A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions

The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7841 - 11
Main Authors Wang, Lixin, Rao, Longjun, Ran, Maoxi, Shentu, Qikai, Wu, Zenglong, Song, Wenkai, Zhang, Ziwei, Li, Hao, Yao, Yuyuan, Lv, Weiyang, Xing, Mingyang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-43678-1

Cover

Loading…
Abstract The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min −1 ) and H 2 O 2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound • OH through lowering the energy barrier for H 2 O 2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites.
AbstractList The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min−1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites.
Abstract The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min−1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.
The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min-1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min-1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.
The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min −1 ) and H 2 O 2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound • OH through lowering the energy barrier for H 2 O 2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.
The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min −1 ) and H 2 O 2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound • OH through lowering the energy barrier for H 2 O 2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites.
ArticleNumber 7841
Author Song, Wenkai
Lv, Weiyang
Wang, Lixin
Rao, Longjun
Ran, Maoxi
Wu, Zenglong
Yao, Yuyuan
Shentu, Qikai
Li, Hao
Xing, Mingyang
Zhang, Ziwei
Author_xml – sequence: 1
  givenname: Lixin
  surname: Wang
  fullname: Wang, Lixin
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 2
  givenname: Longjun
  surname: Rao
  fullname: Rao, Longjun
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 3
  givenname: Maoxi
  surname: Ran
  fullname: Ran, Maoxi
  organization: National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology
– sequence: 4
  givenname: Qikai
  surname: Shentu
  fullname: Shentu, Qikai
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 5
  givenname: Zenglong
  surname: Wu
  fullname: Wu, Zenglong
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 6
  givenname: Wenkai
  surname: Song
  fullname: Song, Wenkai
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 7
  givenname: Ziwei
  surname: Zhang
  fullname: Zhang, Ziwei
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 8
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University
– sequence: 9
  givenname: Yuyuan
  surname: Yao
  fullname: Yao, Yuyuan
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Zhejiang Provincial Innovation Center of Advanced Textile Technology
– sequence: 10
  givenname: Weiyang
  orcidid: 0000-0002-7541-4844
  surname: Lv
  fullname: Lv, Weiyang
  email: wylv@zstu.edu.cn
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Zhejiang Provincial Innovation Center of Advanced Textile Technology
– sequence: 11
  givenname: Mingyang
  orcidid: 0000-0002-0518-2849
  surname: Xing
  fullname: Xing, Mingyang
  email: mingyangxing@ecust.edu.cn
  organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology
BookMark eNp9Us1u3CAYRFWq5qd5gZ6QeunFLR9gwKcqipo2UqRe2lslhDG2WXnNFthI-_bB66hNcggX0DAzGj7mHJ3MYXYIfQDyGQhTXxIHLmRFKKs4E1JV8AadUcKhAknZyZPzKbpMaUPKYg0ozt-hU6YII4I1Z-jPFd6F6bB1EWeXRxf9POCUo8luOOAcsLGjd_cOj34Y8dZlM-EpmG6hhRlbU4BDygn3IeIbN-cCRmds9mFO79Hb3kzJXT7uF-j3zbdf1z-qu5_fb6-v7ipbg8pVaxmRTdPVilkFyjIG1tZC9aJvQBig1BlplaS9paK2lEtpgctOdKRuHaXsAt2uvl0wG72LfmviQQfj9REIcdAmZm8npwFa2bWNgFqVUbC-NUQAp62pWytMZ4vX19Vrt2-3rrPlSdFMz0yf38x-1EO410CEkoQvaT49OsTwd-9S1lufrJsmM7uwT5qqppaF3dSF-vEFdRP2cS6zOrKIqBsFhUVXlo0hpej6f2mA6KUMei2DLmXQxzLoRaReiKzPZvmWktpPr0vZKk27pQ4u_k_1iuoB8-HJXQ
CitedBy_id crossref_primary_10_1016_j_jece_2025_115325
crossref_primary_10_1016_j_watres_2024_122425
crossref_primary_10_1016_j_seppur_2025_132174
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_3390_catal15030206
crossref_primary_10_1002_adfm_202417441
crossref_primary_10_1002_ange_202401434
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1016_j_cej_2024_155430
crossref_primary_10_1039_D4TA05189K
crossref_primary_10_1021_acssuschemeng_4c06775
crossref_primary_10_1002_smll_202407427
crossref_primary_10_1002_advs_202417368
crossref_primary_10_1016_j_jcis_2024_06_019
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1016_j_jallcom_2025_179269
crossref_primary_10_1016_j_watres_2025_123393
crossref_primary_10_1016_j_surfin_2024_104388
crossref_primary_10_1016_j_watres_2024_122697
crossref_primary_10_1021_acsestengg_4c00413
crossref_primary_10_1016_j_watres_2024_121485
crossref_primary_10_1016_j_mtsust_2024_100790
crossref_primary_10_3390_catal14080520
crossref_primary_10_1016_j_seppur_2024_129591
crossref_primary_10_1007_s12274_024_6973_y
crossref_primary_10_1016_j_colsurfa_2024_135441
crossref_primary_10_1016_j_jwpe_2025_107091
crossref_primary_10_1002_smll_202407659
crossref_primary_10_1007_s42765_025_00525_w
crossref_primary_10_1016_j_cej_2025_159922
crossref_primary_10_3390_molecules29102188
crossref_primary_10_1002_anie_202401434
crossref_primary_10_1002_ange_202419680
crossref_primary_10_1016_j_jcis_2024_11_134
crossref_primary_10_1016_j_xcrp_2024_101966
crossref_primary_10_1016_j_apcatb_2025_125230
crossref_primary_10_1002_ange_202402669
crossref_primary_10_1016_j_seppur_2025_131665
crossref_primary_10_1080_09593330_2024_2391076
crossref_primary_10_1038_s41467_024_51525_0
crossref_primary_10_1002_anie_202419680
crossref_primary_10_1016_j_apcatb_2024_124828
crossref_primary_10_1016_j_cej_2024_157879
crossref_primary_10_1016_j_jenvman_2025_124871
crossref_primary_10_1016_j_seppur_2024_131376
crossref_primary_10_1016_j_jhazmat_2024_133752
crossref_primary_10_1038_s41467_024_53289_z
crossref_primary_10_1016_j_seppur_2024_131052
crossref_primary_10_1016_j_jece_2025_116072
crossref_primary_10_1038_s41467_024_46739_1
crossref_primary_10_1073_pnas_2403766121
crossref_primary_10_1007_s10311_025_01828_5
crossref_primary_10_1016_j_jenvman_2024_123768
crossref_primary_10_1021_acsestengg_4c00237
crossref_primary_10_1002_smll_202406959
crossref_primary_10_1016_j_jpowsour_2025_236477
crossref_primary_10_1016_j_watres_2024_122750
crossref_primary_10_1002_adma_202417834
crossref_primary_10_1016_j_checat_2024_101260
crossref_primary_10_1002_adma_202401454
crossref_primary_10_1016_j_jallcom_2024_176603
crossref_primary_10_1016_j_seppur_2024_129563
crossref_primary_10_1016_j_seppur_2024_126657
crossref_primary_10_1021_acs_inorgchem_4c04369
crossref_primary_10_1002_anie_202402669
crossref_primary_10_1016_j_jcis_2024_05_051
Cites_doi 10.1002/anie.202101804
10.1126/science.aad0832
10.1002/aenm.202002592
10.1021/acs.est.8b01734
10.1038/nenergy.2016.184
10.1016/j.chempr.2018.03.002
10.1002/ange.201804958
10.1021/cr400407a
10.1021/acs.accounts.8b00583
10.1021/acscatal.6b01786
10.1016/j.apcatb.2019.117820
10.1002/adma.201800005
10.1021/acsenergylett.8b01717
10.1038/s41557-021-00734-x
10.1002/adma.202000896
10.1021/acsestengg.2c00236
10.1002/adma.202107009
10.1002/ange.202016888
10.1021/acscatal.1c02434
10.1038/s41467-020-18969-6
10.1002/adfm.202100971
10.1016/j.watres.2018.10.025
10.1002/adma.201401857
10.1038/s41565-021-01022-y
10.1021/jacs.0c01349
10.1002/adma.201700707
10.1021/acs.est.1c06371
10.1016/j.apcatb.2021.119940
10.1021/acsnano.8b04693
10.1002/anie.201902109
10.1038/s41467-022-33149-4
10.1021/acs.est.7b00040
10.1021/acs.est.0c06086
10.1038/s41467-019-09290-y
10.1002/anie.201912785
10.1002/advs.202101824
10.1016/j.apcatb.2019.118548
10.1021/acs.est.0c04694
10.1021/acs.est.0c07418
10.1038/ncomms12582
10.1021/acscatal.7b03270
10.1002/ange.201916520
10.1021/acs.nanolett.0c02782
10.1021/acs.accounts.7b00535
10.1021/acsnano.9b02315
10.1039/C8SC03531H
10.1038/s41467-022-33098-y
10.1021/acsnano.9b04436
10.1002/anie.201402986
10.1002/aenm.201801698
10.1002/adma.202006613
10.1002/ange.201908760
10.1002/anie.202200670
10.1021/acscatal.1c01284
10.1021/acs.est.0c06825
10.1002/ange.201811763
10.1021/jacs.6b00757
10.1002/anie.202109488
10.1016/j.susc.2019.05.002
10.1038/s41467-022-31807-1
10.1016/j.scib.2023.04.011
10.1021/acscatal.9b05197
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-43678-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc
PMC10687042
10_1038_s41467_023_43678_1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-bc30799d583c818c331cc568f6f916a122ea7c872fc265c2477c147d6d05be223
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:21 EDT 2025
Thu Aug 21 18:36:19 EDT 2025
Thu Jul 10 22:39:37 EDT 2025
Wed Aug 13 11:00:28 EDT 2025
Tue Jul 01 02:10:47 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-bc30799d583c818c331cc568f6f916a122ea7c872fc265c2477c147d6d05be223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7541-4844
0000-0002-0518-2849
OpenAccessLink https://doaj.org/article/11b7db961588443fba06142ba5bc6adc
PMID 38030639
PQID 2895065981
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687042
proquest_miscellaneous_2895710695
proquest_journals_2895065981
crossref_primary_10_1038_s41467_023_43678_1
crossref_citationtrail_10_1038_s41467_023_43678_1
springer_journals_10_1038_s41467_023_43678_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-29
PublicationDateYYYYMMDD 2023-11-29
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR14) 2018; 30
Meng (CR59) 2022; 13
Niu (CR10) 2019; 256
Zhu (CR53) 2023; 68
Li (CR54) 2019; 58
Duan (CR12) 2018; 51
Wang (CR47) 2015; 54
Zhao (CR27) 2021; 31
Guo (CR43) 2016; 351
Jiang (CR60) 2016; 138
Shao (CR11) 2022; 3
Xiao (CR49) 2021; 60
Chen (CR6) 2020; 20
Zhong (CR26) 2018; 9
Wang (CR2) 2022; 34
Xie (CR57) 2020; 55
Ling (CR4) 2022; 61
Bae (CR7) 2018; 52
Miao (CR39) 2021; 33
Varnell (CR61) 2016; 7
Liu (CR28) 2014; 114
Wang (CR13) 2021; 11
Hu (CR19) 2021; 55
Lee (CR32) 2019; 52
Xie (CR56) 2020; 264
Wu (CR58) 2021; 56
Tang (CR8) 2020; 142
Ha (CR44) 2020; 10
Marshall-Roth (CR40) 2020; 11
Zhang (CR62) 2019; 13
Zeng (CR1) 2020; 54
He (CR42) 2020; 132
Dong (CR46) 2022; 13
Xie (CR3) 2022; 13
Zhou (CR15) 2019; 58
Zhuang (CR34) 2015; 27
Zhao (CR35) 2016; 1
Lv (CR20) 2021; 286
Mamtani (CR45) 2016; 6
Wang (CR5) 2018; 8
Zhao (CR18) 2020; 132
Chen (CR22) 2018; 8
Xiong (CR25) 2020; 32
Wang (CR51) 2021; 8
Li (CR36) 2019; 148
Huang (CR41) 2018; 3
Zhao (CR24) 2019; 10
Cheng (CR29) 2019; 13
Li (CR31) 2017; 29
Zhang (CR37) 2018; 130
Zhang (CR52) 2021; 60
Xing (CR9) 2018; 4
Hai (CR17) 2022; 17
Delparastan (CR30) 2019; 131
Kim (CR33) 2021; 12
Song (CR16) 2020; 10
Xing (CR38) 2021; 133
Li (CR50) 2017; 51
Tran (CR48) 2019; 687
Chu (CR55) 2020; 55
An (CR23) 2018; 12
He (CR63) 2021; 11
Xia (CR21) 2021; 13
D Guo (43678_CR43) 2016; 351
P Delparastan (43678_CR30) 2019; 131
J Kim (43678_CR33) 2021; 12
X Hai (43678_CR17) 2022; 17
K Mamtani (43678_CR45) 2016; 6
Y Xiong (43678_CR25) 2020; 32
J Li (43678_CR54) 2019; 58
Y Chen (43678_CR6) 2020; 20
H Niu (43678_CR10) 2019; 256
H Zhong (43678_CR26) 2018; 9
J Wang (43678_CR51) 2021; 8
J Li (43678_CR36) 2019; 148
T Marshall-Roth (43678_CR40) 2020; 11
X Huang (43678_CR41) 2018; 3
C Chu (43678_CR55) 2020; 55
H Dong (43678_CR46) 2022; 13
X Wu (43678_CR58) 2021; 56
Y Ha (43678_CR44) 2020; 10
T Song (43678_CR16) 2020; 10
C Ling (43678_CR4) 2022; 61
D Zhao (43678_CR18) 2020; 132
S Zhao (43678_CR35) 2016; 1
C Meng (43678_CR59) 2022; 13
H Zhou (43678_CR15) 2019; 58
A Xie (43678_CR56) 2020; 264
J Xie (43678_CR57) 2020; 55
S He (43678_CR63) 2021; 11
Z Zhang (43678_CR62) 2019; 13
L Zhu (43678_CR53) 2023; 68
JA Varnell (43678_CR61) 2016; 7
S Li (43678_CR31) 2017; 29
J Wang (43678_CR13) 2021; 11
Y Wang (43678_CR47) 2015; 54
T Tang (43678_CR8) 2020; 142
J Hu (43678_CR19) 2021; 55
F Xiao (43678_CR49) 2021; 60
L Zhao (43678_CR24) 2019; 10
Z Zhang (43678_CR37) 2018; 130
W Cheng (43678_CR29) 2019; 13
Q Wang (43678_CR5) 2018; 8
Z Wang (43678_CR2) 2022; 34
H Zeng (43678_CR1) 2020; 54
L Xie (43678_CR3) 2022; 13
LS Zhang (43678_CR52) 2021; 60
HA Lee (43678_CR32) 2019; 52
X Zhuang (43678_CR34) 2015; 27
R Tran (43678_CR48) 2019; 687
M Xing (43678_CR9) 2018; 4
Y Xing (43678_CR38) 2021; 133
S Shao (43678_CR11) 2022; 3
S Bae (43678_CR7) 2018; 52
WJ Jiang (43678_CR60) 2016; 138
H Li (43678_CR50) 2017; 51
C He (43678_CR42) 2020; 132
C Xia (43678_CR21) 2021; 13
X Duan (43678_CR12) 2018; 51
XR Wang (43678_CR14) 2018; 30
Z Miao (43678_CR39) 2021; 33
S An (43678_CR23) 2018; 12
H Chen (43678_CR22) 2018; 8
G Zhao (43678_CR27) 2021; 31
H Lv (43678_CR20) 2021; 286
Y Liu (43678_CR28) 2014; 114
References_xml – volume: 60
  start-page: 10375
  year: 2021
  end-page: 10383
  ident: CR49
  article-title: Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3‐electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101804
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  ident: CR43
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 10
  start-page: 2002592
  year: 2020
  ident: CR44
  article-title: Atomically dispersed Co‐pyridinic N‐C for superior oxygen reduction reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002592
– volume: 52
  start-page: 12010
  year: 2018
  end-page: 12025
  ident: CR7
  article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01734
– volume: 1
  start-page: 16184
  year: 2016
  ident: CR35
  article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 4
  start-page: 1359
  year: 2018
  end-page: 1372
  ident: CR9
  article-title: Metal sulfides as excellent co-catalysts for H O decomposition in advanced oxidation processes
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.03.002
– volume: 130
  start-page: 9176
  year: 2018
  end-page: 9181
  ident: CR37
  article-title: Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201804958
– volume: 114
  start-page: 5057
  year: 2014
  end-page: 5115
  ident: CR28
  article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields
  publication-title: Chem. Rev.
  doi: 10.1021/cr400407a
– volume: 52
  start-page: 704
  year: 2019
  end-page: 713
  ident: CR32
  article-title: Material-independent surface chemistry beyond polydopamine coating
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00583
– volume: 6
  start-page: 7249
  year: 2016
  end-page: 7259
  ident: CR45
  article-title: Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CN ) in acidic media using phosphate anion
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01786
– volume: 256
  start-page: 117820
  year: 2019
  ident: CR10
  article-title: Long-lasting activity of Fe -C internal microelectrolysis-Fenton system assisted by Fe@C-montmorillonites nanocomposites
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117820
– volume: 30
  start-page: 1800005
  year: 2018
  ident: CR14
  article-title: Identifying the key role of pyridinic‐N–Co bonding in synergistic electrocatalysis for reversible ORR/OER
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800005
– volume: 3
  start-page: 2914
  year: 2018
  end-page: 2920
  ident: CR41
  article-title: N-doped carbon nanosheet networks with favorable active sites triggered by metal nanoparticles as bifunctional oxygen electrocatalysts
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01717
– volume: 13
  start-page: 887
  year: 2021
  end-page: 894
  ident: CR21
  article-title: General synthesis of single-atom catalysts with high metal loading using graphene quantum dots
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00734-x
– volume: 32
  start-page: 2000896
  year: 2020
  ident: CR25
  article-title: Gram‐scale synthesis of high‐loading single‐atomic‐site Fe catalysts for effective epoxidation of styrene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000896
– volume: 3
  start-page: 36
  year: 2022
  end-page: 44
  ident: CR11
  article-title: Efficient and durable single-atom Fe catalyst for Fenton-like reaction via mediated electron-transfer mechanism
  publication-title: ACS EST Engg.
  doi: 10.1021/acsestengg.2c00236
– volume: 34
  start-page: 2107009
  year: 2022
  ident: CR2
  article-title: Metal–phenolic‐network‐coated dendrimer–drug conjugates for tumor MR imaging and chemo/chemodynamic therapy via amplification of endoplasmic reticulum stress
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107009
– volume: 133
  start-page: 8971
  year: 2021
  end-page: 8977
  ident: CR38
  article-title: Fe/Fe C boosts H O utilization for methane conversion overwhelming O generation
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202016888
– volume: 11
  start-page: 9355
  year: 2021
  end-page: 9365
  ident: CR63
  article-title: Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02434
– volume: 11
  year: 2020
  ident: CR40
  article-title: A pyridinic Fe-N macrocycle models the active sites in Fe/N-doped carbon electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18969-6
– volume: 31
  start-page: 2100971
  year: 2021
  ident: CR27
  article-title: Constructing the support as a microreactor and regenerator for highly active and in situ regenerative hydrogenation catalyst
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100971
– volume: 148
  start-page: 70
  year: 2019
  end-page: 85
  ident: CR36
  article-title: Characterization methods of zerovalent iron for water treatment and remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.025
– volume: 27
  start-page: 403
  year: 2015
  end-page: 427
  ident: CR34
  article-title: Two‐dimensional soft nanomaterials: a fascinating world of materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401857
– volume: 17
  start-page: 174
  year: 2022
  end-page: 181
  ident: CR17
  article-title: Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-01022-y
– volume: 142
  start-page: 7116
  year: 2020
  end-page: 7127
  ident: CR8
  article-title: Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc–air batteries with record power density
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01349
– volume: 29
  start-page: 1700707
  year: 2017
  ident: CR31
  article-title: 2D porous carbons prepared from layered organic–inorganic hybrids and their use as oxygen‐reduction electrocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700707
– volume: 56
  start-page: 1341
  year: 2021
  end-page: 1351
  ident: CR58
  article-title: Single-atom cobalt incorporated in a 2D graphene oxide membrane for catalytic pollutant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06371
– volume: 286
  start-page: 119940
  year: 2021
  ident: CR20
  article-title: Carbon zero-valent iron materials possessing high-content fine Fe nanoparticles with enhanced microelectrolysis-Fenton-like catalytic performance for water purification
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.119940
– volume: 12
  start-page: 9441
  year: 2018
  end-page: 9450
  ident: CR23
  article-title: High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C N ) for highly efficient catalytic advanced oxidation processes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04693
– volume: 58
  start-page: 7035
  year: 2019
  end-page: 7039
  ident: CR54
  article-title: Ultrahigh‐loading zinc single‐atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902109
– volume: 13
  year: 2022
  ident: CR3
  article-title: Pauling-type adsorption of O induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33149-4
– volume: 12
  year: 2021
  ident: CR33
  article-title: Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO reduction toward C products
  publication-title: Nat. Commun.
– volume: 51
  start-page: 5685
  year: 2017
  end-page: 5694
  ident: CR50
  article-title: Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00040
– volume: 55
  start-page: 1242
  year: 2020
  end-page: 1250
  ident: CR55
  article-title: Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06086
– volume: 10
  year: 2019
  ident: CR24
  article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 58
  start-page: 18388
  year: 2019
  end-page: 18393
  ident: CR15
  article-title: A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912785
– volume: 8
  start-page: 2101824
  year: 2021
  ident: CR51
  article-title: Facile synthesis of atomic Fe‐N‐C materials and dual roles investigation of Fe‐N sites in Fenton‐like reactions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101824
– volume: 264
  start-page: 118548
  year: 2020
  ident: CR56
  article-title: Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118548
– volume: 54
  start-page: 14725
  year: 2020
  end-page: 14731
  ident: CR1
  article-title: pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H O reduction: a green Fenton process without byproducts
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c04694
– volume: 55
  start-page: 2652
  year: 2020
  end-page: 2661
  ident: CR57
  article-title: Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07418
– volume: 7
  year: 2016
  ident: CR61
  article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12582
– volume: 8
  start-page: 1417
  year: 2018
  end-page: 1426
  ident: CR22
  article-title: Nanoreactor of MOF-derived yolk–shell Co@C–N: precisely controllable structure and enhanced catalytic activity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03270
– volume: 132
  start-page: 4944
  year: 2020
  end-page: 4949
  ident: CR42
  article-title: Molecular evidence for metallic cobalt boosting CO electroreduction on pyridinic nitrogen
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201916520
– volume: 20
  start-page: 6807
  year: 2020
  end-page: 6814
  ident: CR6
  article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts toward the oxygen reduction reaction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02782
– volume: 51
  start-page: 678
  year: 2018
  end-page: 687
  ident: CR12
  article-title: Metal-free carbocatalysis in advanced oxidation reactions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00535
– volume: 13
  start-page: 7062
  year: 2019
  end-page: 7072
  ident: CR62
  article-title: “Ship in a bottle” design of highly efficient bifunctional electrocatalysts for long-lasting rechargeable Zn–air batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02315
– volume: 9
  start-page: 8703
  year: 2018
  end-page: 8710
  ident: CR26
  article-title: Facile fabrication of Cu-based alloy nanoparticles encapsulated within hollow octahedral N-doped porous carbon for selective oxidation of hydrocarbons
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03531H
– volume: 13
  year: 2022
  ident: CR46
  article-title: Depletable peroxidase-like activity of Fe O nanozymes accompanied with separate migration of electrons and iron ions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33098-y
– volume: 13
  start-page: 8537
  year: 2019
  end-page: 8565
  ident: CR29
  article-title: Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04436
– volume: 54
  start-page: 2022
  year: 2015
  end-page: 2051
  ident: CR47
  article-title: Thermodynamics versus kinetics in nanosynthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402986
– volume: 8
  start-page: 1801698
  year: 2018
  ident: CR5
  article-title: Scalable solid‐state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801698
– volume: 33
  start-page: 2006613
  year: 2021
  ident: CR39
  article-title: Improving the stability of non‐noble‐metal M–N–C catalysts for proton‐exchange‐membrane fuel cells through M–N bond length and coordination regulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006613
– volume: 132
  start-page: 9067
  year: 2020
  end-page: 9075
  ident: CR18
  article-title: Synergistically interactive pyridinic‐N–MoP sites: identified active centers for enhanced hydrogen evolution in alkaline solution
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201908760
– volume: 61
  start-page: e202200670
  year: 2022
  ident: CR4
  article-title: Atomic‐layered Cu nanoclusters on FeS with dual catalytic sites for efficient and selective H O activation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200670
– volume: 11
  start-page: 7422
  year: 2021
  end-page: 7428
  ident: CR13
  article-title: Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation reaction in alkaline media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01284
– volume: 55
  start-page: 1260
  year: 2021
  end-page: 1269
  ident: CR19
  article-title: Duet Fe C and FeN sites for H O generation and activation toward enhanced electro-Fenton performance in wastewater treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06825
– volume: 131
  start-page: 1089
  year: 2019
  end-page: 1094
  ident: CR30
  article-title: Direct evidence for the polymeric nature of polydopamine
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201811763
– volume: 138
  start-page: 3570
  year: 2016
  end-page: 3578
  ident: CR60
  article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe C nanoparticles boost the activity of Fe–N
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 60
  start-page: 21751
  year: 2021
  end-page: 21755
  ident: CR52
  article-title: Carbon nitride supported high‐loading Fe single‐atom catalyst for activation of peroxymonosulfate to generate O with 100% selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109488
– volume: 687
  start-page: 48
  year: 2019
  end-page: 55
  ident: CR48
  article-title: Anisotropic work function of elemental crystals
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2019.05.002
– volume: 13
  year: 2022
  ident: CR59
  article-title: Angstrom-confined catalytic water purification within Co-TiO laminar membrane nanochannels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31807-1
– volume: 68
  start-page: 892
  year: 2023
  end-page: 896
  ident: CR53
  article-title: Selective removal of ultrafine suspended solids during organic pollutant degradation by a MoS /graphene oxide sponge
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.04.011
– volume: 10
  start-page: 4617
  year: 2020
  end-page: 4629
  ident: CR16
  article-title: A bifunctional iron nanocomposite catalyst for efficient oxidation of alkenes to ketones and 1, 2-diketones
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05197
– volume: 13
  year: 2022
  ident: 43678_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33149-4
– volume: 131
  start-page: 1089
  year: 2019
  ident: 43678_CR30
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201811763
– volume: 4
  start-page: 1359
  year: 2018
  ident: 43678_CR9
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.03.002
– volume: 7
  year: 2016
  ident: 43678_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12582
– volume: 55
  start-page: 1260
  year: 2021
  ident: 43678_CR19
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06825
– volume: 58
  start-page: 7035
  year: 2019
  ident: 43678_CR54
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902109
– volume: 148
  start-page: 70
  year: 2019
  ident: 43678_CR36
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.025
– volume: 8
  start-page: 2101824
  year: 2021
  ident: 43678_CR51
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101824
– volume: 55
  start-page: 1242
  year: 2020
  ident: 43678_CR55
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06086
– volume: 1
  start-page: 16184
  year: 2016
  ident: 43678_CR35
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 61
  start-page: e202200670
  year: 2022
  ident: 43678_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200670
– volume: 27
  start-page: 403
  year: 2015
  ident: 43678_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401857
– volume: 10
  start-page: 4617
  year: 2020
  ident: 43678_CR16
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05197
– volume: 56
  start-page: 1341
  year: 2021
  ident: 43678_CR58
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06371
– volume: 3
  start-page: 2914
  year: 2018
  ident: 43678_CR41
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01717
– volume: 11
  start-page: 7422
  year: 2021
  ident: 43678_CR13
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01284
– volume: 256
  start-page: 117820
  year: 2019
  ident: 43678_CR10
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117820
– volume: 32
  start-page: 2000896
  year: 2020
  ident: 43678_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000896
– volume: 11
  start-page: 9355
  year: 2021
  ident: 43678_CR63
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02434
– volume: 52
  start-page: 12010
  year: 2018
  ident: 43678_CR7
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01734
– volume: 34
  start-page: 2107009
  year: 2022
  ident: 43678_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107009
– volume: 11
  year: 2020
  ident: 43678_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18969-6
– volume: 13
  start-page: 887
  year: 2021
  ident: 43678_CR21
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00734-x
– volume: 6
  start-page: 7249
  year: 2016
  ident: 43678_CR45
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01786
– volume: 54
  start-page: 14725
  year: 2020
  ident: 43678_CR1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c04694
– volume: 12
  year: 2021
  ident: 43678_CR33
  publication-title: Nat. Commun.
– volume: 132
  start-page: 4944
  year: 2020
  ident: 43678_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201916520
– volume: 3
  start-page: 36
  year: 2022
  ident: 43678_CR11
  publication-title: ACS EST Engg.
  doi: 10.1021/acsestengg.2c00236
– volume: 12
  start-page: 9441
  year: 2018
  ident: 43678_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04693
– volume: 51
  start-page: 678
  year: 2018
  ident: 43678_CR12
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00535
– volume: 264
  start-page: 118548
  year: 2020
  ident: 43678_CR56
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118548
– volume: 20
  start-page: 6807
  year: 2020
  ident: 43678_CR6
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02782
– volume: 138
  start-page: 3570
  year: 2016
  ident: 43678_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 132
  start-page: 9067
  year: 2020
  ident: 43678_CR18
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201908760
– volume: 30
  start-page: 1800005
  year: 2018
  ident: 43678_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800005
– volume: 58
  start-page: 18388
  year: 2019
  ident: 43678_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912785
– volume: 142
  start-page: 7116
  year: 2020
  ident: 43678_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01349
– volume: 10
  year: 2019
  ident: 43678_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 9
  start-page: 8703
  year: 2018
  ident: 43678_CR26
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03531H
– volume: 29
  start-page: 1700707
  year: 2017
  ident: 43678_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700707
– volume: 13
  start-page: 7062
  year: 2019
  ident: 43678_CR62
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02315
– volume: 31
  start-page: 2100971
  year: 2021
  ident: 43678_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100971
– volume: 133
  start-page: 8971
  year: 2021
  ident: 43678_CR38
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202016888
– volume: 10
  start-page: 2002592
  year: 2020
  ident: 43678_CR44
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002592
– volume: 33
  start-page: 2006613
  year: 2021
  ident: 43678_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006613
– volume: 13
  year: 2022
  ident: 43678_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33098-y
– volume: 51
  start-page: 5685
  year: 2017
  ident: 43678_CR50
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00040
– volume: 8
  start-page: 1417
  year: 2018
  ident: 43678_CR22
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03270
– volume: 68
  start-page: 892
  year: 2023
  ident: 43678_CR53
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2023.04.011
– volume: 13
  start-page: 8537
  year: 2019
  ident: 43678_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04436
– volume: 687
  start-page: 48
  year: 2019
  ident: 43678_CR48
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2019.05.002
– volume: 60
  start-page: 21751
  year: 2021
  ident: 43678_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109488
– volume: 286
  start-page: 119940
  year: 2021
  ident: 43678_CR20
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.119940
– volume: 55
  start-page: 2652
  year: 2020
  ident: 43678_CR57
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07418
– volume: 54
  start-page: 2022
  year: 2015
  ident: 43678_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402986
– volume: 60
  start-page: 10375
  year: 2021
  ident: 43678_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101804
– volume: 8
  start-page: 1801698
  year: 2018
  ident: 43678_CR5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801698
– volume: 52
  start-page: 704
  year: 2019
  ident: 43678_CR32
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00583
– volume: 114
  start-page: 5057
  year: 2014
  ident: 43678_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/cr400407a
– volume: 351
  start-page: 361
  year: 2016
  ident: 43678_CR43
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 130
  start-page: 9176
  year: 2018
  ident: 43678_CR37
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201804958
– volume: 17
  start-page: 174
  year: 2022
  ident: 43678_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-01022-y
– volume: 13
  year: 2022
  ident: 43678_CR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31807-1
SSID ssj0000391844
Score 2.661099
Snippet The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is...
Abstract The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7841
SubjectTerms 140/146
147/135
147/143
639/301/299
639/638/298
704/172/169/896
Carbon
Catalysts
Catalytic activity
Catechol
Chemical synthesis
Confinement
Dispersion
Electron density
Fabrication
Humanities and Social Sciences
Hydrogen peroxide
Iron
Metal ions
Metals
multidisciplinary
Nanocrystals
Polymerization
Polymers
Science
Science (multidisciplinary)
Sulfamethoxazole
Tethering
Ultrafines
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGXkr6om6So0FsrsnpaPoWkJIRCQykN5FAQ1sNpYWNv105g_31GsnaDA83VGmFb8_pGI80g9KkSnNWCaiIaEYgASEBqGyBKkfGCD_M2pDad38_V2YX4dikv84Zbn49Vrm1iMtS-c3GP_AACAxlzgJoeLv6R2DUqZldzC42naBtMsAYJ3z4-Of_xc7PLEuufayHybZkZ1we9SLYBXBURXMUQauKRUuH-Cdp8eFbyQcI0-aHTHfQiA0h8NHL8JXoS2lfo2dhScvUa_T7Ci26-ug5LPITxct8V7scStCs8dDgengy3Acc6xfg6APbG8y4dpMddi9NuzqofegxgFoMIAzTEgCvT7Yf-Dbo4Pfn19YzkDgrESaoHYh2ocFV5qbkDz-w4p85JpRvVACysKWOhLp0uWeOYko6JsnRUlF75mQQuMf4WbbVdG94hHJGF8o1ynnHBbaUFq722Mx1KAeS2QHS9isbl8uKxy8XcpDQ312ZceQMrb9LKG1qgz5s5i7G4xqPUx5E5G8pYGDs96JZXJusZBDS29LYCnKaB77yxdQx5ma2ldar2rkB7a9aarK29uZetAn3cDIOexeRJ3YbuZqQBNKYqWSA9EYnJB01H2r9_UsVumAd2UbACfVlLz_3b___H7x__2F30nEU5ppSwag9tDcubsA8QabAfsh7cAeTSDqM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB_WFcGL-InVVSJ40-rms-lBZBWXRVhPPtiDEJI0XRfetutrV-x_7yRtn3RZPXltEtLOR-Y3ncwMwMtScGYF1bmoRcgFQoLcuoBeiowJPqxyIbXpPP6ijlbi84k82YG53dFEwO5a1y72k1pt1m9-_Rjeo8K_G1PG9dtOJHVH65MLrqJXdANuomUqYiuH4wnup5OZl-jQiCl35vqlC_uUyvgvsOfVm5NXwqfJKh3ehTsTnCQHI__vwU5o7sOtscHk8AC-HZCLdj2chw3pw5jqd0q6sSDtQPqWxKuU4WcgsWoxOQ9IBLJu07V60jYk_dsZur4jCG0JCjQCRYIoM-VCdA9hdfjp68ejfOqnkHtJdZ87jwpdlpXU3KOd9pxT76XStaoRJFrKWLCF1wWrPVPSM1EUnoqiUtW-RJ4x_gh2m7YJj4FEnKGqWvmKccFdqQWzlXb7OhQCp7sM6ExF46di47HnxdqkoDfXZqS8QcqbRHlDM3i1XXMxltr45-wPkTnbmbFMdnrQbk7NpHXo3riiciWiNo1857Wz0QFmzkrnla18Bnsza80segZdUBmjzRr3eLEdRq2LoRTbhPZynIPYTJUyA70QicULLUeas--pfjeuw1NSsAxez9LzZ_e_f_GT__HFT-E2i9JOac7KPdjtN5fhGcKq3j1PuvIbAzIdhw
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8YrVVSL4psWTa9PH9eCyCPrkwj4IIbeuwtl2Oe0unH_vJG2PdFHB12ZC0mQm-SaZ-QLwthacWUF1KRoRS4GQoLQuopciU4IPCy7mZzq_fFWnZ-LzuTw_ADbnwuSg_UxpmZfpOTrsQy-ySeMOUwqukudzB-4m6vYUxrdW6_25SmI810JM-TErrv9QdbEHZar-Bb68HR1564o07zwnD-HBBBnJ8djJR3AQ28dwb3xEcvcEvh-Tq26zu4xbMsQxne-C9CPp7I4MHUnhkvEmksRMTC4jom2y6XLoPOlaks9vdv3QE4SvBJUWwSBBJJnzHfqncHby6dv6tJzeTCi9pHoonUejresgNfe4F3vOqfdS6UY1CAQtZSzayuuKNZ4p6ZmoKk9FFVRYSZwXxp_BYdu18TmQhCVUaJQPjAvuai2YDdqtdKwEirsC6DyKxk-E4uldi43JF9tcm3HkDY68ySNvaAHv9nWuRjqNf0p_TJOzl0xU2PlDt70wk2qgC-Oq4GpEZhrnnTfOJieXOSudVzb4Ao7mqTWTffYG3UyZbpQ1tvFmX4yWla5LbBu761EG8ZeqZQF6oRKLDi1L2p8_Mkc31sOVULAC3s_a87v1v__xi_8Tfwn3WdJrSktWH8HhsL2OrxAkDe51topfwf4K-w
  priority: 102
  providerName: Springer Nature
Title A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions
URI https://link.springer.com/article/10.1038/s41467-023-43678-1
https://www.proquest.com/docview/2895065981
https://www.proquest.com/docview/2895710695
https://pubmed.ncbi.nlm.nih.gov/PMC10687042
https://doaj.org/article/11b7db961588443fba06142ba5bc6adc
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aEXwRP3FtPSL4pksvn5t9vB49y0GLqIV7EEK-VoXrbuluC_ffO8nund2C-uJLFvJBkskk85udZAahdyVn1HCicl7xkHOABLmxAbQUER_4UG9DCtN5eiZPzvlyJVa3Qn3FO2G9e-CecIeE2MLbEgSvUpyzypqow1BrhHXSeBdPX5B5t5SpdAazElQXPrySmTJ12PJ0JoCIyjmTUXUaSaLksH-EMu_ekbxjKE3yZ_EEPR6AI571A36K7oX6GXrYh5LcPEffZviyWW8uwhXuQv-o7ztue9ezG9w1OF6aDDcBR__E-CIA5sbrJl2gx02N01-cTdu1GEAsBtYFSIgBT6ZXD-0LdL44_jo_yYfICbkTRHW5dbB1y9ILxRxIZMcYcU5IVckK4KAhlAZTOFXQylEpHOVF4QgvvPRTAatD2Uu0Vzd1eIVwRBTSV9J5yjizpeLUeGWnKhQcqtsMkS0VtRvcisfoFmudzNtM6Z7yGiivE-U1ydD7XZvL3qnGX2sfxcXZ1YwOsVMGsIke2ET_i00ydLBdWj3s0laDsimiXVlBH293xbC_otHE1KG57usACpOlyJAascRoQOOS-ueP5Kkb2sF5yGmGPmy553fvf57x6_8x4330iEZuJySn5QHa666uwxsAUJ2doPvFqoBULT5O0IPZbPllCd-j47NPnyF3LueTtJsgPeXqF_J-HKs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQXxCoCBYwEJ4g6XuMcECpLNaXLqZXmgGTiJS3SNBkmKSh_it_Is5NMNZXordeJo3ie3_I9vw2hNzlntOBEpbzkPuUACdLCePBSRCjwoc74OKbz8EhOT_i3mZhtoL9jLUxIqxx1YlTUrrbhjnwbHAMRYoCKfFz8SsPUqBBdHUdo9Gyx77s_4LI1H_a-wPm-pXT36_HnaTpMFUitIKpNjQW2znMnFLNgrSxjxFohVSlLgEoFodQXmVUZLS2VwlKeZZbwzEk3EbDz0OgAVP4tMLyTkEKYzbLVnU7otq44H2pzJkxtNzxqIjCMKWcyOGxr9i-OCVjDtlczM6-EZ6PV272P7g1wFe_0_PUAbfjqIbrdD7DsHqHvO3hRz7tzv8St70sJT3HTN7ztcFvjkKrpf3scuiLjcw9IH8_rmLaP6wrHu6OuaRsM0BmDwAAQxYBiY61F8xid3Ahln6DNqq78U4QDjpGulNZRxpnJFaeFU2aifMZhuUkQGamo7dDMPMzUmOsYVGdK95TXQHkdKa9Jgt6t3ln0rTyuXf0pHM5qZWjDHX-ol6d6kGpwn0zmTA6oUMG5s9IUwcGmphDGysLZBG2NR6sH3dDoS05O0OvVY5DqEKopKl9f9GsA-8lcJEitscTahtafVD_PYn9weA-0MKcJej9yz-XX__-Pn12_2VfozvT48EAf7B3tP0d3aeBpQlKab6HNdnnhXwA4a83LKBEY_bhpEfwHGAtI2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KRfFFvGK06gj6pGE3c8-DSLUurdXig4V9EMbMJVXYJusmVfLX_HWemSRbtmDf-ppMSHLmXL4z54bQi5xRUrBMpaxkPmUACdLCePBSeCjwIc74OKbz85HYP2Yf53y-hf6OtTAhrXLUiVFRu9qGM_IJOAY8xABVNimHtIgve7O3y19pmCAVIq3jOI2eRQ599wfct-bNwR7s9UtCZh--vt9PhwkDqeWZalNjgcXz3HFFLVguS2lmLReqFCXApiIjxBfSKklKSwS3hElpMyadcFMOfxGaHoD6vyYpmE2QJTmX6_Od0HldMTbU6UypmjQsaiUwkimjIjhvG7YwjgzYwLkXszQvhGqjBZzdRrcG6Ip3e167g7Z8dRdd74dZdvfQt128rBfdqV_h1vdlhSe46ZvfdritcUjb9L89Dh2S8akH1I8XdUzhx3WF4zlS17QNBhiNQXgAlGJAtLHuormPjq-Esg_QdlVX_iHCAdMIVwrrCGXU5IqRwikzVV4yWG4SlI1U1HZobB7mayx0DLBTpXvKa6C8jpTXWYJerZ9Z9m09Ll39LmzOemVoyR0v1KsTPUg4uFJGOpMDQlSw77Q0RXC2iSm4saJwNkE749bqQU80-pyrE_R8fRskPIRtisrXZ_0awIEi5wlSGyyx8UGbd6qfP2KvcHgONDIjCXo9cs_52___x48u_9hn6AYIn_50cHT4GN0kgaWzLCX5DtpuV2f-CeC01jyNAoHR96uWwH-D300O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polymer+tethering+strategy+to+achieve+high+metal+loading+on+catalysts+for+Fenton+reactions&rft.jtitle=Nature+communications&rft.au=Lixin+Wang&rft.au=Longjun+Rao&rft.au=Maoxi+Ran&rft.au=Qikai+Shentu&rft.date=2023-11-29&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-023-43678-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon