Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In...
Saved in:
Published in | Cytogenetic and genome research Vol. 140; no. 2-4; pp. 137 - 150 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. |
---|---|
AbstractList | Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue. Copyright © 2013 S. Karger AG, Basel [PUBLICATION ABSTRACT] |
Author | Jang, T.-S. Schneeweiss, G.M. Weiss-Schneeweiss, H. Emadzade, K. |
Author_xml | – sequence: 1 givenname: H. surname: Weiss-Schneeweiss fullname: Weiss-Schneeweiss, H. email: hanna.schneeweiss@univie.ac.at – sequence: 2 givenname: K. surname: Emadzade fullname: Emadzade, K. – sequence: 3 givenname: T.-S. surname: Jang fullname: Jang, T.-S. – sequence: 4 givenname: G.M. surname: Schneeweiss fullname: Schneeweiss, G.M. email: hanna.schneeweiss@univie.ac.at |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23796571$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd1rFDEUxaNW7Id98F1kwBcF1-bmY5K8CLLUKixYRMG3kMlkamo2WZOZwv73Zt3tYkufwuX-7uGck2N0EFN0CL0A_B6AqzOMMeUgiHiETpWQlILEhIkWP0ZHwAibSa5-Prmz4_Rgv5NwiI5LucYYJOPtM3RIqFAtF3CEFuc3KUyjT9HkdTNPsbg_k4vWlXf_pjEbH8fSmNg3l2l0cfQmNGmoQ1ivQvL9uvGxuQymUs_R08GE4k537wn68en8-_zzbPH14sv842JmOchxZq3k1ZqhnHRGYEmUHAYjgGMqut4q1zvDVduDgd4xIzrX4gFqMtVZybCiJ-jDVnc1dUvX2-oqm6BX2S9rCp2M13c30f_SV-lG01qUIqwKvNkJ5FTjllEvfbEu1BQuTUUDg7ZVXCpS0df30Os05VjjVYq0VAhGoVKv_ne0t3JbdAXOtoDNqZTsBm39aDa9bxoOGrDefLXef3W9eHvv4lb0IXZn8rfJVy7vyfnFty2hV_1QqZcPUjuRv_c8uEY |
CitedBy_id | crossref_primary_10_1186_s12870_019_1696_z crossref_primary_10_1007_s10682_019_10021_4 crossref_primary_10_3389_fgene_2019_00208 crossref_primary_10_1016_j_ppees_2023_125730 crossref_primary_10_1093_aob_mcv176 crossref_primary_10_1111_tpj_14869 crossref_primary_10_1093_aob_mcx079 crossref_primary_10_1159_000441677 crossref_primary_10_3390_ijms231911033 crossref_primary_10_3897_phytokeys_203_83529 crossref_primary_10_3389_fpls_2020_591137 crossref_primary_10_1007_s10709_021_00115_9 crossref_primary_10_1111_boj_12452 crossref_primary_10_1016_j_ympev_2023_107940 crossref_primary_10_3390_ijpb15020023 crossref_primary_10_1016_j_pbiomolbio_2021_03_005 crossref_primary_10_1093_aob_mcab123 crossref_primary_10_1007_s13258_015_0279_0 crossref_primary_10_3732_ajb_1400005 crossref_primary_10_3897_compcytogen_v16_i1_79056 crossref_primary_10_1093_aob_mcx009 crossref_primary_10_1002_jemt_24772 crossref_primary_10_1007_s00606_017_1392_0 crossref_primary_10_1016_j_baae_2016_06_004 crossref_primary_10_1016_j_pld_2024_12_006 crossref_primary_10_1016_j_ppees_2025_125861 crossref_primary_10_1016_j_scienta_2021_110012 crossref_primary_10_1098_rspb_2023_0389 crossref_primary_10_1002_ajb2_16334 crossref_primary_10_1111_pce_13745 crossref_primary_10_3390_f10121059 crossref_primary_10_1007_s12080_024_00579_3 crossref_primary_10_3389_fpls_2018_00433 crossref_primary_10_1093_botlinnean_box039 crossref_primary_10_1007_s10722_022_01511_6 crossref_primary_10_1371_journal_pgen_1007949 crossref_primary_10_1016_j_tibtech_2015_06_004 crossref_primary_10_1111_nph_13778 crossref_primary_10_1111_nph_16406 crossref_primary_10_3109_10408363_2015_1012191 crossref_primary_10_1093_sysbio_syv035 crossref_primary_10_11110_kjpt_2018_48_4_260 crossref_primary_10_1002_ppp3_10297 crossref_primary_10_3390_plants11050693 crossref_primary_10_1134_S1022795420120091 crossref_primary_10_1111_nph_15784 crossref_primary_10_1093_sysbio_syy024 crossref_primary_10_3389_fpls_2022_873471 crossref_primary_10_1111_jbi_13204 crossref_primary_10_1016_j_ppees_2024_125825 crossref_primary_10_1007_s00035_019_00219_1 crossref_primary_10_1080_07929978_2017_1288406 crossref_primary_10_1007_s00035_015_0159_x crossref_primary_10_1016_j_indcrop_2020_113073 crossref_primary_10_1086_694763 crossref_primary_10_1111_nph_15426 crossref_primary_10_1186_s12862_017_0878_2 crossref_primary_10_3389_fpls_2016_00892 crossref_primary_10_5735_085_056_0111 crossref_primary_10_4161_15592324_2014_992744 crossref_primary_10_1007_s00606_019_01621_2 crossref_primary_10_1371_journal_pone_0218389 crossref_primary_10_1016_j_ppees_2019_125502 crossref_primary_10_1186_s12862_016_0773_2 crossref_primary_10_1093_jxb_erz325 crossref_primary_10_1007_s00035_021_00254_x crossref_primary_10_3732_ajb_1400149 crossref_primary_10_1080_14772000_2022_2036854 crossref_primary_10_4025_actasciagron_v44i1_55711 crossref_primary_10_1007_s40011_015_0523_z crossref_primary_10_1093_aob_mcw217 crossref_primary_10_1002_ece3_10231 crossref_primary_10_1098_rspb_2020_2154 crossref_primary_10_1508_cytologia_89_197 crossref_primary_10_1002_ajb2_16077 crossref_primary_10_1139_cjb_2014_0223 crossref_primary_10_1002_ajb2_1370 crossref_primary_10_1007_s11033_020_05597_y crossref_primary_10_1093_aob_mcy071 crossref_primary_10_7124_FEEO_v25_1133 crossref_primary_10_3390_su141811405 crossref_primary_10_1002_tax_13326 crossref_primary_10_1016_j_tplants_2014_01_013 crossref_primary_10_1002_aps3_1207 crossref_primary_10_3390_biology12030380 crossref_primary_10_1007_s00035_018_0209_2 crossref_primary_10_1016_j_fgb_2015_02_009 crossref_primary_10_3732_ajb_1500506 crossref_primary_10_1002_ajb2_16305 crossref_primary_10_1038_s41598_022_20194_8 crossref_primary_10_1111_mec_13538 crossref_primary_10_1002_ajb2_1159 crossref_primary_10_1093_gbe_evaa236 crossref_primary_10_1002_ajb2_1431 crossref_primary_10_1093_botlinnean_box100 crossref_primary_10_1186_s13578_021_00528_1 crossref_primary_10_1093_aob_mcw187 crossref_primary_10_1111_jse_12816 crossref_primary_10_1007_s10531_024_02976_w crossref_primary_10_3389_fgene_2018_00027 crossref_primary_10_1093_aob_mcx032 crossref_primary_10_3389_fmicb_2014_00274 crossref_primary_10_1007_s00300_016_1890_5 crossref_primary_10_1080_14772000_2019_1572035 crossref_primary_10_1093_jpe_rtw039 crossref_primary_10_1371_journal_pone_0162299 crossref_primary_10_1111_tpj_16850 crossref_primary_10_1080_14772000_2018_1546777 crossref_primary_10_1007_s00606_019_01581_7 crossref_primary_10_1111_1755_0998_12641 crossref_primary_10_1016_j_ejbt_2015_07_003 crossref_primary_10_3390_plants11111481 crossref_primary_10_3390_agriculture12020214 crossref_primary_10_3389_fpls_2022_788911 crossref_primary_10_1016_j_ympev_2018_08_016 crossref_primary_10_1111_boj_12306 crossref_primary_10_1016_j_ympev_2024_108160 crossref_primary_10_1159_000361002 crossref_primary_10_3897_CompCytogen_v10i1_6719 crossref_primary_10_1111_nph_15999 crossref_primary_10_3389_fpls_2022_908218 crossref_primary_10_1007_s00468_019_01818_5 crossref_primary_10_1007_s10681_017_2026_x crossref_primary_10_1016_j_tig_2014_09_011 crossref_primary_10_1111_jse_12751 crossref_primary_10_1139_gen_2018_0044 crossref_primary_10_1186_s12862_015_0425_y crossref_primary_10_1111_nph_18579 crossref_primary_10_1111_bij_12479 crossref_primary_10_2478_sg_2021_0003 crossref_primary_10_3390_life12081236 crossref_primary_10_1111_aec_13502 crossref_primary_10_2135_cropsci2015_04_0249 crossref_primary_10_3390_plants12061356 crossref_primary_10_1186_s12870_024_05732_y crossref_primary_10_1016_j_ympev_2023_107805 crossref_primary_10_1080_23766808_2020_1844992 crossref_primary_10_1111_nph_12873 crossref_primary_10_1186_s12870_023_04456_9 crossref_primary_10_3897_CompCytogen_v10i1_6462 crossref_primary_10_3390_plants12040973 crossref_primary_10_1111_tpj_13794 crossref_primary_10_1186_s12862_019_1355_x crossref_primary_10_1093_botlinnean_boac040 crossref_primary_10_1007_s00606_017_1442_7 crossref_primary_10_1038_s41598_017_07877_3 crossref_primary_10_1007_s12224_016_9235_2 crossref_primary_10_1007_s13237_020_00311_6 crossref_primary_10_3897_CompCytogen_v11i2_11572 crossref_primary_10_1002_ece3_4063 crossref_primary_10_3389_fpls_2021_589093 crossref_primary_10_1016_j_ympev_2016_04_009 crossref_primary_10_1093_pcp_pcae054 crossref_primary_10_1016_j_ppees_2022_125659 crossref_primary_10_1071_BT18236 crossref_primary_10_3390_plants14010119 crossref_primary_10_1111_tpj_13843 crossref_primary_10_3389_fgene_2018_00639 crossref_primary_10_1016_j_envexpbot_2019_103956 crossref_primary_10_1186_s12862_017_1019_7 crossref_primary_10_1080_15384101_2019_1618123 crossref_primary_10_1093_botlinnean_boab085 |
Cites_doi | 10.2307/1218997 10.1111/j.1469-8137.2006.01769.x 10.1111/j.0014-3820.2000.tb00553.x 10.1093/aob/mcm116 10.1007/978-3-642-31442-1_13 10.1093/jhered/esp008 10.1038/nature09916 10.1093/aob/mcs128 10.3732/ajb.1100395 10.1600/036364412X616738 10.1016/j.gde.2003.10.005 10.1073/pnas.0510791103 10.1007/BF01681812 10.2307/2640816 10.1007/978-3-642-31442-1_9 10.1111/j.1601-5223.1933.tb02604.x 10.1111/j.1601-5223.1948.tb02824.x 10.1073/pnas.0811575106 10.1093/aob/mcm326 10.1007/978-3-7091-1160-4_15 10.1038/hdy.1993.181 10.1111/nph.12051 10.1086/523367 10.1007/s00606-002-0189-x 10.3732/ajb.91.11.1783 10.3732/ajb.1100539 10.1111/j.1095-8312.2004.00332.x 10.1105/tpc.110.074526 10.1007/978-3-642-31442-1_10 10.1007/BF00277053 10.1111/j.1365-2745.2011.01838.x 10.1371/journal.pone.0033808 10.1098/rspb.2010.2208 10.1159/000082406 10.1007/s10682-011-9539-x 10.1111/j.1095-8312.2004.00333.x 10.1093/aob/mcr256 10.1038/hdy.2012.77 10.1007/978-3-642-31442-1_12 10.1007/978-1-4613-3069-1_13 10.1111/j.1095-8312.2004.00344.x 10.1111/j.1365-2656.2006.01167.x 10.1038/sj.hdy.6800912 10.1111/j.1095-8312.2004.00335.x 10.1111/j.1472-4642.2009.00602.x 10.3732/ajb.0800079 10.1111/j.1365-294X.2007.03315.x 10.1371/journal.pone.0029607 10.1016/j.tplants.2009.12.003 10.2307/2656733 10.1111/j.1601-5223.2000.00255.x 10.1093/molbev/msj083 10.1093/aob/mcq035 10.1126/science.264.5157.421 10.1111/j.1095-8312.2004.00337.x 10.1073/pnas.1112041109 10.1111/j.1469-8137.1993.tb03822.x 10.1111/j.1469-8137.2011.03988.x 10.1534/genetics.104.032839 10.1023/A:1006534130327 10.1111/j.1469-8137.1983.tb02698.x 10.1186/1471-2164-8-427 10.1186/1471-2229-10-204 10.1073/pnas.1016631108 10.1016/j.pbi.2005.01.001 10.1007/978-1-4613-3069-1_3 10.1023/A:1016015913350 10.1007/s00442-010-1595-3 10.1016/j.tig.2009.12.006 10.1023/A:1006392424384 10.1007/978-1-4613-3069-1 10.1111/j.1469-8137.2009.02997.x 10.1007/s004120050179 10.1111/j.1469-8137.1996.tb01921.x 10.1139/G11-035 10.3732/ajb.1200020 10.1073/pnas.0805141105 10.1007/s10265-007-0108-x 10.1111/j.1469-8137.2004.01297.x 10.1007/978-3-7091-1160-4_14 10.3732/ajb.94.9.1527 10.1016/j.tree.2009.04.010 10.1111/j.1558-5646.2009.00877.x 10.1146/annurev.ecolsys.33.010802.150437 10.1111/j.1558-5646.2007.00134.x 10.1007/s00442-008-1156-1 10.2307/2438023 10.1186/1471-2148-10-291 10.1016/S1055-7903(03)00213-6 10.1038/hdy.2012.79 10.1139/g94-087 10.1016/j.tig.2011.03.004 10.2307/2656673 10.1371/journal.pone.0027335 10.2307/2406537 10.1111/j.1095-8312.2004.00346.x 10.1111/j.1469-8137.2009.03142.x 10.1038/hdy.1997.170 10.1105/tpc.107.054346 10.1371/journal.pone.0039988 10.1111/j.1469-8137.2005.01480.x 10.1111/j.1095-8312.2004.00350.x 10.1093/molbev/msr112 10.1016/S1360-1385(98)01223-0 10.1371/journal.pone.0003353 10.1111/j.1365-2745.2012.02013.x 10.1111/mec.12217 10.1111/j.1558-5646.2011.01424.x 10.1111/j.1469-8137.2007.02121.x 10.1111/j.1095-8312.2004.00334.x 10.1111/j.1469-8137.2009.03140.x 10.3390/genes1020166 10.1016/j.tree.2005.07.008 10.1007/s004120050424 10.1111/j.1469-8137.2009.03096.x 10.1016/j.bbaexp.2007.02.005 10.1038/sj.hdy.6800333 10.1016/j.ympev.2010.01.003 10.1038/nrg1711 10.1146/annurev.genet.34.1.401 10.1016/S1673-8527(08)60142-3 10.1038/sj.hdy.6800656 10.1111/j.1558-5646.2008.00599.x 10.1007/s00438-007-0226-0 10.1016/j.scienta.2010.10.012 10.1086/662673 10.1016/S0169-5347(99)01638-9 10.1098/rspb.2000.0990 10.1098/rspb.2012.2387 10.1007/s00035-011-0091-7 10.1093/molbev/mss168 10.1007/978-3-7091-1160-4_13 10.1080/07352689309701903 10.1890/08-0420.1 10.1016/S0168-9525(03)00015-5 10.1111/j.1469-8137.2009.02767.x 10.1038/373512a0 10.1111/j.1365-2745.2009.01543.x 10.1126/science.1207205 10.1371/journal.pone.0044784 10.1038/nature07523 10.1093/aob/mcr277 10.2307/2399224 10.1371/journal.pone.0050352 10.1111/j.1365-313X.2009.03911.x 10.1007/978-3-7091-1160-4_9 10.1534/g3.112.002162 10.1554/05-629.1 10.1111/j.0014-3820.2005.tb01063.x 10.3732/ajb.95.1.50 10.1038/sj.hdy.6800001 10.1007/s00412-011-0331-z 10.1006/anbo.1995.1138 10.1111/j.1469-8137.1995.tb03005.x 10.1093/aob/mcq192 10.1554/05-095.1 10.1093/aob/mcp282 10.1080/0028825X.1986.10409726 10.1007/978-3-642-31442-1_1 10.1007/978-3-7091-1160-4_17 10.1073/pnas.1207726109 10.1111/j.1469-8137.2007.02019.x 10.1080/0028825X.1986.10409725 10.1002/9783527610921.ch5 10.3732/ajb.91.7.1022 10.1371/journal.pone.0036963 10.1146/annurev.genet.33.1.479 10.1073/pnas.0900906106 10.1007/s004120000074 10.1126/science.1153585 10.1016/j.ympev.2012.07.015 10.1007/BF02803074 10.1007/BF02338802 10.1073/pnas.97.16.9115 10.1038/44766 10.1111/j.1095-8312.2004.00349.x 10.1111/j.1365-2699.2006.01562.x 10.1016/0092-8674(81)90428-1 10.1093/aob/mcm271 10.1111/j.1601-5223.1936.tb03204.x 10.1007/s00442-006-0536-7 10.1111/j.1469-8137.2009.03084.x 10.3732/ajb.1100466 10.1534/genetics.107.072751 10.3732/ajb.91.3.439 10.1111/j.1469-8137.2009.03089.x 10.1007/978-3-642-31442-1_14 10.1007/978-3-642-31442-1 10.1111/j.1469-8137.2009.03117.x 10.1093/aob/mcs187 10.1111/j.1601-5223.1932.tb02560.x 10.1073/pnas.1014138108 10.1016/j.pbi.2012.03.010 10.1111/j.1469-8137.2010.03186.x 10.1101/sqb.2009.74.007 10.1146/annurev.ecolsys.29.1.467 10.1086/499251 |
ContentType | Journal Article |
Copyright | 2013 S. Karger AG, Basel Copyright © 2013 S. Karger AG, Basel. Copyright (c) 2013 S. Karger AG, Basel Copyright © 2013 S. Karger AG, Basel 2013 |
Copyright_xml | – notice: 2013 S. Karger AG, Basel – notice: Copyright © 2013 S. Karger AG, Basel. – notice: Copyright (c) 2013 S. Karger AG, Basel – notice: Copyright © 2013 S. Karger AG, Basel 2013 |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TK 7X7 7XB 88A 88E 88I 8AF 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 S0X 7X8 5PM |
DOI | 10.1159/000351727 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISBN | 9783318024760 3318024767 |
EISSN | 1424-859X |
EndPage | 150 |
ExternalDocumentID | PMC3859924 3049541431 23796571 10_1159_000351727 351727 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 20736 – fundername: Austrian Science Fund FWF grantid: P 21440 – fundername: Austrian Science Fund FWF grantid: P 25131 – fundername: Austrian Science Fund FWF : grantid: P 20736-B16 || FWF_ |
GroupedDBID | --- -~X .GJ 0R~ 0~5 0~B 29F 30W 326 34G 36B 39C 3O- 3O. 3V. 4.4 53G 5GY 5RE 7X7 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8UI AAYIC ABJNI ABPAZ ABUWG ACGFO ACGFS ACGOD ACPRK ACPSR ADBBV AENEX AEYAO AFFNX AFJJK AFKRA AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC AZQEC BBNVY BENPR BES BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP DU5 DWQXO E0A EBS EJD EMB EMOBN F5P FB. FYUFA GNUQQ HCIFZ HMCUK HZ~ IH2 IY7 KUZGX L7B LK8 M-- M0L M1P M2P M7P O1H O9- PQQKQ PROAC PSQYO RIG RKO RXVBD S0X SV3 UJ6 UKHRP ZGI AAYXX ABBTS ABWCG AHFRZ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c518t-cc85142a352ba708298ffa715037bdc9edea596d1a1de4a7be60f13319bc84093 |
IEDL.DBID | M-- |
ISBN | 9783318024753 3318024759 |
ISSN | 1424-8581 1424-859X |
IngestDate | Thu Aug 21 18:18:26 EDT 2025 Fri Jul 11 00:41:49 EDT 2025 Sat Aug 16 00:51:07 EDT 2025 Mon Jul 21 06:05:07 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 05:09:49 EDT 2025 Thu Aug 29 12:04:36 EDT 2024 Thu Sep 05 20:30:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-4 |
Keywords | Repetitive DNA Polyploidy Diversification Chromosome evolution Ecogeography |
Language | English |
License | Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. https://creativecommons.org/licenses/by-nc/3.0 Copyright © 2013 S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-cc85142a352ba708298ffa715037bdc9edea596d1a1de4a7be60f13319bc84093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000351727 |
PMID | 23796571 |
PQID | 1426377431 |
PQPubID | 27467 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1159_000351727 proquest_miscellaneous_1416695892 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859924 pubmed_primary_23796571 karger_primary_351727 crossref_citationtrail_10_1159_000351727 proquest_journals_1426377431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Basel |
PublicationTitle | Cytogenetic and genome research |
PublicationTitleAlternate | Cytogenet Genome Res |
PublicationYear | 2013 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Reese G: Polyploidie und Verbreitung. Z Botanik 46:339-354 (1958). Bansal P, Banga S, Banga SS: Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 7:e29607 (2012).2236340410.1371/journal.pone.0029607 Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424 (1994).1783690610.1126/science.264.5157.421 Soltis DE, Buggs RJA, Barbazuk WB, Chamala S, Chester M, et al: The early stages of polyploidy: rapid and repeated evolution in Tragopogon, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 271-292 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_14 Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al: Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309-319 (2009).10.1007/s00035-011-0091-7 Childs G, Maxon R, Kedes LC: Orphons: dispersed genetic elements derived from tandem repetitive genes of eukaryotes. Cell 23:651-663 (1981).678492910.1016/0092-8674(81)90428-1 Duchoslav M, Šafářová L, Krahulec F: Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719-735 (2010).2036376010.1093/aob/mcq035 Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243-273 (1993).10.1080/07352689309701903 Cronn RC, Zhao XP, Paterson AH, Wendel JF: Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685-705 (1996).866201410.1007/BF02338802 Rodriguez DJ: A model for the establishment of polyploidy in plants. Am Nat 147:33-46 (1996). Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, et al: Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022-1035 (2004a).2165345810.3732/ajb.91.7.1022 Kolář F, Fér T, Štech M, Trávníček P, Dušková E, et al: Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988 (2012).2006091610.1016/j.ympev.2010.01.003 Murray BG: Karyotype variation and evolution in gymnosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 231-243 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_14 Pagel M: Inferring the historical patterns of biological evolution. Nature 401:877-884 (1999).1055390410.1038/44766 Weiss-Schneeweiss H, Schneeweiss GM: Karyotype diversity and evolutionary trends in angiosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 209-230 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_13 Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, et al: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353 (2008).1884337210.1371/journal.pone.0003353 Ramsey J, Schemske DW: Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589-639 (2002).10.1146/annurev.ecolsys.33.010802.150437 Maluszynska J, Hasterok R, Weiss H: rRNA genes: their distribution and activity in plants, in Maluszynska J (ed): Plant Cytogenetics, pp 75-95 (Silesian Univ Press, Katowice 1998). Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 181-207 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_10 Oates KM, Ranney TG, Touchell DH: Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. HortScience 47:1217-1221 (2012). Segraves KA, Thompson JN: Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114-1127 (1999).10.2307/2640816 Crow KD, Wagner GP: What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887-892 (2006).1636877510.1093/molbev/msj083 Fulnecek J, Lim KY, Leitch AR, Kovarík A, Matyásek R: Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19-25 (2002).1181310210.1038/sj.hdy.6800001 McIntyre P: Cytogeography and genome size variation in the Claytonia perfoliata (Portulacaceae) polyploid complex. Ann Bot 110:1195-1203 (2012a).2296230210.1093/aob/mcs187 Church SA, Spaulding EJ: Gene expression in a wild autopolyploid sunflower series. J Hered 100:491-495 (2009).1932163110.1093/jhered/esp008 te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, et al: The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19-45 (2012).2204074410.1093/aob/mcr277 Parisod C, Alix C, Just J, Petit M, Sarilar V, et al: Impact of transposable elements in organization and functioning of allopolyploid genomes. New Phytol 186:37-45 (2010a).2000232110.1111/j.1469-8137.2009.03096.x Leitch IJ, Bennett MD: Genome downsizing in polyploid plants. Biol J Linn Soc 82:651-663 (2004).10.1111/j.1095-8312.2004.00349.x Raabova J, Fischer M, Münzbergerová Z: Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158:463-472 (2008).1882095010.1007/s00442-008-1156-1 Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, et al: The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146-155 (2010).1565411610.1534/genetics.104.032839 Levy AA, Feldman M: Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607-613 (2004).10.1111/j.1095-8312.2004.00346.x Felber-Girard M, Felber F, Buttler A: Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531-540 (1996).10.1111/j.1469-8137.1996.tb01921.x Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al: Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100 (2011).1799365310.1093/aob/mcm271 Ramsey J: Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143-150 (2007).1709112710.1038/sj.hdy.6800912 Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J: Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204 (2010).22318659 Coate JE, Powell AF, Owens TG, Doyle JJ: Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae). Heredity 110:160-170 (2013).2314945710.1038/hdy.2012.77 Burton TL, Husband BC: Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182-1191 (2000).1100528710.1111/j.0014-3820.2000.tb00553.x Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J: Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169-179 (2012).2198019210.1093/aob/mcr256 Löve Á, Löve D: Polyploidy and altitude: Mt. Washington. Biol Zentralbl Suppl Vol:307-312 (1967). Schlaepfer DR, Edwards P, Billeter R: Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163:661-673 (2010).2023812810.1007/s00442-010-1595-3 McArthur ED, Sanderson SC: Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754-1775 (1999).1060276810.2307/2656673 Soltis DE, Buggs RJA, Doyle JJ, Soltis PS: What we still don't know about polyploidy. Taxon 59:1387-1403 (2010). Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park JM, et al: Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669-682 (2007).1744792110.1111/j.1469-8137.2007.02019.x Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al: Polyploidy and angiosperm diversification. Am J Bot 96:336-348 (2009a).2162819210.3732/ajb.0800079 Schubert I, Lysak MA: Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207-216 (2011).2159260910.1016/j.tig.2011.03.004 Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33:479-532 (1999).10.1600/036364412X616738 Soltis DE, Buggs RJ, Barbazuk WB, Schnable PS, Soltis PS: On the origins of species: does evolution repeat itself in polyploid populations of independent origin? Cold Spring Harb Symp Quant Biol 74:215-223 (2009b).1968714010.1101/sqb.2009.74.007 Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T: Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193:797-805 (2012).2215079910.1111/j.1469-8137.2011.03988.x DeBodt S, Maere S, van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591-597 (2005).1670144110.1016/j.tree.2005.07.008 Bretagnolle F, Thompson JD: Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1-22 (1995).10.1111/j.1469-8137.1995.tb03005.x Baack EJ, Stanton ML: Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): niche differentiation and tetraploid establishment. Evolution 59:1936-1944 (2005).1626173110.1111/j.0014-3820.2005.tb01063.x Baack EJ: To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. Heredity 94:538- ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref2 ref1 ref191 ref192 ref190 ref197 ref195 ref196 ref193 ref194 |
References_xml | – reference: Preuss S, Pikaard CS: rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383-392 (2007).1743982510.1016/j.bbaexp.2007.02.005 – reference: Jellen EN, Gill BS, Cox TS: Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37:613-618 (1994).2147887510.1038/nature09916 – reference: Leitch IJ, Bennett MD: Genome downsizing in polyploid plants. Biol J Linn Soc 82:651-663 (2004).10.1111/j.1095-8312.2004.00349.x – reference: Chen ZJ: Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57-71 (2010).2008043210.1016/j.tplants.2009.12.003 – reference: Husband BC, Baldwin SJ, Suda J: The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 255-276 (Springer, Wien 2013). – reference: Raabova J, Fischer M, Münzbergerová Z: Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158:463-472 (2008).1882095010.1007/s00442-008-1156-1 – reference: Löve Á, Löve D: The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biol Ser A:273-352 (1949-1951). – reference: Ramsey J, Schemske DW: Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589-639 (2002).10.1146/annurev.ecolsys.33.010802.150437 – reference: Soltis DE, Soltis PS: Polyploidy: origins of species and genome evolution. Trends Ecol Evol 14:348-352 (1999).1044130810.1016/S0169-5347(99)01638-9 – reference: Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E: Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485-501 (2004).10.1111/j.1095-8312.2004.00335.x – reference: Zielinski ML, Mittelsten Scheid O: Meiosis in polyploid plants, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 33-55 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1 – reference: Ownbey M: Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37: 487-499 (1950).10.2307/2438023 – reference: Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243-273 (1993).10.1080/07352689309701903 – reference: Garbutt K, Bazzaz FA: Leaf demography, flower production and biomass of diploid and tetraploid populations of Phlox drummondii Hook. on a soil moisture gradient. New Phytol 93:129-141 (1983).10.1111/j.1469-8137.1983.tb02698.x – reference: Mable BK: Why polyploidy is rarer in animals than in plants: myths and mechanisms. Biol J Linn Soc 82:453-466 (2004).10.1111/j.1095-8312.2004.00332.x – reference: Harvey PH, Pagel MD: The Comparative Method in Evolutionary Biology (Oxford Univ Press, Oxford 1991).10.1007/978-3-642-31442-1_13 – reference: Matyasek R, Tate JA, Lim YK, Srubarova H, Koh J, et al: Concerted evolution of rDNA in recently formed Tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics 176:2509-2519 (2007).1760311410.1534/genetics.107.072751 – reference: Rausch JH, Morgan MT: The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59:1867-1875 (2005).1626172510.1554/05-095.1 – reference: Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM: The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 66:211-228 (2012).2222087610.1111/j.1558-5646.2011.01424.x – reference: McGrath CL, Lynch M: Evolutionary significance of whole-genome duplication, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 1-20 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_1 – reference: Hagerup O: Studies on polyploid ecotypes in Vaccinium uliginosum L. Hereditas 18:122-128 (1933).2163231410.3732/ajb.95.1.50 – reference: Vamosi JC, Dickinson TA: Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349-358 (2006).10.1086/499251 – reference: Paun O, Fay MF, Forest F, Chase MW: Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507-518 (2009).1922076110.1111/j.1469-8137.2009.02767.x – reference: Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, et al: Polyploidy in arctic plants. Biol J Linn Soc 82:521-536 (2004).10.1111/j.1095-8312.2004.00337.x – reference: Hegarty MJ, Abbott RJ, Hiscock SJ: Allopolyploid speciation in action: the origins and evolution of Senecio cambrensis, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 245-270 (Springer, Heidelberg 2012). – reference: Martin SL, Husband BC: Influence of phylogeny and ploidy on species ranges of North American angiosperms. J Ecol 97:913-922 (2009).10.1111/j.1365-2745.2009.01543.x – reference: Baack EJ: To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. Heredity 94:538-546 (2005).1577023210.1038/sj.hdy.6800656 – reference: Levy AA, Feldman M: Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607-613 (2004).10.1111/j.1095-8312.2004.00346.x – reference: Childs G, Maxon R, Kedes LC: Orphons: dispersed genetic elements derived from tandem repetitive genes of eukaryotes. Cell 23:651-663 (1981).678492910.1016/0092-8674(81)90428-1 – reference: Hovick SM, Peterson CJ, Carson WP: Predicting invasiveness and range size in wetland plants using biological traits: a multivariate experimental approach. J Ecol 100:1373-1382 (2012).2084636510.1186/1471-2229-10-204 – reference: Soltis DE, Buggs RJ, Barbazuk WB, Schnable PS, Soltis PS: On the origins of species: does evolution repeat itself in polyploid populations of independent origin? Cold Spring Harb Symp Quant Biol 74:215-223 (2009b).1968714010.1101/sqb.2009.74.007 – reference: Petit C, Thompson JD: Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol Ecol 13:45-66 (1999).10.1023/A:1006534130327 – reference: Stebbins GL: Polyploidy, hybridization, and the invasion of new habitats. Ann Miss Bot Gard 72:824-832 (1985).10.2307/2399224 – reference: Husband BC: Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc R Soc Lond B 267:217-223 (2000).10.1086/523367 – reference: DeBodt S, Maere S, van de Peer Y: Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591-597 (2005).1670144110.1016/j.tree.2005.07.008 – reference: Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T: Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193:797-805 (2012).2215079910.1111/j.1469-8137.2011.03988.x – reference: Leitch AR, Leitch IJ: Genome plasticity and the diversity of polyploid plants. Science 320:481-483 (2008).1843677610.1126/science.1153585 – reference: Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, et al: Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291 (2010).2085828910.1186/1471-2148-10-291 – reference: DeWet JMJ: Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium agamospecies. Evolution 22:394-397 (1968).10.2307/2406537 – reference: Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, et al: Dispersed repetitive DNA has colonized new genomes since polyploid formation in cotton. Genome Res 8:479-492 (1998).9582192 – reference: Duchoslav M, Šafářová L, Krahulec F: Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719-735 (2010).2036376010.1093/aob/mcq035 – reference: Hagerup O: Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Hereditas 16:19-40 (1932).10.1111/j.1601-5223.1933.tb02604.x – reference: Baack EJ: Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783-1788 (2004).2165232510.3732/ajb.91.11.1783 – reference: Wendel JF: Genome evolution in polyploids. Plant Mol Biol 42:225-249 (2000).1068813910.1023/A:1006392424384 – reference: Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, et al: Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366-1377 (2009).1953755610.1890/08-0420.1 – reference: Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135-141 (2005).1575299210.1016/j.pbi.2005.01.001 – reference: Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, et al: The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146-155 (2010).1565411610.1534/genetics.104.032839 – reference: Dubcovsky J, Dvorak J: Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367-1377 (1995).7498776 – reference: Gustafsson A: Polyploidy, life-form, and vegetative reproduction. Hereditas 34:1-22 (1948).10.1111/j.1601-5223.1932.tb02560.x – reference: Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR: Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578-1583 (2000).1108010710.2307/2656733 – reference: Ehrendorfer F: Polyploidy and distribution, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 45-60 (Plenum Press, New York 1980).23306510.1007/978-1-4613-3069-1_3 – reference: Ma XF, Gustafson JP: Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236-249 (2005).1575358310.1159/000082406 – reference: Oswald BP, Nuismer SL: A unified model of autopolyploid establishment and evolution. Am Nat 178:687-700 (2011).2208986510.1086/662673 – reference: Maluszynska J, Hasterok R, Weiss H: rRNA genes: their distribution and activity in plants, in Maluszynska J (ed): Plant Cytogenetics, pp 75-95 (Silesian Univ Press, Katowice 1998). – reference: Kennedy B, Sabara HA, Haydon D, Husband BC: Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398-408 (2006).835565010.1007/BF00277053 – reference: Baldwin SJ, Husband BC: Genome duplication and the evolution of conspecific pollen precedence. Proc R Soc Lond B 278:2011-2017 (2011).2112326310.1098/rspb.2010.2208 – reference: Baack EJ, Stanton ML: Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): niche differentiation and tetraploid establishment. Evolution 59:1936-1944 (2005).1626173110.1111/j.0014-3820.2005.tb01063.x – reference: Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, et al: Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601-3611 (2012).2272330310.1093/molbev/mss168 – reference: Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, et al: Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557-571 (2011).1069041610.1146/annurev.genet.33.1.479 – reference: Webb CJ, Lloyd DG: The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zeal J Bot 24:163-178 (1986).10.1080/0028825X.1986.10409726 – reference: Renny-Byfield S, Kovarik A, Chester M, Nichols RA, Macas J, et al: Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 7:e36963 (2012).2260631710.1371/journal.pone.0036963 – reference: Marhold K, Kudoh H, Pak JH, Watanabe K, Španiel S, Lihová J: Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann Bot 105:249-264 (2010).2000797810.1093/aob/mcp282 – reference: Mlinarec J, Satovic Z, Malenica N, Ivancic-Bace I, Besendorfer V: Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. Ann Bot 110:703-712 (2012).2271169410.1093/aob/mcs128 – reference: Pandit MK: Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543-552 (2006). – reference: Abbott RJ, Lowe AJ: Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467-474 (2004).10.1111/j.1095-8312.2004.00333.x – reference: Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, et al: Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843-2854 (2011).2151210510.1093/molbev/msr112 – reference: Parisod C, Besnard G: Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Mol Ecol 16:2755-2767 (2007).1759444510.1111/j.1365-294X.2007.03315.x – reference: Suda J, Herben T: Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proc Biol Sci 280:20122387 (2013).2319312910.1098/rspb.2012.2387 – reference: Pires JC, Zhao J, Schranz EM, Leon EJ, Quijada PA, et al: Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675-688 (2004b).10.1111/j.1095-8312.2004.00350.x – reference: Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, et al: Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141-147 (2003).1261500810.1016/S0168-9525(03)00015-5 – reference: Stebbins GL: Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1-13 (1984). – reference: Gaeta RT, Pires JC: Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18-28 (2010).2000231510.1111/j.1469-8137.2009.03089.x – reference: Hanelt P: Polyploidie-Frequenz und geographische Verbreitung bei Höheren Pflanzen. Biol Rundschau 4:183-196 (1966).2320619810.1111/nph.12051 – reference: Kao RH: Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann Bot 101:145-152 (2008).1966525510.1016/j.tree.2009.04.010 – reference: Levin D: Minority cytotype exclusion in local plant populations. Taxon 24:35-43 (1975).10.2307/1218997 – reference: Weiss H, Maluszynska J: Chromosomal rearrangement in autotetraploid plants of Arabidopsisthaliana. Hereditas 133:255-261 (2000).1143397010.1111/j.1601-5223.2000.00255.x – reference: Masterson J: Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424 (1994).1783690610.1126/science.264.5157.421 – reference: Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, et al: Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (N. tabacum). Mol Genet Genomics 278:1-15 (2007).1737532310.1007/s00438-007-0226-0 – reference: Xiong Z, Gaeta RT, Pires JC: Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassicanapus. Proc Natl Acad Sci USA 108:7908-7913 (2011).2151212910.1073/pnas.1014138108 – reference: Petit M, Guidat C, Daniel J, Denis E, Motoriol E, et al: Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135-147 (2010).2007409310.1111/j.1469-8137.2009.03140.x – reference: Ni Z, Kim ED, Ha M, Lackey E, Liu J, et al: Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327-331 (2009).1902988110.1038/nature07523 – reference: Birchler JA, Veitia RA: Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA 109:14746-14753 (2012).2290829710.1073/pnas.1207726109 – reference: Ainouche M, Chelaifa H, Ferreira J, Bellot S, Ainouche A, Salmon A: Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 225-244 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_12 – reference: Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garrido-Ramos MA: Loss of nucleolar-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71:574-580 (1993).10.1038/hdy.1993.181 – reference: Maherali H, Walden AE, Husband BC: Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721-731 (2009).1970311510.1111/j.1469-8137.2009.02997.x – reference: Tremetsberger K, König C, Samuel R, Pinsker W, Stuessy TF: Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton's hypothesis. Plant Syst Evol 233:163-181 (2002).10.1007/s00606-002-0189-x – reference: Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC: Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403-3417 (2007).1802456810.1105/tpc.107.054346 – reference: Bansal P, Banga S, Banga SS: Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One 7:e29607 (2012).2236340410.1371/journal.pone.0029607 – reference: Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al: Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100 (2011).1799365310.1093/aob/mcm271 – reference: Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836-846 (2005).1630459910.1038/nrg1711 – reference: Crow KD, Wagner GP: What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887-892 (2006).1636877510.1093/molbev/msj083 – reference: Baldwin SJ, Husband BC: The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Mol Ecol 22:1806-1819 (2013).2343209410.1111/mec.12217 – reference: Cronn RC, Zhao XP, Paterson AH, Wendel JF: Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685-705 (1996).866201410.1007/BF02338802 – reference: Martin SL, Husband BC: Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS One 7:e44784 (2012).2302862010.1371/journal.pone.0044784 – reference: Lowry E, Lester SE: The biogeography of plant reproduction: potential determinants of species' range sizes. J Biogeo 33:1975-1982 (2006).10.1111/j.1365-2699.2006.01562.x – reference: Meyers LA, Levin DA: On the abundance of polyploids in flowering plants. Evolution 60:1198-1206 (2006).1689297010.1554/05-629.1 – reference: Zimmer EA, Wen J: Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65:774-785 (2012).2284209310.1016/j.ympev.2012.07.015 – reference: Felber-Girard M, Felber F, Buttler A: Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531-540 (1996).10.1111/j.1469-8137.1996.tb01921.x – reference: McArthur ED, Sanderson SC: Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Am J Bot 86:1754-1775 (1999).1060276810.2307/2656673 – reference: Halverson K, Heard SB, Nason JD, Stireman JO 3rd: Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50-58 (2008). – reference: Fowler NL, Levin DA: Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Nat 124:701-711 (1984). – reference: Fulnecek J, Lim KY, Leitch AR, Kovarík A, Matyásek R: Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19-25 (2002).1181310210.1038/sj.hdy.6800001 – reference: Glennon KL, Rissler LJ, Church SA: Ecogeographic isolation: a reproductive barrier between species and between cytotypes in Houstonia (Rubiaceae). Evol Ecol 26:909-926 (2012).10.1007/s10682-011-9539-x – reference: Hao GY, Lucero ME, Sanderson SC, Zacharias EH, Holbrook NM: Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol 197:970-978 (2013).10.1038/373512a0 – reference: Gaston KJ: The multiple forms of the interspecific abundance-distribution relationship. Oikos 76:211-220 (1996).1703237510.1111/j.1365-2656.2006.01167.x – reference: Stebbins GL: Variation and Evolution in Plants (Columbia Univ Press, New York 1950). – reference: Hülber K, Berger A, Gilli C, Hofbauer M, Patek M, Schneeweiss GM: No evidence for a role of competitive capabilities of adults in causing habitat segregation of diploid and hexaploid Senecio carniolicus (Asteracaeae). Alp Bot 121:123-127 (2011).1071487510.1098/rspb.2000.0990 – reference: Kihara H, Ono T: Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr Zellf Mikrosk Anat 4:475-481 (1926).1871112910.1073/pnas.0805141105 – reference: Schlaepfer DR, Edwards P, Billeter R: Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia 163:661-673 (2010).2023812810.1007/s00442-010-1595-3 – reference: Weiss-Schneeweiss H, Schneeweiss GM: Karyotype diversity and evolutionary trends in angiosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 209-230 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_13 – reference: Harder LD, Barrett SCH: Mating cost of large floral displays in hermaphrodite plants. Nature 373:512-515 (1995). – reference: Levin D: The Role of Chromosomal Change in Plant Evolution (Oxford Univ Press, Oxford 2002). – reference: Lim KY, Matyasek R, Kovarik A, Leitch AR: Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot 100:219-224 (2007b).1759161010.1093/aob/mcm116 – reference: Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A: Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291-303 (2005).1576037110.1111/j.1469-8137.2004.01297.x – reference: Kovarik A, Renny-Byfield S, Grandbastien MA, Leitch A: Evolutionary implications of genome and karyotype restructuring in Nicotiana tabacum L., in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 209-224 (Springer, Heidelberg 2012).2178594210.1007/s00412-011-0331-z – reference: Chester M, Leitch AR, Soltis PS, Soltis DE: Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1:166-192 (2010).10.3390/genes1020166 – reference: Flégrová M, Krahulec F: Anthoxanthum odoratum and A. alpinum: life history parameters at two different altitudes. Folia Geobot 34:19-31 (1999).10.1007/BF02803074 – reference: Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, et al: Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13-30 (2007). – reference: Doyle JJ: Polyploidy in legumes, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 147-180 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_9 – reference: Dynesius M, Jansson R: Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115-9120 (2000).1092206710.1073/pnas.97.16.9115 – reference: Fawcett JA, van de Peer Y, Maere S: Significance and biological consequences of polyploidization in land plant evolution, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 277-293 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_17 – reference: Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, et al: Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022-1035 (2004a).2165345810.3732/ajb.91.7.1022 – reference: Köhler C, Mittelsten Scheid O, Erilova A: The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142-148 (2010).2184844610.1139/G11-035 – reference: Laport RG, Minckley RL, Ramsey J: Phylogeny and cytogeography of the North American creosote bush (Larrea tridentata, Zygophyllaceae). Syst Bot 37:153-164 (2012).2002847310.1111/j.1469-8137.2009.03117.x – reference: Arrigo N, Barker MS: Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140-146 (2012).2248043010.1016/j.pbi.2012.03.010 – reference: Llyod DG, Webb CJ: The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zeal J Bot 24:135-162 (1986).10.1080/0028825X.1986.10409725 – reference: Heslop-Harrison JS, Schwarzacher T: Organization of the plant genome in chromosomes. Plant J 66:18-33 (2011).1686695610.1111/j.1469-8137.2006.01769.x – reference: Madlung A: Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99-104 (2013).2314945910.1038/hdy.2012.79 – reference: Macas J, Kejnovský E, Neumann P, Novak P, Koblížková A, Vyskot B: Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant Silene latifolia. PLoS One 6:e27335 (2011).2209655210.1371/journal.pone.0027335 – reference: Stelkens R, Seehausen O: Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63:884-897 (2009).1922045010.1111/j.1558-5646.2008.00599.x – reference: Maceira NO, Jacquard P, Lumaret R: Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol 124:321-328 (1993).10.1111/j.1469-8137.1993.tb03822.x – reference: Müntzing A: The evolutionary significance of autopolyploidy. Hereditas 21:263-378 (1936).10.1111/j.1601-5223.1936.tb03204.x – reference: Kim ST, Sultan SE, Donoghue MJ: Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc Natl Acad Sci USA 105:12370-12375 (2008).2008932610.1016/j.tig.2009.12.006 – reference: Stebbins GL: Chromosomal Evolution in Higher Plants (Edward Arnold, London 1971). – reference: Kenton A, Parokonny AS, Gleba YY, Bennett MD: Characterization of the Nicotianatabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159-169 (1993). – reference: Brassac J, Jakob SS, Blattner FR: Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS One 7:e33808 (2012).2247944710.1371/journal.pone.0033808 – reference: Lim KY, Kovarik A, Matyasek R, Bezdĕk M, Lichtenstein CP, Leitch AR: Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161-172 (2000a).1092919410.1007/s004120050424 – reference: Baumel A, Ainouche M, Kalendar R, Schulman AH: Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218-1227 (2002).12140233 – reference: Darlington CD: Recent Advances in Cytology, ed 2 (P. Blakiston's Son and Co., Philadelphia 1937). – reference: Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, et al: Recently formed polyploid plants diversify at lower rates. Science 333:1257 (2011).2185245610.1126/science.1207205 – reference: Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park JM, et al: Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669-682 (2007).1744792110.1111/j.1469-8137.2007.02019.x – reference: Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H: Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439-448 (2004).2165340010.3732/ajb.91.3.439 – reference: Kejnovsky E, Leitch IJ, Leitch AR: Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572-582 (2009).1702438710.1007/s00442-006-0536-7 – reference: Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, et al: Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756-763 (2007a).1768859010.1111/j.1469-8137.2007.02121.x – reference: Barker MS: Karyotype and genome evolution in pteridophytes, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 245-253 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_15 – reference: Soltis DE, Buggs RJA, Barbazuk WB, Chamala S, Chester M, et al: The early stages of polyploidy: rapid and repeated evolution in Tragopogon, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 271-292 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_14 – reference: Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, et al: Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931-944 (2005). – reference: Parisod C, Alix C, Just J, Petit M, Sarilar V, et al: Impact of transposable elements in organization and functioning of allopolyploid genomes. New Phytol 186:37-45 (2010a).2000232110.1111/j.1469-8137.2009.03096.x – reference: Ramsey J: Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143-150 (2007).1709112710.1038/sj.hdy.6800912 – reference: Ramsey J: Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096-7101 (2011).2140290410.1073/pnas.1016631108 – reference: Pyšek P, Jarosik V, Pergl J, Randall R, Chytry M, et al: The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15:891-903 (2009).10.1111/j.1472-4642.2009.00602.x – reference: Egan AN, Schlueter J, Spooner DM: Applications of next-generation sequencing in plant biology. Am J Bot 99:175-185 (2012).2231211610.3732/ajb.1200020 – reference: Fawcett JA, Maere S, van de Peer Y: Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737-5742 (2009).1932513110.1073/pnas.0900906106 – reference: Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al: Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia 81:309-319 (2009).10.1007/s00035-011-0091-7 – reference: Jang TS, Emadzade K, Temsch E, Macas J, Leitch A, et al: Karyotype analysis of diploid and polyploidy species of the Prospero (Hyacinthaceae). Abstracts 43rd Symp of The Korean Society of Plant Taxonomists, Seoul, p 40 (2011).1847010510.1139/g94-087 – reference: Segraves KA, Thompson JN: Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114-1127 (1999).10.2307/2640816 – reference: Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al: Polyploidy and angiosperm diversification. Am J Bot 96:336-348 (2009a).2162819210.3732/ajb.0800079 – reference: Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, et al: Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353 (2008).1884337210.1371/journal.pone.0003353 – reference: Le Comber SC, Ainouche ML, Kovarik A, Leitch AR: Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:113-122 (2010). – reference: Liu SY, Chen SM, Chen Y, Guan ZY, Yin DM, Chen FD: In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Sci Horticult 127:411-419 (2011).10.1016/j.scienta.2010.10.012 – reference: Bennetzen JL: Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29-36 (2002).1218804610.1023/A:1016015913350 – reference: Vamosi JC, Goring SJ, Kennedy BF, Mayberry RJ, Moray CM, et al: Pollination, floral display, and the ecological correlates of polyploidy. Funct Ecosyst Commun 1:1-9 (2007). – reference: Tischler T: Die Halligenflora der Nordsee im Lichte cytologischer Forschung. Cytologia 8:162-170 (1937). – reference: Oates KM, Ranney TG, Touchell DH: Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. HortScience 47:1217-1221 (2012). – reference: Cavalier-Smith T: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247-278 (1978).372199 – reference: Sonnleitner M, Flatscher R, Escobar García P, Rauchová J, Suda J, et al: Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot 106:967-977 (2010).2088093010.1093/aob/mcq192 – reference: Mandakova T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA: Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277-2290 (2010).2063944510.1105/tpc.110.074526 – reference: Bretagnolle F, Lumaret R: Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica 84:197-207 (1995).10.1007/BF01681812 – reference: Liu B, Wendel JF: Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365-379 (2003).1461518010.1016/S1055-7903(03)00213-6 – reference: Parisod C, Holderegger R, Brochmann C: Evolutionary consequences of autopolyploidy. New Phytol 186:5-17 (2010b).2007054010.1111/j.1469-8137.2009.03142.x – reference: Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, et al: Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome 54:710-717 (2011).2279220710.1371/journal.pone.0039988 – reference: Goldblatt P: Polyploidy in angiosperms: monocotyledons, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 219-239 (Plenum Press, New York 1980).10.1007/978-1-4613-3069-1_13 – reference: Rodriguez DJ: A model for the establishment of polyploidy in plants. Am Nat 147:33-46 (1996). – reference: Macas J, Neumann P, Navrátilová A: Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427 (2007).1803157110.1186/1471-2164-8-427 – reference: Pandit MK, Pocock MJO, Kunin WE: Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108-1115 (2011).10.1111/j.1365-2745.2011.01838.x – reference: Vaughan HE, Taylor S, Parker JS: The ten cytological races of the Scilla autumnalis species complex. Heredity 79:371-379 (1997).10.1038/hdy.1997.170 – reference: Church SA, Spaulding EJ: Gene expression in a wild autopolyploid sunflower series. J Hered 100:491-495 (2009).1932163110.1093/jhered/esp008 – reference: Buggs RJ, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, et al: Next-generation sequencing and genome evolution in allopolyploids. Am J Bot 99:372-382 (2012).2226822010.3732/ajb.1100395 – reference: Wicker T, Taudien S, Houben A, Keller B, Graner A, et al: A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712-722 (2009).194534410.1111/j.1365-313X.2009.03911.x – reference: Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR: Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241-252 (2005).1615933710.1111/j.1469-8137.2005.01480.x – reference: Schubert I, Lysak MA: Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207-216 (2011).2159260910.1016/j.tig.2011.03.004 – reference: Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH: The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875-13879 (2009).1966721010.1073/pnas.0811575106 – reference: Chapman MA, Burke JM: Genetic divergence and hybrid speciation. Evolution 61:1773-1780 (2007).1759875510.1111/j.1558-5646.2007.00134.x – reference: Rebernig CA, Weiss-Schneeweiss H, Blöch C, Turner B, Stuessy TF, et al: The evolutionary history of the white-rayed species of Melampodium (Asteraceae) involved multiple cycles of hybridization and polyploidization. Am J Bot 99:1043-1057 (2012).2264509610.3732/ajb.1100539 – reference: Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, et al: Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86-101 (2010).2014911610.1111/j.1469-8137.2010.03186.x – reference: Moscone EA, Matzke MA, Matzke AJ: The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231-236 (1996).885488210.1007/s004120050179 – reference: Paun O, Forest F, Fay MF, Chase MW: Parental divergence and hybrid speciation in angiosperms revisited. Taxon 60:1241-1244 (2011).23526840 – reference: Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I: Mechanisms of chromosome number reduction in Arabidopsisthaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224-5229 (2006).1654978510.1073/pnas.0510791103 – reference: Parisod C, Mihri C, Clarkson J, Lim KY, Chase MW, et al: Differential impact of transposable elements on long-term genome diploidization in the allopolyploid Nicotiana section Repandae. PLoS One 7:e50352 (2012).2318560710.1371/journal.pone.0050352 – reference: Matyasek R, Lim KY, Kovarik A, Leitch AR: Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91:268-275 (2003).1293962810.1038/sj.hdy.6800333 – reference: Bretagnolle F, Thompson JD, Lumaret R: The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata. Ann Bot 76:607-615 (1995).10.1006/anbo.1995.1138 – reference: Pagel M: Inferring the historical patterns of biological evolution. Nature 401:877-884 (1999).1055390410.1038/44766 – reference: Sobel JM, Chen GF, Watt LR, Schemske DW: The biology of speciation. Evolution 64:295-315 (2010).1989162810.1111/j.1558-5646.2009.00877.x – reference: Suda J, Kron P, Husband BC, Trávníček P: Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology, in Doležel J, Greilhuber J, Suda J (eds): Flow Cytometry with Plant Cells. Analysis of Genes, Chromosomes and Genomes, pp 103-130 (Wiley-VCH, Weinheim 2007).10.1002/9783527610921.ch5 – reference: McIntyre P: Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am J Bot 99:655-662 (2012b).2243477310.3732/ajb.1100466 – reference: te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, et al: The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19-45 (2012).2204074410.1093/aob/mcr277 – reference: Bennett MD, Leitch IJ: Genome size evolution in plants, in Gregory TR (ed): The Evolution of the Genome, pp 89-162 (Elsevier Academic Press, Amsterdam 2005). – reference: Leitch AR, Lim KY, Skalická K, Kovarik A: Nuclear cytoplasmic interaction hypothesis and the role of translocations in Nicotiana allopolyploids, in Cigna AAD, Yerevan M (eds): Radiation Risk Estimates in Normal and Emergency Situations: NATO Security through Science Series B: Physics and Biophysics (ARMENIA), pp 319-326 (Springer, Dordrecht 2006). – reference: Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, et al: The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805-814 (2008).1822291010.1093/aob/mcm326 – reference: Miller M, Zhang CQ, Chen ZJ: Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2:505-513 (2012).2254004210.1534/g3.112.002162 – reference: Ainouche ML, Baumel A, Salmon A: Spartina anglica C.E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475-484 (2004).10.1111/j.1095-8312.2004.00334.x – reference: Coate JE, Powell AF, Owens TG, Doyle JJ: Transgressive physiological and transcriptomic responses to light stress in allopolyploid Glycine dolichocarpa (Leguminosae). Heredity 110:160-170 (2013).2314945710.1038/hdy.2012.77 – reference: Schönswetter P, Lachmayer M, Lettner C, Prehsler D, Rechnitzer S, et al: Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J Plant Res 120:721-725 (2007).1792229610.1007/s10265-007-0108-x – reference: Murray BG: Karyotype variation and evolution in gymnosperms, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 231-243 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_14 – reference: Lim KY, Matyásek R, Lichtenstein CP, Leitch AR: Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245-258 (2000b).1096825310.1007/s004120000074 – reference: Otto SP, Whitton J: Polyploid incidence and evolution. Annu Rev Genet 34:401-437 (2000).1109283310.1146/annurev.genet.34.1.401 – reference: Barringer BC: Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527-1533 (2007).2163651910.3732/ajb.94.9.1527 – reference: Hörandl E: The complex causality of geographical parthenogenesis. New Phytol 171:525-538 (2006).10.1111/j.1365-2745.2012.02013.x – reference: Grant V: Plant Speciation, ed 2 (Columbia Univ Press, New York 1981).10.1111/j.1601-5223.1948.tb02824.x – reference: Wendel JF, Flagel LE, Adams KL: Jeans, genes, and genomes: cotton as a model for studying polyploidy, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 181-207 (Springer, Heidelberg 2012).10.1007/978-3-642-31442-1_10 – reference: Ramsey J, Schemske DW: Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467-501 (1998).10.1146/annurev.ecolsys.29.1.467 – reference: Löve Á, Löve D: Polyploidy and altitude: Mt. Washington. Biol Zentralbl Suppl Vol:307-312 (1967). – reference: Stebbins GL: Polyploidy: future prospects, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 495-520 (Plenum Press, New York 1980).10.1007/978-1-4613-3069-1 – reference: Kolář F, Fér T, Štech M, Trávníček P, Dušková E, et al: Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988 (2012).2006091610.1016/j.ympev.2010.01.003 – reference: Husband BC, Ozimec B, Martin SL, Pollock L: Mating consequences of polyploid evolution in flowering plants: current trends and insights from synthetic polyploids. Int J Plant Sci 169:195-206 (2008). – reference: Seoighe C: Turning the clock back on ancient genome duplication. Curr Opin Genet Dev 13:636-643 (2003).1463832710.1016/j.gde.2003.10.005 – reference: Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E: Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:29-36 (2010).1991254610.1111/j.1469-8137.2009.03084.x – reference: Soltis DE, Buggs RJA, Doyle JJ, Soltis PS: What we still don't know about polyploidy. Taxon 59:1387-1403 (2010). – reference: Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J: Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169-179 (2012).2198019210.1093/aob/mcr256 – reference: Lysak MA, Schubert I: Mechanisms of chromosome rearrangements, in Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds): Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes, pp 137-147 (Springer, Wien 2013).10.1007/978-3-7091-1160-4_9 – reference: Bretagnolle F, Thompson JD: Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1-22 (1995).10.1111/j.1469-8137.1995.tb03005.x – reference: Feldman M, Levy AA: Genome evolution in allopolyploid wheat - a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511-518 (2009).1978295210.1016/S1673-8527(08)60142-3 – reference: Kumar A, Bennetzen JL: Plant retrotransposons. Annu Rev Genet 33:479-532 (1999).10.1600/036364412X616738 – reference: Lim KY, Matyasek R, Kovarik A, Leitch A: Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599-606 (2004).10.1111/j.1095-8312.2004.00344.x – reference: Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J: Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204 (2010).22318659 – reference: Reese G: Polyploidie und Verbreitung. Z Botanik 46:339-354 (1958). – reference: Stebbins GL, Dawe JC: Polyploidy and distribution in the European flora: a reappraisal. Bot Jahrb Syst 108:343-354 (1987). – reference: Burton TL, Husband BC: Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of inviability and implications for polyploid evolution. Evolution 54:1182-1191 (2000).1100528710.1111/j.0014-3820.2000.tb00553.x – reference: McIntyre P: Cytogeography and genome size variation in the Claytonia perfoliata (Portulacaceae) polyploid complex. Ann Bot 110:1195-1203 (2012a).2296230210.1093/aob/mcs187 – reference: Schmidt T, Heslop-Harrison JS: Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195-199 (1998).10.1016/S1360-1385(98)01223-0 – reference: Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, et al: Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176-1181 (2012).2222830110.1073/pnas.1112041109 – ident: ref87 doi: 10.2307/1218997 – ident: ref62 doi: 10.1111/j.1469-8137.2006.01769.x – ident: ref23 doi: 10.1111/j.0014-3820.2000.tb00553.x – ident: ref93 doi: 10.1093/aob/mcm116 – ident: ref61 doi: 10.1007/978-3-642-31442-1_13 – ident: ref29 doi: 10.1093/jhered/esp008 – ident: ref69 doi: 10.1038/nature09916 – ident: ref125 doi: 10.1093/aob/mcs128 – ident: ref22 doi: 10.3732/ajb.1100395 – ident: ref82 doi: 10.1600/036364412X616738 – ident: ref164 doi: 10.1016/j.gde.2003.10.005 – ident: ref100 doi: 10.1073/pnas.0510791103 – ident: ref18 doi: 10.1007/BF01681812 – ident: ref163 doi: 10.2307/2640816 – ident: ref38 doi: 10.1007/978-3-642-31442-1_9 – ident: ref57 doi: 10.1111/j.1601-5223.1933.tb02604.x – ident: ref55 doi: 10.1111/j.1601-5223.1948.tb02824.x – ident: ref193 doi: 10.1073/pnas.0811575106 – ident: ref86 doi: 10.1093/aob/mcm326 – ident: ref13 doi: 10.1007/978-3-7091-1160-4_15 – ident: ref183 doi: 10.1038/hdy.1993.181 – ident: ref59 doi: 10.1111/nph.12051 – ident: ref67 doi: 10.1086/523367 – ident: ref181 doi: 10.1007/s00606-002-0189-x – ident: ref7 doi: 10.3732/ajb.91.11.1783 – ident: ref155 doi: 10.3732/ajb.1100539 – ident: ref102 doi: 10.1111/j.1095-8312.2004.00332.x – ident: ref109 doi: 10.1105/tpc.110.074526 – ident: ref191 doi: 10.1007/978-3-642-31442-1_10 – ident: ref73 doi: 10.1007/BF00277053 – ident: ref135 doi: 10.1111/j.1365-2745.2011.01838.x – ident: ref17 doi: 10.1371/journal.pone.0033808 – ident: ref10 doi: 10.1098/rspb.2010.2208 – ident: ref101 doi: 10.1159/000082406 – ident: ref53 doi: 10.1007/s10682-011-9539-x – ident: ref1 doi: 10.1111/j.1095-8312.2004.00333.x – ident: ref194 doi: 10.1093/aob/mcr256 – ident: ref32 doi: 10.1038/hdy.2012.77 – ident: ref5 doi: 10.1007/978-3-642-31442-1_12 – ident: ref54 doi: 10.1007/978-1-4613-3069-1_13 – ident: ref91 doi: 10.1111/j.1095-8312.2004.00344.x – ident: ref52 doi: 10.1111/j.1365-2656.2006.01167.x – ident: ref150 doi: 10.1038/sj.hdy.6800912 – ident: ref169 doi: 10.1111/j.1095-8312.2004.00335.x – ident: ref148 doi: 10.1111/j.1472-4642.2009.00602.x – ident: ref170 doi: 10.3732/ajb.0800079 – ident: ref136 doi: 10.1111/j.1365-294X.2007.03315.x – ident: ref12 doi: 10.1371/journal.pone.0029607 – ident: ref25 doi: 10.1016/j.tplants.2009.12.003 – ident: ref2 doi: 10.2307/2656733 – ident: ref186 doi: 10.1111/j.1601-5223.2000.00255.x – ident: ref35 doi: 10.1093/molbev/msj083 – ident: ref39 doi: 10.1093/aob/mcq035 – ident: ref114 doi: 10.1126/science.264.5157.421 – ident: ref21 doi: 10.1111/j.1095-8312.2004.00337.x – ident: ref27 doi: 10.1073/pnas.1112041109 – ident: ref105 doi: 10.1111/j.1469-8137.1993.tb03822.x – ident: ref110 doi: 10.1111/j.1469-8137.2011.03988.x – ident: ref79 doi: 10.1534/genetics.104.032839 – ident: ref141 doi: 10.1023/A:1006534130327 – ident: ref51 doi: 10.1111/j.1469-8137.1983.tb02698.x – ident: ref103 doi: 10.1186/1471-2164-8-427 – ident: ref64 doi: 10.1186/1471-2229-10-204 – ident: ref151 doi: 10.1073/pnas.1016631108 – ident: ref3 doi: 10.1016/j.pbi.2005.01.001 – ident: ref42 doi: 10.1007/978-1-4613-3069-1_3 – ident: ref15 doi: 10.1023/A:1016015913350 – ident: ref158 doi: 10.1007/s00442-010-1595-3 – ident: ref75 doi: 10.1016/j.tig.2009.12.006 – ident: ref190 doi: 10.1023/A:1006392424384 – ident: ref174 doi: 10.1007/978-1-4613-3069-1 – ident: ref107 doi: 10.1111/j.1469-8137.2009.02997.x – ident: ref126 doi: 10.1007/s004120050179 – ident: ref45 doi: 10.1111/j.1469-8137.1996.tb01921.x – ident: ref76 doi: 10.1139/G11-035 – ident: ref41 doi: 10.3732/ajb.1200020 – ident: ref74 doi: 10.1073/pnas.0805141105 – ident: ref161 doi: 10.1007/s10265-007-0108-x – ident: ref165 doi: 10.1111/j.1469-8137.2004.01297.x – ident: ref128 doi: 10.1007/978-3-7091-1160-4_14 – ident: ref14 doi: 10.3732/ajb.94.9.1527 – ident: ref71 doi: 10.1016/j.tree.2009.04.010 – ident: ref166 doi: 10.1111/j.1558-5646.2009.00877.x – ident: ref153 doi: 10.1146/annurev.ecolsys.33.010802.150437 – ident: ref24 doi: 10.1111/j.1558-5646.2007.00134.x – ident: ref149 doi: 10.1007/s00442-008-1156-1 – ident: ref133 doi: 10.2307/2438023 – ident: ref108 doi: 10.1186/1471-2148-10-291 – ident: ref95 doi: 10.1016/S1055-7903(03)00213-6 – ident: ref106 doi: 10.1038/hdy.2012.79 – ident: ref68 doi: 10.1139/g94-087 – ident: ref162 doi: 10.1016/j.tig.2011.03.004 – ident: ref118 doi: 10.2307/2656673 – ident: ref104 doi: 10.1371/journal.pone.0027335 – ident: ref37 doi: 10.2307/2406537 – ident: ref88 doi: 10.1111/j.1095-8312.2004.00346.x – ident: ref138 doi: 10.1111/j.1469-8137.2009.03142.x – ident: ref184 doi: 10.1038/hdy.1997.170 – ident: ref50 doi: 10.1105/tpc.107.054346 – ident: ref77 doi: 10.1371/journal.pone.0039988 – ident: ref31 doi: 10.1111/j.1469-8137.2005.01480.x – ident: ref146 doi: 10.1111/j.1095-8312.2004.00350.x – ident: ref156 doi: 10.1093/molbev/msr112 – ident: ref159 doi: 10.1016/S1360-1385(98)01223-0 – ident: ref94 doi: 10.1371/journal.pone.0003353 – ident: ref63 doi: 10.1111/j.1365-2745.2012.02013.x – ident: ref11 doi: 10.1111/mec.12217 – ident: ref189 doi: 10.1111/j.1558-5646.2011.01424.x – ident: ref92 doi: 10.1111/j.1469-8137.2007.02121.x – ident: ref4 doi: 10.1111/j.1095-8312.2004.00334.x – ident: ref143 doi: 10.1111/j.1469-8137.2009.03140.x – ident: ref26 doi: 10.3390/genes1020166 – ident: ref36 doi: 10.1016/j.tree.2005.07.008 – ident: ref89 doi: 10.1007/s004120050424 – ident: ref137 doi: 10.1111/j.1469-8137.2009.03096.x – ident: ref147 doi: 10.1016/j.bbaexp.2007.02.005 – ident: ref115 doi: 10.1038/sj.hdy.6800333 – ident: ref78 doi: 10.1016/j.ympev.2010.01.003 – ident: ref33 doi: 10.1038/nrg1711 – ident: ref132 doi: 10.1146/annurev.genet.34.1.401 – ident: ref46 doi: 10.1016/S1673-8527(08)60142-3 – ident: ref8 doi: 10.1038/sj.hdy.6800656 – ident: ref176 doi: 10.1111/j.1558-5646.2008.00599.x – ident: ref142 doi: 10.1007/s00438-007-0226-0 – ident: ref96 doi: 10.1016/j.scienta.2010.10.012 – ident: ref131 doi: 10.1086/662673 – ident: ref168 doi: 10.1016/S0169-5347(99)01638-9 – ident: ref66 doi: 10.1098/rspb.2000.0990 – ident: ref177 doi: 10.1098/rspb.2012.2387 – ident: ref65 doi: 10.1007/s00035-011-0091-7 – ident: ref144 doi: 10.1093/molbev/mss168 – ident: ref187 doi: 10.1007/978-3-7091-1160-4_13 – ident: ref167 doi: 10.1080/07352689309701903 – ident: ref180 doi: 10.1890/08-0420.1 – ident: ref130 doi: 10.1016/S0168-9525(03)00015-5 – ident: ref140 doi: 10.1111/j.1469-8137.2009.02767.x – ident: ref60 doi: 10.1038/373512a0 – ident: ref112 doi: 10.1111/j.1365-2745.2009.01543.x – ident: ref117 doi: 10.1126/science.1207205 – ident: ref113 doi: 10.1371/journal.pone.0044784 – ident: ref129 doi: 10.1038/nature07523 – ident: ref179 doi: 10.1093/aob/mcr277 – ident: ref175 doi: 10.2307/2399224 – ident: ref139 doi: 10.1371/journal.pone.0050352 – ident: ref192 doi: 10.1111/j.1365-313X.2009.03911.x – ident: ref99 doi: 10.1007/978-3-7091-1160-4_9 – ident: ref124 doi: 10.1534/g3.112.002162 – ident: ref123 doi: 10.1554/05-629.1 – ident: ref9 doi: 10.1111/j.0014-3820.2005.tb01063.x – ident: ref58 doi: 10.3732/ajb.95.1.50 – ident: ref48 doi: 10.1038/sj.hdy.6800001 – ident: ref80 doi: 10.1007/s00412-011-0331-z – ident: ref20 doi: 10.1006/anbo.1995.1138 – ident: ref19 doi: 10.1111/j.1469-8137.1995.tb03005.x – ident: ref173 doi: 10.1093/aob/mcq192 – ident: ref154 doi: 10.1554/05-095.1 – ident: ref111 doi: 10.1093/aob/mcp282 – ident: ref185 doi: 10.1080/0028825X.1986.10409726 – ident: ref119 doi: 10.1007/978-3-642-31442-1_1 – ident: ref44 doi: 10.1007/978-3-7091-1160-4_17 – ident: ref16 doi: 10.1073/pnas.1207726109 – ident: ref188 doi: 10.1111/j.1469-8137.2007.02019.x – ident: ref97 doi: 10.1080/0028825X.1986.10409725 – ident: ref178 doi: 10.1002/9783527610921.ch5 – ident: ref145 doi: 10.3732/ajb.91.7.1022 – ident: ref157 doi: 10.1371/journal.pone.0036963 – ident: ref81 doi: 10.1146/annurev.genet.33.1.479 – ident: ref43 doi: 10.1073/pnas.0900906106 – ident: ref90 doi: 10.1007/s004120000074 – ident: ref84 doi: 10.1126/science.1153585 – ident: ref197 doi: 10.1016/j.ympev.2012.07.015 – ident: ref47 doi: 10.1007/BF02803074 – ident: ref34 doi: 10.1007/BF02338802 – ident: ref40 doi: 10.1073/pnas.97.16.9115 – ident: ref134 doi: 10.1038/44766 – ident: ref85 doi: 10.1111/j.1095-8312.2004.00349.x – ident: ref98 doi: 10.1111/j.1365-2699.2006.01562.x – ident: ref28 doi: 10.1016/0092-8674(81)90428-1 – ident: ref70 doi: 10.1093/aob/mcm271 – ident: ref127 doi: 10.1111/j.1601-5223.1936.tb03204.x – ident: ref72 doi: 10.1007/s00442-006-0536-7 – ident: ref30 doi: 10.1111/j.1469-8137.2009.03084.x – ident: ref121 doi: 10.3732/ajb.1100466 – ident: ref116 doi: 10.1534/genetics.107.072751 – ident: ref160 doi: 10.3732/ajb.91.3.439 – ident: ref49 doi: 10.1111/j.1469-8137.2009.03089.x – ident: ref172 doi: 10.1007/978-3-642-31442-1_14 – ident: ref196 doi: 10.1007/978-3-642-31442-1 – ident: ref83 doi: 10.1111/j.1469-8137.2009.03117.x – ident: ref120 doi: 10.1093/aob/mcs187 – ident: ref56 doi: 10.1111/j.1601-5223.1932.tb02560.x – ident: ref195 doi: 10.1073/pnas.1014138108 – ident: ref6 doi: 10.1016/j.pbi.2012.03.010 – ident: ref122 doi: 10.1111/j.1469-8137.2010.03186.x – ident: ref171 doi: 10.1101/sqb.2009.74.007 – ident: ref152 doi: 10.1146/annurev.ecolsys.29.1.467 – ident: ref182 doi: 10.1086/499251 |
SSID | ssj0018456 |
Score | 2.4335058 |
SecondaryResourceType | review_article |
Snippet | Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the... |
SourceID | pubmedcentral proquest pubmed crossref karger |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Chromosomes, Plant - genetics Diploidy DNA Transposable Elements DNA, Plant - genetics Ecosystem Evolution, Molecular Evolutionary Consequences, Constraints and Potential of Polyploidy Genetic Loci Genetic Variation Genome, Plant Phylogeny Plants - classification Plants - genetics Polyploidy Repetitive Sequences, Nucleic Acid |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELdYYRIvEzDYugHKpj3wgAV27Th-mlBVqBBD0zSkvkWOP0RFlYQ2TOp_P1_ihBYhHu27fPnOuTv7_DuEflATx1YSjYk3ZpgZqjGg3GCeOUeoIJrVp1x_3cbjO3Y94ZOw4LYIaZXtP7H-UZtCwxr5GQFkcQH27mf5iKFqFOyuhhIa79AmQJeBVotJF3D54IU3p4sowwlPSEAW8hb8rNlCE1BMZsUebT1A-vX8NW_zZdLkihW63EEfgvsYXTTy3kUbNt9D75uCksuP6Gb0L6iSmi-j4Uqm9GndqgtCVItI5Sb6XVSQKeTvVjjfmC3LWTE1y2iaR1DJqFrso7vL0d_hGId6CVhzklRYa-8-Maq8T5UpAYdmE-eU8C7fQGRGS2us4jI2RBFjmRKZjc-dj1GJzDTEeYMD1MuL3H5GkfB-CzOJcNxlTDiiNDVOaK6NYZY60kcn7ailOoCJwyfM0jqo4DLtBriPvnesZYOg8RrTfjP0HUvbf_iif3j1pyGlpXGe3AoqDXNvkT5rSh9968h-1sBWiMpt8QQ8JI4lTyTto0-NXLsn0IGQMRf-arEm8Y4BELnXKfn0vkbmHiRc-oD2y9uv9RVt07qoBizkHKJeNX-yR961qbLjWn__A_WN9xA priority: 102 providerName: ProQuest |
Title | Evolutionary Consequences, Constraints and Potential of Polyploidy in Plants |
URI | https://karger.com/doi/10.1159/000351727 https://www.ncbi.nlm.nih.gov/pubmed/23796571 https://www.proquest.com/docview/1426377431 https://www.proquest.com/docview/1416695892 https://pubmed.ncbi.nlm.nih.gov/PMC3859924 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3daxQxEB9sq-CL-FF1tR6r-OCDQZPNx-ZRj6tFbCnFwr0t2XzQw2P36G2F--_NbPaWXqmPyQzZTTJhZpKZ3wB8ZE5Kr6klNCozwh2zBFFuiKhDoExRy_ss19MzeXLJf87FfLjvwFyYPxj_3EOjjtgCUeF-SS9eUdfuwUH0owoM3jslZHwvKLlIeUSMk1KUFLM4CgQ3Qzi7hLMztosBYGhnXAQFLpSWQtEdDfUw_dB99ufdMMpbeun4KTwZDMr8W5KAZ_DAN8_hUSoxuXkBv2Z_B-Ey15t8eit2-nPf6ktEdOvcNC4_bzuMHYqjtSE2lpvVsl24Tb5ocqxt1K0P4fJ49nt6QoYKCsQKWnbE2mhQcWailVUbhWm0ZQhGRSOwULWz2jtvhJaOGuo8N6r28muIXivVtUXPr3gJ-03b-NeQq2jJcFeqIELNVaDGMheUFdY57lmgGXzarlplB3hxnMKy6t0MoatxrTP4MLKuEqbGfUyHaelHlm3_0Z3-6Y-LRKpWLkTydqOq4TSuo3vDZKHQVsrg_UiO5wgfR0zj2xvkoVJqUWqWwau0r-MXtpKRgdrZ8ZEBMbp3Kc3iqsfqLkqho4v75j-zeQuPWV9fA-90jmC_u77x76KV09UT2FNzNYGD77Oz84tJL-7_ACHg8vw |
linkProvider | Karger AG |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFQKCC4VjwLbFggIJA6NWnvjODkghJaWLd1WCLXS3oLjh7rqKtnupqD8FN_ITF5sq4pbj_FMHGdmbM_Y8wB4x00Y2phpn-Fm5geGa5-y3PgidY5xyXRQRbkeHYfD0-DbWIxX4E8bC0Nule2aWC3UJtd0Rr7DKLO4pP3u0-zCp6pRdLvaltCoxeLQlr_RZFt8PPiC_H3P-f7eyWDoN1UFfC1YVPhao5IRcIWaR6okhZZGzimJilFfpkbH1lgl4tAwxYwNlExtuOvQkmNxqska6mO_d-AuDmSXjD057gw8NJZEHc3EAz8SEWsyGaHGsFNf2UkqXrO0_907J3fv-U3a7XUnzaVdb_8RrDXqqve5lq_HsGKzJ3C_LmBZPoXR3q9GdNW89AZLntnb1VNVgKJYeCoz3ve8IM8k7C13-DAtZ9N8YkpvknlUOalYrMPprVDyGaxmeWZfgCdRTwpMJJ1waSAdU5obJ7XQxgSWO9aDDy3VEt0kL6dfmCaVESPipCNwD952qLM6Y8dNSOs16TuUtn3rWvvg648alMyMQ3DLqKSZ64vkn2T24E0HxllKVy8qs_kl4bAwjEUU8x48r_nafYH3ZRwKiW_LKxzvECgD-FVINjmrMoH3IxGjAb3x_2G9hgfDk6NRMjo4PtyEh7wq6EGHSFuwWswv7UtUq4r0VSXLHvy87cnzF9LzNBI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiZeJj4GFAYEBBIPi4pdO04eJgRdy8ZGVU1M2ltw_KFVVElpM1D-tf118-WLbpp426Pti5Ocz_bvfOc7gHdUB4GJiPKJ28x8pqnyMcqNzxNrCRVEsfKW6_dxsH_Cvp3y0zW4aO7CoFtlsyaWC7XOFJ6R9whGFhe43_Vs7RYx2Rt9mv_2MYMUWlqbdBqViBya4q9T35a7B3turN9TOhr-GOz7dYYBX3ES5r5SDnAwKh0KSaTAa6ahtVI4kNQXiVaR0UbyKNBEEm2YFIkJPlqn1ZEoUagZ9V2_d2BdoFbUgfUvw_HkuLVhhIxXd5so80MekjqukcMPvcqAJzCVzcpuePcXOn8vbsK61102V_bA0QPYrMGr97mStoewZtJHcK9KZ1k8hqPhn1qQ5aLwBit-2jtlqUxHkS89mWpvkuXop-R6y6wrzIr5LJvqwpumHuZRypdbcHIrvHwCnTRLzTPwhENNTIfCcpswYYlUVFuhuNKaGWpJFz40XItVHcocf2EWlyoNj-KWwV1425LOq_gdNxFtVaxvSZr67Wv1g6_HVVM819Y1NwMV1zN_Gf-T0y68aZvdnEVDjExNdo40JAgiHka0C0-rcW3fQPsiCrhwT4srI94SYDzwqy3p9KyMC94PeeTU6ef__6zXsOEmTnx0MD58Afdpmd0DT5S2oZMvzs1Lh7Hy5FUtzB78vO35cwlhLzmt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Consequences%2C+Constraints+and+Potential+of+Polyploidy+in+Plants&rft.jtitle=Cytogenetic+and+genome+research&rft.au=Weiss-Schneeweiss%2C+H.&rft.au=Emadzade%2C+K.&rft.au=Jang%2C+T.-S.&rft.au=Schneeweiss%2C+G.M.&rft.date=2013-01-01&rft.isbn=9783318024753&rft.issn=1424-8581&rft.eissn=1424-859X&rft.volume=140&rft.issue=2-4&rft.spage=137&rft.epage=150&rft_id=info:doi/10.1159%2F000351727&rft_id=info%3Apmid%2F23796571&rft.externalDocID=351727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8581&client=summon |