A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions
The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7841 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-43678-1 |
Cover
Loading…
Abstract | The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min
−1
) and H
2
O
2
utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound
•
OH through lowering the energy barrier for H
2
O
2
activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.
This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites. |
---|---|
AbstractList | The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min−1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites. Abstract The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min−1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min-1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications.The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min-1) and H2O2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound •OH through lowering the energy barrier for H2O2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min −1 ) and H 2 O 2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound • OH through lowering the energy barrier for H 2 O 2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is important. However, such practices remain challenging to develop. Here, we report a self-polymerization confinement strategy to fabricate a series of ultrafine metal embedded N-doped carbon nanosheets (M@N-C) with loadings of up to 30 wt%. Systematic investigation confirms that abundant catechol groups for anchoring metal ions and entangled polymer networks with the stable coordinate environment are essential for realizing high-loading M@N-C catalysts. As a demonstration, Fe@N-C exhibits the dual high-efficiency performance in Fenton reaction with both impressive catalytic activity (0.818 min −1 ) and H 2 O 2 utilization efficiency (84.1%) using sulfamethoxazole as the probe, which has not yet been achieved simultaneously. Theoretical calculations reveal that the abundant Fe nanocrystals increase the electron density of the N-doped carbon frameworks, thereby facilitating the continuous generation of long-lasting surface-bound • OH through lowering the energy barrier for H 2 O 2 activation. This facile and universal strategy paves the way for the fabrication of diverse high-loading heterogeneous catalysts for broad applications. This work reports a self-polymerization confinement strategy to develop and synthesize carbon-supported metal catalysts with high metal loading. Efficient Fenton reactivity is observed for samples containing well dispersed iron sites. |
ArticleNumber | 7841 |
Author | Song, Wenkai Lv, Weiyang Wang, Lixin Rao, Longjun Ran, Maoxi Wu, Zenglong Yao, Yuyuan Shentu, Qikai Li, Hao Xing, Mingyang Zhang, Ziwei |
Author_xml | – sequence: 1 givenname: Lixin surname: Wang fullname: Wang, Lixin organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 2 givenname: Longjun surname: Rao fullname: Rao, Longjun organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 3 givenname: Maoxi surname: Ran fullname: Ran, Maoxi organization: National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology – sequence: 4 givenname: Qikai surname: Shentu fullname: Shentu, Qikai organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 5 givenname: Zenglong surname: Wu fullname: Wu, Zenglong organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 6 givenname: Wenkai surname: Song fullname: Song, Wenkai organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 7 givenname: Ziwei surname: Zhang fullname: Zhang, Ziwei organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 8 givenname: Hao surname: Li fullname: Li, Hao organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University – sequence: 9 givenname: Yuyuan surname: Yao fullname: Yao, Yuyuan organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Zhejiang Provincial Innovation Center of Advanced Textile Technology – sequence: 10 givenname: Weiyang orcidid: 0000-0002-7541-4844 surname: Lv fullname: Lv, Weiyang email: wylv@zstu.edu.cn organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Zhejiang Provincial Innovation Center of Advanced Textile Technology – sequence: 11 givenname: Mingyang orcidid: 0000-0002-0518-2849 surname: Xing fullname: Xing, Mingyang email: mingyangxing@ecust.edu.cn organization: National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology |
BookMark | eNp9Us1u3CAYRFWq5qd5gZ6QeunFLR9gwKcqipo2UqRe2lslhDG2WXnNFthI-_bB66hNcggX0DAzGj7mHJ3MYXYIfQDyGQhTXxIHLmRFKKs4E1JV8AadUcKhAknZyZPzKbpMaUPKYg0ozt-hU6YII4I1Z-jPFd6F6bB1EWeXRxf9POCUo8luOOAcsLGjd_cOj34Y8dZlM-EpmG6hhRlbU4BDygn3IeIbN-cCRmds9mFO79Hb3kzJXT7uF-j3zbdf1z-qu5_fb6-v7ipbg8pVaxmRTdPVilkFyjIG1tZC9aJvQBig1BlplaS9paK2lEtpgctOdKRuHaXsAt2uvl0wG72LfmviQQfj9REIcdAmZm8npwFa2bWNgFqVUbC-NUQAp62pWytMZ4vX19Vrt2-3rrPlSdFMz0yf38x-1EO410CEkoQvaT49OsTwd-9S1lufrJsmM7uwT5qqppaF3dSF-vEFdRP2cS6zOrKIqBsFhUVXlo0hpej6f2mA6KUMei2DLmXQxzLoRaReiKzPZvmWktpPr0vZKk27pQ4u_k_1iuoB8-HJXQ |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_115325 crossref_primary_10_1016_j_watres_2024_122425 crossref_primary_10_1016_j_seppur_2025_132174 crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_3390_catal15030206 crossref_primary_10_1002_adfm_202417441 crossref_primary_10_1002_ange_202401434 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1016_j_cej_2024_155430 crossref_primary_10_1039_D4TA05189K crossref_primary_10_1021_acssuschemeng_4c06775 crossref_primary_10_1002_smll_202407427 crossref_primary_10_1002_advs_202417368 crossref_primary_10_1016_j_jcis_2024_06_019 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1016_j_jallcom_2025_179269 crossref_primary_10_1016_j_watres_2025_123393 crossref_primary_10_1016_j_surfin_2024_104388 crossref_primary_10_1016_j_watres_2024_122697 crossref_primary_10_1021_acsestengg_4c00413 crossref_primary_10_1016_j_watres_2024_121485 crossref_primary_10_1016_j_mtsust_2024_100790 crossref_primary_10_3390_catal14080520 crossref_primary_10_1016_j_seppur_2024_129591 crossref_primary_10_1007_s12274_024_6973_y crossref_primary_10_1016_j_colsurfa_2024_135441 crossref_primary_10_1016_j_jwpe_2025_107091 crossref_primary_10_1002_smll_202407659 crossref_primary_10_1007_s42765_025_00525_w crossref_primary_10_1016_j_cej_2025_159922 crossref_primary_10_3390_molecules29102188 crossref_primary_10_1002_anie_202401434 crossref_primary_10_1002_ange_202419680 crossref_primary_10_1016_j_jcis_2024_11_134 crossref_primary_10_1016_j_xcrp_2024_101966 crossref_primary_10_1016_j_apcatb_2025_125230 crossref_primary_10_1002_ange_202402669 crossref_primary_10_1016_j_seppur_2025_131665 crossref_primary_10_1080_09593330_2024_2391076 crossref_primary_10_1038_s41467_024_51525_0 crossref_primary_10_1002_anie_202419680 crossref_primary_10_1016_j_apcatb_2024_124828 crossref_primary_10_1016_j_cej_2024_157879 crossref_primary_10_1016_j_jenvman_2025_124871 crossref_primary_10_1016_j_seppur_2024_131376 crossref_primary_10_1016_j_jhazmat_2024_133752 crossref_primary_10_1038_s41467_024_53289_z crossref_primary_10_1016_j_seppur_2024_131052 crossref_primary_10_1016_j_jece_2025_116072 crossref_primary_10_1038_s41467_024_46739_1 crossref_primary_10_1073_pnas_2403766121 crossref_primary_10_1007_s10311_025_01828_5 crossref_primary_10_1016_j_jenvman_2024_123768 crossref_primary_10_1021_acsestengg_4c00237 crossref_primary_10_1002_smll_202406959 crossref_primary_10_1016_j_jpowsour_2025_236477 crossref_primary_10_1016_j_watres_2024_122750 crossref_primary_10_1002_adma_202417834 crossref_primary_10_1016_j_checat_2024_101260 crossref_primary_10_1002_adma_202401454 crossref_primary_10_1016_j_jallcom_2024_176603 crossref_primary_10_1016_j_seppur_2024_129563 crossref_primary_10_1016_j_seppur_2024_126657 crossref_primary_10_1021_acs_inorgchem_4c04369 crossref_primary_10_1002_anie_202402669 crossref_primary_10_1016_j_jcis_2024_05_051 |
Cites_doi | 10.1002/anie.202101804 10.1126/science.aad0832 10.1002/aenm.202002592 10.1021/acs.est.8b01734 10.1038/nenergy.2016.184 10.1016/j.chempr.2018.03.002 10.1002/ange.201804958 10.1021/cr400407a 10.1021/acs.accounts.8b00583 10.1021/acscatal.6b01786 10.1016/j.apcatb.2019.117820 10.1002/adma.201800005 10.1021/acsenergylett.8b01717 10.1038/s41557-021-00734-x 10.1002/adma.202000896 10.1021/acsestengg.2c00236 10.1002/adma.202107009 10.1002/ange.202016888 10.1021/acscatal.1c02434 10.1038/s41467-020-18969-6 10.1002/adfm.202100971 10.1016/j.watres.2018.10.025 10.1002/adma.201401857 10.1038/s41565-021-01022-y 10.1021/jacs.0c01349 10.1002/adma.201700707 10.1021/acs.est.1c06371 10.1016/j.apcatb.2021.119940 10.1021/acsnano.8b04693 10.1002/anie.201902109 10.1038/s41467-022-33149-4 10.1021/acs.est.7b00040 10.1021/acs.est.0c06086 10.1038/s41467-019-09290-y 10.1002/anie.201912785 10.1002/advs.202101824 10.1016/j.apcatb.2019.118548 10.1021/acs.est.0c04694 10.1021/acs.est.0c07418 10.1038/ncomms12582 10.1021/acscatal.7b03270 10.1002/ange.201916520 10.1021/acs.nanolett.0c02782 10.1021/acs.accounts.7b00535 10.1021/acsnano.9b02315 10.1039/C8SC03531H 10.1038/s41467-022-33098-y 10.1021/acsnano.9b04436 10.1002/anie.201402986 10.1002/aenm.201801698 10.1002/adma.202006613 10.1002/ange.201908760 10.1002/anie.202200670 10.1021/acscatal.1c01284 10.1021/acs.est.0c06825 10.1002/ange.201811763 10.1021/jacs.6b00757 10.1002/anie.202109488 10.1016/j.susc.2019.05.002 10.1038/s41467-022-31807-1 10.1016/j.scib.2023.04.011 10.1021/acscatal.9b05197 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-43678-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc PMC10687042 10_1038_s41467_023_43678_1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-bc30799d583c818c331cc568f6f916a122ea7c872fc265c2477c147d6d05be223 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Thu Aug 21 18:36:19 EDT 2025 Thu Jul 10 22:39:37 EDT 2025 Wed Aug 13 11:00:28 EDT 2025 Tue Jul 01 02:10:47 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-bc30799d583c818c331cc568f6f916a122ea7c872fc265c2477c147d6d05be223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7541-4844 0000-0002-0518-2849 |
OpenAccessLink | https://doaj.org/article/11b7db961588443fba06142ba5bc6adc |
PMID | 38030639 |
PQID | 2895065981 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687042 proquest_miscellaneous_2895710695 proquest_journals_2895065981 crossref_primary_10_1038_s41467_023_43678_1 crossref_citationtrail_10_1038_s41467_023_43678_1 springer_journals_10_1038_s41467_023_43678_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-29 |
PublicationDateYYYYMMDD | 2023-11-29 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR14) 2018; 30 Meng (CR59) 2022; 13 Niu (CR10) 2019; 256 Zhu (CR53) 2023; 68 Li (CR54) 2019; 58 Duan (CR12) 2018; 51 Wang (CR47) 2015; 54 Zhao (CR27) 2021; 31 Guo (CR43) 2016; 351 Jiang (CR60) 2016; 138 Shao (CR11) 2022; 3 Xiao (CR49) 2021; 60 Chen (CR6) 2020; 20 Zhong (CR26) 2018; 9 Wang (CR2) 2022; 34 Xie (CR57) 2020; 55 Ling (CR4) 2022; 61 Bae (CR7) 2018; 52 Miao (CR39) 2021; 33 Varnell (CR61) 2016; 7 Liu (CR28) 2014; 114 Wang (CR13) 2021; 11 Hu (CR19) 2021; 55 Lee (CR32) 2019; 52 Xie (CR56) 2020; 264 Wu (CR58) 2021; 56 Tang (CR8) 2020; 142 Ha (CR44) 2020; 10 Marshall-Roth (CR40) 2020; 11 Zhang (CR62) 2019; 13 Zeng (CR1) 2020; 54 He (CR42) 2020; 132 Dong (CR46) 2022; 13 Xie (CR3) 2022; 13 Zhou (CR15) 2019; 58 Zhuang (CR34) 2015; 27 Zhao (CR35) 2016; 1 Lv (CR20) 2021; 286 Mamtani (CR45) 2016; 6 Wang (CR5) 2018; 8 Zhao (CR18) 2020; 132 Chen (CR22) 2018; 8 Xiong (CR25) 2020; 32 Wang (CR51) 2021; 8 Li (CR36) 2019; 148 Huang (CR41) 2018; 3 Zhao (CR24) 2019; 10 Cheng (CR29) 2019; 13 Li (CR31) 2017; 29 Zhang (CR37) 2018; 130 Zhang (CR52) 2021; 60 Xing (CR9) 2018; 4 Hai (CR17) 2022; 17 Delparastan (CR30) 2019; 131 Kim (CR33) 2021; 12 Song (CR16) 2020; 10 Xing (CR38) 2021; 133 Li (CR50) 2017; 51 Tran (CR48) 2019; 687 Chu (CR55) 2020; 55 An (CR23) 2018; 12 He (CR63) 2021; 11 Xia (CR21) 2021; 13 D Guo (43678_CR43) 2016; 351 P Delparastan (43678_CR30) 2019; 131 J Kim (43678_CR33) 2021; 12 X Hai (43678_CR17) 2022; 17 K Mamtani (43678_CR45) 2016; 6 Y Xiong (43678_CR25) 2020; 32 J Li (43678_CR54) 2019; 58 Y Chen (43678_CR6) 2020; 20 H Niu (43678_CR10) 2019; 256 H Zhong (43678_CR26) 2018; 9 J Wang (43678_CR51) 2021; 8 J Li (43678_CR36) 2019; 148 T Marshall-Roth (43678_CR40) 2020; 11 X Huang (43678_CR41) 2018; 3 C Chu (43678_CR55) 2020; 55 H Dong (43678_CR46) 2022; 13 X Wu (43678_CR58) 2021; 56 Y Ha (43678_CR44) 2020; 10 T Song (43678_CR16) 2020; 10 C Ling (43678_CR4) 2022; 61 D Zhao (43678_CR18) 2020; 132 S Zhao (43678_CR35) 2016; 1 C Meng (43678_CR59) 2022; 13 H Zhou (43678_CR15) 2019; 58 A Xie (43678_CR56) 2020; 264 J Xie (43678_CR57) 2020; 55 S He (43678_CR63) 2021; 11 Z Zhang (43678_CR62) 2019; 13 L Zhu (43678_CR53) 2023; 68 JA Varnell (43678_CR61) 2016; 7 S Li (43678_CR31) 2017; 29 J Wang (43678_CR13) 2021; 11 Y Wang (43678_CR47) 2015; 54 T Tang (43678_CR8) 2020; 142 J Hu (43678_CR19) 2021; 55 F Xiao (43678_CR49) 2021; 60 L Zhao (43678_CR24) 2019; 10 Z Zhang (43678_CR37) 2018; 130 W Cheng (43678_CR29) 2019; 13 Q Wang (43678_CR5) 2018; 8 Z Wang (43678_CR2) 2022; 34 H Zeng (43678_CR1) 2020; 54 L Xie (43678_CR3) 2022; 13 LS Zhang (43678_CR52) 2021; 60 HA Lee (43678_CR32) 2019; 52 X Zhuang (43678_CR34) 2015; 27 R Tran (43678_CR48) 2019; 687 M Xing (43678_CR9) 2018; 4 Y Xing (43678_CR38) 2021; 133 S Shao (43678_CR11) 2022; 3 S Bae (43678_CR7) 2018; 52 WJ Jiang (43678_CR60) 2016; 138 H Li (43678_CR50) 2017; 51 C He (43678_CR42) 2020; 132 C Xia (43678_CR21) 2021; 13 X Duan (43678_CR12) 2018; 51 XR Wang (43678_CR14) 2018; 30 Z Miao (43678_CR39) 2021; 33 S An (43678_CR23) 2018; 12 H Chen (43678_CR22) 2018; 8 G Zhao (43678_CR27) 2021; 31 H Lv (43678_CR20) 2021; 286 Y Liu (43678_CR28) 2014; 114 |
References_xml | – volume: 60 start-page: 10375 year: 2021 end-page: 10383 ident: CR49 article-title: Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3‐electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101804 – volume: 351 start-page: 361 year: 2016 end-page: 365 ident: CR43 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science doi: 10.1126/science.aad0832 – volume: 10 start-page: 2002592 year: 2020 ident: CR44 article-title: Atomically dispersed Co‐pyridinic N‐C for superior oxygen reduction reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002592 – volume: 52 start-page: 12010 year: 2018 end-page: 12025 ident: CR7 article-title: Advances in surface passivation of nanoscale zerovalent iron: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01734 – volume: 1 start-page: 16184 year: 2016 ident: CR35 article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 4 start-page: 1359 year: 2018 end-page: 1372 ident: CR9 article-title: Metal sulfides as excellent co-catalysts for H O decomposition in advanced oxidation processes publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – volume: 130 start-page: 9176 year: 2018 end-page: 9181 ident: CR37 article-title: Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework publication-title: Angew. Chem. doi: 10.1002/ange.201804958 – volume: 114 start-page: 5057 year: 2014 end-page: 5115 ident: CR28 article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 52 start-page: 704 year: 2019 end-page: 713 ident: CR32 article-title: Material-independent surface chemistry beyond polydopamine coating publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00583 – volume: 6 start-page: 7249 year: 2016 end-page: 7259 ident: CR45 article-title: Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CN ) in acidic media using phosphate anion publication-title: ACS Catal. doi: 10.1021/acscatal.6b01786 – volume: 256 start-page: 117820 year: 2019 ident: CR10 article-title: Long-lasting activity of Fe -C internal microelectrolysis-Fenton system assisted by Fe@C-montmorillonites nanocomposites publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117820 – volume: 30 start-page: 1800005 year: 2018 ident: CR14 article-title: Identifying the key role of pyridinic‐N–Co bonding in synergistic electrocatalysis for reversible ORR/OER publication-title: Adv. Mater. doi: 10.1002/adma.201800005 – volume: 3 start-page: 2914 year: 2018 end-page: 2920 ident: CR41 article-title: N-doped carbon nanosheet networks with favorable active sites triggered by metal nanoparticles as bifunctional oxygen electrocatalysts publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01717 – volume: 13 start-page: 887 year: 2021 end-page: 894 ident: CR21 article-title: General synthesis of single-atom catalysts with high metal loading using graphene quantum dots publication-title: Nat. Chem. doi: 10.1038/s41557-021-00734-x – volume: 32 start-page: 2000896 year: 2020 ident: CR25 article-title: Gram‐scale synthesis of high‐loading single‐atomic‐site Fe catalysts for effective epoxidation of styrene publication-title: Adv. Mater. doi: 10.1002/adma.202000896 – volume: 3 start-page: 36 year: 2022 end-page: 44 ident: CR11 article-title: Efficient and durable single-atom Fe catalyst for Fenton-like reaction via mediated electron-transfer mechanism publication-title: ACS EST Engg. doi: 10.1021/acsestengg.2c00236 – volume: 34 start-page: 2107009 year: 2022 ident: CR2 article-title: Metal–phenolic‐network‐coated dendrimer–drug conjugates for tumor MR imaging and chemo/chemodynamic therapy via amplification of endoplasmic reticulum stress publication-title: Adv. Mater. doi: 10.1002/adma.202107009 – volume: 133 start-page: 8971 year: 2021 end-page: 8977 ident: CR38 article-title: Fe/Fe C boosts H O utilization for methane conversion overwhelming O generation publication-title: Angew. Chem. doi: 10.1002/ange.202016888 – volume: 11 start-page: 9355 year: 2021 end-page: 9365 ident: CR63 article-title: Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.1c02434 – volume: 11 year: 2020 ident: CR40 article-title: A pyridinic Fe-N macrocycle models the active sites in Fe/N-doped carbon electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-020-18969-6 – volume: 31 start-page: 2100971 year: 2021 ident: CR27 article-title: Constructing the support as a microreactor and regenerator for highly active and in situ regenerative hydrogenation catalyst publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100971 – volume: 148 start-page: 70 year: 2019 end-page: 85 ident: CR36 article-title: Characterization methods of zerovalent iron for water treatment and remediation publication-title: Water Res. doi: 10.1016/j.watres.2018.10.025 – volume: 27 start-page: 403 year: 2015 end-page: 427 ident: CR34 article-title: Two‐dimensional soft nanomaterials: a fascinating world of materials publication-title: Adv. Mater. doi: 10.1002/adma.201401857 – volume: 17 start-page: 174 year: 2022 end-page: 181 ident: CR17 article-title: Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01022-y – volume: 142 start-page: 7116 year: 2020 end-page: 7127 ident: CR8 article-title: Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc–air batteries with record power density publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01349 – volume: 29 start-page: 1700707 year: 2017 ident: CR31 article-title: 2D porous carbons prepared from layered organic–inorganic hybrids and their use as oxygen‐reduction electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201700707 – volume: 56 start-page: 1341 year: 2021 end-page: 1351 ident: CR58 article-title: Single-atom cobalt incorporated in a 2D graphene oxide membrane for catalytic pollutant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06371 – volume: 286 start-page: 119940 year: 2021 ident: CR20 article-title: Carbon zero-valent iron materials possessing high-content fine Fe nanoparticles with enhanced microelectrolysis-Fenton-like catalytic performance for water purification publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.119940 – volume: 12 start-page: 9441 year: 2018 end-page: 9450 ident: CR23 article-title: High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C N ) for highly efficient catalytic advanced oxidation processes publication-title: ACS Nano doi: 10.1021/acsnano.8b04693 – volume: 58 start-page: 7035 year: 2019 end-page: 7039 ident: CR54 article-title: Ultrahigh‐loading zinc single‐atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902109 – volume: 13 year: 2022 ident: CR3 article-title: Pauling-type adsorption of O induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation publication-title: Nat. Commun. doi: 10.1038/s41467-022-33149-4 – volume: 12 year: 2021 ident: CR33 article-title: Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO reduction toward C products publication-title: Nat. Commun. – volume: 51 start-page: 5685 year: 2017 end-page: 5694 ident: CR50 article-title: Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00040 – volume: 55 start-page: 1242 year: 2020 end-page: 1250 ident: CR55 article-title: Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06086 – volume: 10 year: 2019 ident: CR24 article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 58 start-page: 18388 year: 2019 end-page: 18393 ident: CR15 article-title: A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912785 – volume: 8 start-page: 2101824 year: 2021 ident: CR51 article-title: Facile synthesis of atomic Fe‐N‐C materials and dual roles investigation of Fe‐N sites in Fenton‐like reactions publication-title: Adv. Sci. doi: 10.1002/advs.202101824 – volume: 264 start-page: 118548 year: 2020 ident: CR56 article-title: Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118548 – volume: 54 start-page: 14725 year: 2020 end-page: 14731 ident: CR1 article-title: pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H O reduction: a green Fenton process without byproducts publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04694 – volume: 55 start-page: 2652 year: 2020 end-page: 2661 ident: CR57 article-title: Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07418 – volume: 7 year: 2016 ident: CR61 article-title: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts publication-title: Nat. Commun. doi: 10.1038/ncomms12582 – volume: 8 start-page: 1417 year: 2018 end-page: 1426 ident: CR22 article-title: Nanoreactor of MOF-derived yolk–shell Co@C–N: precisely controllable structure and enhanced catalytic activity publication-title: ACS Catal. doi: 10.1021/acscatal.7b03270 – volume: 132 start-page: 4944 year: 2020 end-page: 4949 ident: CR42 article-title: Molecular evidence for metallic cobalt boosting CO electroreduction on pyridinic nitrogen publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201916520 – volume: 20 start-page: 6807 year: 2020 end-page: 6814 ident: CR6 article-title: Hexagonal boron nitride as a multifunctional support for engineering efficient electrocatalysts toward the oxygen reduction reaction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02782 – volume: 51 start-page: 678 year: 2018 end-page: 687 ident: CR12 article-title: Metal-free carbocatalysis in advanced oxidation reactions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00535 – volume: 13 start-page: 7062 year: 2019 end-page: 7072 ident: CR62 article-title: “Ship in a bottle” design of highly efficient bifunctional electrocatalysts for long-lasting rechargeable Zn–air batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b02315 – volume: 9 start-page: 8703 year: 2018 end-page: 8710 ident: CR26 article-title: Facile fabrication of Cu-based alloy nanoparticles encapsulated within hollow octahedral N-doped porous carbon for selective oxidation of hydrocarbons publication-title: Chem. Sci. doi: 10.1039/C8SC03531H – volume: 13 year: 2022 ident: CR46 article-title: Depletable peroxidase-like activity of Fe O nanozymes accompanied with separate migration of electrons and iron ions publication-title: Nat. Commun. doi: 10.1038/s41467-022-33098-y – volume: 13 start-page: 8537 year: 2019 end-page: 8565 ident: CR29 article-title: Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine publication-title: ACS Nano doi: 10.1021/acsnano.9b04436 – volume: 54 start-page: 2022 year: 2015 end-page: 2051 ident: CR47 article-title: Thermodynamics versus kinetics in nanosynthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402986 – volume: 8 start-page: 1801698 year: 2018 ident: CR5 article-title: Scalable solid‐state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801698 – volume: 33 start-page: 2006613 year: 2021 ident: CR39 article-title: Improving the stability of non‐noble‐metal M–N–C catalysts for proton‐exchange‐membrane fuel cells through M–N bond length and coordination regulation publication-title: Adv. Mater. doi: 10.1002/adma.202006613 – volume: 132 start-page: 9067 year: 2020 end-page: 9075 ident: CR18 article-title: Synergistically interactive pyridinic‐N–MoP sites: identified active centers for enhanced hydrogen evolution in alkaline solution publication-title: Angew. Chem. doi: 10.1002/ange.201908760 – volume: 61 start-page: e202200670 year: 2022 ident: CR4 article-title: Atomic‐layered Cu nanoclusters on FeS with dual catalytic sites for efficient and selective H O activation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200670 – volume: 11 start-page: 7422 year: 2021 end-page: 7428 ident: CR13 article-title: Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation reaction in alkaline media publication-title: ACS Catal. doi: 10.1021/acscatal.1c01284 – volume: 55 start-page: 1260 year: 2021 end-page: 1269 ident: CR19 article-title: Duet Fe C and FeN sites for H O generation and activation toward enhanced electro-Fenton performance in wastewater treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06825 – volume: 131 start-page: 1089 year: 2019 end-page: 1094 ident: CR30 article-title: Direct evidence for the polymeric nature of polydopamine publication-title: Angew. Chem. doi: 10.1002/ange.201811763 – volume: 138 start-page: 3570 year: 2016 end-page: 3578 ident: CR60 article-title: Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe C nanoparticles boost the activity of Fe–N publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 60 start-page: 21751 year: 2021 end-page: 21755 ident: CR52 article-title: Carbon nitride supported high‐loading Fe single‐atom catalyst for activation of peroxymonosulfate to generate O with 100% selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109488 – volume: 687 start-page: 48 year: 2019 end-page: 55 ident: CR48 article-title: Anisotropic work function of elemental crystals publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.05.002 – volume: 13 year: 2022 ident: CR59 article-title: Angstrom-confined catalytic water purification within Co-TiO laminar membrane nanochannels publication-title: Nat. Commun. doi: 10.1038/s41467-022-31807-1 – volume: 68 start-page: 892 year: 2023 end-page: 896 ident: CR53 article-title: Selective removal of ultrafine suspended solids during organic pollutant degradation by a MoS /graphene oxide sponge publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.04.011 – volume: 10 start-page: 4617 year: 2020 end-page: 4629 ident: CR16 article-title: A bifunctional iron nanocomposite catalyst for efficient oxidation of alkenes to ketones and 1, 2-diketones publication-title: ACS Catal. doi: 10.1021/acscatal.9b05197 – volume: 13 year: 2022 ident: 43678_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33149-4 – volume: 131 start-page: 1089 year: 2019 ident: 43678_CR30 publication-title: Angew. Chem. doi: 10.1002/ange.201811763 – volume: 4 start-page: 1359 year: 2018 ident: 43678_CR9 publication-title: Chem doi: 10.1016/j.chempr.2018.03.002 – volume: 7 year: 2016 ident: 43678_CR61 publication-title: Nat. Commun. doi: 10.1038/ncomms12582 – volume: 55 start-page: 1260 year: 2021 ident: 43678_CR19 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06825 – volume: 58 start-page: 7035 year: 2019 ident: 43678_CR54 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902109 – volume: 148 start-page: 70 year: 2019 ident: 43678_CR36 publication-title: Water Res. doi: 10.1016/j.watres.2018.10.025 – volume: 8 start-page: 2101824 year: 2021 ident: 43678_CR51 publication-title: Adv. Sci. doi: 10.1002/advs.202101824 – volume: 55 start-page: 1242 year: 2020 ident: 43678_CR55 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06086 – volume: 1 start-page: 16184 year: 2016 ident: 43678_CR35 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 61 start-page: e202200670 year: 2022 ident: 43678_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200670 – volume: 27 start-page: 403 year: 2015 ident: 43678_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201401857 – volume: 10 start-page: 4617 year: 2020 ident: 43678_CR16 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05197 – volume: 56 start-page: 1341 year: 2021 ident: 43678_CR58 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06371 – volume: 3 start-page: 2914 year: 2018 ident: 43678_CR41 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01717 – volume: 11 start-page: 7422 year: 2021 ident: 43678_CR13 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01284 – volume: 256 start-page: 117820 year: 2019 ident: 43678_CR10 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117820 – volume: 32 start-page: 2000896 year: 2020 ident: 43678_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.202000896 – volume: 11 start-page: 9355 year: 2021 ident: 43678_CR63 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02434 – volume: 52 start-page: 12010 year: 2018 ident: 43678_CR7 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01734 – volume: 34 start-page: 2107009 year: 2022 ident: 43678_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202107009 – volume: 11 year: 2020 ident: 43678_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18969-6 – volume: 13 start-page: 887 year: 2021 ident: 43678_CR21 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00734-x – volume: 6 start-page: 7249 year: 2016 ident: 43678_CR45 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01786 – volume: 54 start-page: 14725 year: 2020 ident: 43678_CR1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04694 – volume: 12 year: 2021 ident: 43678_CR33 publication-title: Nat. Commun. – volume: 132 start-page: 4944 year: 2020 ident: 43678_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201916520 – volume: 3 start-page: 36 year: 2022 ident: 43678_CR11 publication-title: ACS EST Engg. doi: 10.1021/acsestengg.2c00236 – volume: 12 start-page: 9441 year: 2018 ident: 43678_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.8b04693 – volume: 51 start-page: 678 year: 2018 ident: 43678_CR12 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00535 – volume: 264 start-page: 118548 year: 2020 ident: 43678_CR56 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118548 – volume: 20 start-page: 6807 year: 2020 ident: 43678_CR6 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02782 – volume: 138 start-page: 3570 year: 2016 ident: 43678_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 132 start-page: 9067 year: 2020 ident: 43678_CR18 publication-title: Angew. Chem. doi: 10.1002/ange.201908760 – volume: 30 start-page: 1800005 year: 2018 ident: 43678_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201800005 – volume: 58 start-page: 18388 year: 2019 ident: 43678_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912785 – volume: 142 start-page: 7116 year: 2020 ident: 43678_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01349 – volume: 10 year: 2019 ident: 43678_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 9 start-page: 8703 year: 2018 ident: 43678_CR26 publication-title: Chem. Sci. doi: 10.1039/C8SC03531H – volume: 29 start-page: 1700707 year: 2017 ident: 43678_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201700707 – volume: 13 start-page: 7062 year: 2019 ident: 43678_CR62 publication-title: ACS Nano doi: 10.1021/acsnano.9b02315 – volume: 31 start-page: 2100971 year: 2021 ident: 43678_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100971 – volume: 133 start-page: 8971 year: 2021 ident: 43678_CR38 publication-title: Angew. Chem. doi: 10.1002/ange.202016888 – volume: 10 start-page: 2002592 year: 2020 ident: 43678_CR44 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002592 – volume: 33 start-page: 2006613 year: 2021 ident: 43678_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.202006613 – volume: 13 year: 2022 ident: 43678_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33098-y – volume: 51 start-page: 5685 year: 2017 ident: 43678_CR50 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00040 – volume: 8 start-page: 1417 year: 2018 ident: 43678_CR22 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03270 – volume: 68 start-page: 892 year: 2023 ident: 43678_CR53 publication-title: Sci. Bull. doi: 10.1016/j.scib.2023.04.011 – volume: 13 start-page: 8537 year: 2019 ident: 43678_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.9b04436 – volume: 687 start-page: 48 year: 2019 ident: 43678_CR48 publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.05.002 – volume: 60 start-page: 21751 year: 2021 ident: 43678_CR52 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109488 – volume: 286 start-page: 119940 year: 2021 ident: 43678_CR20 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.119940 – volume: 55 start-page: 2652 year: 2020 ident: 43678_CR57 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07418 – volume: 54 start-page: 2022 year: 2015 ident: 43678_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402986 – volume: 60 start-page: 10375 year: 2021 ident: 43678_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101804 – volume: 8 start-page: 1801698 year: 2018 ident: 43678_CR5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801698 – volume: 52 start-page: 704 year: 2019 ident: 43678_CR32 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00583 – volume: 114 start-page: 5057 year: 2014 ident: 43678_CR28 publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 351 start-page: 361 year: 2016 ident: 43678_CR43 publication-title: Science doi: 10.1126/science.aad0832 – volume: 130 start-page: 9176 year: 2018 ident: 43678_CR37 publication-title: Angew. Chem. doi: 10.1002/ange.201804958 – volume: 17 start-page: 174 year: 2022 ident: 43678_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01022-y – volume: 13 year: 2022 ident: 43678_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31807-1 |
SSID | ssj0000391844 |
Score | 2.661099 |
Snippet | The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is... Abstract The development of heterogenous catalysts based on the synthesis of 2D carbon-supported metal nanocatalysts with high metal loading and dispersion is... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7841 |
SubjectTerms | 140/146 147/135 147/143 639/301/299 639/638/298 704/172/169/896 Carbon Catalysts Catalytic activity Catechol Chemical synthesis Confinement Dispersion Electron density Fabrication Humanities and Social Sciences Hydrogen peroxide Iron Metal ions Metals multidisciplinary Nanocrystals Polymerization Polymers Science Science (multidisciplinary) Sulfamethoxazole Tethering Ultrafines |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGXkr6om6So0FsrsnpaPoWkJIRCQykN5FAQ1sNpYWNv105g_31GsnaDA83VGmFb8_pGI80g9KkSnNWCaiIaEYgASEBqGyBKkfGCD_M2pDad38_V2YX4dikv84Zbn49Vrm1iMtS-c3GP_AACAxlzgJoeLv6R2DUqZldzC42naBtMsAYJ3z4-Of_xc7PLEuufayHybZkZ1we9SLYBXBURXMUQauKRUuH-Cdp8eFbyQcI0-aHTHfQiA0h8NHL8JXoS2lfo2dhScvUa_T7Ci26-ug5LPITxct8V7scStCs8dDgengy3Acc6xfg6APbG8y4dpMddi9NuzqofegxgFoMIAzTEgCvT7Yf-Dbo4Pfn19YzkDgrESaoHYh2ocFV5qbkDz-w4p85JpRvVACysKWOhLp0uWeOYko6JsnRUlF75mQQuMf4WbbVdG94hHJGF8o1ynnHBbaUFq722Mx1KAeS2QHS9isbl8uKxy8XcpDQ312ZceQMrb9LKG1qgz5s5i7G4xqPUx5E5G8pYGDs96JZXJusZBDS29LYCnKaB77yxdQx5ma2ldar2rkB7a9aarK29uZetAn3cDIOexeRJ3YbuZqQBNKYqWSA9EYnJB01H2r9_UsVumAd2UbACfVlLz_3b___H7x__2F30nEU5ppSwag9tDcubsA8QabAfsh7cAeTSDqM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB_WFcGL-InVVSJ40-rms-lBZBWXRVhPPtiDEJI0XRfetutrV-x_7yRtn3RZPXltEtLOR-Y3ncwMwMtScGYF1bmoRcgFQoLcuoBeiowJPqxyIbXpPP6ijlbi84k82YG53dFEwO5a1y72k1pt1m9-_Rjeo8K_G1PG9dtOJHVH65MLrqJXdANuomUqYiuH4wnup5OZl-jQiCl35vqlC_uUyvgvsOfVm5NXwqfJKh3ehTsTnCQHI__vwU5o7sOtscHk8AC-HZCLdj2chw3pw5jqd0q6sSDtQPqWxKuU4WcgsWoxOQ9IBLJu07V60jYk_dsZur4jCG0JCjQCRYIoM-VCdA9hdfjp68ejfOqnkHtJdZ87jwpdlpXU3KOd9pxT76XStaoRJFrKWLCF1wWrPVPSM1EUnoqiUtW-RJ4x_gh2m7YJj4FEnKGqWvmKccFdqQWzlXb7OhQCp7sM6ExF46di47HnxdqkoDfXZqS8QcqbRHlDM3i1XXMxltr45-wPkTnbmbFMdnrQbk7NpHXo3riiciWiNo1857Wz0QFmzkrnla18Bnsza80segZdUBmjzRr3eLEdRq2LoRTbhPZynIPYTJUyA70QicULLUeas--pfjeuw1NSsAxez9LzZ_e_f_GT__HFT-E2i9JOac7KPdjtN5fhGcKq3j1PuvIbAzIdhw priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8YrVVSL4psWTa9PH9eCyCPrkwj4IIbeuwtl2Oe0unH_vJG2PdFHB12ZC0mQm-SaZ-QLwthacWUF1KRoRS4GQoLQuopciU4IPCy7mZzq_fFWnZ-LzuTw_ADbnwuSg_UxpmZfpOTrsQy-ySeMOUwqukudzB-4m6vYUxrdW6_25SmI810JM-TErrv9QdbEHZar-Bb68HR1564o07zwnD-HBBBnJ8djJR3AQ28dwb3xEcvcEvh-Tq26zu4xbMsQxne-C9CPp7I4MHUnhkvEmksRMTC4jom2y6XLoPOlaks9vdv3QE4SvBJUWwSBBJJnzHfqncHby6dv6tJzeTCi9pHoonUejresgNfe4F3vOqfdS6UY1CAQtZSzayuuKNZ4p6ZmoKk9FFVRYSZwXxp_BYdu18TmQhCVUaJQPjAvuai2YDdqtdKwEirsC6DyKxk-E4uldi43JF9tcm3HkDY68ySNvaAHv9nWuRjqNf0p_TJOzl0xU2PlDt70wk2qgC-Oq4GpEZhrnnTfOJieXOSudVzb4Ao7mqTWTffYG3UyZbpQ1tvFmX4yWla5LbBu761EG8ZeqZQF6oRKLDi1L2p8_Mkc31sOVULAC3s_a87v1v__xi_8Tfwn3WdJrSktWH8HhsL2OrxAkDe51topfwf4K-w priority: 102 providerName: Springer Nature |
Title | A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions |
URI | https://link.springer.com/article/10.1038/s41467-023-43678-1 https://www.proquest.com/docview/2895065981 https://www.proquest.com/docview/2895710695 https://pubmed.ncbi.nlm.nih.gov/PMC10687042 https://doaj.org/article/11b7db961588443fba06142ba5bc6adc |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aEXwRP3FtPSL4pksvn5t9vB49y0GLqIV7EEK-VoXrbuluC_ffO8nund2C-uJLFvJBkskk85udZAahdyVn1HCicl7xkHOABLmxAbQUER_4UG9DCtN5eiZPzvlyJVa3Qn3FO2G9e-CecIeE2MLbEgSvUpyzypqow1BrhHXSeBdPX5B5t5SpdAazElQXPrySmTJ12PJ0JoCIyjmTUXUaSaLksH-EMu_ekbxjKE3yZ_EEPR6AI571A36K7oX6GXrYh5LcPEffZviyWW8uwhXuQv-o7ztue9ezG9w1OF6aDDcBR__E-CIA5sbrJl2gx02N01-cTdu1GEAsBtYFSIgBT6ZXD-0LdL44_jo_yYfICbkTRHW5dbB1y9ILxRxIZMcYcU5IVckK4KAhlAZTOFXQylEpHOVF4QgvvPRTAatD2Uu0Vzd1eIVwRBTSV9J5yjizpeLUeGWnKhQcqtsMkS0VtRvcisfoFmudzNtM6Z7yGiivE-U1ydD7XZvL3qnGX2sfxcXZ1YwOsVMGsIke2ET_i00ydLBdWj3s0laDsimiXVlBH293xbC_otHE1KG57usACpOlyJAascRoQOOS-ueP5Kkb2sF5yGmGPmy553fvf57x6_8x4330iEZuJySn5QHa666uwxsAUJ2doPvFqoBULT5O0IPZbPllCd-j47NPnyF3LueTtJsgPeXqF_J-HKs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQXxCoCBYwEJ4g6XuMcECpLNaXLqZXmgGTiJS3SNBkmKSh_it_Is5NMNZXordeJo3ie3_I9vw2hNzlntOBEpbzkPuUACdLCePBSRCjwoc74OKbz8EhOT_i3mZhtoL9jLUxIqxx1YlTUrrbhjnwbHAMRYoCKfFz8SsPUqBBdHUdo9Gyx77s_4LI1H_a-wPm-pXT36_HnaTpMFUitIKpNjQW2znMnFLNgrSxjxFohVSlLgEoFodQXmVUZLS2VwlKeZZbwzEk3EbDz0OgAVP4tMLyTkEKYzbLVnU7otq44H2pzJkxtNzxqIjCMKWcyOGxr9i-OCVjDtlczM6-EZ6PV272P7g1wFe_0_PUAbfjqIbrdD7DsHqHvO3hRz7tzv8St70sJT3HTN7ztcFvjkKrpf3scuiLjcw9IH8_rmLaP6wrHu6OuaRsM0BmDwAAQxYBiY61F8xid3Ahln6DNqq78U4QDjpGulNZRxpnJFaeFU2aifMZhuUkQGamo7dDMPMzUmOsYVGdK95TXQHkdKa9Jgt6t3ln0rTyuXf0pHM5qZWjDHX-ol6d6kGpwn0zmTA6oUMG5s9IUwcGmphDGysLZBG2NR6sH3dDoS05O0OvVY5DqEKopKl9f9GsA-8lcJEitscTahtafVD_PYn9weA-0MKcJej9yz-XX__-Pn12_2VfozvT48EAf7B3tP0d3aeBpQlKab6HNdnnhXwA4a83LKBEY_bhpEfwHGAtI2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KRfFFvGK06gj6pGE3c8-DSLUurdXig4V9EMbMJVXYJusmVfLX_HWemSRbtmDf-ppMSHLmXL4z54bQi5xRUrBMpaxkPmUACdLCePBSeCjwIc74OKbz85HYP2Yf53y-hf6OtTAhrXLUiVFRu9qGM_IJOAY8xABVNimHtIgve7O3y19pmCAVIq3jOI2eRQ599wfct-bNwR7s9UtCZh--vt9PhwkDqeWZalNjgcXz3HFFLVguS2lmLReqFCXApiIjxBfSKklKSwS3hElpMyadcFMOfxGaHoD6vyYpmE2QJTmX6_Od0HldMTbU6UypmjQsaiUwkimjIjhvG7YwjgzYwLkXszQvhGqjBZzdRrcG6Ip3e167g7Z8dRdd74dZdvfQt128rBfdqV_h1vdlhSe46ZvfdritcUjb9L89Dh2S8akH1I8XdUzhx3WF4zlS17QNBhiNQXgAlGJAtLHuormPjq-Esg_QdlVX_iHCAdMIVwrrCGXU5IqRwikzVV4yWG4SlI1U1HZobB7mayx0DLBTpXvKa6C8jpTXWYJerZ9Z9m09Ll39LmzOemVoyR0v1KsTPUg4uFJGOpMDQlSw77Q0RXC2iSm4saJwNkE749bqQU80-pyrE_R8fRskPIRtisrXZ_0awIEi5wlSGyyx8UGbd6qfP2KvcHgONDIjCXo9cs_52___x48u_9hn6AYIn_50cHT4GN0kgaWzLCX5DtpuV2f-CeC01jyNAoHR96uWwH-D300O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polymer+tethering+strategy+to+achieve+high+metal+loading+on+catalysts+for+Fenton+reactions&rft.jtitle=Nature+communications&rft.au=Lixin+Wang&rft.au=Longjun+Rao&rft.au=Maoxi+Ran&rft.au=Qikai+Shentu&rft.date=2023-11-29&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-023-43678-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_11b7db961588443fba06142ba5bc6adc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |