:56 EDT 2025 Tue Jul 01 02:10:32 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Fri Feb 21 02:39:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-ce1f0fa0e95a76916ffde9e4354b09d3b7acb58339a5db4ca288b3c68e5d974f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2164-5839 0000-0003-1746-1404 0000-0003-3934-0785 0000-0001-9884-4460 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40884-9 |
PMID | 37620378 |
PQID | 2856659861 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3470f54811e142758d6895d041e52946 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10449876 proquest_miscellaneous_2857838507 proquest_journals_2856659861 crossref_citationtrail_10_1038_s41467_023_40884_9 crossref_primary_10_1038_s41467_023_40884_9 springer_journals_10_1038_s41467_023_40884_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-24 |
PublicationDateYYYYMMDD | 2023-08-24 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR56) 2015; 27 Hasan, Kane (CR1) 2010; 82 Gersten, Kaasbjerg, Nitzan (CR39) 2013; 139 He (CR72) 2006; 5 Naaman, Waldeck (CR71) 2020; 101 Simmons (CR62) 1963; 34 Volosniev (CR47) 2021; 104 Yang, van der Wal, van Wees (CR70) 2019; 99 Naaman, Waldeck (CR30) 2015; 66 Kim (CR19) 2021; 371 Liu (CR52) 2020; 14 Ray, Daube, Leitus, Vager, Naaman (CR13) 2006; 96 Mondal (CR16) 2021; 143 Rikken, Fölling, Wyder (CR65) 2001; 87 Díaz, Domínguez-Adame, Gutierrez, Cuniberti, Mujica (CR42) 2018; 9 Naaman, Paltiel, Waldeck (CR5) 2019; 3 Yang, Naaman, Paltiel, Parkin (CR6) 2021; 3 Simmons (CR61) 1963; 34 Alpern (CR28) 2019; 19 Fransson (CR44) 2021; 21 Liu, Xiao, Koo, Yan (CR49) 2021; 20 Rikken, Avarvari (CR67) 2019; 99 Abendroth (CR23) 2017; 11 Al-Bustami (CR21) 2022; 22 Gutierrez, Díaz, Naaman, Cuniberti (CR35) 2012; 85 Banerjee-Ghosh (CR27) 2018; 360 Medina, López, Ratner, Mujica (CR36) 2012; 99 Zhang, Hao, Qin, Xie, Qu (CR46) 2020; 102 Waldeck, Naaman, Paltiel (CR7) 2021; 9 Göhler (CR8) 2011; 331 Kettner (CR10) 2015; 119 Das, Tassinari, Naaman, Fransson (CR32) 2021; 126 Alwan, Dubi (CR50) 2021; 143 Kastlunger, Stadler (CR76) 2016; 147 Mondal, Fontanesi, Waldeck, Naaman (CR25) 2015; 9 Abendroth (CR24) 2019; 141 Xie (CR51) 2011; 11 Yang, van der Wal, van Wees (CR60) 2020; 20 Akkerman (CR64) 2007; 104 Du, Fu, Wu (CR45) 2020; 102 Dalum, Hedegård (CR59) 2019; 19 Fransson (CR43) 2019; 10 Schwarz (CR74) 2016; 11 CR55 CR53 Wu, Subotnik (CR48) 2021; 12 Yan, Felser (CR3) 2017; 8 Park (CR75) 2022; 16 Hossain (CR77) 2023; 8 Vilan (CR63) 2007; 111 Nijhuis, Reus, Whitesides (CR73) 2009; 131 Carmeli, Skakalova, Naaman, Vager (CR9) 2002; 41 Thevenard (CR54) 2006; 73 Liu (CR57) 2017; 9 Kettner (CR15) 2018; 9 Shapira (CR29) 2018; 98 Evers (CR31) 2021; 34 Abendroth (CR12) 2019; 13 Armitage, Mele, Vishwanath (CR4) 2018; 90 Yang (CR69) 2023; 15 Mishra (CR11) 2013; 110 Guo, Sun (CR37) 2014; 111 Zwang, Hürlimann, Hill, Barton (CR22) 2016; 138 Qi, Zhang (CR2) 2011; 83 Niño (CR14) 2014; 26 Guo, Sun (CR34) 2012; 108 Qian (CR20) 2022; 606 Mishra (CR58) 2020; 124 Huizi-Rayo (CR17) 2020; 20 Yeganeh, Ratner, Medina, Mujica (CR33) 2009; 131 Lu (CR18) 2019; 5 Kulkarni (CR68) 2020; 32 Naaman, Paltiel, Waldeck (CR26) 2020; 53 Michaeli, Naaman (CR40) 2019; 123 Tokura, Nagaosa (CR66) 2018; 9 Medina, González-Arraga, Finkelstein-Shapiro, Berche, Mujica (CR38) 2015; 142 Matityahu, Utsumi, Aharony, Entin-Wohlman, Balseiro (CR41) 2016; 93 40884_CR53 JM Abendroth (40884_CR24) 2019; 141 40884_CR55 DH Waldeck (40884_CR7) 2021; 9 R Naaman (40884_CR30) 2015; 66 M Kettner (40884_CR15) 2018; 9 J Gersten (40884_CR39) 2013; 139 I Carmeli (40884_CR9) 2002; 41 S Yeganeh (40884_CR33) 2009; 131 S Alwan (40884_CR50) 2021; 143 JG Simmons (40884_CR61) 1963; 34 AM Guo (40884_CR34) 2012; 108 Y Wu (40884_CR48) 2021; 12 H Lu (40884_CR18) 2019; 5 Y-H Kim (40884_CR19) 2021; 371 B Göhler (40884_CR8) 2011; 331 J Fransson (40884_CR43) 2019; 10 S Mishra (40884_CR58) 2020; 124 AK Mondal (40884_CR16) 2021; 143 R Naaman (40884_CR26) 2020; 53 G Kastlunger (40884_CR76) 2016; 147 AG Volosniev (40884_CR47) 2021; 104 JM Abendroth (40884_CR23) 2017; 11 T Liu (40884_CR57) 2017; 9 F Schwarz (40884_CR74) 2016; 11 GLJA Rikken (40884_CR65) 2001; 87 R Naaman (40884_CR5) 2019; 3 S-H Yang (40884_CR6) 2021; 3 Q Qian (40884_CR20) 2022; 606 R Gutierrez (40884_CR35) 2012; 85 L Thevenard (40884_CR54) 2006; 73 E Medina (40884_CR38) 2015; 142 MA Hossain (40884_CR77) 2023; 8 HB Akkerman (40884_CR64) 2007; 104 SG Ray (40884_CR13) 2006; 96 X Yang (40884_CR60) 2020; 20 Z Xie (40884_CR51) 2011; 11 M Kettner (40884_CR10) 2015; 119 Y Liu (40884_CR49) 2021; 20 TK Das (40884_CR32) 2021; 126 C Yang (40884_CR69) 2023; 15 JM Abendroth (40884_CR12) 2019; 13 J Fransson (40884_CR44) 2021; 21 R Naaman (40884_CR71) 2020; 101 F Evers (40884_CR31) 2021; 34 A-M Guo (40884_CR37) 2014; 111 GLJA Rikken (40884_CR67) 2019; 99 H Al-Bustami (40884_CR21) 2022; 22 S Dalum (40884_CR59) 2019; 19 A Vilan (40884_CR63) 2007; 111 D Mishra (40884_CR11) 2013; 110 MÁ Niño (40884_CR14) 2014; 26 CA Nijhuis (40884_CR73) 2009; 131 T Liu (40884_CR52) 2020; 14 K Banerjee-Ghosh (40884_CR27) 2018; 360 Y Tokura (40884_CR66) 2018; 9 C Kulkarni (40884_CR68) 2020; 32 E Díaz (40884_CR42) 2018; 9 L Zhang (40884_CR46) 2020; 102 X Wang (40884_CR56) 2015; 27 PC Mondal (40884_CR25) 2015; 9 NP Armitage (40884_CR4) 2018; 90 G-F Du (40884_CR45) 2020; 102 K Michaeli (40884_CR40) 2019; 123 S Matityahu (40884_CR41) 2016; 93 JG Simmons (40884_CR62) 1963; 34 TJ Zwang (40884_CR22) 2016; 138 X Yang (40884_CR70) 2019; 99 U Huizi-Rayo (40884_CR17) 2020; 20 MZ Hasan (40884_CR1) 2010; 82 B Yan (40884_CR3) 2017; 8 H Alpern (40884_CR28) 2019; 19 J Park (40884_CR75) 2022; 16 E Medina (40884_CR36) 2012; 99 X-L Qi (40884_CR2) 2011; 83 T Shapira (40884_CR29) 2018; 98 J He (40884_CR72) 2006; 5 |
References_xml | – volume: 22 start-page: 5022 year: 2022 ident: CR21 article-title: Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01953 – volume: 66 start-page: 263 year: 2015 ident: CR30 article-title: Spintronics and chirality: Spin selectivity in electron transport through chiral molecules publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040214-121554 – volume: 73 start-page: 195331 year: 2006 ident: CR54 article-title: Magnetic properties and domain structure of (Ga,Mn)as films with perpendicular anisotropy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.195331 – volume: 143 start-page: 14235 year: 2021 ident: CR50 article-title: Spinterface origin for the chirality-induced spin-selectivity effect publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05637 – volume: 360 start-page: 1331 year: 2018 ident: CR27 article-title: Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates publication-title: Science doi: 10.1126/science.aar4265 – volume: 34 start-page: 2581 year: 1963 ident: CR62 article-title: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film publication-title: J. Appl. Phys. doi: 10.1063/1.1729774 – volume: 16 start-page: 4206 year: 2022 ident: CR75 article-title: Controlled hysteresis of conductance in molecular tunneling junctions publication-title: ACS Nano doi: 10.1021/acsnano.1c10155 – volume: 3 start-page: 250 year: 2019 ident: CR5 article-title: Chiral molecules and the electron spin publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0087-1 – volume: 104 start-page: 11161 year: 2007 ident: CR64 article-title: Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0701472104 – volume: 41 start-page: 761 year: 2002 ident: CR9 article-title: Magnetization of chiral monolayers of polypeptide: A possible source of magnetism in some biological membranes publication-title: Angew. Chem. doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z – volume: 20 start-page: 638 year: 2021 ident: CR49 article-title: Chirality-driven topological electronic structure of DNA-like materials. publication-title: Nat. Mater. doi: 10.1038/s41563-021-00924-5 – volume: 20 start-page: 6148 year: 2020 ident: CR60 article-title: Detecting chirality in two-terminal electronic nanodevices publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02417 – volume: 5 start-page: 63 year: 2006 ident: CR72 article-title: Metal-free silicon-molecule-nanotube testbed and memory device publication-title: Nat. Mater. doi: 10.1038/nmat1526 – volume: 124 start-page: 10776 year: 2020 ident: CR58 article-title: Length-dependent electron spin polarization in oligopeptides and DNA publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c02291 – volume: 34 start-page: 2106629 year: 2021 ident: CR31 article-title: Theory of chirality induced spin selectivity: Progress and challenges publication-title: Adv. Mater. doi: 10.1002/adma.202106629 – volume: 111 start-page: 11658 year: 2014 ident: CR37 article-title: Spin-dependent electron transport in protein-like single-helical molecules publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1407716111 – volume: 102 start-page: 214303 year: 2020 ident: CR46 article-title: Chiral-induced spin selectivity: A polaron transport model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.214303 – volume: 11 start-page: 7516 year: 2017 ident: CR23 article-title: Analyzing spin selectivity in DNA-mediated charge transfer via fluorescence microscopy publication-title: ACS Nano doi: 10.1021/acsnano.7b04165 – volume: 9 year: 2018 ident: CR66 article-title: Nonreciprocal responses from non-centrosymmetric quantum materials publication-title: Nat. Commun. doi: 10.1038/s41467-018-05759-4 – volume: 9 start-page: 2025 year: 2018 ident: CR15 article-title: Chirality-dependent electron spin filtering by molecular monolayers of helicenes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00208 – volume: 8 start-page: 337 year: 2017 ident: CR3 article-title: Topological materials: Weyl semimetals publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031016-025458 – volume: 21 start-page: 3026 year: 2021 ident: CR44 article-title: Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00183 – volume: 93 start-page: 075407 year: 2016 ident: CR41 article-title: Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.075407 – volume: 9 start-page: 3377 year: 2015 ident: CR25 article-title: Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry publication-title: ACS Nano doi: 10.1021/acsnano.5b00832 – volume: 126 start-page: 3257 year: 2021 ident: CR32 article-title: The temperature-dependent chiral-induced spin selectivity effect: Experiments and theory publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c10550 – volume: 11 start-page: 170 year: 2016 ident: CR74 article-title: Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.255 – volume: 99 start-page: 17006 year: 2012 ident: CR36 article-title: Chiral molecular films as electron polarizers and polarization modulators publication-title: Europhys. Lett. doi: 10.1209/0295-5075/99/17006 – volume: 96 start-page: 036101 year: 2006 ident: CR13 article-title: Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.036101 – volume: 19 start-page: 5253 year: 2019 ident: CR59 article-title: Theory of chiral induced spin selectivity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01707 – volume: 82 start-page: 3045 year: 2010 ident: CR1 article-title: Colloquium: Topological insulators publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 32 start-page: 1904965 year: 2020 ident: CR68 article-title: Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials publication-title: Adv. Mater. doi: 10.1002/adma.201904965 – volume: 15 start-page: 972 year: 2023 end-page: 979 ident: CR69 article-title: Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity publication-title: Nat. Chem. doi: 10.1038/s41557-023-01212-2 – volume: 9 start-page: 040902 year: 2021 ident: CR7 article-title: The spin selectivity effect in chiral materials publication-title: APL Mater. doi: 10.1063/5.0049150 – volume: 331 start-page: 894 year: 2011 ident: CR8 article-title: Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA publication-title: Science doi: 10.1126/science.1199339 – volume: 10 start-page: 7126 year: 2019 ident: CR43 article-title: Chirality-induced spin selectivity: The role of electron correlations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02929 – volume: 87 start-page: 236602 year: 2001 ident: CR65 article-title: Electrical magnetochiral anisotropy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.236602 – volume: 53 start-page: 2659 year: 2020 ident: CR26 article-title: Chiral induced spin selectivity gives a new twist on spin-control in chemistry publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00485 – volume: 98 start-page: 214513 year: 2018 ident: CR29 article-title: Unconventional order parameter induced by helical chiral molecules adsorbed on a metal proximity coupled to a superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.214513 – volume: 20 start-page: 8476 year: 2020 ident: CR17 article-title: An ideal spin filter: Long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02349 – volume: 34 start-page: 1793 year: 1963 ident: CR61 article-title: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film publication-title: J. Appl. Phys. doi: 10.1063/1.1702682 – ident: CR53 – volume: 371 start-page: 1129 year: 2021 ident: CR19 article-title: Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode publication-title: Science doi: 10.1126/science.abf5291 – volume: 131 start-page: 17814 year: 2009 ident: CR73 article-title: Molecular rectification in Metal-SAM-metal oxide-metal junctions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9048898 – volume: 143 start-page: 7189 year: 2021 ident: CR16 article-title: Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02983 – volume: 111 start-page: 4431 year: 2007 ident: CR63 article-title: Analyzing molecular current-voltage characteristics with the Simmons tunneling model: Scaling and linearization publication-title: J. Phys. Chem. C. doi: 10.1021/jp066846s – volume: 11 start-page: 4652 year: 2011 ident: CR51 article-title: Spin specific electron conduction through DNA oligomers publication-title: Nano Lett. doi: 10.1021/nl2021637 – volume: 27 start-page: 8043 year: 2015 ident: CR56 article-title: Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules publication-title: Adv. Mater. doi: 10.1002/adma.201503547 – volume: 139 start-page: 114111 year: 2013 ident: CR39 article-title: Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling publication-title: J. Chem. Phys. doi: 10.1063/1.4820907 – volume: 138 start-page: 15551 year: 2016 ident: CR22 article-title: Helix-dependent spin filtering through the DNA duplex publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10538 – volume: 141 start-page: 3863 year: 2019 ident: CR24 article-title: Spin-dependent ionization of chiral molecular films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08421 – volume: 85 start-page: 081404 year: 2012 ident: CR35 article-title: Spin-selective transport through helical molecular systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.081404 – volume: 90 start-page: 015001 year: 2018 ident: CR4 article-title: Weyl and dirac semimetals in three-dimensional solids publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015001 – volume: 13 start-page: 4928 year: 2019 ident: CR12 article-title: Spin selectivity in photoinduced charge-transfer mediated by chiral molecules publication-title: ACS Nano doi: 10.1021/acsnano.9b01876 – volume: 108 start-page: 218102 year: 2012 ident: CR34 article-title: Spin-selective transport of electrons in DNA double helix publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.218102 – volume: 5 start-page: 0571 year: 2019 ident: CR18 article-title: Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites publication-title: Sci. Adv. doi: 10.1126/sciadv.aay0571 – volume: 131 start-page: 014707 year: 2009 ident: CR33 article-title: Chiral electron transport: Scattering through Helical potentials publication-title: J. Chem. Phys. doi: 10.1063/1.3167404 – volume: 110 start-page: 14872 year: 2013 ident: CR11 article-title: Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1311493110 – volume: 99 start-page: 024418 year: 2019 ident: CR70 article-title: Spin-dependent electron transmission model for chiral molecules in mesoscopic devices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.024418 – volume: 101 start-page: 026403 year: 2020 ident: CR71 article-title: Comment on “Spin-Dependent Electron Transmission Model for Chiral Molecules in Mesoscopic Devices,” publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.026403 – volume: 3 start-page: 328 year: 2021 ident: CR6 article-title: Chiral spintronics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00302-9 – volume: 9 start-page: 43363 year: 2017 ident: CR57 article-title: Molecular patterning and directed self-assembly of gold nanoparticles on GaAs publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14113 – volume: 119 start-page: 14542 year: 2015 ident: CR10 article-title: Spin filtering in electron transport through chiral oligopeptides publication-title: J. Phys. Chem. C. doi: 10.1021/jp509974z – volume: 19 start-page: 5167 year: 2019 ident: CR28 article-title: Magnetic-related states and order parameter induced in a conventional superconductor by nonmagnetic chiral molecules publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01552 – volume: 147 start-page: 1675 year: 2016 ident: CR76 article-title: Bias-induced conductance switching in single molecule junctions containing a redox-active transition metal complex publication-title: Monatshefte F.ür. Chem. - Chem. Monthly doi: 10.1007/s00706-016-1795-6 – volume: 123 start-page: 17043 year: 2019 ident: CR40 article-title: Origin of spin-dependent tunneling through chiral molecules publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b05020 – volume: 9 start-page: 5753 year: 2018 ident: CR42 article-title: Thermal decoherence and disorder effects on chiral-induced spin selectivity publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02196 – volume: 14 start-page: 15983 year: 2020 ident: CR52 article-title: Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity publication-title: ACS Nano doi: 10.1021/acsnano.0c07438 – volume: 142 start-page: 194308 year: 2015 ident: CR38 article-title: Continuum model for chiral induced spin selectivity in helical molecules publication-title: J. Chem. Phys. doi: 10.1063/1.4921310 – volume: 102 start-page: 035431 year: 2020 ident: CR45 article-title: Vibration-enhanced spin-selective transport of electrons in the DNA double helix publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.035431 – ident: CR55 – volume: 99 start-page: 245153 year: 2019 ident: CR67 article-title: Strong electrical magnetochiral anisotropy in tellurium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245153 – volume: 83 start-page: 1057 year: 2011 ident: CR2 article-title: Topological insulators and superconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 8 start-page: 320 year: 2023 ident: CR77 article-title: Transverse magnetoconductance in two-terminal chiral spin-selective devices publication-title: Nanoscale Horiz. doi: 10.1039/D2NH00502F – volume: 606 start-page: 902 year: 2022 ident: CR20 article-title: Chiral molecular intercalation superlattices publication-title: Nature doi: 10.1038/s41586-022-04846-3 – volume: 26 start-page: 7474 year: 2014 ident: CR14 article-title: Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules publication-title: Adv. Mater. doi: 10.1002/adma.201402810 – volume: 104 start-page: 024430 year: 2021 ident: CR47 article-title: Interplay between friction and spin-orbit coupling as a source of spin polarization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.024430 – volume: 12 start-page: 700 year: 2021 ident: CR48 article-title: Electronic spin separation induced by nuclear motion near conical intersections publication-title: Nat. Commun. doi: 10.1038/s41467-020-20831-8 – volume: 19 start-page: 5167 year: 2019 ident: 40884_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01552 – volume: 11 start-page: 4652 year: 2011 ident: 40884_CR51 publication-title: Nano Lett. doi: 10.1021/nl2021637 – volume: 34 start-page: 1793 year: 1963 ident: 40884_CR61 publication-title: J. Appl. Phys. doi: 10.1063/1.1702682 – volume: 110 start-page: 14872 year: 2013 ident: 40884_CR11 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1311493110 – volume: 9 start-page: 5753 year: 2018 ident: 40884_CR42 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02196 – volume: 27 start-page: 8043 year: 2015 ident: 40884_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.201503547 – volume: 131 start-page: 014707 year: 2009 ident: 40884_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.3167404 – volume: 102 start-page: 035431 year: 2020 ident: 40884_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.035431 – volume: 20 start-page: 6148 year: 2020 ident: 40884_CR60 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02417 – volume: 90 start-page: 015001 year: 2018 ident: 40884_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015001 – volume: 104 start-page: 024430 year: 2021 ident: 40884_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.024430 – volume: 85 start-page: 081404 year: 2012 ident: 40884_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.081404 – volume: 141 start-page: 3863 year: 2019 ident: 40884_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08421 – volume: 360 start-page: 1331 year: 2018 ident: 40884_CR27 publication-title: Science doi: 10.1126/science.aar4265 – volume: 102 start-page: 214303 year: 2020 ident: 40884_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.214303 – volume: 14 start-page: 15983 year: 2020 ident: 40884_CR52 publication-title: ACS Nano doi: 10.1021/acsnano.0c07438 – volume: 9 start-page: 43363 year: 2017 ident: 40884_CR57 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14113 – volume: 96 start-page: 036101 year: 2006 ident: 40884_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.036101 – volume: 15 start-page: 972 year: 2023 ident: 40884_CR69 publication-title: Nat. Chem. doi: 10.1038/s41557-023-01212-2 – volume: 99 start-page: 17006 year: 2012 ident: 40884_CR36 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/99/17006 – volume: 20 start-page: 638 year: 2021 ident: 40884_CR49 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00924-5 – volume: 108 start-page: 218102 year: 2012 ident: 40884_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.218102 – volume: 8 start-page: 320 year: 2023 ident: 40884_CR77 publication-title: Nanoscale Horiz. doi: 10.1039/D2NH00502F – volume: 126 start-page: 3257 year: 2021 ident: 40884_CR32 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c10550 – volume: 8 start-page: 337 year: 2017 ident: 40884_CR3 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031016-025458 – volume: 87 start-page: 236602 year: 2001 ident: 40884_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.236602 – volume: 16 start-page: 4206 year: 2022 ident: 40884_CR75 publication-title: ACS Nano doi: 10.1021/acsnano.1c10155 – volume: 119 start-page: 14542 year: 2015 ident: 40884_CR10 publication-title: J. Phys. Chem. C. doi: 10.1021/jp509974z – volume: 101 start-page: 026403 year: 2020 ident: 40884_CR71 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.026403 – volume: 82 start-page: 3045 year: 2010 ident: 40884_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 371 start-page: 1129 year: 2021 ident: 40884_CR19 publication-title: Science doi: 10.1126/science.abf5291 – volume: 142 start-page: 194308 year: 2015 ident: 40884_CR38 publication-title: J. Chem. Phys. doi: 10.1063/1.4921310 – volume: 34 start-page: 2581 year: 1963 ident: 40884_CR62 publication-title: J. Appl. Phys. doi: 10.1063/1.1729774 – volume: 606 start-page: 902 year: 2022 ident: 40884_CR20 publication-title: Nature doi: 10.1038/s41586-022-04846-3 – ident: 40884_CR55 – volume: 9 start-page: 2025 year: 2018 ident: 40884_CR15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00208 – volume: 143 start-page: 7189 year: 2021 ident: 40884_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02983 – volume: 32 start-page: 1904965 year: 2020 ident: 40884_CR68 publication-title: Adv. Mater. doi: 10.1002/adma.201904965 – volume: 9 start-page: 040902 year: 2021 ident: 40884_CR7 publication-title: APL Mater. doi: 10.1063/5.0049150 – volume: 138 start-page: 15551 year: 2016 ident: 40884_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10538 – volume: 331 start-page: 894 year: 2011 ident: 40884_CR8 publication-title: Science doi: 10.1126/science.1199339 – volume: 34 start-page: 2106629 year: 2021 ident: 40884_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.202106629 – volume: 13 start-page: 4928 year: 2019 ident: 40884_CR12 publication-title: ACS Nano doi: 10.1021/acsnano.9b01876 – volume: 5 start-page: 0571 year: 2019 ident: 40884_CR18 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay0571 – volume: 9 year: 2018 ident: 40884_CR66 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05759-4 – volume: 99 start-page: 024418 year: 2019 ident: 40884_CR70 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.024418 – volume: 10 start-page: 7126 year: 2019 ident: 40884_CR43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02929 – volume: 111 start-page: 4431 year: 2007 ident: 40884_CR63 publication-title: J. Phys. Chem. C. doi: 10.1021/jp066846s – volume: 147 start-page: 1675 year: 2016 ident: 40884_CR76 publication-title: Monatshefte F.ür. Chem. - Chem. Monthly doi: 10.1007/s00706-016-1795-6 – volume: 83 start-page: 1057 year: 2011 ident: 40884_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.1057 – volume: 99 start-page: 245153 year: 2019 ident: 40884_CR67 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.245153 – volume: 3 start-page: 250 year: 2019 ident: 40884_CR5 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0087-1 – volume: 93 start-page: 075407 year: 2016 ident: 40884_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.075407 – volume: 124 start-page: 10776 year: 2020 ident: 40884_CR58 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c02291 – volume: 66 start-page: 263 year: 2015 ident: 40884_CR30 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040214-121554 – volume: 9 start-page: 3377 year: 2015 ident: 40884_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.5b00832 – ident: 40884_CR53 doi: 10.21203/rs.3.rs-1664101/v1 – volume: 20 start-page: 8476 year: 2020 ident: 40884_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02349 – volume: 11 start-page: 170 year: 2016 ident: 40884_CR74 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.255 – volume: 26 start-page: 7474 year: 2014 ident: 40884_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201402810 – volume: 21 start-page: 3026 year: 2021 ident: 40884_CR44 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00183 – volume: 131 start-page: 17814 year: 2009 ident: 40884_CR73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9048898 – volume: 139 start-page: 114111 year: 2013 ident: 40884_CR39 publication-title: J. Chem. Phys. doi: 10.1063/1.4820907 – volume: 3 start-page: 328 year: 2021 ident: 40884_CR6 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00302-9 – volume: 111 start-page: 11658 year: 2014 ident: 40884_CR37 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1407716111 – volume: 98 start-page: 214513 year: 2018 ident: 40884_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.214513 – volume: 53 start-page: 2659 year: 2020 ident: 40884_CR26 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00485 – volume: 73 start-page: 195331 year: 2006 ident: 40884_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.195331 – volume: 19 start-page: 5253 year: 2019 ident: 40884_CR59 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01707 – volume: 41 start-page: 761 year: 2002 ident: 40884_CR9 publication-title: Angew. Chem. doi: 10.1002/1521-3773(20020301)41:5<761::AID-ANIE761>3.0.CO;2-Z – volume: 22 start-page: 5022 year: 2022 ident: 40884_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01953 – volume: 11 start-page: 7516 year: 2017 ident: 40884_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.7b04165 – volume: 104 start-page: 11161 year: 2007 ident: 40884_CR64 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0701472104 – volume: 12 start-page: 700 year: 2021 ident: 40884_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20831-8 – volume: 5 start-page: 63 year: 2006 ident: 40884_CR72 publication-title: Nat. Mater. doi: 10.1038/nmat1526 – volume: 123 start-page: 17043 year: 2019 ident: 40884_CR40 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b05020 – volume: 143 start-page: 14235 year: 2021 ident: 40884_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05637 |
SSID | ssj0000391844 |
Score | 2.601664 |
Snippet | Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin... Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5163 |
SubjectTerms | 147/135 639/301/357/404 639/766/119/1001 639/925/927/998 Chirality Coupling (molecular) Crystals Electrode polarization Electrodes Electron spin Electrons Heavy metals Humanities and Social Sciences Hybrids Magnetic semiconductors Metals Molecular structure multidisciplinary Organic chemistry Polarization Polarization (spin alignment) Science Science (multidisciplinary) Spin valves Spin-orbit interactions Topology Valves |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBFPD-weicRfPPKNk3aJo-nuByCPrlwbyGf7MLaXW73hPvvb5K063VBffG1SdomM5n5DZP8BuADZdYGjHzKzmhecup1aXzryuBF0EZI15mY0f32vb1a8K_XzfWDUl_xTFimB84LN2O8qwLCako95TWiW9cK2bgKX9vUkieybfR5D4KpZIOZxNCFD7dkKiZmO55sArooDJmE4KWceKJE2D9BmcdnJI8Spcn_zJ_B0wE4ksv8w6fwyPfP4XEuJXn3Apb59OBa35FNIJkVNjJqELtc3SSsfUHGkjdkt131RPeO7HOJhCgosrkxsYAIwaY8hvwcS-fmAaiTv_zuJSzmX358viqHKgqlbajYl9bTUAVdednorkU0GILz0iNM4qaSjplOWxPvXkndOMOtroUwzLbCNw6DjcBewUm_6f1rIGgdgompO-c1p4ZLE7pgTVXrgIFNowug44oqO1CMx0oXa5VS3UyoLAWFUlBJCkoW8PEwZpsJNv7a-1MU1KFnJMdOD1Bl1KAy6l8qU8DZKGY17NidqgUC20hWTwt4f2jGvRYTKLr3m9vUpxNMIIQuQEzUY_JD05Z-tUys3Rj3com-p4CLUZN-f_3PM37zP2b8Fp7UUfMrtIr8DE5QCf05gqm9eZf2zT2whBqA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwRNxWr28jANxfWtGmbPIkTr0PQJwd7C_n0Xtja6-1V2H_vyUfv6MC9NglNe07OR07y-yH0ntbGeMh8SKcVI4w6RbRrLfGOe6W5sJ0OFd3vP9qLS_btqrnKG25jPlY52cRoqO1gwh75WcUh8Ahg4vTj-jcJrFGhupopNB6jJxQ8TTjSxRdfd3ssAf2cM5bvypQ1PxtZtAzgqCBx4pwRMfNHEbZ_FmvePyl5r1wavdDiBXqew0f8Kcl7Hz1y_QF6mgglb1-iZTpDeK1u8eBxwoYNuBrYLFebGHGf4on4Bo_rVY9Vb_E2ESUEceFhowONCIamNAbfTAS6aQBo5l83vkKXiy8_P1-QzKVATEP5lhhHfelV6USjuhZiQu-tEw6CJaZLYWvdKaPDDSyhGquZURXnujYtd42FlMPXr9FeP_TuDcJgI7wOBTzrFKOaCe07b3RZKQ_pTaMKRKc_Kk0GGg98F9cyFrxrLpMUJEhBRilIUaAPuzHrBLPxYO_zIKhdzwCRHR8Mm18yrzhZs670kI9R6iirIC2yLReNLUEfm0qwtkCHk5hlXrejvNOyAp3smmHFhTKK6t3wJ_bpeM0hkC4Qn6nHbELzln61jNjdkP0yAR6oQKeTJt29_f9f_Pbhyb5Dz6qg0yVYPXaI9kC93BEES1t9HFfEPyWIFIo priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddS2EvZVs7ln4MD_a2hsWJk9iPt7JSDraXrdA348_dQZeUu9ug_31lO7mSsg32GkvkQ5IlRfJPAO9pZYzHzCdvtWI5o07l2jU29457pbmwrQ4V3S9fm6trNr-pb3agHM_CxKb9CGkZt-mxO-zjmkWTRg-DGQ_nLBfPYC9AtaNu781m82_z7Z-VgHnOGRtOyBQV_wPzxAtFsP5JhPm0P_JJkTT6nssXcDAEjWSWHvMl7LjuFeynMZL3h7BInYO36p70niRE2ICmQcxiuYpx9jkZx92Q9d2yI6qzZJPGIwQhkX6lw_AQgkuJh_wcx-YmBtTH3259BNeXn79fXOXDBIXc1JRvcuOoL7wqnKhV22Ak6L11wmGIxHQhbKVbZXQ4dyVUbTUzquRcV6bhrraYaPjqNex2fefeAMGdwetQtrNOMaqZ0L71Rhel8pjU1CoDOn5RaQZ48TDl4lbGMnfFZZKCRCnIKAUpMviw5blL4Br_pP4UBLWlDMDY8UK_-iEHRZEVawuPWRiljrISkyHbcFHbArWwLgVrMjgdxSwHa13LkmNQG4DqaQbvtstoZ6F4ojrX_4o0La84hs8Z8Il6TB5outItFxGxG3NeJtDvZHA-atLj3f_-xsf_R34Cz8ug4wXufewUdlHd3BmGTBv9drCRBxz1E6U priority: 102 providerName: Springer Nature |
Title | Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves |
URI | https://link.springer.com/article/10.1038/s41467-023-40884-9 https://www.proquest.com/docview/2856659861 https://www.proquest.com/docview/2857838507 https://pubmed.ncbi.nlm.nih.gov/PMC10449876 https://doaj.org/article/3470f54811e142758d6895d041e52946 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8ID5FYFRG4o0F4sRJ7AeEumplqrQJAZX6ZtmOTSuVZLQF0f-es5MUdRpIvLRSbDep7873u5x9P4BXNDPGYeQTl1qxmFGrYm2LKnaWO6W5qErtM7qXV8XFlE1m-ewAerqjbgLXt4Z2nk9qulq--fV9-x4N_l17ZJy_XbNg7uh9MBrinMXiEI7RM5We0eCyg_thZc4EBjQ-0ZwmjMbYIevO0dz-M3u-KpT038OhN3dR3kilBg81vg_3OmhJhq0uPIADWz-EOy3Z5PYRzNv9hUu1JY0jbd1YX3ODmPliFdD4KelJccj6elETVVdk05IoeFGSZqU9xQjBpnYM-daT67YDUGt_2vVjmI7Pv4wu4o5nITY55ZvYWOoSpxIrclUWiBedq6ywCKSYTkSV6VIZ7U9nCZVXmhmVcq4zU3CbVxiOuOwJHNVNbZ8CwfXDaZ_cq6xiVDOhXemMTlLlMPTJVQS0n1FpuiLkngtjKUMyPOOylYJEKcggBSkieL0bc92W4Phn7zMvqF1PXz47XGhWX2VnjTJjZeIwVqPUUpZiyFQVXOQVKoXNU8GKCE56McteJWXKEfr6cvY0gpe7ZrRGn2JRtW1-hD4lzziC7Aj4nnrsPdB-S72Yh7reGBkzgd4pgtNek_7c_e__-Nl_zc9zuJt6FU9wgWQncITaZl8grtroARyWsxI_-fjDAI6Hw8nnCX6fnV99_IRXR8VoEN5YDIJR_QYZjCQP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiFUNLWAkONGoWZzEPiDENkzpcmql3oxXZqSSTGcG0PwpfiPPTjJVKtFbr7Gd7S3-np_9PoDXaa61w8gnrpSkMU2tjJUtTewsc1IxbirlM7pHx-X4lH47K8424G9_FsZvq-x9YnDUptF-jXwvYwg8fDHx9P3sIvasUT672lNotGpxYFd_MGRbvNv_jPJ9k2WjLyefxnHHKhDrImXLWNvUJU4mlheyKhEdOWcstwgbqEq4yVUltfJnkbgsjKJaZoypXJfMFgbBt8vxvrfgNsUOPthjo6_rNR1fbZ1R2p3NSXK2t6DBE-HEiIEaYzTmg_kv0AQMsO3VnZlX0rNh1hs9gPsdXCUfWv16CBu2fgR3WgLL1WOYtHsWz-WKNI60tWh9HQ-iJ9N5QPi7pCfaIYvZtCayNmTZEjN49SDNXHnaEoJN7RjysyfsbQegJfy2iydweiN_-Sls1k1tt4CgT3LKJwyNlTRVlCtXOa2STDoMpwoZQdr_UaG7wuaeX-NchAR7zkQrBYFSEEEKgkfwdj1m1pb1uLb3Ry-odU9fkjtcaOY_RGfhIqdV4jD-S1Ob0gzDMFMyXpgE9b_IOC0j2OnFLDo_sRCXWh3Bq3UzWrhP28jaNr9Cn4rlDIF7BGygHoMXGrbU00moFY7RNuU440Ww22vS5dP__8XPrn_Zl3B3fHJ0KA73jw-24V7m9TtBj0t3YBNVzT5HoLZUL4J1EPh-0-b4D5zyUuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU4G4IFYRKGAkONFosjiJfUCI0o5aCqMKUak345UZqSTDZADNX-PX8ZxlqlSit15jO9tb_D0_-30Ar-JUa4eRT1goSUMaWxkqm5vQWeakYtwUymd0P0_zw1P68Sw724K__VkYv62y94mNozaV9mvk44Qh8PDFxOOx67ZFnOxP3i1-hp5BymdaezqNVkWO7foPhm_126N9lPXrJJkcfP1wGHYMA6HOYrYKtY1d5GRkeSaLHJGSc8ZyixCCqoibVBVSK38uicvMKKplwphKdc5sZhCIuxTvewO2Cx8VjWB772B68mWzwuNrrzNKu5M6UcrGNW38Ek6TGLYxRkM-mA0b0oAB0r28T_NSsraZAyd34U4HXsn7VtvuwZYt78PNls5y_QBm7Q7Gc7kmlSNtZVpf1YPo2XzZ4P1d0tPukHoxL4ksDVm1NA1eWUi1VJ7EhGBTO4b86Ol72wFoF79t_RBOr-U_P4JRWZX2MRD0UE759KGxksaKcuUKp1WUSIfBVSYDiPs_KnRX5tyzbZyLJt2eMtFKQaAURCMFwQN4sxmzaIt8XNl7zwtq09MX6G4uVMvvorN3kdIichgNxrGNaYJBmckZz0yE1pAlnOYB7PRiFp3XqMWFjgfwctOM9u6TOLK01a-mT8FShjA-ADZQj8ELDVvK-aypHI6xN-U4_wWw22vSxdP__8VPrn7ZF3ALTVF8OpoeP4XbiVfvCN0v3YERapp9hqhtpZ535kHg23Vb5D_uiFh4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interplay+of+structural+chirality%2C+electron+spin+and+topological+orbital+in+chiral+molecular+spin+valves&rft.jtitle=Nature+communications&rft.au=Adhikari%2C+Yuwaraj&rft.au=Liu%2C+Tianhan&rft.au=Wang%2C+Hailong&rft.au=Hua%2C+Zhenqi&rft.date=2023-08-24&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40884-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_40884_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |