Learning patterns of the ageing brain in MRI using deep convolutional networks

•Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variable...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 224; p. 117401
Main Authors Dinsdale, Nicola K., Bluemke, Emma, Smith, Stephen M., Arya, Zobair, Vidaurre, Diego, Jenkinson, Mark, Namburete, Ana I.L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variables are consistent with other publications.•Excluding subjects with various health conditions had minimal impact on main correlations. Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes.
AbstractList Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes.
•Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variables are consistent with other publications.•Excluding subjects with various health conditions had minimal impact on main correlations. Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes.
Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors Δ =Age -Age correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between Δ and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the Δ from models such as this network were predictive of any health outcomes.
ArticleNumber 117401
Author Smith, Stephen M.
Bluemke, Emma
Vidaurre, Diego
Jenkinson, Mark
Dinsdale, Nicola K.
Arya, Zobair
Namburete, Ana I.L.
Author_xml – sequence: 1
  givenname: Nicola K.
  surname: Dinsdale
  fullname: Dinsdale, Nicola K.
  email: nicola.dinsdale@dtc.ox.ac.uk
  organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 2
  givenname: Emma
  surname: Bluemke
  fullname: Bluemke, Emma
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom
– sequence: 3
  givenname: Stephen M.
  surname: Smith
  fullname: Smith, Stephen M.
  organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 4
  givenname: Zobair
  surname: Arya
  fullname: Arya, Zobair
  organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 5
  givenname: Diego
  orcidid: 0000-0002-9650-2229
  surname: Vidaurre
  fullname: Vidaurre, Diego
  organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 6
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
  organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
– sequence: 7
  givenname: Ana I.L.
  surname: Namburete
  fullname: Namburete, Ana I.L.
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32979523$$D View this record in MEDLINE/PubMed
BookMark eNqFkV2L1DAUhoOsuB_6F6TgjTcdc5K0aS518WNgVBC9DmlyOmbsJGPSrvjvTbe7K3gjBBJenvOek_NekrMQAxJSAd0AhfbVYRNwTtEfzR43jLIigxQUHpELoKqpVSPZ2fJueN0BqHNymfOBUqpAdE_IOWdKqobxC_JphyYFH_bVyUwTppCrOFTTd6yK9SL3yfhQlfPxy7aa8yI5xFNlY7iJ4zz5GMxYBZx-xfQjPyWPBzNmfHZ3X5Fv795-vf5Q7z6_316_3tW2gW6qrWCDpdwI02HvWsVEjxYlBQZGCKqkQSdZgw6UMg5a3jPbcssaJ8Eay_kV2a6-LpqDPqWyifRbR-P1rRDTXps0eTuidr20g6PAe2oEs6w3DVdWSQRA23FVvF6uXqcUf86YJ3302eI4moBxzpoJ0bayg5YV9MU_6CHOqSxgoSRlEphaDLuVsinmnHB4GBCoXvLTB_03P73kp9f8SunzuwZzf0T3UHgfWAHerACW7d54TDpbj8Gi8wntVL7v_9_lD-VMshM
CitedBy_id crossref_primary_10_1016_j_neuron_2022_09_012
crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1038_s41467_022_29525_9
crossref_primary_10_3390_jimaging9120271
crossref_primary_10_1038_s41598_023_49514_2
crossref_primary_10_3389_fpsyt_2021_627996
crossref_primary_10_1016_j_neucom_2024_127974
crossref_primary_10_1093_ageing_afae140
crossref_primary_10_1016_j_inffus_2023_101931
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_3389_fnagi_2023_1303036
crossref_primary_10_1016_j_neuroimage_2023_120109
crossref_primary_10_3389_fradi_2024_1283392
crossref_primary_10_3389_fnagi_2022_941864
crossref_primary_10_2139_ssrn_4170697
crossref_primary_10_3390_diagnostics13040652
crossref_primary_10_1109_TMI_2022_3221890
crossref_primary_10_1038_s41598_022_24541_7
crossref_primary_10_4155_bio_2023_0193
crossref_primary_10_3389_fneur_2022_979774
crossref_primary_10_1016_j_inffus_2023_03_007
crossref_primary_10_3390_su15129620
crossref_primary_10_1016_j_jagp_2023_09_014
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_1016_j_neurobiolaging_2021_10_007
crossref_primary_10_1002_hbm_26265
crossref_primary_10_3233_ADR_220011
crossref_primary_10_1109_TMI_2021_3108910
crossref_primary_10_2139_ssrn_4117373
crossref_primary_10_1016_j_neuroimage_2022_119504
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1016_j_neuroimage_2023_120292
crossref_primary_10_3389_fpsyt_2021_710932
crossref_primary_10_1016_j_eswa_2022_116622
crossref_primary_10_3389_fnagi_2021_761954
crossref_primary_10_1109_TMI_2022_3222093
crossref_primary_10_1007_s11042_023_17259_9
crossref_primary_10_1007_s11357_023_00924_0
crossref_primary_10_1109_TMI_2021_3085948
crossref_primary_10_1002_hbm_25805
crossref_primary_10_1016_j_compmedimag_2021_101967
crossref_primary_10_1038_s41591_023_02296_6
crossref_primary_10_1177_23998083231224505
crossref_primary_10_1038_s41598_020_76518_z
crossref_primary_10_1016_j_neuroimage_2022_119210
crossref_primary_10_1038_s41598_023_27903_x
crossref_primary_10_1109_ACCESS_2023_3291810
crossref_primary_10_1016_j_neuroimage_2023_119911
crossref_primary_10_1088_1741_2552_ac4bfe
crossref_primary_10_1002_advs_202204717
crossref_primary_10_1038_s41398_022_02162_y
crossref_primary_10_3390_brainsci13091329
crossref_primary_10_3390_diagnostics12051179
crossref_primary_10_1016_j_neubiorev_2024_105581
crossref_primary_10_1038_s41598_024_61915_5
crossref_primary_10_1002_hbm_25838
Cites_doi 10.1002/nbm.1479
10.1016/j.neuroimage.2010.03.020
10.1016/j.neuroimage.2010.01.005
10.1136/bmj.c3666
10.1016/j.neubiorev.2014.02.011
10.1371/journal.pmed.1001779
10.1002/gps.2087
10.1038/nn.4393
10.7554/eLife.52677
10.1016/j.neurobiolaging.2016.01.014
10.1016/j.neurobiolaging.2014.07.046
10.1093/cercor/bhm080
10.1016/j.neuroimage.2011.09.015
10.1101/560151
10.1523/JNEUROSCI.0391-14.2014
10.1111/j.1467-9868.2005.00503.x
10.3390/e17127868
10.1109/JBHI.2016.2559938
10.1093/toxsci/55.1.171
10.1016/j.neuroimage.2007.07.053
10.1111/ejn.13835
10.1101/741595
10.1016/j.neuroimage.2015.04.036
10.1016/j.neurobiolaging.2004.09.017
10.1109/SISY.2017.8080565
10.1007/s12021-015-9292-3
10.1101/130385
10.1016/j.neuroimage.2017.06.070
10.1016/j.neuroimage.2013.02.055
10.1186/1471-2377-14-101
10.1016/j.tins.2017.10.001
10.1007/978-3-319-67561-9_8
10.1007/s00401-011-0851-x
10.1016/j.neuroimage.2018.03.007
10.1016/j.proenv.2011.10.100
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Jan 1, 2021
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 1, 2021
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2020.117401
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117401
ExternalDocumentID oai_doaj_org_article_db7cfd013b0a42c2ba539c97e11ec839
10_1016_j_neuroimage_2020_117401
32979523
S1053811920308867
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Department of Health
– fundername: Medical Research Council
– fundername: Wellcome Trust
  grantid: 203139/Z/16/Z
– fundername: Wellcome Trust
  grantid: 098369/Z/12/Z
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
6I.
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AACTN
AADPK
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLVK
ABMAC
ABMZM
ABUWG
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADFRT
AEBSH
AEFWE
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HMQ
IHE
J1W
KOM
LCYCR
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZA5
ZU3
~G-
.1-
.FO
0SF
AAEDT
AAXKI
ADVLN
AFJKZ
AFRHN
AJUYK
AKRWK
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
Z5R
29N
3V.
53G
AAQXK
AAYXX
ABXDB
ADFGL
ADMUD
AGHFR
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
ROL
SEW
WUQ
XPP
ZMT
7TK
7XB
8FD
8FK
FR3
K9.
P64
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c518t-c42fc03a4a8ebd6924bece70121a44097aed725ed199ad163b2c63c25d71cac33
IEDL.DBID .~1
ISSN 1053-8119
IngestDate Tue Oct 22 15:12:24 EDT 2024
Sat Oct 05 05:25:27 EDT 2024
Thu Oct 10 16:00:14 EDT 2024
Thu Sep 26 19:48:21 EDT 2024
Sat Sep 28 08:38:41 EDT 2024
Fri Feb 23 02:46:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Convolutional neural networks
Brain aging
UK Biobank
Language English
License This is an open access article under the CC BY license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-c42fc03a4a8ebd6924bece70121a44097aed725ed199ad163b2c63c25d71cac33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9650-2229
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811920308867
PMID 32979523
PQID 2470271299
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_db7cfd013b0a42c2ba539c97e11ec839
proquest_miscellaneous_2446678162
proquest_journals_2470271299
crossref_primary_10_1016_j_neuroimage_2020_117401
pubmed_primary_32979523
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117401
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Debette, Markus (bib0011) 2010; 341
Schmidt, Schmidt, Haybaeck, Loitfelder, Weis, Cavalieri, Seiler, Enzinger, Ropele, Erkinjuntti, Pantoni, Scheltens, Fazekas, Jellinger (bib0040) 2011; 122
Gunning-Dixon, Brickman, Cheng, Alexopoulos (bib0017) 2009; 24
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Smith (bib0029) 2016; 19
Pham, Abe, Oka, Chen (bib0036) 2015; 17
Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib0008) 2016; 163
Namburete, A., Xie, W., Noble, J., 2017. Robust regression of brain maturation from 3d fetal neurosonography using CRNS. pp. 73–80.
Smith, S., Vidaurre, D., Alfaro-Almagro, F., Nichols, T., Miller, K., 2019. Estimation of brain age delta from brain imaging.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
Raz, Ghisletta, Rodrigue, Kennedy, Lindenberger (bib0037) 2010; 51
Abe, Yamasue, Yamada, Masutani, Kabasawa, Sasaki, Takei, Suga, Kasai, Aoki, Ohtomo (bib0002) 2010; 23
Huang, Chen, Fujimoto, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0019) 2017
Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein (bib0021) 2017; 169
Cherubini, Caligiuri, Péran, Sabatini, Cosentino, Amato (bib0006) 2016; 20
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift.
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bib0053) 2017
Hugenschmidt, Peiffer, Kraft, Casanova, Deibler, Burdette, Maldjian, Laurienti (bib0020) 2007; 18
Steffener, Habeck, O’Shea, Razlighi, Bherer, Stern (bib0045) 2016; 40
Barnett, Lewis, Blackwell, Taylor (bib0004) 2014; 14
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition.
.
Lin, Jin, Fu, Zhang, Bin, Wu (bib0026) 2015; 125
Pardakhti, N., Sajedi, H., 2017. Age prediction based on brain MRI images using feature learning.
Alfaro-Almagro, F., Jenkinson, M., Bangerter, N., Andersson, J., Griffanti, L., Douaud, G., Sotiropoulos, S., Jbabdi, S., Hernandez Fernandez, M., Vallee, E., Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D., Zhang, H., Dragonu, I., Matthews, P., Smith, S., 2017. Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank. bioRxiv 166, 130385.
Pardoe, Kuzniecky (bib0034) 2017; 16
Salat, Tuch, Greve, van der Kouwe, Hevelone, Zaleta, Rosen, Fischl, Corkin, Rosas, Dale (bib0038) 2005; 26
Doan, Engvig, Zaske, Persson, Lund, Kaufmann, Cordova-Palomera, Alnæs, Moberget, Brækhus, Barca, Nordvik, Engedal, Agartz, Selbæk, Andreassen, Westlye (bib0012) 2017; 158
Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., Collins, R., 2015. Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age 12, e1001779.
Franke, Hagemann, Schleussner, Gaser (bib0013) 2015; 115
Mwangi, Hasan, Soares (bib0030) 2013; 75
Zou, Hastie (bib0054) 2005; 67
Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van zijl, Mori (bib0018) 2008; 39
Franke, Ristow, Gaser (bib0014) 2013
Storsve, Fjell, Tamnes, Westlye, Overbye, Aasland, Walhovd (bib0046) 2014; 34
Cole, Ritchie, Bastin, Hernndez, Muáz Maniega, Royle, Corley, Pattie, Harris, Zhang, Wray, Redmond, Marioni, Starr, Cox, Wardlaw, Sharp, Deary (bib0009) 2017; 23
UN, 2015. World population ageing 2015, United Nations Department of Economic and Social Affairs.
Scahill, Frost, Jenkins, Whitwell, Rossor, Fox (bib0039) 2003; 60
Cole, Franke (bib0010) 2017; 40
Madan, Kensinger (bib0028) 2018; 47
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0023) 2011; 62
Simonyan, Vedaldi, Zisserman (bib0041) 2014
Pervaiz, U., Vidaurre, D., Woolrich, M. W., Smith, S. M., 2019. Optimising network modelling methods for fmri. bioRxiv.
Lorenzi, Pennec, Frisoni, Ayache (bib0027) 2015; 36
Fujimoto, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0016) 2017
Valizadeh, Hänggi, Mérillat, Jäncke (bib0051) 2016; 38
Chollet, F., et al., 2015. Keras.
Liem, Varoquaux, Kynast, Beyer, Kharabian Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock, Riedel-Heller, Luck, Loeffler, Schroeter, Witte, Margulies (bib0025) 2016; 148
Su, Wang, Shen, Hu (bib0047) 2011; 8
Bernard, Seidler (bib0005) 2014
Franke, Ziegler, Klöppel, Gaser (bib0015) 2010; 50
Varikuti, Genon, Sotiras, Schwender, Hoffstaedter, Patil, Jockwitz, Caspers, Moebus, Amunts, Davatzikos, Eickhoff (bib0052) 2018; 173
Kondo, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0024) 2015
Smith, Elliott, Alfaro-Almagro, McCarthy, Nichols, Douaud, Miller (bib0043) 2020; 9
O’Flaherty (bib0032) 2000; 55
Tohka, Moradi, Huttunen, Alzheimer’s Disease Neuroimaging Initiative (bib0049) 2016; 14
Varikuti (10.1016/j.neuroimage.2020.117401_bib0052) 2018; 173
Doan (10.1016/j.neuroimage.2020.117401_bib0012) 2017; 158
Mwangi (10.1016/j.neuroimage.2020.117401_bib0030) 2013; 75
10.1016/j.neuroimage.2020.117401_bib0050
Salat (10.1016/j.neuroimage.2020.117401_bib0038) 2005; 26
Pham (10.1016/j.neuroimage.2020.117401_bib0036) 2015; 17
Abe (10.1016/j.neuroimage.2020.117401_bib0002) 2010; 23
Fujimoto (10.1016/j.neuroimage.2020.117401_bib0016) 2017
10.1016/j.neuroimage.2020.117401_bib0007
Jenkinson (10.1016/j.neuroimage.2020.117401_bib0023) 2011; 62
Smith (10.1016/j.neuroimage.2020.117401_bib0043) 2020; 9
10.1016/j.neuroimage.2020.117401_bib0048
Huang (10.1016/j.neuroimage.2020.117401_bib0019) 2017
10.1016/j.neuroimage.2020.117401_bib0003
Miller (10.1016/j.neuroimage.2020.117401_bib0029) 2016; 19
Cole (10.1016/j.neuroimage.2020.117401_bib0008) 2016; 163
10.1016/j.neuroimage.2020.117401_bib0022
Cole (10.1016/j.neuroimage.2020.117401_bib0009) 2017; 23
Wang (10.1016/j.neuroimage.2020.117401_bib0053) 2017
Lin (10.1016/j.neuroimage.2020.117401_bib0026) 2015; 125
Scahill (10.1016/j.neuroimage.2020.117401_bib0039) 2003; 60
Cherubini (10.1016/j.neuroimage.2020.117401_bib0006) 2016; 20
Tohka (10.1016/j.neuroimage.2020.117401_bib0049) 2016; 14
Storsve (10.1016/j.neuroimage.2020.117401_bib0046) 2014; 34
Franke (10.1016/j.neuroimage.2020.117401_bib0013) 2015; 115
Cole (10.1016/j.neuroimage.2020.117401_bib0010) 2017; 40
Simonyan (10.1016/j.neuroimage.2020.117401_bib0041) 2014
Barnett (10.1016/j.neuroimage.2020.117401_bib0004) 2014; 14
10.1016/j.neuroimage.2020.117401_bib0033
10.1016/j.neuroimage.2020.117401_bib0031
Lorenzi (10.1016/j.neuroimage.2020.117401_sbref0023) 2015; 36
Gunning-Dixon (10.1016/j.neuroimage.2020.117401_bib0017) 2009; 24
Hugenschmidt (10.1016/j.neuroimage.2020.117401_bib0020) 2007; 18
Pardoe (10.1016/j.neuroimage.2020.117401_bib0034) 2017; 16
Madan (10.1016/j.neuroimage.2020.117401_bib0028) 2018; 47
Su (10.1016/j.neuroimage.2020.117401_bib0047) 2011; 8
Debette (10.1016/j.neuroimage.2020.117401_bib0011) 2010; 341
Bernard (10.1016/j.neuroimage.2020.117401_bib0005) 2014
Kondo (10.1016/j.neuroimage.2020.117401_bib0024) 2015
O’Flaherty (10.1016/j.neuroimage.2020.117401_bib0032) 2000; 55
Schmidt (10.1016/j.neuroimage.2020.117401_bib0040) 2011; 122
Hua (10.1016/j.neuroimage.2020.117401_bib0018) 2008; 39
10.1016/j.neuroimage.2020.117401_bib0044
10.1016/j.neuroimage.2020.117401_bib0001
Liem (10.1016/j.neuroimage.2020.117401_bib0025) 2016; 148
10.1016/j.neuroimage.2020.117401_bib0042
Steffener (10.1016/j.neuroimage.2020.117401_bib0045) 2016; 40
Valizadeh (10.1016/j.neuroimage.2020.117401_bib0051) 2016; 38
Franke (10.1016/j.neuroimage.2020.117401_bib0015) 2010; 50
Franke (10.1016/j.neuroimage.2020.117401_bib0014) 2013
Raz (10.1016/j.neuroimage.2020.117401_bib0037) 2010; 51
Huizinga (10.1016/j.neuroimage.2020.117401_bib0021) 2017; 169
Zou (10.1016/j.neuroimage.2020.117401_bib0054) 2005; 67
10.1016/j.neuroimage.2020.117401_bib0035
References_xml – volume: 55
  start-page: 171
  year: 2000
  end-page: 188
  ident: bib0032
  article-title: Modeling normal aging bone loss, with consideration of bone loss in osteoporosis
  publication-title: Toxicol. Sci.
  contributor:
    fullname: O’Flaherty
– volume: 341
  year: 2010
  ident: bib0011
  article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis
  publication-title: BMJ
  contributor:
    fullname: Markus
– volume: 47
  year: 2018
  ident: bib0028
  article-title: Predicting age from cortical structure across the lifespan
  publication-title: Eur. J. Neurosci.
  contributor:
    fullname: Kensinger
– volume: 24
  start-page: 109
  year: 2009
  end-page: 117
  ident: bib0017
  article-title: Aging of cerebral white matter: a review of MRIfindings
  publication-title: Int. J. Geriatr. Psychiatry
  contributor:
    fullname: Alexopoulos
– volume: 40
  year: 2017
  ident: bib0010
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci.
  contributor:
    fullname: Franke
– volume: 14
  start-page: 279
  year: 2016
  end-page: 296
  ident: bib0049
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
  contributor:
    fullname: Alzheimer’s Disease Neuroimaging Initiative
– volume: 158
  start-page: 282
  year: 2017
  end-page: 295
  ident: bib0012
  article-title: Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples
  publication-title: NeuroImage
  contributor:
    fullname: Westlye
– volume: 23
  year: 2017
  ident: bib0009
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
  contributor:
    fullname: Deary
– start-page: 94
  year: 2013
  end-page: 97
  ident: bib0014
  article-title: Gender-specific effects of health and lifestyle markers on individual brainage
  publication-title: 2013 International Workshop on Pattern Recognition in Neuroimaging
  contributor:
    fullname: Gaser
– volume: 17
  start-page: 8130
  year: 2015
  end-page: 8151
  ident: bib0036
  article-title: Measures of morphological complexity of gray matter on magnetic resonance imaging for control age grouping
  publication-title: Entropy
  contributor:
    fullname: Chen
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bib0015
  article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
  contributor:
    fullname: Gaser
– volume: 51
  start-page: 501
  year: 2010
  end-page: 511
  ident: bib0037
  article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences
  publication-title: NeuroImage
  contributor:
    fullname: Lindenberger
– volume: 38
  year: 2016
  ident: bib0051
  article-title: Age prediction on the basis of brain anatomical measures
  publication-title: Hum. Brain Map.
  contributor:
    fullname: Jäncke
– volume: 36
  start-page: S42
  year: 2015
  end-page: S52
  ident: bib0027
  article-title: Disentangling normal aging from alzheimer’s disease in structural magnetic resonance images
  publication-title: Neurobiology of Aging
  contributor:
    fullname: Ayache
– volume: 26
  start-page: 1215
  year: 2005
  end-page: 1227
  ident: bib0038
  article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging
  publication-title: Neurobiol. Aging
  contributor:
    fullname: Dale
– year: 2014
  ident: bib0005
  article-title: Moving forward: age effects on the cerebellum underlie cognitive and motor declines
  publication-title: Neurosci. Biobehav. Rev.
  contributor:
    fullname: Seidler
– volume: 75
  year: 2013
  ident: bib0030
  article-title: Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach
  publication-title: NeuroImage
  contributor:
    fullname: Soares
– volume: 122
  start-page: 171
  year: 2011
  end-page: 185
  ident: bib0040
  article-title: Heterogeneity in age-related white matter changes
  publication-title: Acta Neuropathol.
  contributor:
    fullname: Jellinger
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0054
  article-title: Regularization and variable selection via the elastic net.
  publication-title: J. R. Stat. Soc.
  contributor:
    fullname: Hastie
– volume: 19
  year: 2016
  ident: bib0029
  article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  contributor:
    fullname: Smith
– volume: 173
  start-page: 394
  year: 2018
  end-page: 410
  ident: bib0052
  article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction
  publication-title: NeuroImage
  contributor:
    fullname: Eickhoff
– start-page: 3028
  year: 2017
  end-page: 3031
  ident: bib0016
  article-title: Brain age estimation from t1-weighted images using effective local features
  publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  contributor:
    fullname: Aoki
– volume: 18
  start-page: 433
  year: 2007
  end-page: 442
  ident: bib0020
  article-title: Relating imaging indices of white matter integrity and volume in healthy older adults
  publication-title: Cereb. Cortex
  contributor:
    fullname: Laurienti
– volume: 60
  start-page: 989
  year: 2003
  end-page: 994
  ident: bib0039
  article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging
  publication-title: JAMA Neurol.
  contributor:
    fullname: Fox
– volume: 8
  start-page: 645
  year: 2011
  end-page: 652
  ident: bib0047
  article-title: Age-related classification and prediction based on MRI: a sparse representation method
  publication-title: Procedia Environ. Sci.
  contributor:
    fullname: Hu
– volume: 23
  start-page: 446
  year: 2010
  end-page: 458
  ident: bib0002
  article-title: Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging
  publication-title: NMR Biomed.
  contributor:
    fullname: Ohtomo
– volume: 39
  start-page: 336
  year: 2008
  end-page: 347
  ident: bib0018
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: NeuroImage
  contributor:
    fullname: Mori
– volume: 40
  start-page: 138
  year: 2016
  end-page: 144
  ident: bib0045
  article-title: Differences between chronological and brain age are related to education and self-reported physical activity
  publication-title: Neurobiol. Aging
  contributor:
    fullname: Stern
– volume: 16
  year: 2017
  ident: bib0034
  article-title: Napr: a cloud-based framework for neuroanatomical age prediction
  publication-title: Neuroinformatics
  contributor:
    fullname: Kuzniecky
– start-page: 849
  year: 2017
  end-page: 852
  ident: bib0019
  article-title: Age estimation from brain MRI images using deep learning
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
  contributor:
    fullname: Aoki
– start-page: 6450
  year: 2017
  end-page: 6458
  ident: bib0053
  article-title: Residual attention network for image classification
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  contributor:
    fullname: Tang
– volume: 34
  start-page: 8488
  year: 2014
  end-page: 8498
  ident: bib0046
  article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change
  publication-title: J. Neurosci.
  contributor:
    fullname: Walhovd
– volume: 14
  year: 2014
  ident: bib0004
  article-title: Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing
  publication-title: BMC Neurol.
  contributor:
    fullname: Taylor
– volume: 20
  start-page: 1232
  year: 2016
  end-page: 1239
  ident: bib0006
  article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction
  publication-title: IEEE J. Biomed. Health Inform.
  contributor:
    fullname: Amato
– year: 2014
  ident: bib0041
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
  publication-title: Workshop at International Conference on Learning Representations
  contributor:
    fullname: Zisserman
– volume: 9
  year: 2020
  ident: bib0043
  article-title: Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations
  publication-title: eLife
  contributor:
    fullname: Miller
– volume: 148
  year: 2016
  ident: bib0025
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
  contributor:
    fullname: Margulies
– volume: 125
  year: 2015
  ident: bib0026
  article-title: Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks
  publication-title: Computer Methods and Programs in Biomedicine
  contributor:
    fullname: Wu
– volume: 62
  start-page: 782
  year: 2011
  end-page: 790
  ident: bib0023
  article-title: FSL.
  publication-title: NeuroImage
  contributor:
    fullname: Smith
– start-page: 666
  year: 2015
  end-page: 669
  ident: bib0024
  article-title: An age estimation method using brain local features for t1-weighted images
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  contributor:
    fullname: Aoki
– volume: 163
  year: 2016
  ident: bib0008
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
  contributor:
    fullname: Montana
– volume: 169
  year: 2017
  ident: bib0021
  article-title: A spatio-temporal reference model of the aging brain
  publication-title: NeuroImage
  contributor:
    fullname: Klein
– volume: 115
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0013
  article-title: Changes of individual brainage during the course of the menstrual cycle
  publication-title: NeuroImage
  contributor:
    fullname: Gaser
– volume: 23
  start-page: 446
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117401_bib0002
  article-title: Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1479
  contributor:
    fullname: Abe
– start-page: 666
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117401_bib0024
  article-title: An age estimation method using brain local features for t1-weighted images
  contributor:
    fullname: Kondo
– ident: 10.1016/j.neuroimage.2020.117401_bib0022
– volume: 148
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0025
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
  contributor:
    fullname: Liem
– start-page: 94
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117401_bib0014
  article-title: Gender-specific effects of health and lifestyle markers on individual brainage
  contributor:
    fullname: Franke
– volume: 51
  start-page: 501
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117401_bib0037
  article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.020
  contributor:
    fullname: Raz
– volume: 38
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0051
  article-title: Age prediction on the basis of brain anatomical measures
  publication-title: Hum. Brain Map.
  contributor:
    fullname: Valizadeh
– volume: 23
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0009
  article-title: Brain age predicts mortality
  publication-title: Mol. Psychiatry
  contributor:
    fullname: Cole
– volume: 50
  start-page: 883
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117401_bib0015
  article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
  contributor:
    fullname: Franke
– volume: 341
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117401_bib0011
  article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis
  publication-title: BMJ
  doi: 10.1136/bmj.c3666
  contributor:
    fullname: Debette
– year: 2014
  ident: 10.1016/j.neuroimage.2020.117401_bib0005
  article-title: Moving forward: age effects on the cerebellum underlie cognitive and motor declines
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.02.011
  contributor:
    fullname: Bernard
– ident: 10.1016/j.neuroimage.2020.117401_bib0048
  doi: 10.1371/journal.pmed.1001779
– volume: 24
  start-page: 109
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117401_bib0017
  article-title: Aging of cerebral white matter: a review of MRIfindings
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.2087
  contributor:
    fullname: Gunning-Dixon
– ident: 10.1016/j.neuroimage.2020.117401_bib0007
– volume: 169
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0021
  article-title: A spatio-temporal reference model of the aging brain
  publication-title: NeuroImage
  contributor:
    fullname: Huizinga
– ident: 10.1016/j.neuroimage.2020.117401_bib0050
– volume: 19
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0029
  article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
  contributor:
    fullname: Miller
– volume: 9
  year: 2020
  ident: 10.1016/j.neuroimage.2020.117401_bib0043
  article-title: Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations
  publication-title: eLife
  doi: 10.7554/eLife.52677
  contributor:
    fullname: Smith
– volume: 40
  start-page: 138
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0045
  article-title: Differences between chronological and brain age are related to education and self-reported physical activity
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.01.014
  contributor:
    fullname: Steffener
– volume: 36
  start-page: S42
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117401_sbref0023
  article-title: Disentangling normal aging from alzheimer’s disease in structural magnetic resonance images
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2014.07.046
  contributor:
    fullname: Lorenzi
– volume: 18
  start-page: 433
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117401_bib0020
  article-title: Relating imaging indices of white matter integrity and volume in healthy older adults
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm080
  contributor:
    fullname: Hugenschmidt
– volume: 62
  start-page: 782
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117401_bib0023
  article-title: FSL.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
  contributor:
    fullname: Jenkinson
– ident: 10.1016/j.neuroimage.2020.117401_bib0044
  doi: 10.1101/560151
– volume: 34
  start-page: 8488
  issue: 25
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117401_bib0046
  article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0391-14.2014
  contributor:
    fullname: Storsve
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117401_bib0054
  article-title: Regularization and variable selection via the elastic net.
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
  contributor:
    fullname: Zou
– volume: 17
  start-page: 8130
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117401_bib0036
  article-title: Measures of morphological complexity of gray matter on magnetic resonance imaging for control age grouping
  publication-title: Entropy
  doi: 10.3390/e17127868
  contributor:
    fullname: Pham
– volume: 20
  start-page: 1232
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0006
  article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2559938
  contributor:
    fullname: Cherubini
– volume: 55
  start-page: 171
  year: 2000
  ident: 10.1016/j.neuroimage.2020.117401_bib0032
  article-title: Modeling normal aging bone loss, with consideration of bone loss in osteoporosis
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/55.1.171
  contributor:
    fullname: O’Flaherty
– volume: 39
  start-page: 336
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117401_bib0018
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.053
  contributor:
    fullname: Hua
– volume: 47
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117401_bib0028
  article-title: Predicting age from cortical structure across the lifespan
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13835
  contributor:
    fullname: Madan
– ident: 10.1016/j.neuroimage.2020.117401_bib0035
  doi: 10.1101/741595
– volume: 115
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117401_bib0013
  article-title: Changes of individual brainage during the course of the menstrual cycle
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.04.036
  contributor:
    fullname: Franke
– volume: 26
  start-page: 1215
  issue: 8
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117401_bib0038
  article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.09.017
  contributor:
    fullname: Salat
– volume: 163
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0008
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
  contributor:
    fullname: Cole
– ident: 10.1016/j.neuroimage.2020.117401_bib0033
  doi: 10.1109/SISY.2017.8080565
– volume: 14
  start-page: 279
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117401_bib0049
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9292-3
  contributor:
    fullname: Tohka
– volume: 16
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0034
  article-title: Napr: a cloud-based framework for neuroanatomical age prediction
  publication-title: Neuroinformatics
  contributor:
    fullname: Pardoe
– ident: 10.1016/j.neuroimage.2020.117401_bib0003
  doi: 10.1101/130385
– volume: 158
  start-page: 282
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0012
  article-title: Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.070
  contributor:
    fullname: Doan
– ident: 10.1016/j.neuroimage.2020.117401_bib0001
– start-page: 849
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0019
  article-title: Age estimation from brain MRI images using deep learning
  contributor:
    fullname: Huang
– start-page: 6450
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0053
  article-title: Residual attention network for image classification
  contributor:
    fullname: Wang
– volume: 75
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117401_bib0030
  article-title: Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.055
  contributor:
    fullname: Mwangi
– volume: 14
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117401_bib0004
  article-title: Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-14-101
  contributor:
    fullname: Barnett
– start-page: 3028
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0016
  article-title: Brain age estimation from t1-weighted images using effective local features
  contributor:
    fullname: Fujimoto
– volume: 40
  issue: 12
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117401_bib0010
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.10.001
  contributor:
    fullname: Cole
– ident: 10.1016/j.neuroimage.2020.117401_bib0031
  doi: 10.1007/978-3-319-67561-9_8
– year: 2014
  ident: 10.1016/j.neuroimage.2020.117401_bib0041
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
  contributor:
    fullname: Simonyan
– volume: 122
  start-page: 171
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117401_bib0040
  article-title: Heterogeneity in age-related white matter changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-011-0851-x
  contributor:
    fullname: Schmidt
– volume: 173
  start-page: 394
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117401_bib0052
  article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.007
  contributor:
    fullname: Varikuti
– volume: 125
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117401_bib0026
  article-title: Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks
  publication-title: Computer Methods and Programs in Biomedicine
  contributor:
    fullname: Lin
– ident: 10.1016/j.neuroimage.2020.117401_bib0042
– volume: 60
  start-page: 989
  issue: 7
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117401_bib0039
  article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging
  publication-title: JAMA Neurol.
  contributor:
    fullname: Scahill
– volume: 8
  start-page: 645
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117401_bib0047
  article-title: Age-related classification and prediction based on MRI: a sparse representation method
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2011.10.100
  contributor:
    fullname: Su
SSID ssj0009148
Score 2.6440918
Snippet •Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly...
Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and...
SourceID doaj
proquest
crossref
pubmed
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 117401
SubjectTerms Adult
Age
Aged
Aged, 80 and over
Aging
Biobanks
Brain - diagnostic imaging
Brain aging
Convolutional neural networks
Deep learning
Demographics
Disease
Female
Humans
Imaging, Three-Dimensional
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Male
Medical imaging
Medical research
Middle Aged
Mortality
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging
Phenotype
Phenotypes
Physiology
Population
UK Biobank
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb1dXieC12KRp0-BJRVFhPYiCt5DHVBTsLu76_5006aoH0YPQUxrSZGbCfNNMviHkyNWFLV1TZ6IElYmmLjLlfZ1B3TRWguNChsvJo9vq6kHcPJaPX0p9hZywSA8cBXfsrXSNR6BicyO449aUhXJKAmOAH4pX93LVB1M93S6i_JS3E7O5OnbI51fcoxgT8u6sUqRCML0z6jj7v_mknzBn53suV8lKAo30NE52jSxAu06WRulYfIPcJpbUJzrp6DLbKR03FKEdxZmEZhsKQVB8RnfXNKS6P1EPMKEh5zzZHo7fxpTw6SZ5uLy4P7_KUqGEzJWsnmVO8MblhRGmBusrDKlQMyADXZsRgdDKgJe8BM-UMh4RmOWuKhwvvWTOuKLYIovtuIUdQmXeeJAyIDMjlAOT16qCEMbYyjLmBoT1EtOTyIeh-0SxF_0pZR2krKOUB-QsiHbePzBadw2oZ530rH_T84Cc9IrRCRxEp49DPf9hCsNelzpt0qlGO8SgHAEPDn44f43bK5yZmBbG76GPqNCfs4oPyHa0gfk6Cq6kwkB-9z_Wt0eWeUiX6f7uDMni7O0d9hHvzOxBZ9ofPBL_Og
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVtCqWX0u86SYsKvYpasmxJ5BCa0pAWNofSwN6EvrykEHub3fz_zsjyLj2kFHyyZWGPRp430vMbQj4G3fg29JrJNhkme90wE6NmSfe9VykIqfDn5MVld3Elvy_bZVlw2xRa5fxNzB_qOAZcI_8EN0EGBdHJnK5_M6wahburpYTGQ_KIi7pDSpdaqr3oLpfTr3BtwzTnpjB5Jn5X1ou8voFZC1miyLuXspSGmcNTVvH_K0rdh0JzNDp_Rp4WGEk_T-P-nDxIwwvyeFE2yl-Sy6KbuqLrLKA5bOjYUwB7FJ4ET3ssDUHhWPz4RpH8vqIxpTVFFnrxRuh_mEjim1fk6vzrzy8XrJROYKHlesuCFH2oGyedTj52kGTBWCWFAm5OosSVS1GJNkVujIuAybwIXRNEGxUPLjTNa3IwjEN6S6iq-5iUQqzmpAnJ1dp0CRMb33nOQ0X4bDG7nhQy7Ewd-2X3VrZoZTtZuSJnaNpde9S4zifG25UtU8ZGr0IfAaL62kkRhHdtY4JRifMELmYqcjIPjC1wYYIB0NX1fzzC8TyWtkzbjd07WUU-7C7DhMNdFDek8Q7byA4iPO9ERd5MPrB7j0YYZSC1P_x350fkiUBqTF7JOSYH29u79A6wzda_zw78B5tY99A
  priority: 102
  providerName: ProQuest
Title Learning patterns of the ageing brain in MRI using deep convolutional networks
URI https://dx.doi.org/10.1016/j.neuroimage.2020.117401
https://www.ncbi.nlm.nih.gov/pubmed/32979523
https://www.proquest.com/docview/2470271299
https://search.proquest.com/docview/2446678162
https://doaj.org/article/db7cfd013b0a42c2ba539c97e11ec839
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEBUhhdJLafrpJjUq9Lq1pdWuJHJKQoLTYlPSBnwT-lrjQNcmdq797ZnRah1yCAQKxgZZCO1opHmzenoi5JtXpat8owpRRV2IRpWFDkEVUTWNk9FzIfFw8nRWT67Fj3k13yNn_VkYpFXmtb9b09NqnUtG2Zqj9XI5-g3IAMINIBSUXFE1nigXEP7Ap7__e6B5aCa643BVWWDtzObpOF5JM3L5F2YuZIo87WCKfD1MH6KSkv-jSPUUEk0R6eINeZ2hJD3pentA9mL7lryc5s3yd2SWtVMXdJ1ENNsNXTUUAB-FnmCxw-shKHymV5cUCfALGmJcU2SiZ4-E9tuOKL55T64vzv-cTYp8fULhK6a2hRe88ePSCquiCzUkWjBeUaKImxUoc2VjkLyKgWltA-Ayx31del4Fybz1ZfmB7LerNn4iVI6bEKVEvGaF9tGOla4jJjeudoz5AWG9xcy6U8kwPX3sxjxY2aCVTWflATlF0-7qo851KljdLkweaBOc9E0AmOrGVnDPna1K7bWMjEVwMz0gx_3AmEduA00tn9GFo34sTZ66GwPeCak6wCBo_Ovub5h0uJNi27i6wzqihijPaj4gHzsf2D1HybXUkN5__q-uHZJXHNkz6WXPEdnf3t7FLwB_tm6Y_Bu-5VwOyYuTy5-TGfyens9-XQ3TK4V7u1MIGg
link.rule.ids 315,783,787,867,2109,4509,12068,21400,24128,27936,27937,31731,31732,33756,33757,43322,43817,45597,45691,74073,74630
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkYAL4k1gASNxtagdJ7bFAQFi1YVtD2hX6s3yK9UikZRt9_8z4zitOICQcnIcyxmPPd_Y428IeRt07ZvQaSabZJjsdM1MjJol3XVepSCkwsvJi2U7v5BfV82qbLhtS1jltCbmhToOAffI38FH4EGBdTIfNr8YZo3C09WSQuMmuYU8XJjBQK3UgXSXy_EqXFMzzbkpkTxjfFfmi7z8CbMWvESRTy9lSQ0zmafM4v-HlfobCs3W6OQ-uVdgJP04jvsDciP1D8ntRTkof0SWhTd1TTeZQLPf0qGjAPYo9ASLPaaGoPAsvp9SDH5f05jShmIUetFGaL8fg8S3j8nFyZfzz3NWUiew0HC9Y0GKLsxqJ51OPrbgZMFYJYUEbk4ixZVLUYkmRW6Mi4DJvAhtHUQTFQ8u1PUTctQPfXpGqJp1MSmFWM1JE5KbadMmdGx86zkPFeGTxOxmZMiwU-jYD3uQskUp21HKFfmEot3XR47rXDBcrW2ZMjZ6FboIENXPnBRBeNfUJhiVOE-gYqYi76eBsQUujDAAmrr8jy4cT2Npy7Td2oOSVeTN_jVMODxFcX0arrGObMHC81ZU5OmoA_v_qIVRBlz75_9u_DW5Mz9fnNmz0-W3F-SuwDCZvKtzTI52V9fpJeCcnX-Vlfk3U6f6tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7aDYReQt91mrYq9GpiPWxZ9BCSNkvSdpcQGshN6OUlhdib7Ob_d2TLu_TQUvBJtoU9Gnm-sT59A_DJ1dyWrqlzUQaVi6bmufK-zkPdNFYGx4SMm5Nn8-rsSny7Lq8T_2mVaJXjN7H_UPvOxX_kh3gTZlAYndRhk2gRF1-nR8u7PFaQiiutqZzGY9iRouLFBHZOTucXl1sJXiqGjXElz2tKVeL1DGyvXj3y5hbnMOaMrF_LFKlQzBisek3_P2LW3zBpH5umT2EvgUpyPHjBM3gU2uewO0vL5i9gnlRUF2TZy2m2K9I1BKEfwSeJzTYWiiB4zC7PSaTCL4gPYUkiJz35JvbfDpTx1Uu4mp7-_HKWp0IKuStpvc6dYI0ruBGmDtZXmHLhyAUZ5dyMiIJXJnjJyuCpUsYjQrPMVdyx0kvqjOP8FUzarg1vgMii8UHKiNyMUC6YolZViGmOrSylLgM6WkwvB70MPRLJfumtlXW0sh6snMFJNO3m-qh43Td09wudJpD2VrrGI2C1hRHMMWtKrpySgdKADqcy-DwOjE7gYQAF2NXNfzzCwTiWOk3ild66XAYfN6dx-sU1FdOG7iFeIyqM97RiGbwefGDzHpwpqTDR3_935x9gFz1Z_ziff38LT1jkzPS_eA5gsr5_CO8Q9Kzt--TNvwFxgQBj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+patterns+of+the+ageing+brain+in+MRI+using+deep+convolutional+networks&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dinsdale%2C+Nicola+K.&rft.au=Bluemke%2C+Emma&rft.au=Smith%2C+Stephen+M.&rft.au=Arya%2C+Zobair&rft.date=2021-01-01&rft.issn=1053-8119&rft.volume=224&rft.spage=117401&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2020_117401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon