Glycolipid transfer protein knockout disrupts vesicle trafficking to the plasma membrane
The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined...
Saved in:
Published in | The Journal of biological chemistry Vol. 299; no. 4; p. 104607 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2023
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP–VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression. |
---|---|
AbstractList | The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression. The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP–VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression. The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression. |
ArticleNumber | 104607 |
Author | Mattjus, Peter Backman, Anders P.E. Blom, Tomas Lönnfors, Max Nurmi, Henrik Halin, Josefin Roos-Mattjus, Pia |
Author_xml | – sequence: 1 givenname: Henrik orcidid: 0000-0002-9747-8662 surname: Nurmi fullname: Nurmi, Henrik organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland – sequence: 2 givenname: Anders P.E. orcidid: 0000-0001-8144-4030 surname: Backman fullname: Backman, Anders P.E. organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland – sequence: 3 givenname: Josefin orcidid: 0000-0002-0125-469X surname: Halin fullname: Halin, Josefin organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland – sequence: 4 givenname: Max orcidid: 0000-0002-3655-9733 surname: Lönnfors fullname: Lönnfors, Max organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland – sequence: 5 givenname: Tomas orcidid: 0000-0001-9711-8387 surname: Blom fullname: Blom, Tomas organization: Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland – sequence: 6 givenname: Pia orcidid: 0000-0002-7187-2012 surname: Roos-Mattjus fullname: Roos-Mattjus, Pia organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland – sequence: 7 givenname: Peter orcidid: 0000-0001-8991-5933 surname: Mattjus fullname: Mattjus, Peter email: peter.mattjus@abo.fi organization: Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36924944$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAQtRAIFtof0EvlYy9ZbCdxYvVQVailSEhcOHCzHGcCs-vEqe2sxL_Hq6Wo7QFfLGvex_i9c3I8-QkI-cTZmjMuLzfrTWfXgokyvyvJmiOy4qwti7LmD8dkxZjghRJ1e0bOY9ywfCrFT8lZKZWoVFWtyMO1e7be4Yw9TcFMcYBA5-AT4ES3k7dbvyTaYwzLnCLdQUTrYA8dBrRbnB5p8jQ9AZ2diaOhI4xd1oEP5GQwLsLH1_uC3P_8cX_1q7i9u765-n5b2Jq3qeiGboBaGa44HzomrJCVkMBLKY2te9F3VdtIxQ2D0rK-rU2joGksM6qTRpUX5NtBdl66EXoLU17N6TngaMKz9gb1v5MJn_Sj3-kcYMV4y7PCl1eF4H8vEJMeMVpwLn_CL1GLljEpZN3KDP38t9mby584M4AfADb4GAMMbxDO9o5Sb3SuTO8r04fKMqf5j2MxmYR-vy-6d5lfD0zI-e4Qgo4WYbLQYwCbdO_xHfYL6ueyhQ |
CitedBy_id | crossref_primary_10_1016_j_jlr_2024_100508 crossref_primary_10_7554_eLife_91345 crossref_primary_10_7554_eLife_91345_3 crossref_primary_10_1042_BST20240315 crossref_primary_10_3390_ijms25126312 crossref_primary_10_1038_s41467_024_53511_y |
Cites_doi | 10.1007/978-1-4939-9136-5_9 10.1016/j.plipres.2020.101031 10.1016/j.yexcr.2004.03.052 10.1038/nature02856 10.1074/jbc.M500481200 10.1016/j.bbalip.2021.159021 10.1242/jcs.028696 10.1016/1074-5521(95)90120-5 10.2217/epi-2020-0168 10.1021/bi00129a005 10.1074/jbc.M201191200 10.1074/jbc.M500147200 10.3390/cells10071780 10.1371/journal.pone.0209230 10.1128/jvi.14.5.1220-1228.1974 10.1007/978-1-4939-6996-8_19 10.1016/j.chemphyslip.2013.10.013 10.1371/journal.pone.0143385 10.3390/biom10111557 10.1093/emboj/cdg201 10.1017/S003358351400016X 10.1371/journal.pone.0097263 10.1016/j.bbrc.2009.08.023 10.3389/fcell.2022.895856 10.1186/1471-2164-9-72 10.1128/jvi.21.3.1149-1158.1977 10.1016/j.chemphyslip.2015.07.018 10.1016/0009-3084(85)90058-1 10.1371/annotation/712bb339-6073-4e62-9f68-b285caedd913 10.1016/B978-0-12-801415-8.00016-3 10.1016/j.bbamem.2010.08.018 10.1128/jvi.7.5.651-662.1971 10.1093/nar/gkz369 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jbc.2023.104607 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC10140181 36924944 10_1016_j_jbc_2023_104607 S0021925823002491 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c518t-bfbfe59a1911fb02c26426e1366ac5d2db487691a0e3c0d85a79e77c0a9b6a93 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:38:02 EDT 2025 Thu Jul 10 17:08:10 EDT 2025 Mon Jul 21 05:55:00 EDT 2025 Tue Jul 01 01:59:46 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 23 02:36:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | GLTP glycolipid VAP-A VAP sphingolipid VSVG gene silencing lipid transport GO intracellular trafficking glycerosphingolipid ER gRNA DMEM GSLs Golgi cDNA endoplasmic reticulum (ER) ERES MCS OCR |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c518t-bfbfe59a1911fb02c26426e1366ac5d2db487691a0e3c0d85a79e77c0a9b6a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9711-8387 0000-0002-7187-2012 0000-0002-0125-469X 0000-0002-9747-8662 0000-0001-8144-4030 0000-0002-3655-9733 0000-0001-8991-5933 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2023.104607 |
PMID | 36924944 |
PQID | 2800626586 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10140181 proquest_miscellaneous_2800626586 pubmed_primary_36924944 crossref_primary_10_1016_j_jbc_2023_104607 crossref_citationtrail_10_1016_j_jbc_2023_104607 elsevier_sciencedirect_doi_10_1016_j_jbc_2023_104607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Lafay (bib24) 1974; 14 Tuuf, Wistbacka, Mattjus (bib15) 2009; 388 Ohvo-Rekilä, Mattjus (bib17) 2011; 1808 Kjellberg, Mattjus (bib7) 2013; 8 Wyles, Ridgway (bib12) 2004; 297 Sandy, da Costa, Schmidt (bib18) 2020; 10 Kors, Costello, Schrader (bib28) 2022; 10 Kors, Schrader, Costello (bib29) 2022; 5 Divakaruni, Paradyse, Ferrick, Murphy, Jastroch (bib21) 2014; 547 Mishra, Gao, Zou, Stephenson, Malinina, Hinchcliffe (bib31) 2020; 78 Malakhova, Malinina, Pike, Kanack, Patel, Brown (bib5) 2005; 280 Wyles, McMaster, Ridgway (bib13) 2002; 277 Raudvere, Kolberg, Kuzmin, Arak, Adler, Peterson (bib33) 2019; 47 Malinina, Simanshu, Zhai, Samygina, Kamlekar, Kenoth (bib2) 2015; 48 Loewen, Levine (bib9) 2005; 280 Kjellberg, Backman, Möuts, Mattjus (bib34) 2017; 1609 Mattjus (bib1) 2016; 194 Neefjes, Cabukusta (bib11) 2021; 4 Printz, Wagner (bib23) 1971; 7 Tuuf, Mattjus (bib3) 2014; 178 Loewen, Roy, Levine (bib22) 2003; 22 Backman, Halin, Nurmi, Möuts, Kjellberg, Mattjus (bib6) 2018; 13 James, Kehlenbach (bib10) 2021; 10 Rosenwald, Machamer, Pagano (bib30) 1992; 31 Li, Wang, He, Zhang, Ran, Xiong (bib19) 2020; 12 Prosser, Tran, Gougeon, Verly, Ngsee (bib14) 2008; 121 Knipe, Baltimore, Lodish (bib25) 1977; 21 Kjellberg, Lönnfors, Slotte, Mattjus (bib27) 2015; 10 Tomasz (bib20) 1995; 2 Sasaki (bib4) 1985; 38 Malinina, Malakhova, Teplov, Brown, Patel (bib35) 2004; 430 Kjellberg, Backman, Ohvo-Rekilä, Mattjus (bib8) 2014; 9 Zou, Chung, Lin, Malakhova, Pike, Brown (bib16) 2008; 9 Backman, Mattjus (bib26) 2021; 1866 Backman, Halin, Kjellberg, Mattjus (bib32) 2019; 1949 Sandy (10.1016/j.jbc.2023.104607_bib18) 2020; 10 Printz (10.1016/j.jbc.2023.104607_bib23) 1971; 7 Kors (10.1016/j.jbc.2023.104607_bib29) 2022; 5 Loewen (10.1016/j.jbc.2023.104607_bib9) 2005; 280 Rosenwald (10.1016/j.jbc.2023.104607_bib30) 1992; 31 Malinina (10.1016/j.jbc.2023.104607_bib35) 2004; 430 Li (10.1016/j.jbc.2023.104607_bib19) 2020; 12 Backman (10.1016/j.jbc.2023.104607_bib6) 2018; 13 Kjellberg (10.1016/j.jbc.2023.104607_bib7) 2013; 8 Raudvere (10.1016/j.jbc.2023.104607_bib33) 2019; 47 Mishra (10.1016/j.jbc.2023.104607_bib31) 2020; 78 Wyles (10.1016/j.jbc.2023.104607_bib13) 2002; 277 Prosser (10.1016/j.jbc.2023.104607_bib14) 2008; 121 Lafay (10.1016/j.jbc.2023.104607_bib24) 1974; 14 Sasaki (10.1016/j.jbc.2023.104607_bib4) 1985; 38 Divakaruni (10.1016/j.jbc.2023.104607_bib21) 2014; 547 Tomasz (10.1016/j.jbc.2023.104607_bib20) 1995; 2 Tuuf (10.1016/j.jbc.2023.104607_bib15) 2009; 388 James (10.1016/j.jbc.2023.104607_bib10) 2021; 10 Knipe (10.1016/j.jbc.2023.104607_bib25) 1977; 21 Backman (10.1016/j.jbc.2023.104607_bib32) 2019; 1949 Malinina (10.1016/j.jbc.2023.104607_bib2) 2015; 48 Kors (10.1016/j.jbc.2023.104607_bib28) 2022; 10 Wyles (10.1016/j.jbc.2023.104607_bib12) 2004; 297 Kjellberg (10.1016/j.jbc.2023.104607_bib8) 2014; 9 Zou (10.1016/j.jbc.2023.104607_bib16) 2008; 9 Kjellberg (10.1016/j.jbc.2023.104607_bib34) 2017; 1609 Malakhova (10.1016/j.jbc.2023.104607_bib5) 2005; 280 Ohvo-Rekilä (10.1016/j.jbc.2023.104607_bib17) 2011; 1808 Loewen (10.1016/j.jbc.2023.104607_bib22) 2003; 22 Mattjus (10.1016/j.jbc.2023.104607_bib1) 2016; 194 Kjellberg (10.1016/j.jbc.2023.104607_bib27) 2015; 10 Tuuf (10.1016/j.jbc.2023.104607_bib3) 2014; 178 Neefjes (10.1016/j.jbc.2023.104607_bib11) 2021; 4 Backman (10.1016/j.jbc.2023.104607_bib26) 2021; 1866 |
References_xml | – volume: 4 year: 2021 ident: bib11 article-title: What the VAP: the expanded VAP family of proteins interacting with FFAT and FFAT-related motifs for interorganellar contact publication-title: Contact (Thousand Oaks) – volume: 12 start-page: 1969 year: 2020 end-page: 1981 ident: bib19 article-title: An integrative analysis identifying transcriptional features and key genes involved in COVID-19 publication-title: Epigenomics – volume: 1609 start-page: 231 year: 2017 end-page: 239 ident: bib34 article-title: Purification and validation of lipid transfer proteins publication-title: Methods Mol. Biol. – volume: 10 year: 2015 ident: bib27 article-title: Metabolic conversion of ceramides in HeLa cells - a cholesteryl phosphocholine delivery approach publication-title: PLoS One – volume: 38 start-page: 63 year: 1985 end-page: 77 ident: bib4 article-title: Glycolipid-binding proteins publication-title: Chem. Phys. Lipids – volume: 31 start-page: 3581 year: 1992 end-page: 3590 ident: bib30 article-title: Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway publication-title: Biochemistry – volume: 9 year: 2014 ident: bib8 article-title: Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome publication-title: PLoS One – volume: 10 start-page: 1780 year: 2021 ident: bib10 article-title: The interactome of the VAP family of proteins: an overview publication-title: Cells – volume: 9 start-page: 72 year: 2008 ident: bib16 article-title: Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution publication-title: BMC Genomics – volume: 547 start-page: 309 year: 2014 end-page: 354 ident: bib21 article-title: Analysis and interpretation of microplate-based oxygen consumption and pH data publication-title: Methods Enzymol. – volume: 8 year: 2013 ident: bib7 article-title: Glycolipid transfer protein expression is affected by glycosphingolipid synthesis publication-title: PLoS One – volume: 48 start-page: 281 year: 2015 end-page: 322 ident: bib2 article-title: Sphingolipid transfer proteins defined by the GLTP-fold publication-title: Q. Rev. Biophys. – volume: 1949 start-page: 105 year: 2019 end-page: 114 ident: bib32 article-title: Indirect lipid transfer protein activity measurements using quantification of glycosphingolipid production publication-title: Methods Mol. Biol. – volume: 14 start-page: 1220 year: 1974 end-page: 1228 ident: bib24 article-title: Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V publication-title: J. Virol. – volume: 280 start-page: 14097 year: 2005 end-page: 14104 ident: bib9 article-title: A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins publication-title: J. Biol. Chem. – volume: 10 start-page: 895856 year: 2022 ident: bib28 article-title: VAP proteins - from organelle tethers to pathogenic host interactors and their role in neuronal disease publication-title: Front. Cell Dev. Biol. – volume: 2 start-page: 575 year: 1995 end-page: 579 ident: bib20 article-title: Mitomycin C: small, fast and deadly (but very selective) publication-title: Chem. Biol. – volume: 78 start-page: 101031 year: 2020 ident: bib31 article-title: Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death publication-title: Prog. Lipid Res. – volume: 7 start-page: 651 year: 1971 end-page: 662 ident: bib23 article-title: Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins publication-title: J. Virol. – volume: 10 start-page: 1557 year: 2020 ident: bib18 article-title: More than meets the ISG15: emerging roles in the DNA damage response and beyond publication-title: Biomolecules – volume: 297 start-page: 533 year: 2004 end-page: 547 ident: bib12 article-title: VAMP-associated protein-a regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and golgi apparatus publication-title: Exp. Cell Res. – volume: 1808 start-page: 47 year: 2011 end-page: 54 ident: bib17 article-title: Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique publication-title: Biochim. Biophys. Acta – volume: 47 start-page: W191 year: 2019 end-page: W198 ident: bib33 article-title: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) publication-title: Nucleic Acids Res. – volume: 22 start-page: 2025 year: 2003 end-page: 2035 ident: bib22 article-title: A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP publication-title: EMBO J. – volume: 280 start-page: 26220 year: 2005 end-page: 26312 ident: bib5 article-title: Point mutational analysis of the liganding site in human glycolipid transfer protein: functionally of the complex publication-title: J. Biol. Chem. – volume: 21 start-page: 1149 year: 1977 end-page: 1158 ident: bib25 article-title: Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus publication-title: J. Virol. – volume: 430 start-page: 1048 year: 2004 end-page: 1053 ident: bib35 article-title: Structural basis for glycosphingolipid transfer specificity publication-title: Nature – volume: 13 year: 2018 ident: bib6 article-title: Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein publication-title: PLoS One – volume: 388 start-page: 395 year: 2009 end-page: 399 ident: bib15 article-title: The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A publication-title: Biochem. Biophys. Res. Commun. – volume: 194 start-page: 72 year: 2016 end-page: 78 ident: bib1 article-title: Specificity of the mammalian glycolipid transfer proteins publication-title: Chem. Phys. Lipids – volume: 1866 start-page: 159021 year: 2021 ident: bib26 article-title: Who moves the sphinx? An overview of intracellular sphingolipid transport publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 5 start-page: 1 year: 2022 end-page: 4 ident: bib29 article-title: Multiple ways to keep FFAT under control! publication-title: Contact (Thousand Oaks) – volume: 277 start-page: 29908 year: 2002 end-page: 29918 ident: bib13 article-title: Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum publication-title: J. Biol. Chem. – volume: 178 start-page: 27 year: 2014 end-page: 37 ident: bib3 article-title: Membranes and mammalian glycolipid transferring proteins publication-title: Chem. Phys. Lipids – volume: 121 start-page: 3052 year: 2008 end-page: 3061 ident: bib14 article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation publication-title: J. Cell Sci. – volume: 1949 start-page: 105 year: 2019 ident: 10.1016/j.jbc.2023.104607_bib32 article-title: Indirect lipid transfer protein activity measurements using quantification of glycosphingolipid production publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9136-5_9 – volume: 5 start-page: 1 year: 2022 ident: 10.1016/j.jbc.2023.104607_bib29 article-title: Multiple ways to keep FFAT under control! publication-title: Contact (Thousand Oaks) – volume: 78 start-page: 101031 year: 2020 ident: 10.1016/j.jbc.2023.104607_bib31 article-title: Emerging roles for human glycolipid transfer protein superfamily members in the regulation of autophagy, inflammation, and cell death publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2020.101031 – volume: 297 start-page: 533 year: 2004 ident: 10.1016/j.jbc.2023.104607_bib12 article-title: VAMP-associated protein-a regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and golgi apparatus publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.03.052 – volume: 4 year: 2021 ident: 10.1016/j.jbc.2023.104607_bib11 article-title: What the VAP: the expanded VAP family of proteins interacting with FFAT and FFAT-related motifs for interorganellar contact publication-title: Contact (Thousand Oaks) – volume: 430 start-page: 1048 year: 2004 ident: 10.1016/j.jbc.2023.104607_bib35 article-title: Structural basis for glycosphingolipid transfer specificity publication-title: Nature doi: 10.1038/nature02856 – volume: 280 start-page: 26220 year: 2005 ident: 10.1016/j.jbc.2023.104607_bib5 article-title: Point mutational analysis of the liganding site in human glycolipid transfer protein: functionally of the complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500481200 – volume: 1866 start-page: 159021 year: 2021 ident: 10.1016/j.jbc.2023.104607_bib26 article-title: Who moves the sphinx? An overview of intracellular sphingolipid transport publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2021.159021 – volume: 121 start-page: 3052 year: 2008 ident: 10.1016/j.jbc.2023.104607_bib14 article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation publication-title: J. Cell Sci. doi: 10.1242/jcs.028696 – volume: 2 start-page: 575 year: 1995 ident: 10.1016/j.jbc.2023.104607_bib20 article-title: Mitomycin C: small, fast and deadly (but very selective) publication-title: Chem. Biol. doi: 10.1016/1074-5521(95)90120-5 – volume: 12 start-page: 1969 year: 2020 ident: 10.1016/j.jbc.2023.104607_bib19 article-title: An integrative analysis identifying transcriptional features and key genes involved in COVID-19 publication-title: Epigenomics doi: 10.2217/epi-2020-0168 – volume: 31 start-page: 3581 year: 1992 ident: 10.1016/j.jbc.2023.104607_bib30 article-title: Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway publication-title: Biochemistry doi: 10.1021/bi00129a005 – volume: 277 start-page: 29908 year: 2002 ident: 10.1016/j.jbc.2023.104607_bib13 article-title: Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201191200 – volume: 280 start-page: 14097 year: 2005 ident: 10.1016/j.jbc.2023.104607_bib9 article-title: A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500147200 – volume: 10 start-page: 1780 year: 2021 ident: 10.1016/j.jbc.2023.104607_bib10 article-title: The interactome of the VAP family of proteins: an overview publication-title: Cells doi: 10.3390/cells10071780 – volume: 13 year: 2018 ident: 10.1016/j.jbc.2023.104607_bib6 article-title: Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein publication-title: PLoS One doi: 10.1371/journal.pone.0209230 – volume: 14 start-page: 1220 year: 1974 ident: 10.1016/j.jbc.2023.104607_bib24 article-title: Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V publication-title: J. Virol. doi: 10.1128/jvi.14.5.1220-1228.1974 – volume: 1609 start-page: 231 year: 2017 ident: 10.1016/j.jbc.2023.104607_bib34 article-title: Purification and validation of lipid transfer proteins publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6996-8_19 – volume: 178 start-page: 27 year: 2014 ident: 10.1016/j.jbc.2023.104607_bib3 article-title: Membranes and mammalian glycolipid transferring proteins publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.10.013 – volume: 10 year: 2015 ident: 10.1016/j.jbc.2023.104607_bib27 article-title: Metabolic conversion of ceramides in HeLa cells - a cholesteryl phosphocholine delivery approach publication-title: PLoS One doi: 10.1371/journal.pone.0143385 – volume: 10 start-page: 1557 year: 2020 ident: 10.1016/j.jbc.2023.104607_bib18 article-title: More than meets the ISG15: emerging roles in the DNA damage response and beyond publication-title: Biomolecules doi: 10.3390/biom10111557 – volume: 22 start-page: 2025 year: 2003 ident: 10.1016/j.jbc.2023.104607_bib22 article-title: A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP publication-title: EMBO J. doi: 10.1093/emboj/cdg201 – volume: 48 start-page: 281 year: 2015 ident: 10.1016/j.jbc.2023.104607_bib2 article-title: Sphingolipid transfer proteins defined by the GLTP-fold publication-title: Q. Rev. Biophys. doi: 10.1017/S003358351400016X – volume: 9 year: 2014 ident: 10.1016/j.jbc.2023.104607_bib8 article-title: Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome publication-title: PLoS One doi: 10.1371/journal.pone.0097263 – volume: 388 start-page: 395 year: 2009 ident: 10.1016/j.jbc.2023.104607_bib15 article-title: The glycolipid transfer protein interacts with the vesicle-associated membrane protein-associated protein VAP-A publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.08.023 – volume: 10 start-page: 895856 year: 2022 ident: 10.1016/j.jbc.2023.104607_bib28 article-title: VAP proteins - from organelle tethers to pathogenic host interactors and their role in neuronal disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.895856 – volume: 9 start-page: 72 year: 2008 ident: 10.1016/j.jbc.2023.104607_bib16 article-title: Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution publication-title: BMC Genomics doi: 10.1186/1471-2164-9-72 – volume: 21 start-page: 1149 year: 1977 ident: 10.1016/j.jbc.2023.104607_bib25 article-title: Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus publication-title: J. Virol. doi: 10.1128/jvi.21.3.1149-1158.1977 – volume: 194 start-page: 72 year: 2016 ident: 10.1016/j.jbc.2023.104607_bib1 article-title: Specificity of the mammalian glycolipid transfer proteins publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2015.07.018 – volume: 38 start-page: 63 year: 1985 ident: 10.1016/j.jbc.2023.104607_bib4 article-title: Glycolipid-binding proteins publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(85)90058-1 – volume: 8 year: 2013 ident: 10.1016/j.jbc.2023.104607_bib7 article-title: Glycolipid transfer protein expression is affected by glycosphingolipid synthesis publication-title: PLoS One doi: 10.1371/annotation/712bb339-6073-4e62-9f68-b285caedd913 – volume: 547 start-page: 309 year: 2014 ident: 10.1016/j.jbc.2023.104607_bib21 article-title: Analysis and interpretation of microplate-based oxygen consumption and pH data publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-801415-8.00016-3 – volume: 1808 start-page: 47 year: 2011 ident: 10.1016/j.jbc.2023.104607_bib17 article-title: Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.08.018 – volume: 7 start-page: 651 year: 1971 ident: 10.1016/j.jbc.2023.104607_bib23 article-title: Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins publication-title: J. Virol. doi: 10.1128/jvi.7.5.651-662.1971 – volume: 47 start-page: W191 year: 2019 ident: 10.1016/j.jbc.2023.104607_bib33 article-title: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz369 |
SSID | ssj0000491 |
Score | 2.4454927 |
Snippet | The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It... The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It... The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104607 |
SubjectTerms | Biological Transport - genetics Carrier Proteins - genetics Carrier Proteins - metabolism Cell Membrane - metabolism Cell Movement - genetics Cytosol - metabolism endoplasmic reticulum (ER) Gene Expression Regulation - genetics Gene Knockout Techniques gene silencing glycerosphingolipid glycolipid Golgi HeLa Cells Humans intracellular trafficking lipid transport Protein Binding - genetics sphingolipid VAP-A VSVG |
Title | Glycolipid transfer protein knockout disrupts vesicle trafficking to the plasma membrane |
URI | https://dx.doi.org/10.1016/j.jbc.2023.104607 https://www.ncbi.nlm.nih.gov/pubmed/36924944 https://www.proquest.com/docview/2800626586 https://pubmed.ncbi.nlm.nih.gov/PMC10140181 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qCrovorte6mUZQXywpCST-2Nd1KIoChX6FmaSCabdpqVN1fXXe85MJklbd1FfQmkm05Lvy8m5H0Je2C5PBWgalieksDxfSiuO88yKWO75LGWutLHe-eOnYPzVez_1p73ej251SSWG6a8_1pX8D6rwHeCKVbL_gGyzKXwBnwFfOALCcPwrjN9dXAKOxarIcNQDKKByPVCNF4pyMC9B0mHScVZs1ttVtRl8lxvcAJdi34i5KpTSmucKdOgFjpNegPFc7mQHtbVjSmvVTZt0WxEzK65xKG-BNfpdVq6LtgSIp_PazzpSpTSDz239w5jXE-MxFJEXbYIQRvBfByVWS2mHOP_Z9VAwt5PYIrVUBT0PSwamXbHL9GCkml9eR4hi2FmPwj2Q79rVMBvOBLafZO7wcC1AtFoowN0AjUvdXnKvqbY5dYPcZGBfoID88KVtMw9mk2NC4CoZcO_3jskts8NV-syhvbKfdtvRYyZ3yZ0aSjrSbLpHerI8IaejklfLxSV9SVVKsIq1nJDb5wbiUzJtyUYN2WhNNmrIRg3ZaE022iEbrZYUyEY12agh230yeftmcj626rEcVuo7UWWJXOTSjzlY-k4ubHigwYYNpOMGAU_9jGUCjOAgdrgt3dTOIp-HsQzD1OaxCHjsPiBH5bKUjwj17DxwBIgGkAlexPyIM2aLPAwdF94jLO4T29zbJK1b1uPklIvE5CbOEkAmQWQSjUyfvGouWel-Ldct9gxgSa1wakUyAb5dd9lzA24CIGCEDe7WcrtJWIQ1yaDUB33yUIPd_AtDmD6JdmjQLMBG77tnyuKbavjuKDdI5Dy-ctMn5Lh98p6So2q9lc9AW67EmfIynSl-_wZ7XcMl |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycolipid+transfer+protein+knockout+disrupts+vesicle+trafficking+to+the+plasma+membrane&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Nurmi%2C+Henrik&rft.au=Backman%2C+Anders+P+E&rft.au=Halin%2C+Josefin&rft.au=L%C3%B6nnfors%2C+Max&rft.date=2023-04-01&rft.eissn=1083-351X&rft.volume=299&rft.issue=4&rft.spage=104607&rft_id=info:doi/10.1016%2Fj.jbc.2023.104607&rft_id=info%3Apmid%2F36924944&rft.externalDocID=36924944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |