Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants

Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In...

Full description

Saved in:
Bibliographic Details
Published inCytogenetic and genome research Vol. 140; no. 2-4; pp. 137 - 150
Main Authors Weiss-Schneeweiss, H., Emadzade, K., Jang, T.-S., Schneeweiss, G.M.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
AbstractList Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. Copyright © 2013 S. Karger AG, Basel [PUBLICATION ABSTRACT]
Author Jang, T.-S.
Schneeweiss, G.M.
Weiss-Schneeweiss, H.
Emadzade, K.
Author_xml – sequence: 1
  givenname: H.
  surname: Weiss-Schneeweiss
  fullname: Weiss-Schneeweiss, H.
  email: hanna.schneeweiss@univie.ac.at
– sequence: 2
  givenname: K.
  surname: Emadzade
  fullname: Emadzade, K.
– sequence: 3
  givenname: T.-S.
  surname: Jang
  fullname: Jang, T.-S.
– sequence: 4
  givenname: G.M.
  surname: Schneeweiss
  fullname: Schneeweiss, G.M.
  email: hanna.schneeweiss@univie.ac.at
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23796571$$D View this record in MEDLINE/PubMed
BookMark eNptkd1rFDEUxaNW7Id98F1kwBcF1-bmY5K8CLLUKixYRMG3kMlkamo2WZOZwv73Zt3tYkufwuX-7uGck2N0EFN0CL0A_B6AqzOMMeUgiHiETpWQlILEhIkWP0ZHwAibSa5-Prmz4_Rgv5NwiI5LucYYJOPtM3RIqFAtF3CEFuc3KUyjT9HkdTNPsbg_k4vWlXf_pjEbH8fSmNg3l2l0cfQmNGmoQ1ivQvL9uvGxuQymUs_R08GE4k537wn68en8-_zzbPH14sv842JmOchxZq3k1ZqhnHRGYEmUHAYjgGMqut4q1zvDVduDgd4xIzrX4gFqMtVZybCiJ-jDVnc1dUvX2-oqm6BX2S9rCp2M13c30f_SV-lG01qUIqwKvNkJ5FTjllEvfbEu1BQuTUUDg7ZVXCpS0df30Os05VjjVYq0VAhGoVKv_ne0t3JbdAXOtoDNqZTsBm39aDa9bxoOGrDefLXef3W9eHvv4lb0IXZn8rfJVy7vyfnFty2hV_1QqZcPUjuRv_c8uEY
CitedBy_id crossref_primary_10_1186_s12870_019_1696_z
crossref_primary_10_1007_s10682_019_10021_4
crossref_primary_10_3389_fgene_2019_00208
crossref_primary_10_1016_j_ppees_2023_125730
crossref_primary_10_1093_aob_mcv176
crossref_primary_10_1111_tpj_14869
crossref_primary_10_1093_aob_mcx079
crossref_primary_10_1159_000441677
crossref_primary_10_3390_ijms231911033
crossref_primary_10_3897_phytokeys_203_83529
crossref_primary_10_3389_fpls_2020_591137
crossref_primary_10_1007_s10709_021_00115_9
crossref_primary_10_1111_boj_12452
crossref_primary_10_1016_j_ympev_2023_107940
crossref_primary_10_3390_ijpb15020023
crossref_primary_10_1016_j_pbiomolbio_2021_03_005
crossref_primary_10_1093_aob_mcab123
crossref_primary_10_1007_s13258_015_0279_0
crossref_primary_10_3732_ajb_1400005
crossref_primary_10_3897_compcytogen_v16_i1_79056
crossref_primary_10_1093_aob_mcx009
crossref_primary_10_1002_jemt_24772
crossref_primary_10_1007_s00606_017_1392_0
crossref_primary_10_1016_j_baae_2016_06_004
crossref_primary_10_1016_j_pld_2024_12_006
crossref_primary_10_1016_j_ppees_2025_125861
crossref_primary_10_1016_j_scienta_2021_110012
crossref_primary_10_1098_rspb_2023_0389
crossref_primary_10_1002_ajb2_16334
crossref_primary_10_1111_pce_13745
crossref_primary_10_3390_f10121059
crossref_primary_10_1007_s12080_024_00579_3
crossref_primary_10_3389_fpls_2018_00433
crossref_primary_10_1093_botlinnean_box039
crossref_primary_10_1007_s10722_022_01511_6
crossref_primary_10_1371_journal_pgen_1007949
crossref_primary_10_1016_j_tibtech_2015_06_004
crossref_primary_10_1111_nph_13778
crossref_primary_10_1111_nph_16406
crossref_primary_10_3109_10408363_2015_1012191
crossref_primary_10_1093_sysbio_syv035
crossref_primary_10_11110_kjpt_2018_48_4_260
crossref_primary_10_1002_ppp3_10297
crossref_primary_10_3390_plants11050693
crossref_primary_10_1134_S1022795420120091
crossref_primary_10_1111_nph_15784
crossref_primary_10_1093_sysbio_syy024
crossref_primary_10_3389_fpls_2022_873471
crossref_primary_10_1111_jbi_13204
crossref_primary_10_1016_j_ppees_2024_125825
crossref_primary_10_1007_s00035_019_00219_1
crossref_primary_10_1080_07929978_2017_1288406
crossref_primary_10_1007_s00035_015_0159_x
crossref_primary_10_1016_j_indcrop_2020_113073
crossref_primary_10_1086_694763
crossref_primary_10_1111_nph_15426
crossref_primary_10_1186_s12862_017_0878_2
crossref_primary_10_3389_fpls_2016_00892
crossref_primary_10_5735_085_056_0111
crossref_primary_10_4161_15592324_2014_992744
crossref_primary_10_1007_s00606_019_01621_2
crossref_primary_10_1371_journal_pone_0218389
crossref_primary_10_1016_j_ppees_2019_125502
crossref_primary_10_1186_s12862_016_0773_2
crossref_primary_10_1093_jxb_erz325
crossref_primary_10_1007_s00035_021_00254_x
crossref_primary_10_3732_ajb_1400149
crossref_primary_10_1080_14772000_2022_2036854
crossref_primary_10_4025_actasciagron_v44i1_55711
crossref_primary_10_1007_s40011_015_0523_z
crossref_primary_10_1093_aob_mcw217
crossref_primary_10_1002_ece3_10231
crossref_primary_10_1098_rspb_2020_2154
crossref_primary_10_1508_cytologia_89_197
crossref_primary_10_1002_ajb2_16077
crossref_primary_10_1139_cjb_2014_0223
crossref_primary_10_1002_ajb2_1370
crossref_primary_10_1007_s11033_020_05597_y
crossref_primary_10_1093_aob_mcy071
crossref_primary_10_7124_FEEO_v25_1133
crossref_primary_10_3390_su141811405
crossref_primary_10_1002_tax_13326
crossref_primary_10_1016_j_tplants_2014_01_013
crossref_primary_10_1002_aps3_1207
crossref_primary_10_3390_biology12030380
crossref_primary_10_1007_s00035_018_0209_2
crossref_primary_10_1016_j_fgb_2015_02_009
crossref_primary_10_3732_ajb_1500506
crossref_primary_10_1002_ajb2_16305
crossref_primary_10_1038_s41598_022_20194_8
crossref_primary_10_1111_mec_13538
crossref_primary_10_1002_ajb2_1159
crossref_primary_10_1093_gbe_evaa236
crossref_primary_10_1002_ajb2_1431
crossref_primary_10_1093_botlinnean_box100
crossref_primary_10_1186_s13578_021_00528_1
crossref_primary_10_1093_aob_mcw187
crossref_primary_10_1111_jse_12816
crossref_primary_10_1007_s10531_024_02976_w
crossref_primary_10_3389_fgene_2018_00027
crossref_primary_10_1093_aob_mcx032
crossref_primary_10_3389_fmicb_2014_00274
crossref_primary_10_1007_s00300_016_1890_5
crossref_primary_10_1080_14772000_2019_1572035
crossref_primary_10_1093_jpe_rtw039
crossref_primary_10_1371_journal_pone_0162299
crossref_primary_10_1111_tpj_16850
crossref_primary_10_1080_14772000_2018_1546777
crossref_primary_10_1007_s00606_019_01581_7
crossref_primary_10_1111_1755_0998_12641
crossref_primary_10_1016_j_ejbt_2015_07_003
crossref_primary_10_3390_plants11111481
crossref_primary_10_3390_agriculture12020214
crossref_primary_10_3389_fpls_2022_788911
crossref_primary_10_1016_j_ympev_2018_08_016
crossref_primary_10_1111_boj_12306
crossref_primary_10_1016_j_ympev_2024_108160
crossref_primary_10_1159_000361002
crossref_primary_10_3897_CompCytogen_v10i1_6719
crossref_primary_10_1111_nph_15999
crossref_primary_10_3389_fpls_2022_908218
crossref_primary_10_1007_s00468_019_01818_5
crossref_primary_10_1007_s10681_017_2026_x
crossref_primary_10_1016_j_tig_2014_09_011
crossref_primary_10_1111_jse_12751
crossref_primary_10_1139_gen_2018_0044
crossref_primary_10_1186_s12862_015_0425_y
crossref_primary_10_1111_nph_18579
crossref_primary_10_1111_bij_12479
crossref_primary_10_2478_sg_2021_0003
crossref_primary_10_3390_life12081236
crossref_primary_10_1111_aec_13502
crossref_primary_10_2135_cropsci2015_04_0249
crossref_primary_10_3390_plants12061356
crossref_primary_10_1186_s12870_024_05732_y
crossref_primary_10_1016_j_ympev_2023_107805
crossref_primary_10_1080_23766808_2020_1844992
crossref_primary_10_1111_nph_12873
crossref_primary_10_1186_s12870_023_04456_9
crossref_primary_10_3897_CompCytogen_v10i1_6462
crossref_primary_10_3390_plants12040973
crossref_primary_10_1111_tpj_13794
crossref_primary_10_1186_s12862_019_1355_x
crossref_primary_10_1093_botlinnean_boac040
crossref_primary_10_1007_s00606_017_1442_7
crossref_primary_10_1038_s41598_017_07877_3
crossref_primary_10_1007_s12224_016_9235_2
crossref_primary_10_1007_s13237_020_00311_6
crossref_primary_10_3897_CompCytogen_v11i2_11572
crossref_primary_10_1002_ece3_4063
crossref_primary_10_3389_fpls_2021_589093
crossref_primary_10_1016_j_ympev_2016_04_009
crossref_primary_10_1093_pcp_pcae054
crossref_primary_10_1016_j_ppees_2022_125659
crossref_primary_10_1071_BT18236
crossref_primary_10_3390_plants14010119
crossref_primary_10_1111_tpj_13843
crossref_primary_10_3389_fgene_2018_00639
crossref_primary_10_1016_j_envexpbot_2019_103956
crossref_primary_10_1186_s12862_017_1019_7
crossref_primary_10_1080_15384101_2019_1618123
crossref_primary_10_1093_botlinnean_boab085
Cites_doi 10.2307/1218997
10.1111/j.1469-8137.2006.01769.x
10.1111/j.0014-3820.2000.tb00553.x
10.1093/aob/mcm116
10.1007/978-3-642-31442-1_13
10.1093/jhered/esp008
10.1038/nature09916
10.1093/aob/mcs128
10.3732/ajb.1100395
10.1600/036364412X616738
10.1016/j.gde.2003.10.005
10.1073/pnas.0510791103
10.1007/BF01681812
10.2307/2640816
10.1007/978-3-642-31442-1_9
10.1111/j.1601-5223.1933.tb02604.x
10.1111/j.1601-5223.1948.tb02824.x
10.1073/pnas.0811575106
10.1093/aob/mcm326
10.1007/978-3-7091-1160-4_15
10.1038/hdy.1993.181
10.1111/nph.12051
10.1086/523367
10.1007/s00606-002-0189-x
10.3732/ajb.91.11.1783
10.3732/ajb.1100539
10.1111/j.1095-8312.2004.00332.x
10.1105/tpc.110.074526
10.1007/978-3-642-31442-1_10
10.1007/BF00277053
10.1111/j.1365-2745.2011.01838.x
10.1371/journal.pone.0033808
10.1098/rspb.2010.2208
10.1159/000082406
10.1007/s10682-011-9539-x
10.1111/j.1095-8312.2004.00333.x
10.1093/aob/mcr256
10.1038/hdy.2012.77
10.1007/978-3-642-31442-1_12
10.1007/978-1-4613-3069-1_13
10.1111/j.1095-8312.2004.00344.x
10.1111/j.1365-2656.2006.01167.x
10.1038/sj.hdy.6800912
10.1111/j.1095-8312.2004.00335.x
10.1111/j.1472-4642.2009.00602.x
10.3732/ajb.0800079
10.1111/j.1365-294X.2007.03315.x
10.1371/journal.pone.0029607
10.1016/j.tplants.2009.12.003
10.2307/2656733
10.1111/j.1601-5223.2000.00255.x
10.1093/molbev/msj083
10.1093/aob/mcq035
10.1126/science.264.5157.421
10.1111/j.1095-8312.2004.00337.x
10.1073/pnas.1112041109
10.1111/j.1469-8137.1993.tb03822.x
10.1111/j.1469-8137.2011.03988.x
10.1534/genetics.104.032839
10.1023/A:1006534130327
10.1111/j.1469-8137.1983.tb02698.x
10.1186/1471-2164-8-427
10.1186/1471-2229-10-204
10.1073/pnas.1016631108
10.1016/j.pbi.2005.01.001
10.1007/978-1-4613-3069-1_3
10.1023/A:1016015913350
10.1007/s00442-010-1595-3
10.1016/j.tig.2009.12.006
10.1023/A:1006392424384
10.1007/978-1-4613-3069-1
10.1111/j.1469-8137.2009.02997.x
10.1007/s004120050179
10.1111/j.1469-8137.1996.tb01921.x
10.1139/G11-035
10.3732/ajb.1200020
10.1073/pnas.0805141105
10.1007/s10265-007-0108-x
10.1111/j.1469-8137.2004.01297.x
10.1007/978-3-7091-1160-4_14
10.3732/ajb.94.9.1527
10.1016/j.tree.2009.04.010
10.1111/j.1558-5646.2009.00877.x
10.1146/annurev.ecolsys.33.010802.150437
10.1111/j.1558-5646.2007.00134.x
10.1007/s00442-008-1156-1
10.2307/2438023
10.1186/1471-2148-10-291
10.1016/S1055-7903(03)00213-6
10.1038/hdy.2012.79
10.1139/g94-087
10.1016/j.tig.2011.03.004
10.2307/2656673
10.1371/journal.pone.0027335
10.2307/2406537
10.1111/j.1095-8312.2004.00346.x
10.1111/j.1469-8137.2009.03142.x
10.1038/hdy.1997.170
10.1105/tpc.107.054346
10.1371/journal.pone.0039988
10.1111/j.1469-8137.2005.01480.x
10.1111/j.1095-8312.2004.00350.x
10.1093/molbev/msr112
10.1016/S1360-1385(98)01223-0
10.1371/journal.pone.0003353
10.1111/j.1365-2745.2012.02013.x
10.1111/mec.12217
10.1111/j.1558-5646.2011.01424.x
10.1111/j.1469-8137.2007.02121.x
10.1111/j.1095-8312.2004.00334.x
10.1111/j.1469-8137.2009.03140.x
10.3390/genes1020166
10.1016/j.tree.2005.07.008
10.1007/s004120050424
10.1111/j.1469-8137.2009.03096.x
10.1016/j.bbaexp.2007.02.005
10.1038/sj.hdy.6800333
10.1016/j.ympev.2010.01.003
10.1038/nrg1711
10.1146/annurev.genet.34.1.401
10.1016/S1673-8527(08)60142-3
10.1038/sj.hdy.6800656
10.1111/j.1558-5646.2008.00599.x
10.1007/s00438-007-0226-0
10.1016/j.scienta.2010.10.012
10.1086/662673
10.1016/S0169-5347(99)01638-9
10.1098/rspb.2000.0990
10.1098/rspb.2012.2387
10.1007/s00035-011-0091-7
10.1093/molbev/mss168
10.1007/978-3-7091-1160-4_13
10.1080/07352689309701903
10.1890/08-0420.1
10.1016/S0168-9525(03)00015-5
10.1111/j.1469-8137.2009.02767.x
10.1038/373512a0
10.1111/j.1365-2745.2009.01543.x
10.1126/science.1207205
10.1371/journal.pone.0044784
10.1038/nature07523
10.1093/aob/mcr277
10.2307/2399224
10.1371/journal.pone.0050352
10.1111/j.1365-313X.2009.03911.x
10.1007/978-3-7091-1160-4_9
10.1534/g3.112.002162
10.1554/05-629.1
10.1111/j.0014-3820.2005.tb01063.x
10.3732/ajb.95.1.50
10.1038/sj.hdy.6800001
10.1007/s00412-011-0331-z
10.1006/anbo.1995.1138
10.1111/j.1469-8137.1995.tb03005.x
10.1093/aob/mcq192
10.1554/05-095.1
10.1093/aob/mcp282
10.1080/0028825X.1986.10409726
10.1007/978-3-642-31442-1_1
10.1007/978-3-7091-1160-4_17
10.1073/pnas.1207726109
10.1111/j.1469-8137.2007.02019.x
10.1080/0028825X.1986.10409725
10.1002/9783527610921.ch5
10.3732/ajb.91.7.1022
10.1371/journal.pone.0036963
10.1146/annurev.genet.33.1.479
10.1073/pnas.0900906106
10.1007/s004120000074
10.1126/science.1153585
10.1016/j.ympev.2012.07.015
10.1007/BF02803074
10.1007/BF02338802
10.1073/pnas.97.16.9115
10.1038/44766
10.1111/j.1095-8312.2004.00349.x
10.1111/j.1365-2699.2006.01562.x
10.1016/0092-8674(81)90428-1
10.1093/aob/mcm271
10.1111/j.1601-5223.1936.tb03204.x
10.1007/s00442-006-0536-7
10.1111/j.1469-8137.2009.03084.x
10.3732/ajb.1100466
10.1534/genetics.107.072751
10.3732/ajb.91.3.439
10.1111/j.1469-8137.2009.03089.x
10.1007/978-3-642-31442-1_14
10.1007/978-3-642-31442-1
10.1111/j.1469-8137.2009.03117.x
10.1093/aob/mcs187
10.1111/j.1601-5223.1932.tb02560.x
10.1073/pnas.1014138108
10.1016/j.pbi.2012.03.010
10.1111/j.1469-8137.2010.03186.x
10.1101/sqb.2009.74.007
10.1146/annurev.ecolsys.29.1.467
10.1086/499251
ContentType Journal Article
Copyright 2013 S. Karger AG, Basel
Copyright © 2013 S. Karger AG, Basel.
Copyright (c) 2013 S. Karger AG, Basel
Copyright © 2013 S. Karger AG, Basel 2013
Copyright_xml – notice: 2013 S. Karger AG, Basel
– notice: Copyright © 2013 S. Karger AG, Basel.
– notice: Copyright (c) 2013 S. Karger AG, Basel
– notice: Copyright © 2013 S. Karger AG, Basel 2013
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TK
7X7
7XB
88A
88E
88I
8AF
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
S0X
7X8
5PM
DOI 10.1159/000351727
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
ProQuest Central Student
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9783318024760
3318024767
EISSN 1424-859X
EndPage 150
ExternalDocumentID PMC3859924
3049541431
23796571
10_1159_000351727
351727
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 20736
– fundername: Austrian Science Fund FWF
  grantid: P 21440
– fundername: Austrian Science Fund FWF
  grantid: P 25131
– fundername: Austrian Science Fund FWF :
  grantid: P 20736-B16 || FWF_
GroupedDBID ---
-~X
.GJ
0R~
0~5
0~B
29F
30W
326
34G
36B
39C
3O-
3O.
3V.
4.4
53G
5GY
5RE
7X7
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8UI
AAYIC
ABJNI
ABPAZ
ABUWG
ACGFO
ACGFS
ACGOD
ACPRK
ACPSR
ADBBV
AENEX
AEYAO
AFFNX
AFJJK
AFKRA
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GNUQQ
HCIFZ
HMCUK
HZ~
IH2
IY7
KUZGX
L7B
LK8
M--
M0L
M1P
M2P
M7P
O1H
O9-
PQQKQ
PROAC
PSQYO
RIG
RKO
RXVBD
S0X
SV3
UJ6
UKHRP
ZGI
AAYXX
ABBTS
ABWCG
AHFRZ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c518t-cc85142a352ba708298ffa715037bdc9edea596d1a1de4a7be60f13319bc84093
IEDL.DBID M--
ISBN 9783318024753
3318024759
ISSN 1424-8581
1424-859X
IngestDate Thu Aug 21 18:18:26 EDT 2025
Fri Jul 11 00:41:49 EDT 2025
Sat Aug 16 00:51:07 EDT 2025
Mon Jul 21 06:05:07 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 05:09:49 EDT 2025
Thu Aug 29 12:04:36 EDT 2024
Thu Sep 05 20:30:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2-4
Keywords Repetitive DNA
Polyploidy
Diversification
Chromosome evolution
Ecogeography
Language English
License Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC)
applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
https://creativecommons.org/licenses/by-nc/3.0
Copyright © 2013 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-cc85142a352ba708298ffa715037bdc9edea596d1a1de4a7be60f13319bc84093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000351727
PMID 23796571
PQID 1426377431
PQPubID 27467
PageCount 14
ParticipantIDs crossref_primary_10_1159_000351727
proquest_miscellaneous_1416695892
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859924
pubmed_primary_23796571
karger_primary_351727
crossref_citationtrail_10_1159_000351727
proquest_journals_1426377431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Basel
PublicationTitle Cytogenetic and genome research
PublicationTitleAlternate Cytogenet Genome Res
PublicationYear 2013
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Reese G: Polyploidie und Verbreitung. Z Botanik 46:339-354 (1958).
Bansal P, Banga S, Banga SS: Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 7:e29607 (2012).2236340410.1371/journal.pone.0029607
Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424 (1994).1783690610.1126/science.264.5157.421
Soltis DE, Buggs RJA, Barbazuk WB, Chamala S, Chester M, et al: The early stages of polyploidy: rapid and repeated evolution in Tragopogon, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 271-292 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_14
Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al: Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309-319 (2009).10.1007/s00035-011-0091-7
Childs G, Maxon R, Kedes LC: Orphons: dispersed genetic elements derived from tandem repetitive genes of eukaryotes. Cell 23:651-663 (1981).678492910.1016/0092-8674(81)90428-1
Duchoslav M, Šafářová L, Krahulec F: Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719-735 (2010).2036376010.1093/aob/mcq035
Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243-273 (1993).10.1080/07352689309701903
Cronn RC, Zhao XP, Paterson AH, Wendel JF: Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685-705 (1996).866201410.1007/BF02338802
Rodriguez DJ: A model for the establishment of polyploidy in plants. Am Nat 147:33-46 (1996).
Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, et al: Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022-1035 (2004a).2165345810.3732/ajb.91.7.1022
Kolář F, Fér T, Štech M, Trávníček P, Dušková E, et al: Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988 (2012).2006091610.1016/j.ympev.2010.01.003
Murray BG: Karyotype variation and evolution in gymnosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 231-243 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_14
Pagel M: Inferring the historical patterns of biological evolution. Nature 401:877-884 (1999).1055390410.1038/44766
Weiss-Schneeweiss H, Schneeweiss GM: Karyotype diversity and evolutionary trends in angiosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 209-230 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_13
Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, et al: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353 (2008).1884337210.1371/journal.pone.0003353
Ramsey J, Schemske DW: Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589-639 (2002).10.1146/annurev.ecolsys.33.010802.150437
Maluszynska J, Hasterok R, Weiss H: rRNA genes: their distribution and activity in plants, in Maluszynska J (ed): Plant Cytogenetics, pp 75-95 (Silesian Univ Press, Katowice 1998).
Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 181-207 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_10
Oates KM, Ranney TG, Touchell DH: Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. HortScience 47:1217-1221 (2012).
Segraves KA, Thompson JN: Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114-1127 (1999).10.2307/2640816
Crow KD, Wagner GP: What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887-892 (2006).1636877510.1093/molbev/msj083
Fulnecek J, Lim KY, Leitch AR, Kovarík A, Matyásek R: Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19-25 (2002).1181310210.1038/sj.hdy.6800001
McIntyre P: Cytogeography and genome size variation in the Claytonia perfoliata (Portulacaceae) polyploid complex. Ann Bot 110:1195-1203 (2012a).2296230210.1093/aob/mcs187
Church SA, Spaulding EJ: Gene expression in a wild autopolyploid sunflower series. J Hered 100:491-495 (2009).1932163110.1093/jhered/esp008
te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, et al: The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19-45 (2012).2204074410.1093/aob/mcr277
Parisod C, Alix C, Just J, Petit M, Sarilar V, et al: Impact of transposable elements in organization and functioning of allopolyploid genomes. New Phytol 186:37-45 (2010a).2000232110.1111/j.1469-8137.2009.03096.x
Leitch IJ, Bennett MD: Genome downsizing in polyploid plants. Biol J Linn Soc 82:651-663 (2004).10.1111/j.1095-8312.2004.00349.x
Raabova J, Fischer M, Münzbergerová Z: Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158:463-472 (2008).1882095010.1007/s00442-008-1156-1
Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, et al: The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146-155 (2010).1565411610.1534/genetics.104.032839
Levy AA, Feldman M: Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607-613 (2004).10.1111/j.1095-8312.2004.00346.x
Felber-Girard M, Felber F, Buttler A: Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531-540 (1996).10.1111/j.1469-8137.1996.tb01921.x
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al: Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100 (2011).1799365310.1093/aob/mcm271
Ramsey J: Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143-150 (2007).1709112710.1038/sj.hdy.6800912
Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J: Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204 (2010).22318659
Coate JE, Powell AF, Owens TG, Doyle JJ: Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae). Heredity 110:160-170 (2013).2314945710.1038/hdy.2012.77
Burton TL, Husband BC: Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182-1191 (2000).1100528710.1111/j.0014-3820.2000.tb00553.x
Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J: Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169-179 (2012).2198019210.1093/aob/mcr256
Löve Á, Löve D: Polyploidy and altitude: Mt. Washington. Biol Zentralbl Suppl Vol:307-312 (1967).
Schlaepfer DR, Edwards P, Billeter R: Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163:661-673 (2010).2023812810.1007/s00442-010-1595-3
McArthur ED, Sanderson SC: Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754-1775 (1999).1060276810.2307/2656673
Soltis DE, Buggs RJA, Doyle JJ, Soltis PS: What we still don't know about polyploidy. Taxon 59:1387-1403 (2010).
Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park JM, et al: Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669-682 (2007).1744792110.1111/j.1469-8137.2007.02019.x
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al: Polyploidy and angiosperm diversification. Am J Bot 96:336-348 (2009a).2162819210.3732/ajb.0800079
Schubert I, Lysak MA: Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207-216 (2011).2159260910.1016/j.tig.2011.03.004
Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33:479-532 (1999).10.1600/036364412X616738
Soltis DE, Buggs RJ, Barbazuk WB, Schnable PS, Soltis PS: On the origins of species: does evolution repeat itself in polyploid populations of independent origin? Cold Spring Harb Symp Quant Biol 74:215-223 (2009b).1968714010.1101/sqb.2009.74.007
Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T: Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193:797-805 (2012).2215079910.1111/j.1469-8137.2011.03988.x
DeBodt S, Maere S, van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591-597 (2005).1670144110.1016/j.tree.2005.07.008
Bretagnolle F, Thompson JD: Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1-22 (1995).10.1111/j.1469-8137.1995.tb03005.x
Baack EJ, Stanton ML: Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): niche differentiation and tetraploid establishment. Evolution 59:1936-1944 (2005).1626173110.1111/j.0014-3820.2005.tb01063.x
Baack EJ: To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. Heredity 94:538-
ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref2
ref1
ref191
ref192
ref190
ref197
ref195
ref196
ref193
ref194
References_xml – reference: Preuss S, Pikaard CS: rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383-392 (2007).1743982510.1016/j.bbaexp.2007.02.005
– reference: Jellen EN, Gill BS, Cox TS: Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37:613-618 (1994).2147887510.1038/nature09916
– reference: Leitch IJ, Bennett MD: Genome downsizing in polyploid plants. Biol J Linn Soc 82:651-663 (2004).10.1111/j.1095-8312.2004.00349.x
– reference: Chen ZJ: Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57-71 (2010).2008043210.1016/j.tplants.2009.12.003
– reference: Husband BC, Baldwin SJ, Suda J: The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 255-276 (Springer, Wien 2013).
– reference: Raabova J, Fischer M, Münzbergerová Z: Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158:463-472 (2008).1882095010.1007/s00442-008-1156-1
– reference: Löve Á, Löve D: The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biol Ser A:273-352 (1949-1951).
– reference: Ramsey J, Schemske DW: Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589-639 (2002).10.1146/annurev.ecolsys.33.010802.150437
– reference: Soltis DE, Soltis PS: Polyploidy: origins of species and genome evolution. Trends Ecol Evol 14:348-352 (1999).1044130810.1016/S0169-5347(99)01638-9
– reference: Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E: Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485-501 (2004).10.1111/j.1095-8312.2004.00335.x
– reference: Zielinski ML, Mittelsten Scheid O: Meiosis in polyploid plants, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 33-55 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1
– reference: Ownbey M: Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37: 487-499 (1950).10.2307/2438023
– reference: Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243-273 (1993).10.1080/07352689309701903
– reference: Garbutt K, Bazzaz FA: Leaf demography, flower production and biomass of diploid and tetraploid populations of Phlox drummondii Hook. on a soil moisture gradient. New Phytol 93:129-141 (1983).10.1111/j.1469-8137.1983.tb02698.x
– reference: Mable BK: Why polyploidy is rarer in animals than in plants: myths and mechanisms. Biol J Linn Soc 82:453-466 (2004).10.1111/j.1095-8312.2004.00332.x
– reference: Harvey PH, Pagel MD: The Comparative Method in Evolutionary Biology (Oxford Univ Press, Oxford 1991).10.1007/978-3-642-31442-1_13
– reference: Matyasek R, Tate JA, Lim YK, Srubarova H, Koh J, et al: Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176:2509-2519 (2007).1760311410.1534/genetics.107.072751
– reference: Rausch JH, Morgan MT: The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59:1867-1875 (2005).1626172510.1554/05-095.1
– reference: Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM: The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 66:211-228 (2012).2222087610.1111/j.1558-5646.2011.01424.x
– reference: McGrath CL, Lynch M: Evolutionary significance of whole-genome duplication, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 1-20 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_1
– reference: Hagerup O: Studies on polyploid ecotypes in Vaccinium uliginosum L. Hereditas 18:122-128 (1933).2163231410.3732/ajb.95.1.50
– reference: Vamosi JC, Dickinson TA: Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349-358 (2006).10.1086/499251
– reference: Paun O, Fay MF, Forest F, Chase MW: Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507-518 (2009).1922076110.1111/j.1469-8137.2009.02767.x
– reference: Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, et al: Polyploidy in arctic plants. Biol J Linn Soc 82:521-536 (2004).10.1111/j.1095-8312.2004.00337.x
– reference: Hegarty MJ, Abbott RJ, Hiscock SJ: Allopolyploid speciation in action: the origins and evolution of Senecio cambrensis, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 245-270 (Springer, Heidelberg 2012).
– reference: Martin SL, Husband BC: Influence of phylogeny and ploidy on species ranges of North American angiosperms. J Ecol 97:913-922 (2009).10.1111/j.1365-2745.2009.01543.x
– reference: Baack EJ: To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. Heredity 94:538-546 (2005).1577023210.1038/sj.hdy.6800656
– reference: Levy AA, Feldman M: Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607-613 (2004).10.1111/j.1095-8312.2004.00346.x
– reference: Childs G, Maxon R, Kedes LC: Orphons: dispersed genetic elements derived from tandem repetitive genes of eukaryotes. Cell 23:651-663 (1981).678492910.1016/0092-8674(81)90428-1
– reference: Hovick SM, Peterson CJ, Carson WP: Predicting invasiveness and range size in wetland plants using biological traits: a multivariate experimental approach. J Ecol 100:1373-1382 (2012).2084636510.1186/1471-2229-10-204
– reference: Soltis DE, Buggs RJ, Barbazuk WB, Schnable PS, Soltis PS: On the origins of species: does evolution repeat itself in polyploid populations of independent origin? Cold Spring Harb Symp Quant Biol 74:215-223 (2009b).1968714010.1101/sqb.2009.74.007
– reference: Petit C, Thompson JD: Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol Ecol 13:45-66 (1999).10.1023/A:1006534130327
– reference: Stebbins GL: Polyploidy, hybridization, and the invasion of new habitats. Ann Miss Bot Gard 72:824-832 (1985).10.2307/2399224
– reference: Husband BC: Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc R Soc Lond B 267:217-223 (2000).10.1086/523367
– reference: DeBodt S, Maere S, van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591-597 (2005).1670144110.1016/j.tree.2005.07.008
– reference: Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T: Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193:797-805 (2012).2215079910.1111/j.1469-8137.2011.03988.x
– reference: Leitch AR, Leitch IJ: Genome plasticity and the diversity of polyploid plants. Science 320:481-483 (2008).1843677610.1126/science.1153585
– reference: Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, et al: Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291 (2010).2085828910.1186/1471-2148-10-291
– reference: DeWet JMJ: Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22:394-397 (1968).10.2307/2406537
– reference: Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, et al: Dispersed repetitive DNA has colonized new genomes since polyploid formation in cotton. Genome Res 8:479-492 (1998).9582192
– reference: Duchoslav M, Šafářová L, Krahulec F: Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719-735 (2010).2036376010.1093/aob/mcq035
– reference: Hagerup O: Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Hereditas 16:19-40 (1932).10.1111/j.1601-5223.1933.tb02604.x
– reference: Baack EJ: Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783-1788 (2004).2165232510.3732/ajb.91.11.1783
– reference: Wendel JF: Genome evolution in polyploids. Plant Mol Biol 42:225-249 (2000).1068813910.1023/A:1006392424384
– reference: Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, et al: Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366-1377 (2009).1953755610.1890/08-0420.1
– reference: Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135-141 (2005).1575299210.1016/j.pbi.2005.01.001
– reference: Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, et al: The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146-155 (2010).1565411610.1534/genetics.104.032839
– reference: Dubcovsky J, Dvorak J: Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367-1377 (1995).7498776
– reference: Gustafsson A: Polyploidy, life-form, and vegetative reproduction. Hereditas 34:1-22 (1948).10.1111/j.1601-5223.1932.tb02560.x
– reference: Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR: Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578-1583 (2000).1108010710.2307/2656733
– reference: Ehrendorfer F: Polyploidy and distribution, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 45-60 (Plenum Press, New York 1980).23306510.1007/978-1-4613-3069-1_3
– reference: Ma XF, Gustafson JP: Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236-249 (2005).1575358310.1159/000082406
– reference: Oswald BP, Nuismer SL: A unified model of autopolyploid establishment and evolution. Am Nat 178:687-700 (2011).2208986510.1086/662673
– reference: Maluszynska J, Hasterok R, Weiss H: rRNA genes: their distribution and activity in plants, in Maluszynska J (ed): Plant Cytogenetics, pp 75-95 (Silesian Univ Press, Katowice 1998).
– reference: Kennedy B, Sabara HA, Haydon D, Husband BC: Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398-408 (2006).835565010.1007/BF00277053
– reference: Baldwin SJ, Husband BC: Genome duplication and the evolution of conspecific pollen precedence. Proc R Soc Lond B 278:2011-2017 (2011).2112326310.1098/rspb.2010.2208
– reference: Baack EJ, Stanton ML: Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): niche differentiation and tetraploid establishment. Evolution 59:1936-1944 (2005).1626173110.1111/j.0014-3820.2005.tb01063.x
– reference: Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, et al: Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601-3611 (2012).2272330310.1093/molbev/mss168
– reference: Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, et al: Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557-571 (2011).1069041610.1146/annurev.genet.33.1.479
– reference: Webb CJ, Lloyd DG: The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zeal J Bot 24:163-178 (1986).10.1080/0028825X.1986.10409726
– reference: Renny-Byfield S, Kovarik A, Chester M, Nichols RA, Macas J, et al: Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 7:e36963 (2012).2260631710.1371/journal.pone.0036963
– reference: Marhold K, Kudoh H, Pak JH, Watanabe K, Španiel S, Lihová J: Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann Bot 105:249-264 (2010).2000797810.1093/aob/mcp282
– reference: Mlinarec J, Satovic Z, Malenica N, Ivancic-Bace I, Besendorfer V: Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann Bot 110:703-712 (2012).2271169410.1093/aob/mcs128
– reference: Pandit MK: Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543-552 (2006).
– reference: Abbott RJ, Lowe AJ: Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467-474 (2004).10.1111/j.1095-8312.2004.00333.x
– reference: Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, et al: Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843-2854 (2011).2151210510.1093/molbev/msr112
– reference: Parisod C, Besnard G: Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755-2767 (2007).1759444510.1111/j.1365-294X.2007.03315.x
– reference: Suda J, Herben T: Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proc Biol Sci 280:20122387 (2013).2319312910.1098/rspb.2012.2387
– reference: Pires JC, Zhao J, Schranz EM, Leon EJ, Quijada PA, et al: Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675-688 (2004b).10.1111/j.1095-8312.2004.00350.x
– reference: Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, et al: Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141-147 (2003).1261500810.1016/S0168-9525(03)00015-5
– reference: Stebbins GL: Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1-13 (1984).
– reference: Gaeta RT, Pires JC: Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18-28 (2010).2000231510.1111/j.1469-8137.2009.03089.x
– reference: Hanelt P: Polyploidie-Frequenz und geographische Verbreitung bei Höheren Pflanzen. Biol Rundschau 4:183-196 (1966).2320619810.1111/nph.12051
– reference: Kao RH: Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann Bot 101:145-152 (2008).1966525510.1016/j.tree.2009.04.010
– reference: Levin D: Minority cytotype exclusion in local plant populations. Taxon 24:35-43 (1975).10.2307/1218997
– reference: Weiss H, Maluszynska J: Chromosomal rearrangement in autotetraploid plants of Arabidopsisthaliana. Hereditas 133:255-261 (2000).1143397010.1111/j.1601-5223.2000.00255.x
– reference: Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424 (1994).1783690610.1126/science.264.5157.421
– reference: Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, et al: Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (N. tabacum). Mol Genet Genomics 278:1-15 (2007).1737532310.1007/s00438-007-0226-0
– reference: Xiong Z, Gaeta RT, Pires JC: Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassicanapus. Proc Natl Acad Sci USA 108:7908-7913 (2011).2151212910.1073/pnas.1014138108
– reference: Petit M, Guidat C, Daniel J, Denis E, Motoriol E, et al: Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135-147 (2010).2007409310.1111/j.1469-8137.2009.03140.x
– reference: Ni Z, Kim ED, Ha M, Lackey E, Liu J, et al: Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327-331 (2009).1902988110.1038/nature07523
– reference: Birchler JA, Veitia RA: Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA 109:14746-14753 (2012).2290829710.1073/pnas.1207726109
– reference: Ainouche M, Chelaifa H, Ferreira J, Bellot S, Ainouche A, Salmon A: Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 225-244 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_12
– reference: Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garrido-Ramos MA: Loss of nucleolar-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71:574-580 (1993).10.1038/hdy.1993.181
– reference: Maherali H, Walden AE, Husband BC: Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721-731 (2009).1970311510.1111/j.1469-8137.2009.02997.x
– reference: Tremetsberger K, König C, Samuel R, Pinsker W, Stuessy TF: Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton's hypothesis. Plant Syst Evol 233:163-181 (2002).10.1007/s00606-002-0189-x
– reference: Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC: Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403-3417 (2007).1802456810.1105/tpc.107.054346
– reference: Bansal P, Banga S, Banga SS: Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 7:e29607 (2012).2236340410.1371/journal.pone.0029607
– reference: Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al: Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100 (2011).1799365310.1093/aob/mcm271
– reference: Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836-846 (2005).1630459910.1038/nrg1711
– reference: Crow KD, Wagner GP: What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887-892 (2006).1636877510.1093/molbev/msj083
– reference: Baldwin SJ, Husband BC: The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Mol Ecol 22:1806-1819 (2013).2343209410.1111/mec.12217
– reference: Cronn RC, Zhao XP, Paterson AH, Wendel JF: Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685-705 (1996).866201410.1007/BF02338802
– reference: Martin SL, Husband BC: Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS One 7:e44784 (2012).2302862010.1371/journal.pone.0044784
– reference: Lowry E, Lester SE: The biogeography of plant reproduction: potential determinants of species' range sizes. J Biogeo 33:1975-1982 (2006).10.1111/j.1365-2699.2006.01562.x
– reference: Meyers LA, Levin DA: On the abundance of polyploids in flowering plants. Evolution 60:1198-1206 (2006).1689297010.1554/05-629.1
– reference: Zimmer EA, Wen J: Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65:774-785 (2012).2284209310.1016/j.ympev.2012.07.015
– reference: Felber-Girard M, Felber F, Buttler A: Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531-540 (1996).10.1111/j.1469-8137.1996.tb01921.x
– reference: McArthur ED, Sanderson SC: Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754-1775 (1999).1060276810.2307/2656673
– reference: Halverson K, Heard SB, Nason JD, Stireman JO 3rd: Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50-58 (2008).
– reference: Fowler NL, Levin DA: Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Nat 124:701-711 (1984).
– reference: Fulnecek J, Lim KY, Leitch AR, Kovarík A, Matyásek R: Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19-25 (2002).1181310210.1038/sj.hdy.6800001
– reference: Glennon KL, Rissler LJ, Church SA: Ecogeographic isolation: a reproductive barrier between species and between cytotypes in Houstonia (Rubiaceae). Evol Ecol 26:909-926 (2012).10.1007/s10682-011-9539-x
– reference: Hao GY, Lucero ME, Sanderson SC, Zacharias EH, Holbrook NM: Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol 197:970-978 (2013).10.1038/373512a0
– reference: Gaston KJ: The multiple forms of the interspecific abundance-distribution relationship. Oikos 76:211-220 (1996).1703237510.1111/j.1365-2656.2006.01167.x
– reference: Stebbins GL: Variation and Evolution in Plants (Columbia Univ Press, New York 1950).
– reference: Hülber K, Berger A, Gilli C, Hofbauer M, Patek M, Schneeweiss GM: No evidence for a role of competitive capabilities of adults in causing habitat segregation of diploid and hexaploid Senecio carniolicus (Asteracaeae). Alp Bot 121:123-127 (2011).1071487510.1098/rspb.2000.0990
– reference: Kihara H, Ono T: Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr Zellf Mikrosk Anat 4:475-481 (1926).1871112910.1073/pnas.0805141105
– reference: Schlaepfer DR, Edwards P, Billeter R: Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163:661-673 (2010).2023812810.1007/s00442-010-1595-3
– reference: Weiss-Schneeweiss H, Schneeweiss GM: Karyotype diversity and evolutionary trends in angiosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 209-230 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_13
– reference: Harder LD, Barrett SCH: Mating cost of large floral displays in hermaphrodite plants. Nature 373:512-515 (1995).
– reference: Levin D: The Role of Chromosomal Change in Plant Evolution (Oxford Univ Press, Oxford 2002).
– reference: Lim KY, Matyasek R, Kovarik A, Leitch AR: Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot 100:219-224 (2007b).1759161010.1093/aob/mcm116
– reference: Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A: Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291-303 (2005).1576037110.1111/j.1469-8137.2004.01297.x
– reference: Kovarik A, Renny-Byfield S, Grandbastien MA, Leitch A: Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L., in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 209-224 (Springer, Heidelberg 2012).2178594210.1007/s00412-011-0331-z
– reference: Chester M, Leitch AR, Soltis PS, Soltis DE: Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1:166-192 (2010).10.3390/genes1020166
– reference: Flégrová M, Krahulec F: Anthoxanthum odoratum and A. alpinum: life history parameters at two different altitudes. Folia Geobot 34:19-31 (1999).10.1007/BF02803074
– reference: Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, et al: Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13-30 (2007).
– reference: Doyle JJ: Polyploidy in legumes, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 147-180 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_9
– reference: Dynesius M, Jansson R: Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115-9120 (2000).1092206710.1073/pnas.97.16.9115
– reference: Fawcett JA, van de Peer Y, Maere S: Significance and biological consequences of polyploidization in land plant evolution, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 277-293 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_17
– reference: Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, et al: Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022-1035 (2004a).2165345810.3732/ajb.91.7.1022
– reference: Köhler C, Mittelsten Scheid O, Erilova A: The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142-148 (2010).2184844610.1139/G11-035
– reference: Laport RG, Minckley RL, Ramsey J: Phylogeny and cytogeography of the North American creosote bush (Larrea tridentata, Zygophyllaceae). Syst Bot 37:153-164 (2012).2002847310.1111/j.1469-8137.2009.03117.x
– reference: Arrigo N, Barker MS: Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140-146 (2012).2248043010.1016/j.pbi.2012.03.010
– reference: Llyod DG, Webb CJ: The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zeal J Bot 24:135-162 (1986).10.1080/0028825X.1986.10409725
– reference: Heslop-Harrison JS, Schwarzacher T: Organization of the plant genome in chromosomes. Plant J 66:18-33 (2011).1686695610.1111/j.1469-8137.2006.01769.x
– reference: Madlung A: Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99-104 (2013).2314945910.1038/hdy.2012.79
– reference: Macas J, Kejnovský E, Neumann P, Novak P, Koblížková A, Vyskot B: Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant Silene latifolia. PLoS One 6:e27335 (2011).2209655210.1371/journal.pone.0027335
– reference: Stelkens R, Seehausen O: Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63:884-897 (2009).1922045010.1111/j.1558-5646.2008.00599.x
– reference: Maceira NO, Jacquard P, Lumaret R: Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol 124:321-328 (1993).10.1111/j.1469-8137.1993.tb03822.x
– reference: Müntzing A: The evolutionary significance of autopolyploidy. Hereditas 21:263-378 (1936).10.1111/j.1601-5223.1936.tb03204.x
– reference: Kim ST, Sultan SE, Donoghue MJ: Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc Natl Acad Sci USA 105:12370-12375 (2008).2008932610.1016/j.tig.2009.12.006
– reference: Stebbins GL: Chromosomal Evolution in Higher Plants (Edward Arnold, London 1971).
– reference: Kenton A, Parokonny AS, Gleba YY, Bennett MD: Characterization of the Nicotianatabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159-169 (1993).
– reference: Brassac J, Jakob SS, Blattner FR: Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS One 7:e33808 (2012).2247944710.1371/journal.pone.0033808
– reference: Lim KY, Kovarik A, Matyasek R, Bezdĕk M, Lichtenstein CP, Leitch AR: Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161-172 (2000a).1092919410.1007/s004120050424
– reference: Baumel A, Ainouche M, Kalendar R, Schulman AH: Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218-1227 (2002).12140233
– reference: Darlington CD: Recent Advances in Cytology, ed 2 (P. Blakiston's Son and Co., Philadelphia 1937).
– reference: Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, et al: Recently formed polyploid plants diversify at lower rates. Science 333:1257 (2011).2185245610.1126/science.1207205
– reference: Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park JM, et al: Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669-682 (2007).1744792110.1111/j.1469-8137.2007.02019.x
– reference: Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H: Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439-448 (2004).2165340010.3732/ajb.91.3.439
– reference: Kejnovsky E, Leitch IJ, Leitch AR: Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572-582 (2009).1702438710.1007/s00442-006-0536-7
– reference: Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, et al: Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756-763 (2007a).1768859010.1111/j.1469-8137.2007.02121.x
– reference: Barker MS: Karyotype and genome evolution in pteridophytes, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 245-253 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_15
– reference: Soltis DE, Buggs RJA, Barbazuk WB, Chamala S, Chester M, et al: The early stages of polyploidy: rapid and repeated evolution in Tragopogon, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 271-292 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_14
– reference: Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, et al: Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931-944 (2005).
– reference: Parisod C, Alix C, Just J, Petit M, Sarilar V, et al: Impact of transposable elements in organization and functioning of allopolyploid genomes. New Phytol 186:37-45 (2010a).2000232110.1111/j.1469-8137.2009.03096.x
– reference: Ramsey J: Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143-150 (2007).1709112710.1038/sj.hdy.6800912
– reference: Ramsey J: Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096-7101 (2011).2140290410.1073/pnas.1016631108
– reference: Pyšek P, Jarosik V, Pergl J, Randall R, Chytry M, et al: The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15:891-903 (2009).10.1111/j.1472-4642.2009.00602.x
– reference: Egan AN, Schlueter J, Spooner DM: Applications of next-generation sequencing in plant biology. Am J Bot 99:175-185 (2012).2231211610.3732/ajb.1200020
– reference: Fawcett JA, Maere S, van de Peer Y: Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737-5742 (2009).1932513110.1073/pnas.0900906106
– reference: Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al: Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309-319 (2009).10.1007/s00035-011-0091-7
– reference: Jang TS, Emadzade K, Temsch E, Macas J, Leitch A, et al: Karyotype analysis of diploid and polyploidy species of the Prospero (Hyacinthaceae). Abstracts 43rd Symp of The Korean Society of Plant Taxonomists, Seoul, p 40 (2011).1847010510.1139/g94-087
– reference: Segraves KA, Thompson JN: Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114-1127 (1999).10.2307/2640816
– reference: Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al: Polyploidy and angiosperm diversification. Am J Bot 96:336-348 (2009a).2162819210.3732/ajb.0800079
– reference: Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, et al: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353 (2008).1884337210.1371/journal.pone.0003353
– reference: Le Comber SC, Ainouche ML, Kovarik A, Leitch AR: Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:113-122 (2010).
– reference: Liu SY, Chen SM, Chen Y, Guan ZY, Yin DM, Chen FD: In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Sci Horticult 127:411-419 (2011).10.1016/j.scienta.2010.10.012
– reference: Bennetzen JL: Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29-36 (2002).1218804610.1023/A:1016015913350
– reference: Vamosi JC, Goring SJ, Kennedy BF, Mayberry RJ, Moray CM, et al: Pollination, floral display, and the ecological correlates of polyploidy. Funct Ecosyst Commun 1:1-9 (2007).
– reference: Tischler T: Die Halligenflora der Nordsee im Lichte cytologischer Forschung. Cytologia 8:162-170 (1937).
– reference: Oates KM, Ranney TG, Touchell DH: Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. HortScience 47:1217-1221 (2012).
– reference: Cavalier-Smith T: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247-278 (1978).372199
– reference: Sonnleitner M, Flatscher R, Escobar García P, Rauchová J, Suda J, et al: Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot 106:967-977 (2010).2088093010.1093/aob/mcq192
– reference: Mandakova T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA: Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277-2290 (2010).2063944510.1105/tpc.110.074526
– reference: Bretagnolle F, Lumaret R: Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica 84:197-207 (1995).10.1007/BF01681812
– reference: Liu B, Wendel JF: Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365-379 (2003).1461518010.1016/S1055-7903(03)00213-6
– reference: Parisod C, Holderegger R, Brochmann C: Evolutionary consequences of autopolyploidy. New Phytol 186:5-17 (2010b).2007054010.1111/j.1469-8137.2009.03142.x
– reference: Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, et al: Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 54:710-717 (2011).2279220710.1371/journal.pone.0039988
– reference: Goldblatt P: Polyploidy in angiosperms: monocotyledons, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 219-239 (Plenum Press, New York 1980).10.1007/978-1-4613-3069-1_13
– reference: Rodriguez DJ: A model for the establishment of polyploidy in plants. Am Nat 147:33-46 (1996).
– reference: Macas J, Neumann P, Navrátilová A: Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427 (2007).1803157110.1186/1471-2164-8-427
– reference: Pandit MK, Pocock MJO, Kunin WE: Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108-1115 (2011).10.1111/j.1365-2745.2011.01838.x
– reference: Vaughan HE, Taylor S, Parker JS: The ten cytological races of the Scilla autumnalis species complex. Heredity 79:371-379 (1997).10.1038/hdy.1997.170
– reference: Church SA, Spaulding EJ: Gene expression in a wild autopolyploid sunflower series. J Hered 100:491-495 (2009).1932163110.1093/jhered/esp008
– reference: Buggs RJ, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, et al: Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99:372-382 (2012).2226822010.3732/ajb.1100395
– reference: Wicker T, Taudien S, Houben A, Keller B, Graner A, et al: A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712-722 (2009).194534410.1111/j.1365-313X.2009.03911.x
– reference: Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR: Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241-252 (2005).1615933710.1111/j.1469-8137.2005.01480.x
– reference: Schubert I, Lysak MA: Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207-216 (2011).2159260910.1016/j.tig.2011.03.004
– reference: Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH: The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875-13879 (2009).1966721010.1073/pnas.0811575106
– reference: Chapman MA, Burke JM: Genetic divergence and hybrid speciation. Evolution 61:1773-1780 (2007).1759875510.1111/j.1558-5646.2007.00134.x
– reference: Rebernig CA, Weiss-Schneeweiss H, Blöch C, Turner B, Stuessy TF, et al: The evolutionary history of the white-rayed species of Melampodium (Asteraceae) involved multiple cycles of hybridization and polyploidization. Am J Bot 99:1043-1057 (2012).2264509610.3732/ajb.1100539
– reference: Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, et al: Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86-101 (2010).2014911610.1111/j.1469-8137.2010.03186.x
– reference: Moscone EA, Matzke MA, Matzke AJ: The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231-236 (1996).885488210.1007/s004120050179
– reference: Paun O, Forest F, Fay MF, Chase MW: Parental divergence and hybrid speciation in angiosperms revisited. Taxon 60:1241-1244 (2011).23526840
– reference: Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I: Mechanisms of chromosome number reduction in Arabidopsisthaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224-5229 (2006).1654978510.1073/pnas.0510791103
– reference: Parisod C, Mihri C, Clarkson J, Lim KY, Chase MW, et al: Differential impact of transposable elements on long-term genome diploidization in the allopolyploid Nicotiana section Repandae. PLoS One 7:e50352 (2012).2318560710.1371/journal.pone.0050352
– reference: Matyasek R, Lim KY, Kovarik A, Leitch AR: Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91:268-275 (2003).1293962810.1038/sj.hdy.6800333
– reference: Bretagnolle F, Thompson JD, Lumaret R: The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata. Ann Bot 76:607-615 (1995).10.1006/anbo.1995.1138
– reference: Pagel M: Inferring the historical patterns of biological evolution. Nature 401:877-884 (1999).1055390410.1038/44766
– reference: Sobel JM, Chen GF, Watt LR, Schemske DW: The biology of speciation. Evolution 64:295-315 (2010).1989162810.1111/j.1558-5646.2009.00877.x
– reference: Suda J, Kron P, Husband BC, Trávníček P: Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology, in Doležel J, Greilhuber J, Suda J (eds): Flow Cytometry with Plant Cells. Analysis of Genes, Chromosomes and Genomes, pp 103-130 (Wiley-VCH, Weinheim 2007).10.1002/9783527610921.ch5
– reference: McIntyre P: Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am J Bot 99:655-662 (2012b).2243477310.3732/ajb.1100466
– reference: te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, et al: The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19-45 (2012).2204074410.1093/aob/mcr277
– reference: Bennett MD, Leitch IJ: Genome size evolution in plants, in Gregory TR (ed): The Evolution of the Genome, pp 89-162 (Elsevier Academic Press, Amsterdam 2005).
– reference: Leitch AR, Lim KY, Skalická K, Kovarik A: Nuclear cytoplasmic interaction hypothesis and the role of translocations in Nicotiana allopolyploids, in Cigna AAD, Yerevan M (eds): Radiation Risk Estimates in Normal and Emergency Situations: NATO Security through Science Series B: Physics and Biophysics (ARMENIA), pp 319-326 (Springer, Dordrecht 2006).
– reference: Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, et al: The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805-814 (2008).1822291010.1093/aob/mcm326
– reference: Miller M, Zhang CQ, Chen ZJ: Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2:505-513 (2012).2254004210.1534/g3.112.002162
– reference: Ainouche ML, Baumel A, Salmon A: Spartina anglica C.E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475-484 (2004).10.1111/j.1095-8312.2004.00334.x
– reference: Coate JE, Powell AF, Owens TG, Doyle JJ: Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae). Heredity 110:160-170 (2013).2314945710.1038/hdy.2012.77
– reference: Schönswetter P, Lachmayer M, Lettner C, Prehsler D, Rechnitzer S, et al: Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J Plant Res 120:721-725 (2007).1792229610.1007/s10265-007-0108-x
– reference: Murray BG: Karyotype variation and evolution in gymnosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 231-243 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_14
– reference: Lim KY, Matyásek R, Lichtenstein CP, Leitch AR: Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245-258 (2000b).1096825310.1007/s004120000074
– reference: Otto SP, Whitton J: Polyploid incidence and evolution. Annu Rev Genet 34:401-437 (2000).1109283310.1146/annurev.genet.34.1.401
– reference: Barringer BC: Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527-1533 (2007).2163651910.3732/ajb.94.9.1527
– reference: Hörandl E: The complex causality of geographical parthenogenesis. New Phytol 171:525-538 (2006).10.1111/j.1365-2745.2012.02013.x
– reference: Grant V: Plant Speciation, ed 2 (Columbia Univ Press, New York 1981).10.1111/j.1601-5223.1948.tb02824.x
– reference: Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 181-207 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_10
– reference: Ramsey J, Schemske DW: Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467-501 (1998).10.1146/annurev.ecolsys.29.1.467
– reference: Löve Á, Löve D: Polyploidy and altitude: Mt. Washington. Biol Zentralbl Suppl Vol:307-312 (1967).
– reference: Stebbins GL: Polyploidy: future prospects, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 495-520 (Plenum Press, New York 1980).10.1007/978-1-4613-3069-1
– reference: Kolář F, Fér T, Štech M, Trávníček P, Dušková E, et al: Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988 (2012).2006091610.1016/j.ympev.2010.01.003
– reference: Husband BC, Ozimec B, Martin SL, Pollock L: Mating consequences of polyploid evolution in flowering plants: current trends and insights from synthetic polyploids. Int J Plant Sci 169:195-206 (2008).
– reference: Seoighe C: Turning the clock back on ancient genome duplication. Curr Opin Genet Dev 13:636-643 (2003).1463832710.1016/j.gde.2003.10.005
– reference: Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E: Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:29-36 (2010).1991254610.1111/j.1469-8137.2009.03084.x
– reference: Soltis DE, Buggs RJA, Doyle JJ, Soltis PS: What we still don't know about polyploidy. Taxon 59:1387-1403 (2010).
– reference: Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J: Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169-179 (2012).2198019210.1093/aob/mcr256
– reference: Lysak MA, Schubert I: Mechanisms of chromosome rearrangements, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 137-147 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_9
– reference: Bretagnolle F, Thompson JD: Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1-22 (1995).10.1111/j.1469-8137.1995.tb03005.x
– reference: Feldman M, Levy AA: Genome evolution in allopolyploid wheat - a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511-518 (2009).1978295210.1016/S1673-8527(08)60142-3
– reference: Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33:479-532 (1999).10.1600/036364412X616738
– reference: Lim KY, Matyasek R, Kovarik A, Leitch A: Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599-606 (2004).10.1111/j.1095-8312.2004.00344.x
– reference: Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J: Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204 (2010).22318659
– reference: Reese G: Polyploidie und Verbreitung. Z Botanik 46:339-354 (1958).
– reference: Stebbins GL, Dawe JC: Polyploidy and distribution in the European flora: a reappraisal. Bot Jahrb Syst 108:343-354 (1987).
– reference: Burton TL, Husband BC: Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182-1191 (2000).1100528710.1111/j.0014-3820.2000.tb00553.x
– reference: McIntyre P: Cytogeography and genome size variation in the Claytonia perfoliata (Portulacaceae) polyploid complex. Ann Bot 110:1195-1203 (2012a).2296230210.1093/aob/mcs187
– reference: Schmidt T, Heslop-Harrison JS: Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195-199 (1998).10.1016/S1360-1385(98)01223-0
– reference: Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, et al: Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176-1181 (2012).2222830110.1073/pnas.1112041109
– ident: ref87
  doi: 10.2307/1218997
– ident: ref62
  doi: 10.1111/j.1469-8137.2006.01769.x
– ident: ref23
  doi: 10.1111/j.0014-3820.2000.tb00553.x
– ident: ref93
  doi: 10.1093/aob/mcm116
– ident: ref61
  doi: 10.1007/978-3-642-31442-1_13
– ident: ref29
  doi: 10.1093/jhered/esp008
– ident: ref69
  doi: 10.1038/nature09916
– ident: ref125
  doi: 10.1093/aob/mcs128
– ident: ref22
  doi: 10.3732/ajb.1100395
– ident: ref82
  doi: 10.1600/036364412X616738
– ident: ref164
  doi: 10.1016/j.gde.2003.10.005
– ident: ref100
  doi: 10.1073/pnas.0510791103
– ident: ref18
  doi: 10.1007/BF01681812
– ident: ref163
  doi: 10.2307/2640816
– ident: ref38
  doi: 10.1007/978-3-642-31442-1_9
– ident: ref57
  doi: 10.1111/j.1601-5223.1933.tb02604.x
– ident: ref55
  doi: 10.1111/j.1601-5223.1948.tb02824.x
– ident: ref193
  doi: 10.1073/pnas.0811575106
– ident: ref86
  doi: 10.1093/aob/mcm326
– ident: ref13
  doi: 10.1007/978-3-7091-1160-4_15
– ident: ref183
  doi: 10.1038/hdy.1993.181
– ident: ref59
  doi: 10.1111/nph.12051
– ident: ref67
  doi: 10.1086/523367
– ident: ref181
  doi: 10.1007/s00606-002-0189-x
– ident: ref7
  doi: 10.3732/ajb.91.11.1783
– ident: ref155
  doi: 10.3732/ajb.1100539
– ident: ref102
  doi: 10.1111/j.1095-8312.2004.00332.x
– ident: ref109
  doi: 10.1105/tpc.110.074526
– ident: ref191
  doi: 10.1007/978-3-642-31442-1_10
– ident: ref73
  doi: 10.1007/BF00277053
– ident: ref135
  doi: 10.1111/j.1365-2745.2011.01838.x
– ident: ref17
  doi: 10.1371/journal.pone.0033808
– ident: ref10
  doi: 10.1098/rspb.2010.2208
– ident: ref101
  doi: 10.1159/000082406
– ident: ref53
  doi: 10.1007/s10682-011-9539-x
– ident: ref1
  doi: 10.1111/j.1095-8312.2004.00333.x
– ident: ref194
  doi: 10.1093/aob/mcr256
– ident: ref32
  doi: 10.1038/hdy.2012.77
– ident: ref5
  doi: 10.1007/978-3-642-31442-1_12
– ident: ref54
  doi: 10.1007/978-1-4613-3069-1_13
– ident: ref91
  doi: 10.1111/j.1095-8312.2004.00344.x
– ident: ref52
  doi: 10.1111/j.1365-2656.2006.01167.x
– ident: ref150
  doi: 10.1038/sj.hdy.6800912
– ident: ref169
  doi: 10.1111/j.1095-8312.2004.00335.x
– ident: ref148
  doi: 10.1111/j.1472-4642.2009.00602.x
– ident: ref170
  doi: 10.3732/ajb.0800079
– ident: ref136
  doi: 10.1111/j.1365-294X.2007.03315.x
– ident: ref12
  doi: 10.1371/journal.pone.0029607
– ident: ref25
  doi: 10.1016/j.tplants.2009.12.003
– ident: ref2
  doi: 10.2307/2656733
– ident: ref186
  doi: 10.1111/j.1601-5223.2000.00255.x
– ident: ref35
  doi: 10.1093/molbev/msj083
– ident: ref39
  doi: 10.1093/aob/mcq035
– ident: ref114
  doi: 10.1126/science.264.5157.421
– ident: ref21
  doi: 10.1111/j.1095-8312.2004.00337.x
– ident: ref27
  doi: 10.1073/pnas.1112041109
– ident: ref105
  doi: 10.1111/j.1469-8137.1993.tb03822.x
– ident: ref110
  doi: 10.1111/j.1469-8137.2011.03988.x
– ident: ref79
  doi: 10.1534/genetics.104.032839
– ident: ref141
  doi: 10.1023/A:1006534130327
– ident: ref51
  doi: 10.1111/j.1469-8137.1983.tb02698.x
– ident: ref103
  doi: 10.1186/1471-2164-8-427
– ident: ref64
  doi: 10.1186/1471-2229-10-204
– ident: ref151
  doi: 10.1073/pnas.1016631108
– ident: ref3
  doi: 10.1016/j.pbi.2005.01.001
– ident: ref42
  doi: 10.1007/978-1-4613-3069-1_3
– ident: ref15
  doi: 10.1023/A:1016015913350
– ident: ref158
  doi: 10.1007/s00442-010-1595-3
– ident: ref75
  doi: 10.1016/j.tig.2009.12.006
– ident: ref190
  doi: 10.1023/A:1006392424384
– ident: ref174
  doi: 10.1007/978-1-4613-3069-1
– ident: ref107
  doi: 10.1111/j.1469-8137.2009.02997.x
– ident: ref126
  doi: 10.1007/s004120050179
– ident: ref45
  doi: 10.1111/j.1469-8137.1996.tb01921.x
– ident: ref76
  doi: 10.1139/G11-035
– ident: ref41
  doi: 10.3732/ajb.1200020
– ident: ref74
  doi: 10.1073/pnas.0805141105
– ident: ref161
  doi: 10.1007/s10265-007-0108-x
– ident: ref165
  doi: 10.1111/j.1469-8137.2004.01297.x
– ident: ref128
  doi: 10.1007/978-3-7091-1160-4_14
– ident: ref14
  doi: 10.3732/ajb.94.9.1527
– ident: ref71
  doi: 10.1016/j.tree.2009.04.010
– ident: ref166
  doi: 10.1111/j.1558-5646.2009.00877.x
– ident: ref153
  doi: 10.1146/annurev.ecolsys.33.010802.150437
– ident: ref24
  doi: 10.1111/j.1558-5646.2007.00134.x
– ident: ref149
  doi: 10.1007/s00442-008-1156-1
– ident: ref133
  doi: 10.2307/2438023
– ident: ref108
  doi: 10.1186/1471-2148-10-291
– ident: ref95
  doi: 10.1016/S1055-7903(03)00213-6
– ident: ref106
  doi: 10.1038/hdy.2012.79
– ident: ref68
  doi: 10.1139/g94-087
– ident: ref162
  doi: 10.1016/j.tig.2011.03.004
– ident: ref118
  doi: 10.2307/2656673
– ident: ref104
  doi: 10.1371/journal.pone.0027335
– ident: ref37
  doi: 10.2307/2406537
– ident: ref88
  doi: 10.1111/j.1095-8312.2004.00346.x
– ident: ref138
  doi: 10.1111/j.1469-8137.2009.03142.x
– ident: ref184
  doi: 10.1038/hdy.1997.170
– ident: ref50
  doi: 10.1105/tpc.107.054346
– ident: ref77
  doi: 10.1371/journal.pone.0039988
– ident: ref31
  doi: 10.1111/j.1469-8137.2005.01480.x
– ident: ref146
  doi: 10.1111/j.1095-8312.2004.00350.x
– ident: ref156
  doi: 10.1093/molbev/msr112
– ident: ref159
  doi: 10.1016/S1360-1385(98)01223-0
– ident: ref94
  doi: 10.1371/journal.pone.0003353
– ident: ref63
  doi: 10.1111/j.1365-2745.2012.02013.x
– ident: ref11
  doi: 10.1111/mec.12217
– ident: ref189
  doi: 10.1111/j.1558-5646.2011.01424.x
– ident: ref92
  doi: 10.1111/j.1469-8137.2007.02121.x
– ident: ref4
  doi: 10.1111/j.1095-8312.2004.00334.x
– ident: ref143
  doi: 10.1111/j.1469-8137.2009.03140.x
– ident: ref26
  doi: 10.3390/genes1020166
– ident: ref36
  doi: 10.1016/j.tree.2005.07.008
– ident: ref89
  doi: 10.1007/s004120050424
– ident: ref137
  doi: 10.1111/j.1469-8137.2009.03096.x
– ident: ref147
  doi: 10.1016/j.bbaexp.2007.02.005
– ident: ref115
  doi: 10.1038/sj.hdy.6800333
– ident: ref78
  doi: 10.1016/j.ympev.2010.01.003
– ident: ref33
  doi: 10.1038/nrg1711
– ident: ref132
  doi: 10.1146/annurev.genet.34.1.401
– ident: ref46
  doi: 10.1016/S1673-8527(08)60142-3
– ident: ref8
  doi: 10.1038/sj.hdy.6800656
– ident: ref176
  doi: 10.1111/j.1558-5646.2008.00599.x
– ident: ref142
  doi: 10.1007/s00438-007-0226-0
– ident: ref96
  doi: 10.1016/j.scienta.2010.10.012
– ident: ref131
  doi: 10.1086/662673
– ident: ref168
  doi: 10.1016/S0169-5347(99)01638-9
– ident: ref66
  doi: 10.1098/rspb.2000.0990
– ident: ref177
  doi: 10.1098/rspb.2012.2387
– ident: ref65
  doi: 10.1007/s00035-011-0091-7
– ident: ref144
  doi: 10.1093/molbev/mss168
– ident: ref187
  doi: 10.1007/978-3-7091-1160-4_13
– ident: ref167
  doi: 10.1080/07352689309701903
– ident: ref180
  doi: 10.1890/08-0420.1
– ident: ref130
  doi: 10.1016/S0168-9525(03)00015-5
– ident: ref140
  doi: 10.1111/j.1469-8137.2009.02767.x
– ident: ref60
  doi: 10.1038/373512a0
– ident: ref112
  doi: 10.1111/j.1365-2745.2009.01543.x
– ident: ref117
  doi: 10.1126/science.1207205
– ident: ref113
  doi: 10.1371/journal.pone.0044784
– ident: ref129
  doi: 10.1038/nature07523
– ident: ref179
  doi: 10.1093/aob/mcr277
– ident: ref175
  doi: 10.2307/2399224
– ident: ref139
  doi: 10.1371/journal.pone.0050352
– ident: ref192
  doi: 10.1111/j.1365-313X.2009.03911.x
– ident: ref99
  doi: 10.1007/978-3-7091-1160-4_9
– ident: ref124
  doi: 10.1534/g3.112.002162
– ident: ref123
  doi: 10.1554/05-629.1
– ident: ref9
  doi: 10.1111/j.0014-3820.2005.tb01063.x
– ident: ref58
  doi: 10.3732/ajb.95.1.50
– ident: ref48
  doi: 10.1038/sj.hdy.6800001
– ident: ref80
  doi: 10.1007/s00412-011-0331-z
– ident: ref20
  doi: 10.1006/anbo.1995.1138
– ident: ref19
  doi: 10.1111/j.1469-8137.1995.tb03005.x
– ident: ref173
  doi: 10.1093/aob/mcq192
– ident: ref154
  doi: 10.1554/05-095.1
– ident: ref111
  doi: 10.1093/aob/mcp282
– ident: ref185
  doi: 10.1080/0028825X.1986.10409726
– ident: ref119
  doi: 10.1007/978-3-642-31442-1_1
– ident: ref44
  doi: 10.1007/978-3-7091-1160-4_17
– ident: ref16
  doi: 10.1073/pnas.1207726109
– ident: ref188
  doi: 10.1111/j.1469-8137.2007.02019.x
– ident: ref97
  doi: 10.1080/0028825X.1986.10409725
– ident: ref178
  doi: 10.1002/9783527610921.ch5
– ident: ref145
  doi: 10.3732/ajb.91.7.1022
– ident: ref157
  doi: 10.1371/journal.pone.0036963
– ident: ref81
  doi: 10.1146/annurev.genet.33.1.479
– ident: ref43
  doi: 10.1073/pnas.0900906106
– ident: ref90
  doi: 10.1007/s004120000074
– ident: ref84
  doi: 10.1126/science.1153585
– ident: ref197
  doi: 10.1016/j.ympev.2012.07.015
– ident: ref47
  doi: 10.1007/BF02803074
– ident: ref34
  doi: 10.1007/BF02338802
– ident: ref40
  doi: 10.1073/pnas.97.16.9115
– ident: ref134
  doi: 10.1038/44766
– ident: ref85
  doi: 10.1111/j.1095-8312.2004.00349.x
– ident: ref98
  doi: 10.1111/j.1365-2699.2006.01562.x
– ident: ref28
  doi: 10.1016/0092-8674(81)90428-1
– ident: ref70
  doi: 10.1093/aob/mcm271
– ident: ref127
  doi: 10.1111/j.1601-5223.1936.tb03204.x
– ident: ref72
  doi: 10.1007/s00442-006-0536-7
– ident: ref30
  doi: 10.1111/j.1469-8137.2009.03084.x
– ident: ref121
  doi: 10.3732/ajb.1100466
– ident: ref116
  doi: 10.1534/genetics.107.072751
– ident: ref160
  doi: 10.3732/ajb.91.3.439
– ident: ref49
  doi: 10.1111/j.1469-8137.2009.03089.x
– ident: ref172
  doi: 10.1007/978-3-642-31442-1_14
– ident: ref196
  doi: 10.1007/978-3-642-31442-1
– ident: ref83
  doi: 10.1111/j.1469-8137.2009.03117.x
– ident: ref120
  doi: 10.1093/aob/mcs187
– ident: ref56
  doi: 10.1111/j.1601-5223.1932.tb02560.x
– ident: ref195
  doi: 10.1073/pnas.1014138108
– ident: ref6
  doi: 10.1016/j.pbi.2012.03.010
– ident: ref122
  doi: 10.1111/j.1469-8137.2010.03186.x
– ident: ref171
  doi: 10.1101/sqb.2009.74.007
– ident: ref152
  doi: 10.1146/annurev.ecolsys.29.1.467
– ident: ref182
  doi: 10.1086/499251
SSID ssj0018456
Score 2.4335058
SecondaryResourceType review_article
Snippet Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the...
SourceID pubmedcentral
proquest
pubmed
crossref
karger
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Chromosomes, Plant - genetics
Diploidy
DNA Transposable Elements
DNA, Plant - genetics
Ecosystem
Evolution, Molecular
Evolutionary Consequences, Constraints and Potential of Polyploidy
Genetic Loci
Genetic Variation
Genome, Plant
Phylogeny
Plants - classification
Plants - genetics
Polyploidy
Repetitive Sequences, Nucleic Acid
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELdYYRIvEzDYugHKpj3wgAV27Th-mlBVqBBD0zSkvkWOP0RFlYQ2TOp_P1_ihBYhHu27fPnOuTv7_DuEflATx1YSjYk3ZpgZqjGg3GCeOUeoIJrVp1x_3cbjO3Y94ZOw4LYIaZXtP7H-UZtCwxr5GQFkcQH27mf5iKFqFOyuhhIa79AmQJeBVotJF3D54IU3p4sowwlPSEAW8hb8rNlCE1BMZsUebT1A-vX8NW_zZdLkihW63EEfgvsYXTTy3kUbNt9D75uCksuP6Gb0L6iSmi-j4Uqm9GndqgtCVItI5Sb6XVSQKeTvVjjfmC3LWTE1y2iaR1DJqFrso7vL0d_hGId6CVhzklRYa-8-Maq8T5UpAYdmE-eU8C7fQGRGS2us4jI2RBFjmRKZjc-dj1GJzDTEeYMD1MuL3H5GkfB-CzOJcNxlTDiiNDVOaK6NYZY60kcn7ailOoCJwyfM0jqo4DLtBriPvnesZYOg8RrTfjP0HUvbf_iif3j1pyGlpXGe3AoqDXNvkT5rSh9968h-1sBWiMpt8QQ8JI4lTyTto0-NXLsn0IGQMRf-arEm8Y4BELnXKfn0vkbmHiRc-oD2y9uv9RVt07qoBizkHKJeNX-yR961qbLjWn__A_WN9xA
  priority: 102
  providerName: ProQuest
Title Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants
URI https://karger.com/doi/10.1159/000351727
https://www.ncbi.nlm.nih.gov/pubmed/23796571
https://www.proquest.com/docview/1426377431
https://www.proquest.com/docview/1416695892
https://pubmed.ncbi.nlm.nih.gov/PMC3859924
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3daxQxEB9sq-CL-FF1tR6r-OCDQZPNx-ZRj6tFbCnFwr0t2XzQw2P36G2F--_NbPaWXqmPyQzZTTJhZpKZ3wB8ZE5Kr6klNCozwh2zBFFuiKhDoExRy_ss19MzeXLJf87FfLjvwFyYPxj_3EOjjtgCUeF-SS9eUdfuwUH0owoM3jslZHwvKLlIeUSMk1KUFLM4CgQ3Qzi7hLMztosBYGhnXAQFLpSWQtEdDfUw_dB99ufdMMpbeun4KTwZDMr8W5KAZ_DAN8_hUSoxuXkBv2Z_B-Ey15t8eit2-nPf6ktEdOvcNC4_bzuMHYqjtSE2lpvVsl24Tb5ocqxt1K0P4fJ49nt6QoYKCsQKWnbE2mhQcWailVUbhWm0ZQhGRSOwULWz2jtvhJaOGuo8N6r28muIXivVtUXPr3gJ-03b-NeQq2jJcFeqIELNVaDGMheUFdY57lmgGXzarlplB3hxnMKy6t0MoatxrTP4MLKuEqbGfUyHaelHlm3_0Z3-6Y-LRKpWLkTydqOq4TSuo3vDZKHQVsrg_UiO5wgfR0zj2xvkoVJqUWqWwau0r-MXtpKRgdrZ8ZEBMbp3Kc3iqsfqLkqho4v75j-zeQuPWV9fA-90jmC_u77x76KV09UT2FNzNYGD77Oz84tJL-7_ACHg8vw
linkProvider Karger AG
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQKCC4VjwLbFggIJA6NWnvjODkghJaWLd1WCLXS3oLjh7rqKtnupqD8FN_ITF5sq4pbj_FMHGdmbM_Y8wB4x00Y2phpn-Fm5geGa5-y3PgidY5xyXRQRbkeHYfD0-DbWIxX4E8bC0Nule2aWC3UJtd0Rr7DKLO4pP3u0-zCp6pRdLvaltCoxeLQlr_RZFt8PPiC_H3P-f7eyWDoN1UFfC1YVPhao5IRcIWaR6okhZZGzimJilFfpkbH1lgl4tAwxYwNlExtuOvQkmNxqska6mO_d-AuDmSXjD057gw8NJZEHc3EAz8SEWsyGaHGsFNf2UkqXrO0_907J3fv-U3a7XUnzaVdb_8RrDXqqve5lq_HsGKzJ3C_LmBZPoXR3q9GdNW89AZLntnb1VNVgKJYeCoz3ve8IM8k7C13-DAtZ9N8YkpvknlUOalYrMPprVDyGaxmeWZfgCdRTwpMJJ1waSAdU5obJ7XQxgSWO9aDDy3VEt0kL6dfmCaVESPipCNwD952qLM6Y8dNSOs16TuUtn3rWvvg648alMyMQ3DLqKSZ64vkn2T24E0HxllKVy8qs_kl4bAwjEUU8x48r_nafYH3ZRwKiW_LKxzvECgD-FVINjmrMoH3IxGjAb3x_2G9hgfDk6NRMjo4PtyEh7wq6EGHSFuwWswv7UtUq4r0VSXLHvy87cnzF9LzNBI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiZeJj4GFAYEBBIPi4pdO04eJgRdy8ZGVU1M2ltw_KFVVElpM1D-tf118-WLbpp426Pti5Ocz_bvfOc7gHdUB4GJiPKJ28x8pqnyMcqNzxNrCRVEsfKW6_dxsH_Cvp3y0zW4aO7CoFtlsyaWC7XOFJ6R9whGFhe43_Vs7RYx2Rt9mv_2MYMUWlqbdBqViBya4q9T35a7B3turN9TOhr-GOz7dYYBX3ES5r5SDnAwKh0KSaTAa6ahtVI4kNQXiVaR0UbyKNBEEm2YFIkJPlqn1ZEoUagZ9V2_d2BdoFbUgfUvw_HkuLVhhIxXd5so80MekjqukcMPvcqAJzCVzcpuePcXOn8vbsK61102V_bA0QPYrMGr97mStoewZtJHcK9KZ1k8hqPhn1qQ5aLwBit-2jtlqUxHkS89mWpvkuXop-R6y6wrzIr5LJvqwpumHuZRypdbcHIrvHwCnTRLzTPwhENNTIfCcpswYYlUVFuhuNKaGWpJFz40XItVHcocf2EWlyoNj-KWwV1425LOq_gdNxFtVaxvSZr67Wv1g6_HVVM819Y1NwMV1zN_Gf-T0y68aZvdnEVDjExNdo40JAgiHka0C0-rcW3fQPsiCrhwT4srI94SYDzwqy3p9KyMC94PeeTU6ef__6zXsOEmTnx0MD58Afdpmd0DT5S2oZMvzs1Lh7Hy5FUtzB78vO35cwlhLzmt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Consequences%2C+Constraints+and+Potential+of+Polyploidy+in+Plants&rft.jtitle=Cytogenetic+and+genome+research&rft.au=Weiss-Schneeweiss%2C+H.&rft.au=Emadzade%2C+K.&rft.au=Jang%2C+T.-S.&rft.au=Schneeweiss%2C+G.M.&rft.date=2013-01-01&rft.isbn=9783318024753&rft.issn=1424-8581&rft.eissn=1424-859X&rft.volume=140&rft.issue=2-4&rft.spage=137&rft.epage=150&rft_id=info:doi/10.1159%2F000351727&rft_id=info%3Apmid%2F23796571&rft.externalDocID=351727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8581&client=summon