Glycolipid transfer protein knockout disrupts vesicle trafficking to the plasma membrane

The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 299; no. 4; p. 104607
Main Authors Nurmi, Henrik, Backman, Anders P.E., Halin, Josefin, Lönnfors, Max, Blom, Tomas, Roos-Mattjus, Pia, Mattjus, Peter
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2023
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP–VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.
AbstractList The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP–VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.
ArticleNumber 104607
Author Mattjus, Peter
Backman, Anders P.E.
Blom, Tomas
Lönnfors, Max
Nurmi, Henrik
Halin, Josefin
Roos-Mattjus, Pia
Author_xml – sequence: 1
  givenname: Henrik
  orcidid: 0000-0002-9747-8662
  surname: Nurmi
  fullname: Nurmi, Henrik
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
– sequence: 2
  givenname: Anders P.E.
  orcidid: 0000-0001-8144-4030
  surname: Backman
  fullname: Backman, Anders P.E.
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
– sequence: 3
  givenname: Josefin
  orcidid: 0000-0002-0125-469X
  surname: Halin
  fullname: Halin, Josefin
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
– sequence: 4
  givenname: Max
  orcidid: 0000-0002-3655-9733
  surname: Lönnfors
  fullname: Lönnfors, Max
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
– sequence: 5
  givenname: Tomas
  orcidid: 0000-0001-9711-8387
  surname: Blom
  fullname: Blom, Tomas
  organization: Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
– sequence: 6
  givenname: Pia
  orcidid: 0000-0002-7187-2012
  surname: Roos-Mattjus
  fullname: Roos-Mattjus, Pia
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
– sequence: 7
  givenname: Peter
  orcidid: 0000-0001-8991-5933
  surname: Mattjus
  fullname: Mattjus, Peter
  email: peter.mattjus@abo.fi
  organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36924944$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAQtRAIFtof0EvlYy9ZbCdxYvVQVailSEhcOHCzHGcCs-vEqe2sxL_Hq6Wo7QFfLGvex_i9c3I8-QkI-cTZmjMuLzfrTWfXgokyvyvJmiOy4qwti7LmD8dkxZjghRJ1e0bOY9ywfCrFT8lZKZWoVFWtyMO1e7be4Yw9TcFMcYBA5-AT4ES3k7dbvyTaYwzLnCLdQUTrYA8dBrRbnB5p8jQ9AZ2diaOhI4xd1oEP5GQwLsLH1_uC3P_8cX_1q7i9u765-n5b2Jq3qeiGboBaGa44HzomrJCVkMBLKY2te9F3VdtIxQ2D0rK-rU2joGksM6qTRpUX5NtBdl66EXoLU17N6TngaMKz9gb1v5MJn_Sj3-kcYMV4y7PCl1eF4H8vEJMeMVpwLn_CL1GLljEpZN3KDP38t9mby584M4AfADb4GAMMbxDO9o5Sb3SuTO8r04fKMqf5j2MxmYR-vy-6d5lfD0zI-e4Qgo4WYbLQYwCbdO_xHfYL6ueyhQ
CitedBy_id crossref_primary_10_1016_j_jlr_2024_100508
crossref_primary_10_7554_eLife_91345
crossref_primary_10_7554_eLife_91345_3
crossref_primary_10_1042_BST20240315
crossref_primary_10_3390_ijms25126312
crossref_primary_10_1038_s41467_024_53511_y
Cites_doi 10.1007/978-1-4939-9136-5_9
10.1016/j.plipres.2020.101031
10.1016/j.yexcr.2004.03.052
10.1038/nature02856
10.1074/jbc.M500481200
10.1016/j.bbalip.2021.159021
10.1242/jcs.028696
10.1016/1074-5521(95)90120-5
10.2217/epi-2020-0168
10.1021/bi00129a005
10.1074/jbc.M201191200
10.1074/jbc.M500147200
10.3390/cells10071780
10.1371/journal.pone.0209230
10.1128/jvi.14.5.1220-1228.1974
10.1007/978-1-4939-6996-8_19
10.1016/j.chemphyslip.2013.10.013
10.1371/journal.pone.0143385
10.3390/biom10111557
10.1093/emboj/cdg201
10.1017/S003358351400016X
10.1371/journal.pone.0097263
10.1016/j.bbrc.2009.08.023
10.3389/fcell.2022.895856
10.1186/1471-2164-9-72
10.1128/jvi.21.3.1149-1158.1977
10.1016/j.chemphyslip.2015.07.018
10.1016/0009-3084(85)90058-1
10.1371/annotation/712bb339-6073-4e62-9f68-b285caedd913
10.1016/B978-0-12-801415-8.00016-3
10.1016/j.bbamem.2010.08.018
10.1128/jvi.7.5.651-662.1971
10.1093/nar/gkz369
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbc.2023.104607
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC10140181
36924944
10_1016_j_jbc_2023_104607
S0021925823002491
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c518t-bfbfe59a1911fb02c26426e1366ac5d2db487691a0e3c0d85a79e77c0a9b6a93
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:38:02 EDT 2025
Thu Jul 10 17:08:10 EDT 2025
Mon Jul 21 05:55:00 EDT 2025
Tue Jul 01 01:59:46 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 23 02:36:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords GLTP
glycolipid
VAP-A
VAP
sphingolipid
VSVG
gene silencing
lipid transport
GO
intracellular trafficking
glycerosphingolipid
ER
gRNA
DMEM
GSLs
Golgi
cDNA
endoplasmic reticulum (ER)
ERES
MCS
OCR
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c518t-bfbfe59a1911fb02c26426e1366ac5d2db487691a0e3c0d85a79e77c0a9b6a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9711-8387
0000-0002-7187-2012
0000-0002-0125-469X
0000-0002-9747-8662
0000-0001-8144-4030
0000-0002-3655-9733
0000-0001-8991-5933
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2023.104607
PMID 36924944
PQID 2800626586
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10140181
proquest_miscellaneous_2800626586
pubmed_primary_36924944
crossref_primary_10_1016_j_jbc_2023_104607
crossref_citationtrail_10_1016_j_jbc_2023_104607
elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2023
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Lafay (bib24) 1974; 14
Tuuf, Wistbacka, Mattjus (bib15) 2009; 388
Ohvo-Rekilä, Mattjus (bib17) 2011; 1808
Kjellberg, Mattjus (bib7) 2013; 8
Wyles, Ridgway (bib12) 2004; 297
Sandy, da Costa, Schmidt (bib18) 2020; 10
Kors, Costello, Schrader (bib28) 2022; 10
Kors, Schrader, Costello (bib29) 2022; 5
Divakaruni, Paradyse, Ferrick, Murphy, Jastroch (bib21) 2014; 547
Mishra, Gao, Zou, Stephenson, Malinina, Hinchcliffe (bib31) 2020; 78
Malakhova, Malinina, Pike, Kanack, Patel, Brown (bib5) 2005; 280
Wyles, McMaster, Ridgway (bib13) 2002; 277
Raudvere, Kolberg, Kuzmin, Arak, Adler, Peterson (bib33) 2019; 47
Malinina, Simanshu, Zhai, Samygina, Kamlekar, Kenoth (bib2) 2015; 48
Loewen, Levine (bib9) 2005; 280
Kjellberg, Backman, Möuts, Mattjus (bib34) 2017; 1609
Mattjus (bib1) 2016; 194
Neefjes, Cabukusta (bib11) 2021; 4
Printz, Wagner (bib23) 1971; 7
Tuuf, Mattjus (bib3) 2014; 178
Loewen, Roy, Levine (bib22) 2003; 22
Backman, Halin, Nurmi, Möuts, Kjellberg, Mattjus (bib6) 2018; 13
James, Kehlenbach (bib10) 2021; 10
Rosenwald, Machamer, Pagano (bib30) 1992; 31
Li, Wang, He, Zhang, Ran, Xiong (bib19) 2020; 12
Prosser, Tran, Gougeon, Verly, Ngsee (bib14) 2008; 121
Knipe, Baltimore, Lodish (bib25) 1977; 21
Kjellberg, Lönnfors, Slotte, Mattjus (bib27) 2015; 10
Tomasz (bib20) 1995; 2
Sasaki (bib4) 1985; 38
Malinina, Malakhova, Teplov, Brown, Patel (bib35) 2004; 430
Kjellberg, Backman, Ohvo-Rekilä, Mattjus (bib8) 2014; 9
Zou, Chung, Lin, Malakhova, Pike, Brown (bib16) 2008; 9
Backman, Mattjus (bib26) 2021; 1866
Backman, Halin, Kjellberg, Mattjus (bib32) 2019; 1949
Sandy (10.1016/j.jbc.2023.104607_bib18) 2020; 10
Printz (10.1016/j.jbc.2023.104607_bib23) 1971; 7
Kors (10.1016/j.jbc.2023.104607_bib29) 2022; 5
Loewen (10.1016/j.jbc.2023.104607_bib9) 2005; 280
Rosenwald (10.1016/j.jbc.2023.104607_bib30) 1992; 31
Malinina (10.1016/j.jbc.2023.104607_bib35) 2004; 430
Li (10.1016/j.jbc.2023.104607_bib19) 2020; 12
Backman (10.1016/j.jbc.2023.104607_bib6) 2018; 13
Kjellberg (10.1016/j.jbc.2023.104607_bib7) 2013; 8
Raudvere (10.1016/j.jbc.2023.104607_bib33) 2019; 47
Mishra (10.1016/j.jbc.2023.104607_bib31) 2020; 78
Wyles (10.1016/j.jbc.2023.104607_bib13) 2002; 277
Prosser (10.1016/j.jbc.2023.104607_bib14) 2008; 121
Lafay (10.1016/j.jbc.2023.104607_bib24) 1974; 14
Sasaki (10.1016/j.jbc.2023.104607_bib4) 1985; 38
Divakaruni (10.1016/j.jbc.2023.104607_bib21) 2014; 547
Tomasz (10.1016/j.jbc.2023.104607_bib20) 1995; 2
Tuuf (10.1016/j.jbc.2023.104607_bib15) 2009; 388
James (10.1016/j.jbc.2023.104607_bib10) 2021; 10
Knipe (10.1016/j.jbc.2023.104607_bib25) 1977; 21
Backman (10.1016/j.jbc.2023.104607_bib32) 2019; 1949
Malinina (10.1016/j.jbc.2023.104607_bib2) 2015; 48
Kors (10.1016/j.jbc.2023.104607_bib28) 2022; 10
Wyles (10.1016/j.jbc.2023.104607_bib12) 2004; 297
Kjellberg (10.1016/j.jbc.2023.104607_bib8) 2014; 9
Zou (10.1016/j.jbc.2023.104607_bib16) 2008; 9
Kjellberg (10.1016/j.jbc.2023.104607_bib34) 2017; 1609
Malakhova (10.1016/j.jbc.2023.104607_bib5) 2005; 280
Ohvo-Rekilä (10.1016/j.jbc.2023.104607_bib17) 2011; 1808
Loewen (10.1016/j.jbc.2023.104607_bib22) 2003; 22
Mattjus (10.1016/j.jbc.2023.104607_bib1) 2016; 194
Kjellberg (10.1016/j.jbc.2023.104607_bib27) 2015; 10
Tuuf (10.1016/j.jbc.2023.104607_bib3) 2014; 178
Neefjes (10.1016/j.jbc.2023.104607_bib11) 2021; 4
Backman (10.1016/j.jbc.2023.104607_bib26) 2021; 1866
References_xml – volume: 4
  year: 2021
  ident: bib11
  article-title: What the VAP: the expanded VAP family of proteins interacting with FFAT and FFAT-related motifs for interorganellar contact
  publication-title: Contact (Thousand Oaks)
– volume: 12
  start-page: 1969
  year: 2020
  end-page: 1981
  ident: bib19
  article-title: An integrative analysis identifying transcriptional features and key genes involved in COVID-19
  publication-title: Epigenomics
– volume: 1609
  start-page: 231
  year: 2017
  end-page: 239
  ident: bib34
  article-title: Purification and validation of lipid transfer proteins
  publication-title: Methods Mol. Biol.
– volume: 10
  year: 2015
  ident: bib27
  article-title: Metabolic conversion of ceramides in HeLa cells - a cholesteryl phosphocholine delivery approach
  publication-title: PLoS One
– volume: 38
  start-page: 63
  year: 1985
  end-page: 77
  ident: bib4
  article-title: Glycolipid-binding proteins
  publication-title: Chem. Phys. Lipids
– volume: 31
  start-page: 3581
  year: 1992
  end-page: 3590
  ident: bib30
  article-title: Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway
  publication-title: Biochemistry
– volume: 9
  year: 2014
  ident: bib8
  article-title: Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome
  publication-title: PLoS One
– volume: 10
  start-page: 1780
  year: 2021
  ident: bib10
  article-title: The interactome of the VAP family of proteins: an overview
  publication-title: Cells
– volume: 9
  start-page: 72
  year: 2008
  ident: bib16
  article-title: Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution
  publication-title: BMC Genomics
– volume: 547
  start-page: 309
  year: 2014
  end-page: 354
  ident: bib21
  article-title: Analysis and interpretation of microplate-based oxygen consumption and pH data
  publication-title: Methods Enzymol.
– volume: 8
  year: 2013
  ident: bib7
  article-title: Glycolipid transfer protein expression is affected by glycosphingolipid synthesis
  publication-title: PLoS One
– volume: 48
  start-page: 281
  year: 2015
  end-page: 322
  ident: bib2
  article-title: Sphingolipid transfer proteins defined by the GLTP-fold
  publication-title: Q. Rev. Biophys.
– volume: 1949
  start-page: 105
  year: 2019
  end-page: 114
  ident: bib32
  article-title: Indirect lipid transfer protein activity measurements using quantification of glycosphingolipid production
  publication-title: Methods Mol. Biol.
– volume: 14
  start-page: 1220
  year: 1974
  end-page: 1228
  ident: bib24
  article-title: Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V
  publication-title: J. Virol.
– volume: 280
  start-page: 14097
  year: 2005
  end-page: 14104
  ident: bib9
  article-title: A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 895856
  year: 2022
  ident: bib28
  article-title: VAP proteins - from organelle tethers to pathogenic host interactors and their role in neuronal disease
  publication-title: Front. Cell Dev. Biol.
– volume: 2
  start-page: 575
  year: 1995
  end-page: 579
  ident: bib20
  article-title: Mitomycin C: small, fast and deadly (but very selective)
  publication-title: Chem. Biol.
– volume: 78
  start-page: 101031
  year: 2020
  ident: bib31
  article-title: Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death
  publication-title: Prog. Lipid Res.
– volume: 7
  start-page: 651
  year: 1971
  end-page: 662
  ident: bib23
  article-title: Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins
  publication-title: J. Virol.
– volume: 10
  start-page: 1557
  year: 2020
  ident: bib18
  article-title: More than meets the ISG15: emerging roles in the DNA damage response and beyond
  publication-title: Biomolecules
– volume: 297
  start-page: 533
  year: 2004
  end-page: 547
  ident: bib12
  article-title: VAMP-associated protein-a regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and golgi apparatus
  publication-title: Exp. Cell Res.
– volume: 1808
  start-page: 47
  year: 2011
  end-page: 54
  ident: bib17
  article-title: Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique
  publication-title: Biochim. Biophys. Acta
– volume: 47
  start-page: W191
  year: 2019
  end-page: W198
  ident: bib33
  article-title: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 2025
  year: 2003
  end-page: 2035
  ident: bib22
  article-title: A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP
  publication-title: EMBO J.
– volume: 280
  start-page: 26220
  year: 2005
  end-page: 26312
  ident: bib5
  article-title: Point mutational analysis of the liganding site in human glycolipid transfer protein: functionally of the complex
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 1149
  year: 1977
  end-page: 1158
  ident: bib25
  article-title: Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus
  publication-title: J. Virol.
– volume: 430
  start-page: 1048
  year: 2004
  end-page: 1053
  ident: bib35
  article-title: Structural basis for glycosphingolipid transfer specificity
  publication-title: Nature
– volume: 13
  year: 2018
  ident: bib6
  article-title: Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein
  publication-title: PLoS One
– volume: 388
  start-page: 395
  year: 2009
  end-page: 399
  ident: bib15
  article-title: The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 194
  start-page: 72
  year: 2016
  end-page: 78
  ident: bib1
  article-title: Specificity of the mammalian glycolipid transfer proteins
  publication-title: Chem. Phys. Lipids
– volume: 1866
  start-page: 159021
  year: 2021
  ident: bib26
  article-title: Who moves the sphinx? An overview of intracellular sphingolipid transport
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
– volume: 5
  start-page: 1
  year: 2022
  end-page: 4
  ident: bib29
  article-title: Multiple ways to keep FFAT under control!
  publication-title: Contact (Thousand Oaks)
– volume: 277
  start-page: 29908
  year: 2002
  end-page: 29918
  ident: bib13
  article-title: Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum
  publication-title: J. Biol. Chem.
– volume: 178
  start-page: 27
  year: 2014
  end-page: 37
  ident: bib3
  article-title: Membranes and mammalian glycolipid transferring proteins
  publication-title: Chem. Phys. Lipids
– volume: 121
  start-page: 3052
  year: 2008
  end-page: 3061
  ident: bib14
  article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation
  publication-title: J. Cell Sci.
– volume: 1949
  start-page: 105
  year: 2019
  ident: 10.1016/j.jbc.2023.104607_bib32
  article-title: Indirect lipid transfer protein activity measurements using quantification of glycosphingolipid production
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9136-5_9
– volume: 5
  start-page: 1
  year: 2022
  ident: 10.1016/j.jbc.2023.104607_bib29
  article-title: Multiple ways to keep FFAT under control!
  publication-title: Contact (Thousand Oaks)
– volume: 78
  start-page: 101031
  year: 2020
  ident: 10.1016/j.jbc.2023.104607_bib31
  article-title: Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2020.101031
– volume: 297
  start-page: 533
  year: 2004
  ident: 10.1016/j.jbc.2023.104607_bib12
  article-title: VAMP-associated protein-a regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and golgi apparatus
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.03.052
– volume: 4
  year: 2021
  ident: 10.1016/j.jbc.2023.104607_bib11
  article-title: What the VAP: the expanded VAP family of proteins interacting with FFAT and FFAT-related motifs for interorganellar contact
  publication-title: Contact (Thousand Oaks)
– volume: 430
  start-page: 1048
  year: 2004
  ident: 10.1016/j.jbc.2023.104607_bib35
  article-title: Structural basis for glycosphingolipid transfer specificity
  publication-title: Nature
  doi: 10.1038/nature02856
– volume: 280
  start-page: 26220
  year: 2005
  ident: 10.1016/j.jbc.2023.104607_bib5
  article-title: Point mutational analysis of the liganding site in human glycolipid transfer protein: functionally of the complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500481200
– volume: 1866
  start-page: 159021
  year: 2021
  ident: 10.1016/j.jbc.2023.104607_bib26
  article-title: Who moves the sphinx? An overview of intracellular sphingolipid transport
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2021.159021
– volume: 121
  start-page: 3052
  year: 2008
  ident: 10.1016/j.jbc.2023.104607_bib14
  article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.028696
– volume: 2
  start-page: 575
  year: 1995
  ident: 10.1016/j.jbc.2023.104607_bib20
  article-title: Mitomycin C: small, fast and deadly (but very selective)
  publication-title: Chem. Biol.
  doi: 10.1016/1074-5521(95)90120-5
– volume: 12
  start-page: 1969
  year: 2020
  ident: 10.1016/j.jbc.2023.104607_bib19
  article-title: An integrative analysis identifying transcriptional features and key genes involved in COVID-19
  publication-title: Epigenomics
  doi: 10.2217/epi-2020-0168
– volume: 31
  start-page: 3581
  year: 1992
  ident: 10.1016/j.jbc.2023.104607_bib30
  article-title: Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway
  publication-title: Biochemistry
  doi: 10.1021/bi00129a005
– volume: 277
  start-page: 29908
  year: 2002
  ident: 10.1016/j.jbc.2023.104607_bib13
  article-title: Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201191200
– volume: 280
  start-page: 14097
  year: 2005
  ident: 10.1016/j.jbc.2023.104607_bib9
  article-title: A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500147200
– volume: 10
  start-page: 1780
  year: 2021
  ident: 10.1016/j.jbc.2023.104607_bib10
  article-title: The interactome of the VAP family of proteins: an overview
  publication-title: Cells
  doi: 10.3390/cells10071780
– volume: 13
  year: 2018
  ident: 10.1016/j.jbc.2023.104607_bib6
  article-title: Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0209230
– volume: 14
  start-page: 1220
  year: 1974
  ident: 10.1016/j.jbc.2023.104607_bib24
  article-title: Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V
  publication-title: J. Virol.
  doi: 10.1128/jvi.14.5.1220-1228.1974
– volume: 1609
  start-page: 231
  year: 2017
  ident: 10.1016/j.jbc.2023.104607_bib34
  article-title: Purification and validation of lipid transfer proteins
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6996-8_19
– volume: 178
  start-page: 27
  year: 2014
  ident: 10.1016/j.jbc.2023.104607_bib3
  article-title: Membranes and mammalian glycolipid transferring proteins
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.10.013
– volume: 10
  year: 2015
  ident: 10.1016/j.jbc.2023.104607_bib27
  article-title: Metabolic conversion of ceramides in HeLa cells - a cholesteryl phosphocholine delivery approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143385
– volume: 10
  start-page: 1557
  year: 2020
  ident: 10.1016/j.jbc.2023.104607_bib18
  article-title: More than meets the ISG15: emerging roles in the DNA damage response and beyond
  publication-title: Biomolecules
  doi: 10.3390/biom10111557
– volume: 22
  start-page: 2025
  year: 2003
  ident: 10.1016/j.jbc.2023.104607_bib22
  article-title: A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg201
– volume: 48
  start-page: 281
  year: 2015
  ident: 10.1016/j.jbc.2023.104607_bib2
  article-title: Sphingolipid transfer proteins defined by the GLTP-fold
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S003358351400016X
– volume: 9
  year: 2014
  ident: 10.1016/j.jbc.2023.104607_bib8
  article-title: Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097263
– volume: 388
  start-page: 395
  year: 2009
  ident: 10.1016/j.jbc.2023.104607_bib15
  article-title: The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.08.023
– volume: 10
  start-page: 895856
  year: 2022
  ident: 10.1016/j.jbc.2023.104607_bib28
  article-title: VAP proteins - from organelle tethers to pathogenic host interactors and their role in neuronal disease
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.895856
– volume: 9
  start-page: 72
  year: 2008
  ident: 10.1016/j.jbc.2023.104607_bib16
  article-title: Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-72
– volume: 21
  start-page: 1149
  year: 1977
  ident: 10.1016/j.jbc.2023.104607_bib25
  article-title: Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus
  publication-title: J. Virol.
  doi: 10.1128/jvi.21.3.1149-1158.1977
– volume: 194
  start-page: 72
  year: 2016
  ident: 10.1016/j.jbc.2023.104607_bib1
  article-title: Specificity of the mammalian glycolipid transfer proteins
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2015.07.018
– volume: 38
  start-page: 63
  year: 1985
  ident: 10.1016/j.jbc.2023.104607_bib4
  article-title: Glycolipid-binding proteins
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(85)90058-1
– volume: 8
  year: 2013
  ident: 10.1016/j.jbc.2023.104607_bib7
  article-title: Glycolipid transfer protein expression is affected by glycosphingolipid synthesis
  publication-title: PLoS One
  doi: 10.1371/annotation/712bb339-6073-4e62-9f68-b285caedd913
– volume: 547
  start-page: 309
  year: 2014
  ident: 10.1016/j.jbc.2023.104607_bib21
  article-title: Analysis and interpretation of microplate-based oxygen consumption and pH data
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801415-8.00016-3
– volume: 1808
  start-page: 47
  year: 2011
  ident: 10.1016/j.jbc.2023.104607_bib17
  article-title: Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.08.018
– volume: 7
  start-page: 651
  year: 1971
  ident: 10.1016/j.jbc.2023.104607_bib23
  article-title: Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins
  publication-title: J. Virol.
  doi: 10.1128/jvi.7.5.651-662.1971
– volume: 47
  start-page: W191
  year: 2019
  ident: 10.1016/j.jbc.2023.104607_bib33
  article-title: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz369
SSID ssj0000491
Score 2.4454927
Snippet The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It...
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It...
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104607
SubjectTerms Biological Transport - genetics
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Membrane - metabolism
Cell Movement - genetics
Cytosol - metabolism
endoplasmic reticulum (ER)
Gene Expression Regulation - genetics
Gene Knockout Techniques
gene silencing
glycerosphingolipid
glycolipid
Golgi
HeLa Cells
Humans
intracellular trafficking
lipid transport
Protein Binding - genetics
sphingolipid
VAP-A
VSVG
Title Glycolipid transfer protein knockout disrupts vesicle trafficking to the plasma membrane
URI https://dx.doi.org/10.1016/j.jbc.2023.104607
https://www.ncbi.nlm.nih.gov/pubmed/36924944
https://www.proquest.com/docview/2800626586
https://pubmed.ncbi.nlm.nih.gov/PMC10140181
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCrovorte6mUZQXywpCST-2Nd1KIoChX6FmaSCabdpqVN1fXXe85MJklbd1FfQmkm05Lvy8m5H0Je2C5PBWgalieksDxfSiuO88yKWO75LGWutLHe-eOnYPzVez_1p73ej251SSWG6a8_1pX8D6rwHeCKVbL_gGyzKXwBnwFfOALCcPwrjN9dXAKOxarIcNQDKKByPVCNF4pyMC9B0mHScVZs1ttVtRl8lxvcAJdi34i5KpTSmucKdOgFjpNegPFc7mQHtbVjSmvVTZt0WxEzK65xKG-BNfpdVq6LtgSIp_PazzpSpTSDz239w5jXE-MxFJEXbYIQRvBfByVWS2mHOP_Z9VAwt5PYIrVUBT0PSwamXbHL9GCkml9eR4hi2FmPwj2Q79rVMBvOBLafZO7wcC1AtFoowN0AjUvdXnKvqbY5dYPcZGBfoID88KVtMw9mk2NC4CoZcO_3jskts8NV-syhvbKfdtvRYyZ3yZ0aSjrSbLpHerI8IaejklfLxSV9SVVKsIq1nJDb5wbiUzJtyUYN2WhNNmrIRg3ZaE022iEbrZYUyEY12agh230yeftmcj626rEcVuo7UWWJXOTSjzlY-k4ubHigwYYNpOMGAU_9jGUCjOAgdrgt3dTOIp-HsQzD1OaxCHjsPiBH5bKUjwj17DxwBIgGkAlexPyIM2aLPAwdF94jLO4T29zbJK1b1uPklIvE5CbOEkAmQWQSjUyfvGouWel-Ldct9gxgSa1wakUyAb5dd9lzA24CIGCEDe7WcrtJWIQ1yaDUB33yUIPd_AtDmD6JdmjQLMBG77tnyuKbavjuKDdI5Dy-ctMn5Lh98p6So2q9lc9AW67EmfIynSl-_wZ7XcMl
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycolipid+transfer+protein+knockout+disrupts+vesicle+trafficking+to+the+plasma+membrane&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Nurmi%2C+Henrik&rft.au=Backman%2C+Anders+P+E&rft.au=Halin%2C+Josefin&rft.au=L%C3%B6nnfors%2C+Max&rft.date=2023-04-01&rft.eissn=1083-351X&rft.volume=299&rft.issue=4&rft.spage=104607&rft_id=info:doi/10.1016%2Fj.jbc.2023.104607&rft_id=info%3Apmid%2F36924944&rft.externalDocID=36924944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon