Learning patterns of the ageing brain in MRI using deep convolutional networks
•Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variable...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 224; p. 117401 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variables are consistent with other publications.•Excluding subjects with various health conditions had minimal impact on main correlations.
Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes. |
---|---|
AbstractList | Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes. •Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly registered data.•Linear registrations utilise a greater diversity of biologically meaningful areas.•Correlations with IDPs and non-imaging variables are consistent with other publications.•Excluding subjects with various health conditions had minimal impact on main correlations. Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors ΔBrainAge=AgePredicted−AgeTrue correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between ΔBrainAge and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the ΔBrainAge from models such as this network were predictive of any health outcomes. Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and temporally heterogenous, both within a subject and across a population. Machine learning models are particularly suited to capture these patterns and can produce a model that is sensitive to changes of interest, despite the large variety in healthy brain appearance. In this paper, the power of convolutional neural networks (CNNs) and the rich UK Biobank dataset, the largest database currently available, are harnessed to address the problem of predicting brain age. We developed a 3D CNN architecture to predict chronological age, using a training dataset of 12,802 T1-weighted MRI images and a further 6,885 images for testing. The proposed method shows competitive performance on age prediction, but, most importantly, the CNN prediction errors Δ =Age -Age correlated significantly with many clinical measurements from the UK Biobank in the female and male groups. In addition, having used images from only one imaging modality in this experiment, we examined the relationship between Δ and the image-derived phenotypes (IDPs) from all other imaging modalities in the UK Biobank, showing correlations consistent with known patterns of ageing. Furthermore, we show that the use of nonlinearly registered images to train CNNs can lead to the network being driven by artefacts of the registration process and missing subtle indicators of ageing, limiting the clinical relevance. Due to the longitudinal aspect of the UK Biobank study, in the future it will be possible to explore whether the Δ from models such as this network were predictive of any health outcomes. |
ArticleNumber | 117401 |
Author | Smith, Stephen M. Bluemke, Emma Vidaurre, Diego Jenkinson, Mark Dinsdale, Nicola K. Arya, Zobair Namburete, Ana I.L. |
Author_xml | – sequence: 1 givenname: Nicola K. surname: Dinsdale fullname: Dinsdale, Nicola K. email: nicola.dinsdale@dtc.ox.ac.uk organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 2 givenname: Emma surname: Bluemke fullname: Bluemke, Emma organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom – sequence: 3 givenname: Stephen M. surname: Smith fullname: Smith, Stephen M. organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 4 givenname: Zobair surname: Arya fullname: Arya, Zobair organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 5 givenname: Diego orcidid: 0000-0002-9650-2229 surname: Vidaurre fullname: Vidaurre, Diego organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 6 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark organization: Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom – sequence: 7 givenname: Ana I.L. surname: Namburete fullname: Namburete, Ana I.L. organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32979523$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV2L1DAUhoOsuB_6F6TgjTcdc5K0aS518WNgVBC9DmlyOmbsJGPSrvjvTbe7K3gjBBJenvOek_NekrMQAxJSAd0AhfbVYRNwTtEfzR43jLIigxQUHpELoKqpVSPZ2fJueN0BqHNymfOBUqpAdE_IOWdKqobxC_JphyYFH_bVyUwTppCrOFTTd6yK9SL3yfhQlfPxy7aa8yI5xFNlY7iJ4zz5GMxYBZx-xfQjPyWPBzNmfHZ3X5Fv795-vf5Q7z6_316_3tW2gW6qrWCDpdwI02HvWsVEjxYlBQZGCKqkQSdZgw6UMg5a3jPbcssaJ8Eay_kV2a6-LpqDPqWyifRbR-P1rRDTXps0eTuidr20g6PAe2oEs6w3DVdWSQRA23FVvF6uXqcUf86YJ3302eI4moBxzpoJ0bayg5YV9MU_6CHOqSxgoSRlEphaDLuVsinmnHB4GBCoXvLTB_03P73kp9f8SunzuwZzf0T3UHgfWAHerACW7d54TDpbj8Gi8wntVL7v_9_lD-VMshM |
CitedBy_id | crossref_primary_10_1016_j_neuron_2022_09_012 crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1038_s41467_022_29525_9 crossref_primary_10_3390_jimaging9120271 crossref_primary_10_1038_s41598_023_49514_2 crossref_primary_10_3389_fpsyt_2021_627996 crossref_primary_10_1016_j_neucom_2024_127974 crossref_primary_10_1093_ageing_afae140 crossref_primary_10_1016_j_inffus_2023_101931 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_3389_fnagi_2023_1303036 crossref_primary_10_1016_j_neuroimage_2023_120109 crossref_primary_10_3389_fradi_2024_1283392 crossref_primary_10_3389_fnagi_2022_941864 crossref_primary_10_2139_ssrn_4170697 crossref_primary_10_3390_diagnostics13040652 crossref_primary_10_1109_TMI_2022_3221890 crossref_primary_10_1038_s41598_022_24541_7 crossref_primary_10_4155_bio_2023_0193 crossref_primary_10_3389_fneur_2022_979774 crossref_primary_10_1016_j_inffus_2023_03_007 crossref_primary_10_3390_su15129620 crossref_primary_10_1016_j_jagp_2023_09_014 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_1016_j_neurobiolaging_2021_10_007 crossref_primary_10_1002_hbm_26265 crossref_primary_10_3233_ADR_220011 crossref_primary_10_1109_TMI_2021_3108910 crossref_primary_10_2139_ssrn_4117373 crossref_primary_10_1016_j_neuroimage_2022_119504 crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1016_j_neuroimage_2023_120292 crossref_primary_10_3389_fpsyt_2021_710932 crossref_primary_10_1016_j_eswa_2022_116622 crossref_primary_10_3389_fnagi_2021_761954 crossref_primary_10_1109_TMI_2022_3222093 crossref_primary_10_1007_s11042_023_17259_9 crossref_primary_10_1007_s11357_023_00924_0 crossref_primary_10_1109_TMI_2021_3085948 crossref_primary_10_1002_hbm_25805 crossref_primary_10_1016_j_compmedimag_2021_101967 crossref_primary_10_1038_s41591_023_02296_6 crossref_primary_10_1177_23998083231224505 crossref_primary_10_1038_s41598_020_76518_z crossref_primary_10_1016_j_neuroimage_2022_119210 crossref_primary_10_1038_s41598_023_27903_x crossref_primary_10_1109_ACCESS_2023_3291810 crossref_primary_10_1016_j_neuroimage_2023_119911 crossref_primary_10_1088_1741_2552_ac4bfe crossref_primary_10_1002_advs_202204717 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_3390_brainsci13091329 crossref_primary_10_3390_diagnostics12051179 crossref_primary_10_1016_j_neubiorev_2024_105581 crossref_primary_10_1038_s41598_024_61915_5 crossref_primary_10_1002_hbm_25838 |
Cites_doi | 10.1002/nbm.1479 10.1016/j.neuroimage.2010.03.020 10.1016/j.neuroimage.2010.01.005 10.1136/bmj.c3666 10.1016/j.neubiorev.2014.02.011 10.1371/journal.pmed.1001779 10.1002/gps.2087 10.1038/nn.4393 10.7554/eLife.52677 10.1016/j.neurobiolaging.2016.01.014 10.1016/j.neurobiolaging.2014.07.046 10.1093/cercor/bhm080 10.1016/j.neuroimage.2011.09.015 10.1101/560151 10.1523/JNEUROSCI.0391-14.2014 10.1111/j.1467-9868.2005.00503.x 10.3390/e17127868 10.1109/JBHI.2016.2559938 10.1093/toxsci/55.1.171 10.1016/j.neuroimage.2007.07.053 10.1111/ejn.13835 10.1101/741595 10.1016/j.neuroimage.2015.04.036 10.1016/j.neurobiolaging.2004.09.017 10.1109/SISY.2017.8080565 10.1007/s12021-015-9292-3 10.1101/130385 10.1016/j.neuroimage.2017.06.070 10.1016/j.neuroimage.2013.02.055 10.1186/1471-2377-14-101 10.1016/j.tins.2017.10.001 10.1007/978-3-319-67561-9_8 10.1007/s00401-011-0851-x 10.1016/j.neuroimage.2018.03.007 10.1016/j.proenv.2011.10.100 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Jan 1, 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jan 1, 2021 |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PQEST PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2020.117401 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 117401 |
ExternalDocumentID | oai_doaj_org_article_db7cfd013b0a42c2ba539c97e11ec839 10_1016_j_neuroimage_2020_117401 32979523 S1053811920308867 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Department of Health – fundername: Medical Research Council – fundername: Wellcome Trust grantid: 203139/Z/16/Z – fundername: Wellcome Trust grantid: 098369/Z/12/Z |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 6I. 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AACTN AADPK AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLVK ABMAC ABMZM ABUWG ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE ADFRT AEBSH AEFWE AEKER AENEX AFKRA AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HMQ IHE J1W KOM LCYCR LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A NCXOZ O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PQQKQ PROAC PSQYO PSYQQ Q38 RPZ SAE SCC SDF SDG SDP SES SNS SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZA5 ZU3 ~G- .1- .FO 0SF AAEDT AAXKI ADVLN AFJKZ AFRHN AJUYK AKRWK ALIPV CGR CUY CVF ECM EIF NPM RIG Z5R 29N 3V. 53G AAQXK AAYXX ABXDB ADFGL ADMUD AGHFR AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- ROL SEW WUQ XPP ZMT 7TK 7XB 8FD 8FK FR3 K9. P64 PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c518t-c42fc03a4a8ebd6924bece70121a44097aed725ed199ad163b2c63c25d71cac33 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 |
IngestDate | Tue Oct 22 15:12:24 EDT 2024 Sat Oct 05 05:25:27 EDT 2024 Thu Oct 10 16:00:14 EDT 2024 Thu Sep 26 19:48:21 EDT 2024 Sat Sep 28 08:38:41 EDT 2024 Fri Feb 23 02:46:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional neural networks Brain aging UK Biobank |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-c42fc03a4a8ebd6924bece70121a44097aed725ed199ad163b2c63c25d71cac33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9650-2229 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811920308867 |
PMID | 32979523 |
PQID | 2470271299 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db7cfd013b0a42c2ba539c97e11ec839 proquest_miscellaneous_2446678162 proquest_journals_2470271299 crossref_primary_10_1016_j_neuroimage_2020_117401 pubmed_primary_32979523 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117401 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Debette, Markus (bib0011) 2010; 341 Schmidt, Schmidt, Haybaeck, Loitfelder, Weis, Cavalieri, Seiler, Enzinger, Ropele, Erkinjuntti, Pantoni, Scheltens, Fazekas, Jellinger (bib0040) 2011; 122 Gunning-Dixon, Brickman, Cheng, Alexopoulos (bib0017) 2009; 24 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Smith (bib0029) 2016; 19 Pham, Abe, Oka, Chen (bib0036) 2015; 17 Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib0008) 2016; 163 Namburete, A., Xie, W., Noble, J., 2017. Robust regression of brain maturation from 3d fetal neurosonography using CRNS. pp. 73–80. Smith, S., Vidaurre, D., Alfaro-Almagro, F., Nichols, T., Miller, K., 2019. Estimation of brain age delta from brain imaging. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. Raz, Ghisletta, Rodrigue, Kennedy, Lindenberger (bib0037) 2010; 51 Abe, Yamasue, Yamada, Masutani, Kabasawa, Sasaki, Takei, Suga, Kasai, Aoki, Ohtomo (bib0002) 2010; 23 Huang, Chen, Fujimoto, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0019) 2017 Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein (bib0021) 2017; 169 Cherubini, Caligiuri, Péran, Sabatini, Cosentino, Amato (bib0006) 2016; 20 Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bib0053) 2017 Hugenschmidt, Peiffer, Kraft, Casanova, Deibler, Burdette, Maldjian, Laurienti (bib0020) 2007; 18 Steffener, Habeck, O’Shea, Razlighi, Bherer, Stern (bib0045) 2016; 40 Barnett, Lewis, Blackwell, Taylor (bib0004) 2014; 14 Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. . Lin, Jin, Fu, Zhang, Bin, Wu (bib0026) 2015; 125 Pardakhti, N., Sajedi, H., 2017. Age prediction based on brain MRI images using feature learning. Alfaro-Almagro, F., Jenkinson, M., Bangerter, N., Andersson, J., Griffanti, L., Douaud, G., Sotiropoulos, S., Jbabdi, S., Hernandez Fernandez, M., Vallee, E., Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D., Zhang, H., Dragonu, I., Matthews, P., Smith, S., 2017. Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank. bioRxiv 166, 130385. Pardoe, Kuzniecky (bib0034) 2017; 16 Salat, Tuch, Greve, van der Kouwe, Hevelone, Zaleta, Rosen, Fischl, Corkin, Rosas, Dale (bib0038) 2005; 26 Doan, Engvig, Zaske, Persson, Lund, Kaufmann, Cordova-Palomera, Alnæs, Moberget, Brækhus, Barca, Nordvik, Engedal, Agartz, Selbæk, Andreassen, Westlye (bib0012) 2017; 158 Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., Collins, R., 2015. Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age 12, e1001779. Franke, Hagemann, Schleussner, Gaser (bib0013) 2015; 115 Mwangi, Hasan, Soares (bib0030) 2013; 75 Zou, Hastie (bib0054) 2005; 67 Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van zijl, Mori (bib0018) 2008; 39 Franke, Ristow, Gaser (bib0014) 2013 Storsve, Fjell, Tamnes, Westlye, Overbye, Aasland, Walhovd (bib0046) 2014; 34 Cole, Ritchie, Bastin, Hernndez, Muáz Maniega, Royle, Corley, Pattie, Harris, Zhang, Wray, Redmond, Marioni, Starr, Cox, Wardlaw, Sharp, Deary (bib0009) 2017; 23 UN, 2015. World population ageing 2015, United Nations Department of Economic and Social Affairs. Scahill, Frost, Jenkins, Whitwell, Rossor, Fox (bib0039) 2003; 60 Cole, Franke (bib0010) 2017; 40 Madan, Kensinger (bib0028) 2018; 47 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0023) 2011; 62 Simonyan, Vedaldi, Zisserman (bib0041) 2014 Pervaiz, U., Vidaurre, D., Woolrich, M. W., Smith, S. M., 2019. Optimising network modelling methods for fmri. bioRxiv. Lorenzi, Pennec, Frisoni, Ayache (bib0027) 2015; 36 Fujimoto, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0016) 2017 Valizadeh, Hänggi, Mérillat, Jäncke (bib0051) 2016; 38 Chollet, F., et al., 2015. Keras. Liem, Varoquaux, Kynast, Beyer, Kharabian Masouleh, Huntenburg, Lampe, Rahim, Abraham, Craddock, Riedel-Heller, Luck, Loeffler, Schroeter, Witte, Margulies (bib0025) 2016; 148 Su, Wang, Shen, Hu (bib0047) 2011; 8 Bernard, Seidler (bib0005) 2014 Franke, Ziegler, Klöppel, Gaser (bib0015) 2010; 50 Varikuti, Genon, Sotiras, Schwender, Hoffstaedter, Patil, Jockwitz, Caspers, Moebus, Amunts, Davatzikos, Eickhoff (bib0052) 2018; 173 Kondo, Ito, Wu, Sato, Taki, Fukuda, Aoki (bib0024) 2015 Smith, Elliott, Alfaro-Almagro, McCarthy, Nichols, Douaud, Miller (bib0043) 2020; 9 O’Flaherty (bib0032) 2000; 55 Tohka, Moradi, Huttunen, Alzheimer’s Disease Neuroimaging Initiative (bib0049) 2016; 14 Varikuti (10.1016/j.neuroimage.2020.117401_bib0052) 2018; 173 Doan (10.1016/j.neuroimage.2020.117401_bib0012) 2017; 158 Mwangi (10.1016/j.neuroimage.2020.117401_bib0030) 2013; 75 10.1016/j.neuroimage.2020.117401_bib0050 Salat (10.1016/j.neuroimage.2020.117401_bib0038) 2005; 26 Pham (10.1016/j.neuroimage.2020.117401_bib0036) 2015; 17 Abe (10.1016/j.neuroimage.2020.117401_bib0002) 2010; 23 Fujimoto (10.1016/j.neuroimage.2020.117401_bib0016) 2017 10.1016/j.neuroimage.2020.117401_bib0007 Jenkinson (10.1016/j.neuroimage.2020.117401_bib0023) 2011; 62 Smith (10.1016/j.neuroimage.2020.117401_bib0043) 2020; 9 10.1016/j.neuroimage.2020.117401_bib0048 Huang (10.1016/j.neuroimage.2020.117401_bib0019) 2017 10.1016/j.neuroimage.2020.117401_bib0003 Miller (10.1016/j.neuroimage.2020.117401_bib0029) 2016; 19 Cole (10.1016/j.neuroimage.2020.117401_bib0008) 2016; 163 10.1016/j.neuroimage.2020.117401_bib0022 Cole (10.1016/j.neuroimage.2020.117401_bib0009) 2017; 23 Wang (10.1016/j.neuroimage.2020.117401_bib0053) 2017 Lin (10.1016/j.neuroimage.2020.117401_bib0026) 2015; 125 Scahill (10.1016/j.neuroimage.2020.117401_bib0039) 2003; 60 Cherubini (10.1016/j.neuroimage.2020.117401_bib0006) 2016; 20 Tohka (10.1016/j.neuroimage.2020.117401_bib0049) 2016; 14 Storsve (10.1016/j.neuroimage.2020.117401_bib0046) 2014; 34 Franke (10.1016/j.neuroimage.2020.117401_bib0013) 2015; 115 Cole (10.1016/j.neuroimage.2020.117401_bib0010) 2017; 40 Simonyan (10.1016/j.neuroimage.2020.117401_bib0041) 2014 Barnett (10.1016/j.neuroimage.2020.117401_bib0004) 2014; 14 10.1016/j.neuroimage.2020.117401_bib0033 10.1016/j.neuroimage.2020.117401_bib0031 Lorenzi (10.1016/j.neuroimage.2020.117401_sbref0023) 2015; 36 Gunning-Dixon (10.1016/j.neuroimage.2020.117401_bib0017) 2009; 24 Hugenschmidt (10.1016/j.neuroimage.2020.117401_bib0020) 2007; 18 Pardoe (10.1016/j.neuroimage.2020.117401_bib0034) 2017; 16 Madan (10.1016/j.neuroimage.2020.117401_bib0028) 2018; 47 Su (10.1016/j.neuroimage.2020.117401_bib0047) 2011; 8 Debette (10.1016/j.neuroimage.2020.117401_bib0011) 2010; 341 Bernard (10.1016/j.neuroimage.2020.117401_bib0005) 2014 Kondo (10.1016/j.neuroimage.2020.117401_bib0024) 2015 O’Flaherty (10.1016/j.neuroimage.2020.117401_bib0032) 2000; 55 Schmidt (10.1016/j.neuroimage.2020.117401_bib0040) 2011; 122 Hua (10.1016/j.neuroimage.2020.117401_bib0018) 2008; 39 10.1016/j.neuroimage.2020.117401_bib0044 10.1016/j.neuroimage.2020.117401_bib0001 Liem (10.1016/j.neuroimage.2020.117401_bib0025) 2016; 148 10.1016/j.neuroimage.2020.117401_bib0042 Steffener (10.1016/j.neuroimage.2020.117401_bib0045) 2016; 40 Valizadeh (10.1016/j.neuroimage.2020.117401_bib0051) 2016; 38 Franke (10.1016/j.neuroimage.2020.117401_bib0015) 2010; 50 Franke (10.1016/j.neuroimage.2020.117401_bib0014) 2013 Raz (10.1016/j.neuroimage.2020.117401_bib0037) 2010; 51 Huizinga (10.1016/j.neuroimage.2020.117401_bib0021) 2017; 169 Zou (10.1016/j.neuroimage.2020.117401_bib0054) 2005; 67 10.1016/j.neuroimage.2020.117401_bib0035 |
References_xml | – volume: 55 start-page: 171 year: 2000 end-page: 188 ident: bib0032 article-title: Modeling normal aging bone loss, with consideration of bone loss in osteoporosis publication-title: Toxicol. Sci. contributor: fullname: O’Flaherty – volume: 341 year: 2010 ident: bib0011 article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis publication-title: BMJ contributor: fullname: Markus – volume: 47 year: 2018 ident: bib0028 article-title: Predicting age from cortical structure across the lifespan publication-title: Eur. J. Neurosci. contributor: fullname: Kensinger – volume: 24 start-page: 109 year: 2009 end-page: 117 ident: bib0017 article-title: Aging of cerebral white matter: a review of MRIfindings publication-title: Int. J. Geriatr. Psychiatry contributor: fullname: Alexopoulos – volume: 40 year: 2017 ident: bib0010 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends Neurosci. contributor: fullname: Franke – volume: 14 start-page: 279 year: 2016 end-page: 296 ident: bib0049 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics contributor: fullname: Alzheimer’s Disease Neuroimaging Initiative – volume: 158 start-page: 282 year: 2017 end-page: 295 ident: bib0012 article-title: Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples publication-title: NeuroImage contributor: fullname: Westlye – volume: 23 year: 2017 ident: bib0009 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry contributor: fullname: Deary – start-page: 94 year: 2013 end-page: 97 ident: bib0014 article-title: Gender-specific effects of health and lifestyle markers on individual brainage publication-title: 2013 International Workshop on Pattern Recognition in Neuroimaging contributor: fullname: Gaser – volume: 17 start-page: 8130 year: 2015 end-page: 8151 ident: bib0036 article-title: Measures of morphological complexity of gray matter on magnetic resonance imaging for control age grouping publication-title: Entropy contributor: fullname: Chen – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bib0015 article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage contributor: fullname: Gaser – volume: 51 start-page: 501 year: 2010 end-page: 511 ident: bib0037 article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences publication-title: NeuroImage contributor: fullname: Lindenberger – volume: 38 year: 2016 ident: bib0051 article-title: Age prediction on the basis of brain anatomical measures publication-title: Hum. Brain Map. contributor: fullname: Jäncke – volume: 36 start-page: S42 year: 2015 end-page: S52 ident: bib0027 article-title: Disentangling normal aging from alzheimer’s disease in structural magnetic resonance images publication-title: Neurobiology of Aging contributor: fullname: Ayache – volume: 26 start-page: 1215 year: 2005 end-page: 1227 ident: bib0038 article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging publication-title: Neurobiol. Aging contributor: fullname: Dale – year: 2014 ident: bib0005 article-title: Moving forward: age effects on the cerebellum underlie cognitive and motor declines publication-title: Neurosci. Biobehav. Rev. contributor: fullname: Seidler – volume: 75 year: 2013 ident: bib0030 article-title: Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach publication-title: NeuroImage contributor: fullname: Soares – volume: 122 start-page: 171 year: 2011 end-page: 185 ident: bib0040 article-title: Heterogeneity in age-related white matter changes publication-title: Acta Neuropathol. contributor: fullname: Jellinger – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0054 article-title: Regularization and variable selection via the elastic net. publication-title: J. R. Stat. Soc. contributor: fullname: Hastie – volume: 19 year: 2016 ident: bib0029 article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study publication-title: Nat. Neurosci. contributor: fullname: Smith – volume: 173 start-page: 394 year: 2018 end-page: 410 ident: bib0052 article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction publication-title: NeuroImage contributor: fullname: Eickhoff – start-page: 3028 year: 2017 end-page: 3031 ident: bib0016 article-title: Brain age estimation from t1-weighted images using effective local features publication-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) contributor: fullname: Aoki – volume: 18 start-page: 433 year: 2007 end-page: 442 ident: bib0020 article-title: Relating imaging indices of white matter integrity and volume in healthy older adults publication-title: Cereb. Cortex contributor: fullname: Laurienti – volume: 60 start-page: 989 year: 2003 end-page: 994 ident: bib0039 article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging publication-title: JAMA Neurol. contributor: fullname: Fox – volume: 8 start-page: 645 year: 2011 end-page: 652 ident: bib0047 article-title: Age-related classification and prediction based on MRI: a sparse representation method publication-title: Procedia Environ. Sci. contributor: fullname: Hu – volume: 23 start-page: 446 year: 2010 end-page: 458 ident: bib0002 article-title: Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging publication-title: NMR Biomed. contributor: fullname: Ohtomo – volume: 39 start-page: 336 year: 2008 end-page: 347 ident: bib0018 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: NeuroImage contributor: fullname: Mori – volume: 40 start-page: 138 year: 2016 end-page: 144 ident: bib0045 article-title: Differences between chronological and brain age are related to education and self-reported physical activity publication-title: Neurobiol. Aging contributor: fullname: Stern – volume: 16 year: 2017 ident: bib0034 article-title: Napr: a cloud-based framework for neuroanatomical age prediction publication-title: Neuroinformatics contributor: fullname: Kuzniecky – start-page: 849 year: 2017 end-page: 852 ident: bib0019 article-title: Age estimation from brain MRI images using deep learning publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) contributor: fullname: Aoki – start-page: 6450 year: 2017 end-page: 6458 ident: bib0053 article-title: Residual attention network for image classification publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) contributor: fullname: Tang – volume: 34 start-page: 8488 year: 2014 end-page: 8498 ident: bib0046 article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change publication-title: J. Neurosci. contributor: fullname: Walhovd – volume: 14 year: 2014 ident: bib0004 article-title: Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing publication-title: BMC Neurol. contributor: fullname: Taylor – volume: 20 start-page: 1232 year: 2016 end-page: 1239 ident: bib0006 article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction publication-title: IEEE J. Biomed. Health Inform. contributor: fullname: Amato – year: 2014 ident: bib0041 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps publication-title: Workshop at International Conference on Learning Representations contributor: fullname: Zisserman – volume: 9 year: 2020 ident: bib0043 article-title: Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations publication-title: eLife contributor: fullname: Miller – volume: 148 year: 2016 ident: bib0025 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage contributor: fullname: Margulies – volume: 125 year: 2015 ident: bib0026 article-title: Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks publication-title: Computer Methods and Programs in Biomedicine contributor: fullname: Wu – volume: 62 start-page: 782 year: 2011 end-page: 790 ident: bib0023 article-title: FSL. publication-title: NeuroImage contributor: fullname: Smith – start-page: 666 year: 2015 end-page: 669 ident: bib0024 article-title: An age estimation method using brain local features for t1-weighted images publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) contributor: fullname: Aoki – volume: 163 year: 2016 ident: bib0008 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage contributor: fullname: Montana – volume: 169 year: 2017 ident: bib0021 article-title: A spatio-temporal reference model of the aging brain publication-title: NeuroImage contributor: fullname: Klein – volume: 115 start-page: 1 year: 2015 end-page: 6 ident: bib0013 article-title: Changes of individual brainage during the course of the menstrual cycle publication-title: NeuroImage contributor: fullname: Gaser – volume: 23 start-page: 446 year: 2010 ident: 10.1016/j.neuroimage.2020.117401_bib0002 article-title: Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging publication-title: NMR Biomed. doi: 10.1002/nbm.1479 contributor: fullname: Abe – start-page: 666 year: 2015 ident: 10.1016/j.neuroimage.2020.117401_bib0024 article-title: An age estimation method using brain local features for t1-weighted images contributor: fullname: Kondo – ident: 10.1016/j.neuroimage.2020.117401_bib0022 – volume: 148 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0025 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage contributor: fullname: Liem – start-page: 94 year: 2013 ident: 10.1016/j.neuroimage.2020.117401_bib0014 article-title: Gender-specific effects of health and lifestyle markers on individual brainage contributor: fullname: Franke – volume: 51 start-page: 501 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2020.117401_bib0037 article-title: Trajectories of brain aging in middle-aged and older adults: regional and individual differences publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.020 contributor: fullname: Raz – volume: 38 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0051 article-title: Age prediction on the basis of brain anatomical measures publication-title: Hum. Brain Map. contributor: fullname: Valizadeh – volume: 23 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0009 article-title: Brain age predicts mortality publication-title: Mol. Psychiatry contributor: fullname: Cole – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.neuroimage.2020.117401_bib0015 article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 contributor: fullname: Franke – volume: 341 year: 2010 ident: 10.1016/j.neuroimage.2020.117401_bib0011 article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis publication-title: BMJ doi: 10.1136/bmj.c3666 contributor: fullname: Debette – year: 2014 ident: 10.1016/j.neuroimage.2020.117401_bib0005 article-title: Moving forward: age effects on the cerebellum underlie cognitive and motor declines publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.02.011 contributor: fullname: Bernard – ident: 10.1016/j.neuroimage.2020.117401_bib0048 doi: 10.1371/journal.pmed.1001779 – volume: 24 start-page: 109 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2020.117401_bib0017 article-title: Aging of cerebral white matter: a review of MRIfindings publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.2087 contributor: fullname: Gunning-Dixon – ident: 10.1016/j.neuroimage.2020.117401_bib0007 – volume: 169 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0021 article-title: A spatio-temporal reference model of the aging brain publication-title: NeuroImage contributor: fullname: Huizinga – ident: 10.1016/j.neuroimage.2020.117401_bib0050 – volume: 19 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0029 article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study publication-title: Nat. Neurosci. doi: 10.1038/nn.4393 contributor: fullname: Miller – volume: 9 year: 2020 ident: 10.1016/j.neuroimage.2020.117401_bib0043 article-title: Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations publication-title: eLife doi: 10.7554/eLife.52677 contributor: fullname: Smith – volume: 40 start-page: 138 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0045 article-title: Differences between chronological and brain age are related to education and self-reported physical activity publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.01.014 contributor: fullname: Steffener – volume: 36 start-page: S42 year: 2015 ident: 10.1016/j.neuroimage.2020.117401_sbref0023 article-title: Disentangling normal aging from alzheimer’s disease in structural magnetic resonance images publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.07.046 contributor: fullname: Lorenzi – volume: 18 start-page: 433 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2020.117401_bib0020 article-title: Relating imaging indices of white matter integrity and volume in healthy older adults publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm080 contributor: fullname: Hugenschmidt – volume: 62 start-page: 782 year: 2011 ident: 10.1016/j.neuroimage.2020.117401_bib0023 article-title: FSL. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 contributor: fullname: Jenkinson – ident: 10.1016/j.neuroimage.2020.117401_bib0044 doi: 10.1101/560151 – volume: 34 start-page: 8488 issue: 25 year: 2014 ident: 10.1016/j.neuroimage.2020.117401_bib0046 article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0391-14.2014 contributor: fullname: Storsve – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.neuroimage.2020.117401_bib0054 article-title: Regularization and variable selection via the elastic net. publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00503.x contributor: fullname: Zou – volume: 17 start-page: 8130 year: 2015 ident: 10.1016/j.neuroimage.2020.117401_bib0036 article-title: Measures of morphological complexity of gray matter on magnetic resonance imaging for control age grouping publication-title: Entropy doi: 10.3390/e17127868 contributor: fullname: Pham – volume: 20 start-page: 1232 issue: 5 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0006 article-title: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2559938 contributor: fullname: Cherubini – volume: 55 start-page: 171 year: 2000 ident: 10.1016/j.neuroimage.2020.117401_bib0032 article-title: Modeling normal aging bone loss, with consideration of bone loss in osteoporosis publication-title: Toxicol. Sci. doi: 10.1093/toxsci/55.1.171 contributor: fullname: O’Flaherty – volume: 39 start-page: 336 year: 2008 ident: 10.1016/j.neuroimage.2020.117401_bib0018 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.053 contributor: fullname: Hua – volume: 47 year: 2018 ident: 10.1016/j.neuroimage.2020.117401_bib0028 article-title: Predicting age from cortical structure across the lifespan publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13835 contributor: fullname: Madan – ident: 10.1016/j.neuroimage.2020.117401_bib0035 doi: 10.1101/741595 – volume: 115 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2020.117401_bib0013 article-title: Changes of individual brainage during the course of the menstrual cycle publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.04.036 contributor: fullname: Franke – volume: 26 start-page: 1215 issue: 8 year: 2005 ident: 10.1016/j.neuroimage.2020.117401_bib0038 article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.09.017 contributor: fullname: Salat – volume: 163 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0008 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage contributor: fullname: Cole – ident: 10.1016/j.neuroimage.2020.117401_bib0033 doi: 10.1109/SISY.2017.8080565 – volume: 14 start-page: 279 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2020.117401_bib0049 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics doi: 10.1007/s12021-015-9292-3 contributor: fullname: Tohka – volume: 16 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0034 article-title: Napr: a cloud-based framework for neuroanatomical age prediction publication-title: Neuroinformatics contributor: fullname: Pardoe – ident: 10.1016/j.neuroimage.2020.117401_bib0003 doi: 10.1101/130385 – volume: 158 start-page: 282 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0012 article-title: Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.070 contributor: fullname: Doan – ident: 10.1016/j.neuroimage.2020.117401_bib0001 – start-page: 849 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0019 article-title: Age estimation from brain MRI images using deep learning contributor: fullname: Huang – start-page: 6450 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0053 article-title: Residual attention network for image classification contributor: fullname: Wang – volume: 75 year: 2013 ident: 10.1016/j.neuroimage.2020.117401_bib0030 article-title: Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.055 contributor: fullname: Mwangi – volume: 14 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2020.117401_bib0004 article-title: Early intervention in Alzheimer’s disease: a health economic study of the effects of diagnostic timing publication-title: BMC Neurol. doi: 10.1186/1471-2377-14-101 contributor: fullname: Barnett – start-page: 3028 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0016 article-title: Brain age estimation from t1-weighted images using effective local features contributor: fullname: Fujimoto – volume: 40 issue: 12 year: 2017 ident: 10.1016/j.neuroimage.2020.117401_bib0010 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.10.001 contributor: fullname: Cole – ident: 10.1016/j.neuroimage.2020.117401_bib0031 doi: 10.1007/978-3-319-67561-9_8 – year: 2014 ident: 10.1016/j.neuroimage.2020.117401_bib0041 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps contributor: fullname: Simonyan – volume: 122 start-page: 171 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2020.117401_bib0040 article-title: Heterogeneity in age-related white matter changes publication-title: Acta Neuropathol. doi: 10.1007/s00401-011-0851-x contributor: fullname: Schmidt – volume: 173 start-page: 394 year: 2018 ident: 10.1016/j.neuroimage.2020.117401_bib0052 article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.03.007 contributor: fullname: Varikuti – volume: 125 year: 2015 ident: 10.1016/j.neuroimage.2020.117401_bib0026 article-title: Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks publication-title: Computer Methods and Programs in Biomedicine contributor: fullname: Lin – ident: 10.1016/j.neuroimage.2020.117401_bib0042 – volume: 60 start-page: 989 issue: 7 year: 2003 ident: 10.1016/j.neuroimage.2020.117401_bib0039 article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging publication-title: JAMA Neurol. contributor: fullname: Scahill – volume: 8 start-page: 645 year: 2011 ident: 10.1016/j.neuroimage.2020.117401_bib0047 article-title: Age-related classification and prediction based on MRI: a sparse representation method publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2011.10.100 contributor: fullname: Su |
SSID | ssj0009148 |
Score | 2.6440918 |
Snippet | •Brain age is estimated using a 3D CNN from 12,802 full T1-weighted images.•Regions used to drive predictions are different for linearly and nonlinearly... Both normal ageing and neurodegenerative diseases cause morphological changes to the brain. Age-related brain changes are subtle, nonlinear, and spatially and... |
SourceID | doaj proquest crossref pubmed elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 117401 |
SubjectTerms | Adult Age Aged Aged, 80 and over Aging Biobanks Brain - diagnostic imaging Brain aging Convolutional neural networks Deep learning Demographics Disease Female Humans Imaging, Three-Dimensional Learning algorithms Machine learning Magnetic Resonance Imaging Male Medical imaging Medical research Middle Aged Mortality Neural networks Neural Networks, Computer Neurodegenerative diseases Neuroimaging Phenotype Phenotypes Physiology Population UK Biobank |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIb1dXieC12KRp0-BJRVFhPYiCt5DHVBTsLu76_5006aoH0YPQUxrSZGbCfNNMviHkyNWFLV1TZ6IElYmmLjLlfZ1B3TRWguNChsvJo9vq6kHcPJaPX0p9hZywSA8cBXfsrXSNR6BicyO449aUhXJKAmOAH4pX93LVB1M93S6i_JS3E7O5OnbI51fcoxgT8u6sUqRCML0z6jj7v_mknzBn53suV8lKAo30NE52jSxAu06WRulYfIPcJpbUJzrp6DLbKR03FKEdxZmEZhsKQVB8RnfXNKS6P1EPMKEh5zzZHo7fxpTw6SZ5uLy4P7_KUqGEzJWsnmVO8MblhRGmBusrDKlQMyADXZsRgdDKgJe8BM-UMh4RmOWuKhwvvWTOuKLYIovtuIUdQmXeeJAyIDMjlAOT16qCEMbYyjLmBoT1EtOTyIeh-0SxF_0pZR2krKOUB-QsiHbePzBadw2oZ530rH_T84Cc9IrRCRxEp49DPf9hCsNelzpt0qlGO8SgHAEPDn44f43bK5yZmBbG76GPqNCfs4oPyHa0gfk6Cq6kwkB-9z_Wt0eWeUiX6f7uDMni7O0d9hHvzOxBZ9ofPBL_Og priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVtCqWX0u86SYsKvYpasmxJ5BCa0pAWNofSwN6EvrykEHub3fz_zsjyLj2kFHyyZWGPRp430vMbQj4G3fg29JrJNhkme90wE6NmSfe9VykIqfDn5MVld3Elvy_bZVlw2xRa5fxNzB_qOAZcI_8EN0EGBdHJnK5_M6wahburpYTGQ_KIi7pDSpdaqr3oLpfTr3BtwzTnpjB5Jn5X1ou8voFZC1miyLuXspSGmcNTVvH_K0rdh0JzNDp_Rp4WGEk_T-P-nDxIwwvyeFE2yl-Sy6KbuqLrLKA5bOjYUwB7FJ4ET3ssDUHhWPz4RpH8vqIxpTVFFnrxRuh_mEjim1fk6vzrzy8XrJROYKHlesuCFH2oGyedTj52kGTBWCWFAm5OosSVS1GJNkVujIuAybwIXRNEGxUPLjTNa3IwjEN6S6iq-5iUQqzmpAnJ1dp0CRMb33nOQ0X4bDG7nhQy7Ewd-2X3VrZoZTtZuSJnaNpde9S4zifG25UtU8ZGr0IfAaL62kkRhHdtY4JRifMELmYqcjIPjC1wYYIB0NX1fzzC8TyWtkzbjd07WUU-7C7DhMNdFDek8Q7byA4iPO9ERd5MPrB7j0YYZSC1P_x350fkiUBqTF7JOSYH29u79A6wzda_zw78B5tY99A priority: 102 providerName: ProQuest |
Title | Learning patterns of the ageing brain in MRI using deep convolutional networks |
URI | https://dx.doi.org/10.1016/j.neuroimage.2020.117401 https://www.ncbi.nlm.nih.gov/pubmed/32979523 https://www.proquest.com/docview/2470271299 https://search.proquest.com/docview/2446678162 https://doaj.org/article/db7cfd013b0a42c2ba539c97e11ec839 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEBUhhdJLafrpJjUq9Lq1pdWuJHJKQoLTYlPSBnwT-lrjQNcmdq797ZnRah1yCAQKxgZZCO1opHmzenoi5JtXpat8owpRRV2IRpWFDkEVUTWNk9FzIfFw8nRWT67Fj3k13yNn_VkYpFXmtb9b09NqnUtG2Zqj9XI5-g3IAMINIBSUXFE1nigXEP7Ap7__e6B5aCa643BVWWDtzObpOF5JM3L5F2YuZIo87WCKfD1MH6KSkv-jSPUUEk0R6eINeZ2hJD3pentA9mL7lryc5s3yd2SWtVMXdJ1ENNsNXTUUAB-FnmCxw-shKHymV5cUCfALGmJcU2SiZ4-E9tuOKL55T64vzv-cTYp8fULhK6a2hRe88ePSCquiCzUkWjBeUaKImxUoc2VjkLyKgWltA-Ayx31del4Fybz1ZfmB7LerNn4iVI6bEKVEvGaF9tGOla4jJjeudoz5AWG9xcy6U8kwPX3sxjxY2aCVTWflATlF0-7qo851KljdLkweaBOc9E0AmOrGVnDPna1K7bWMjEVwMz0gx_3AmEduA00tn9GFo34sTZ66GwPeCak6wCBo_Ovub5h0uJNi27i6wzqihijPaj4gHzsf2D1HybXUkN5__q-uHZJXHNkz6WXPEdnf3t7FLwB_tm6Y_Bu-5VwOyYuTy5-TGfyens9-XQ3TK4V7u1MIGg |
link.rule.ids | 315,783,787,867,2109,4509,12068,21400,24128,27936,27937,31731,31732,33756,33757,43322,43817,45597,45691,74073,74630 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkYAL4k1gASNxtagdJ7bFAQFi1YVtD2hX6s3yK9UikZRt9_8z4zitOICQcnIcyxmPPd_Y428IeRt07ZvQaSabZJjsdM1MjJol3XVepSCkwsvJi2U7v5BfV82qbLhtS1jltCbmhToOAffI38FH4EGBdTIfNr8YZo3C09WSQuMmuYU8XJjBQK3UgXSXy_EqXFMzzbkpkTxjfFfmi7z8CbMWvESRTy9lSQ0zmafM4v-HlfobCs3W6OQ-uVdgJP04jvsDciP1D8ntRTkof0SWhTd1TTeZQLPf0qGjAPYo9ASLPaaGoPAsvp9SDH5f05jShmIUetFGaL8fg8S3j8nFyZfzz3NWUiew0HC9Y0GKLsxqJ51OPrbgZMFYJYUEbk4ixZVLUYkmRW6Mi4DJvAhtHUQTFQ8u1PUTctQPfXpGqJp1MSmFWM1JE5KbadMmdGx86zkPFeGTxOxmZMiwU-jYD3uQskUp21HKFfmEot3XR47rXDBcrW2ZMjZ6FboIENXPnBRBeNfUJhiVOE-gYqYi76eBsQUujDAAmrr8jy4cT2Npy7Td2oOSVeTN_jVMODxFcX0arrGObMHC81ZU5OmoA_v_qIVRBlz75_9u_DW5Mz9fnNmz0-W3F-SuwDCZvKtzTI52V9fpJeCcnX-Vlfk3U6f6tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7aDYReQt91mrYq9GpiPWxZ9BCSNkvSdpcQGshN6OUlhdib7Ob_d2TLu_TQUvBJtoU9Gnm-sT59A_DJ1dyWrqlzUQaVi6bmufK-zkPdNFYGx4SMm5Nn8-rsSny7Lq8T_2mVaJXjN7H_UPvOxX_kh3gTZlAYndRhk2gRF1-nR8u7PFaQiiutqZzGY9iRouLFBHZOTucXl1sJXiqGjXElz2tKVeL1DGyvXj3y5hbnMOaMrF_LFKlQzBisek3_P2LW3zBpH5umT2EvgUpyPHjBM3gU2uewO0vL5i9gnlRUF2TZy2m2K9I1BKEfwSeJzTYWiiB4zC7PSaTCL4gPYUkiJz35JvbfDpTx1Uu4mp7-_HKWp0IKuStpvc6dYI0ruBGmDtZXmHLhyAUZ5dyMiIJXJnjJyuCpUsYjQrPMVdyx0kvqjOP8FUzarg1vgMii8UHKiNyMUC6YolZViGmOrSylLgM6WkwvB70MPRLJfumtlXW0sh6snMFJNO3m-qh43Td09wudJpD2VrrGI2C1hRHMMWtKrpySgdKADqcy-DwOjE7gYQAF2NXNfzzCwTiWOk3ild66XAYfN6dx-sU1FdOG7iFeIyqM97RiGbwefGDzHpwpqTDR3_935x9gFz1Z_ziff38LT1jkzPS_eA5gsr5_CO8Q9Kzt--TNvwFxgQBj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+patterns+of+the+ageing+brain+in+MRI+using+deep+convolutional+networks&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dinsdale%2C+Nicola+K.&rft.au=Bluemke%2C+Emma&rft.au=Smith%2C+Stephen+M.&rft.au=Arya%2C+Zobair&rft.date=2021-01-01&rft.issn=1053-8119&rft.volume=224&rft.spage=117401&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117401&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2020_117401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |