Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals

Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice d...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 40; no. 1; pp. 20 - 10
Main Authors Ali, Zulfiqar, Elamvazuthi, Irraivan, Alsulaiman, Mansour, Muhammad, Ghulam
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1–1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.
AbstractList Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.
Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1–1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.
Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.
ArticleNumber 20
Author Muhammad, Ghulam
Ali, Zulfiqar
Alsulaiman, Mansour
Elamvazuthi, Irraivan
Author_xml – sequence: 1
  givenname: Zulfiqar
  orcidid: 0000-0002-1599-1287
  surname: Ali
  fullname: Ali, Zulfiqar
  email: zuali@ksu.edu.sa, zulfiqar_g02579@utp.edu.my
  organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University, Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS
– sequence: 2
  givenname: Irraivan
  surname: Elamvazuthi
  fullname: Elamvazuthi, Irraivan
  organization: Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS
– sequence: 3
  givenname: Mansour
  surname: Alsulaiman
  fullname: Alsulaiman, Mansour
  organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University
– sequence: 4
  givenname: Ghulam
  surname: Muhammad
  fullname: Muhammad, Ghulam
  organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26531753$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1PFTEUhhsDkQv6A9yYJm7cjPRj-jFLAgImiCaocdd0OmcuJTPtpZ1ZXH-9HS4khkTj6mye58055z1EeyEGQOgNJR8oIeo4U9JQWREqKsIbVrEXaEWF4pXUzc89tCK01pUQjT5AhznfEUIaKdVLdMCk4FQJvkK_zmACN_kYcOzxj-gd4K92uo1DXG_xnH1Y4_Nk3WQHfOZHCHlBfcAWf56HySfIcZgf_JNgh232eQm6jmkshg1dsXJMHSTo8M0GwN3iG78uaH6F9vsy4PXjPELfzz9-O72srr5cfDo9uaqcoHqq2sYyUNYCENES0K3i0DdK1bqVrJOi61Tfst46qJmj4LhUUunWUmh73ruaH6H3u9xNivcz5MmMPjsYBhsgztlQTTRlnNP_QBUnUksmdEHfPUPv4pyWuwolmFC1UrJQbx-puR2hM5vkR5u25qmAAqgd4FLMOUFvnJ_s8s8pWT8YSsxStdlVbUrVZqnasGLSZ-ZT-L8ctnNyYcMa0h9L_1X6DfYbu9E
CitedBy_id crossref_primary_10_3390_s17020267
crossref_primary_10_3389_fninf_2019_00045
crossref_primary_10_1016_j_neures_2021_03_012
crossref_primary_10_1016_j_knosys_2016_05_011
crossref_primary_10_1007_s00521_020_05558_3
crossref_primary_10_1016_j_jvoice_2020_08_006
crossref_primary_10_1109_ACCESS_2020_2984925
crossref_primary_10_1016_j_jvoice_2018_07_014
crossref_primary_10_1016_j_jvoice_2022_08_028
crossref_primary_10_1590_2317_1782_20192018241
crossref_primary_10_1016_j_future_2018_02_021
crossref_primary_10_1109_ACCESS_2019_2901672
crossref_primary_10_1109_ACCESS_2019_2905597
crossref_primary_10_1016_j_bspc_2017_11_019
crossref_primary_10_3390_machines11010111
crossref_primary_10_1016_j_bspc_2018_12_024
crossref_primary_10_3390_app13010118
crossref_primary_10_1016_j_bspc_2022_103771
crossref_primary_10_1016_j_bspc_2021_103410
crossref_primary_10_1016_j_future_2018_05_058
crossref_primary_10_1007_s11042_020_09424_1
crossref_primary_10_1109_ACCESS_2018_2856238
crossref_primary_10_1515_slgr_2016_0044
crossref_primary_10_1016_j_jvoice_2022_11_008
crossref_primary_10_1016_j_future_2017_12_007
crossref_primary_10_1109_ACCESS_2021_3090317
crossref_primary_10_3390_s22218232
crossref_primary_10_3390_s19112590
Cites_doi 10.1016/j.jvoice.2012.05.002
10.1007/978-3-319-02732-6
10.1016/j.bspc.2014.02.001
10.1186/1475-925X-6-23
10.1049/el:19920264
10.1007/s004220050394
10.1016/0013-4694(95)00186-7
10.1109/TBME.2006.871883
10.1016/0167-2789(88)90081-4
10.1109/ICASSP.2012.6288910
10.1109/ICASSP.1991.150365
10.1109/TASL.2010.2104141
10.1016/0010-4825(88)90041-8
10.1007/978-3-319-06596-0_33
10.1145/1961189.1961199
10.1016/j.compbiomed.2009.08.001
10.1109/81.904882
10.1121/1.1912490
10.1109/CBMS.1995.465426
10.1016/j.media.2009.05.003
10.1016/j.bspc.2010.01.002
10.1016/j.jvoice.2010.08.003
10.1109/IEMBS.1992.5761778
10.1109/ICBBE.2008.840
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-015-0392-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 10
ExternalDocumentID 3908347431
26531753
10_1007_s10916_015_0392_2
Genre Journal Article
Feature
GrantInformation_xml – fundername: National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
  grantid: 12-MED-2474-02
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
ABRTQ
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c518t-b9a2e7aaee05b0e8b73ef97748b62d65dd7fb2face42c1ec367678ba1ebf3fc43
IEDL.DBID 7X7
ISSN 0148-5598
1573-689X
IngestDate Fri Jul 11 16:07:30 EDT 2025
Fri Jul 11 04:20:52 EDT 2025
Fri Jul 25 19:16:22 EDT 2025
Thu Apr 03 07:05:57 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
Tue Jul 01 03:30:18 EDT 2025
Fri Feb 21 02:37:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Katz algorithm
Wavelet transformation
Fractal dimension
Higuchi algorithm
Voice pathology detection
MDVP parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-b9a2e7aaee05b0e8b73ef97748b62d65dd7fb2face42c1ec367678ba1ebf3fc43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1599-1287
OpenAccessLink https://pure.ulster.ac.uk/ws/files/76483465/JOMS_Final_accepted.pdf
PMID 26531753
PQID 1752574776
PQPubID 54050
PageCount 10
ParticipantIDs proquest_miscellaneous_1808123314
proquest_miscellaneous_1730686258
proquest_journals_1752574776
pubmed_primary_26531753
crossref_citationtrail_10_1007_s10916_015_0392_2
crossref_primary_10_1007_s10916_015_0392_2
springer_journals_10_1007_s10916_015_0392_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160100
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 1
  year: 2016
  text: 20160100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Muhammad, G., Ali, Z., Alsulaiman, M., and Al-Mutib K., Vocal fold disorder detection by applying LBP operator on dysphonic speech signal. Proc. Recent Adv. Intell. Control Model. Simul. pp. 222–228, 2014.
MishraAKRaghavSLocal fractal dimension based ECG arrhythmia classificationBiomed. Signal Proc. Control2010511412310.1016/j.bspc.2010.01.002
LittleMMcSharryPRobertsSCostelloDMorozIExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. OnLine200762317594480191351410.1186/1475-925X-6-23
LeeJWKangHGChoiJYSonYIAn investigation of vocal tract characteristics for acoustic discrimination of pathological voicesBioMed Res Int20132013111
MuhammadGMelhemMPathological voice detection and binary classification using MPEG-7 audio featuresBiomed. Signal Proc. Control2014111910.1016/j.bspc.2014.02.001
KatzMJFractals and the analysis of waveformsComput. Biol. Med.19881814515633963351:STN:280:DyaL1c3otlWhsA%3D%3D10.1016/0010-4825(88)90041-8
Accardo, A., Fabbro, F., and Mumolo, E., Analysis of normal and pathological voices via short-time fractal dimension, Proc. of 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 1270–1271, 1992.
MuhammadGMesallamTAMalkiKHFarahatMMahmoodAAlsulaimanMMultidirectional regression (MDR)-based features for automatic voice disorder detectionJ. Voice201226817 e19-272317774810.1016/j.jvoice.2012.05.002
Massachusetts Eye & Ear Infirmary Voice & Speech LAB, Disordered voice database model 4337 (Ver. 1.03), ed. Boston, MA: Kay Elemetrics Corp, 1994.
ArjmandiMKPooyanMMikailiMValiMMoqarehzadehAIdentification of voice disorders using long-time features and support vector machine with different feature reduction methodsJ. Voice201125e275892118609610.1016/j.jvoice.2010.08.003
RaghavendraBSNarayana DuttDA note on fractal dimensions of biomedical waveformsComput. Biol. Med.20093910061012197165551:STN:280:DC%2BD1MnnslOqtQ%3D%3D10.1016/j.compbiomed.2009.08.001
Jung-Won, L., Kim, S., and Hong-Goo, K., Detecting pathological speech using contour modeling of harmonic-to-noise ratio, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5969–5973, 2014.
AccardoAAffinitoMCarrozziMBouquetFUse of the fractal dimension for the analysis of electroencephalographic time seriesBiol. Cybern.19977733935094182151:STN:280:DyaK1c%2FnvFCisg%3D%3D10.1007/s004220050394
LopesRBetrouniNFractal and multifractal analysis: A reviewMed. Image Anal.200913634649195352821:STN:280:DC%2BD1MvovFalsQ%3D%3D10.1016/j.media.2009.05.003
Godino-LlorenteJIGómez-VildaPBlanco-VelascoMDimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parametersIEEE Trans. Biomed. Eng.200653194319531701985810.1109/TBME.2006.871883
HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhys. D. Nonlinear Phenom.19883127728310.1016/0167-2789(88)90081-4
KimYWKriebleKKKimCBReedJRae-GrantADDifferentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalographyElectroencephalogr. Clin. Neurophysiol.199698354186899921:STN:280:DyaK283gt1Kltw%3D%3D10.1016/0013-4694(95)00186-7
CortesCVapnikVSupport-vector networksMach. Learn.199520273297
MarkakiMStylianouYVoice pathology detection and discrimination based on modulation spectral featuresIEEE Trans. Audio Speech Lang. Process.2011191938194810.1109/TASL.2010.2104141
Maragos, P., Fractal aspects of speech signals: Dimension and interpolation, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 417–420, 1991.
Farouk, M. H., Application of wavelets in speech processing: Springer, 2014.
SenevirathneTRBohezELJVan WindenJAAmplitude scale method: New and efficient approach to measure fractal dimension of speech waveformsElectron. Lett.19922842042210.1049/el:19920264
FontesAIRSouzaPTVNetoADDMartinsA d MClassification system of pathological voices using correntropyMath. Probl. Eng.20142014710.1155/2014/924786
MohanBDiseases of ear, nose and throat: Head and neck surgery20131New Delhi, IndiaJaypee Brothers Medical Publishers
Vaziri, G., and Almasganj, F., Pathological Assessment of vocal fold nodules and polyp via fractal dimension of patients’ voices, Proc. of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2044–2047, 2008.
ChangC-CLinC-JLIBSVM: A library for support vector machinesACM Trans. Intell. Syst. Technol.2011212710.1145/1961189.1961199
BakenRJOrlikoffRClinical measurement of speech and voice20002San Diego, CASingular
PanekDSkalskiAGajdaJQuantification of linear and non-linear acoustic analysis applied to voice pathology detection, information technologies in biomedicineAdv Intell Syst Comput201428435536410.1007/978-3-319-06596-0_33
Petrosian, A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, Proc. of the Eighth IEEE Symposium on Computer-Based Medical Systems, pp. 212–217, 1995.
Baljekar, P. N., and Patil, H. A., A comparison of waveform fractal dimension techniques for voice pathology classification, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4461–4464, 2012.
HeckerMHLKreulEJDescriptions of the speech of patients with cancer of the vocal folds. part I: Measures of fundamental frequencyJ. Acoust. Soc. Am.19714912751282555220310.1121/1.1912490
EstellerRVachtsevanosGEchauzJLittBA comparison of waveform fractal dimension algorithms, circuits and systems I: Fundamental theory and applicationsIEEE Trans. Circ. Syst.20014817718310.1109/81.904882
B Mohan (392_CR1) 2013
D Panek (392_CR8) 2014; 284
C-C Chang (392_CR32) 2011; 2
392_CR29
392_CR28
G Muhammad (392_CR9) 2014; 11
R Esteller (392_CR19) 2001; 48
JI Godino-Llorente (392_CR30) 2006; 53
M Markaki (392_CR31) 2011; 19
AK Mishra (392_CR18) 2010; 5
MHL Hecker (392_CR2) 1971; 49
392_CR23
M Little (392_CR25) 2007; 6
392_CR21
MJ Katz (392_CR12) 1988; 18
392_CR24
BS Raghavendra (392_CR20) 2009; 39
RJ Baken (392_CR4) 2000
A Accardo (392_CR22) 1997; 77
R Lopes (392_CR11) 2009; 13
JW Lee (392_CR5) 2013; 2013
YW Kim (392_CR17) 1996; 98
C Cortes (392_CR27) 1995; 20
T Higuchi (392_CR13) 1988; 31
TR Senevirathne (392_CR16) 1992; 28
392_CR10
392_CR15
392_CR14
G Muhammad (392_CR3) 2012; 26
392_CR7
AIR Fontes (392_CR6) 2014; 2014
MK Arjmandi (392_CR26) 2011; 25
24288686 - Biomed Res Int. 2013;2013:758731
17019858 - IEEE Trans Biomed Eng. 2006 Oct;53(10):1943-53
21186096 - J Voice. 2011 Nov;25(6):e275-89
8689992 - Electroencephalogr Clin Neurophysiol. 1996 Jan;98(1):35-41
19716555 - Comput Biol Med. 2009 Nov;39(11):1006-12
17594480 - Biomed Eng Online. 2007 Jun 26;6:23
5552203 - J Acoust Soc Am. 1971 Apr;49(4):Suppl 2:1275
3396335 - Comput Biol Med. 1988;18(3):145-56
23177748 - J Voice. 2012 Nov;26(6):817.e19-27
9418215 - Biol Cybern. 1997 Nov;77(5):339-50
19535282 - Med Image Anal. 2009 Aug;13(4):634-49
References_xml – reference: HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhys. D. Nonlinear Phenom.19883127728310.1016/0167-2789(88)90081-4
– reference: MuhammadGMelhemMPathological voice detection and binary classification using MPEG-7 audio featuresBiomed. Signal Proc. Control2014111910.1016/j.bspc.2014.02.001
– reference: FontesAIRSouzaPTVNetoADDMartinsA d MClassification system of pathological voices using correntropyMath. Probl. Eng.20142014710.1155/2014/924786
– reference: Maragos, P., Fractal aspects of speech signals: Dimension and interpolation, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 417–420, 1991.
– reference: Vaziri, G., and Almasganj, F., Pathological Assessment of vocal fold nodules and polyp via fractal dimension of patients’ voices, Proc. of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2044–2047, 2008.
– reference: Jung-Won, L., Kim, S., and Hong-Goo, K., Detecting pathological speech using contour modeling of harmonic-to-noise ratio, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5969–5973, 2014.
– reference: AccardoAAffinitoMCarrozziMBouquetFUse of the fractal dimension for the analysis of electroencephalographic time seriesBiol. Cybern.19977733935094182151:STN:280:DyaK1c%2FnvFCisg%3D%3D10.1007/s004220050394
– reference: KatzMJFractals and the analysis of waveformsComput. Biol. Med.19881814515633963351:STN:280:DyaL1c3otlWhsA%3D%3D10.1016/0010-4825(88)90041-8
– reference: Farouk, M. H., Application of wavelets in speech processing: Springer, 2014.
– reference: Accardo, A., Fabbro, F., and Mumolo, E., Analysis of normal and pathological voices via short-time fractal dimension, Proc. of 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 1270–1271, 1992.
– reference: ArjmandiMKPooyanMMikailiMValiMMoqarehzadehAIdentification of voice disorders using long-time features and support vector machine with different feature reduction methodsJ. Voice201125e275892118609610.1016/j.jvoice.2010.08.003
– reference: LittleMMcSharryPRobertsSCostelloDMorozIExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. OnLine200762317594480191351410.1186/1475-925X-6-23
– reference: ChangC-CLinC-JLIBSVM: A library for support vector machinesACM Trans. Intell. Syst. Technol.2011212710.1145/1961189.1961199
– reference: LeeJWKangHGChoiJYSonYIAn investigation of vocal tract characteristics for acoustic discrimination of pathological voicesBioMed Res Int20132013111
– reference: MishraAKRaghavSLocal fractal dimension based ECG arrhythmia classificationBiomed. Signal Proc. Control2010511412310.1016/j.bspc.2010.01.002
– reference: MarkakiMStylianouYVoice pathology detection and discrimination based on modulation spectral featuresIEEE Trans. Audio Speech Lang. Process.2011191938194810.1109/TASL.2010.2104141
– reference: LopesRBetrouniNFractal and multifractal analysis: A reviewMed. Image Anal.200913634649195352821:STN:280:DC%2BD1MvovFalsQ%3D%3D10.1016/j.media.2009.05.003
– reference: Baljekar, P. N., and Patil, H. A., A comparison of waveform fractal dimension techniques for voice pathology classification, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4461–4464, 2012.
– reference: Petrosian, A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, Proc. of the Eighth IEEE Symposium on Computer-Based Medical Systems, pp. 212–217, 1995.
– reference: BakenRJOrlikoffRClinical measurement of speech and voice20002San Diego, CASingular
– reference: SenevirathneTRBohezELJVan WindenJAAmplitude scale method: New and efficient approach to measure fractal dimension of speech waveformsElectron. Lett.19922842042210.1049/el:19920264
– reference: PanekDSkalskiAGajdaJQuantification of linear and non-linear acoustic analysis applied to voice pathology detection, information technologies in biomedicineAdv Intell Syst Comput201428435536410.1007/978-3-319-06596-0_33
– reference: RaghavendraBSNarayana DuttDA note on fractal dimensions of biomedical waveformsComput. Biol. Med.20093910061012197165551:STN:280:DC%2BD1MnnslOqtQ%3D%3D10.1016/j.compbiomed.2009.08.001
– reference: Muhammad, G., Ali, Z., Alsulaiman, M., and Al-Mutib K., Vocal fold disorder detection by applying LBP operator on dysphonic speech signal. Proc. Recent Adv. Intell. Control Model. Simul. pp. 222–228, 2014.
– reference: MuhammadGMesallamTAMalkiKHFarahatMMahmoodAAlsulaimanMMultidirectional regression (MDR)-based features for automatic voice disorder detectionJ. Voice201226817 e19-272317774810.1016/j.jvoice.2012.05.002
– reference: EstellerRVachtsevanosGEchauzJLittBA comparison of waveform fractal dimension algorithms, circuits and systems I: Fundamental theory and applicationsIEEE Trans. Circ. Syst.20014817718310.1109/81.904882
– reference: MohanBDiseases of ear, nose and throat: Head and neck surgery20131New Delhi, IndiaJaypee Brothers Medical Publishers
– reference: HeckerMHLKreulEJDescriptions of the speech of patients with cancer of the vocal folds. part I: Measures of fundamental frequencyJ. Acoust. Soc. Am.19714912751282555220310.1121/1.1912490
– reference: CortesCVapnikVSupport-vector networksMach. Learn.199520273297
– reference: Godino-LlorenteJIGómez-VildaPBlanco-VelascoMDimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parametersIEEE Trans. Biomed. Eng.200653194319531701985810.1109/TBME.2006.871883
– reference: KimYWKriebleKKKimCBReedJRae-GrantADDifferentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalographyElectroencephalogr. Clin. Neurophysiol.199698354186899921:STN:280:DyaK283gt1Kltw%3D%3D10.1016/0013-4694(95)00186-7
– reference: Massachusetts Eye & Ear Infirmary Voice & Speech LAB, Disordered voice database model 4337 (Ver. 1.03), ed. Boston, MA: Kay Elemetrics Corp, 1994.
– ident: 392_CR7
– ident: 392_CR24
– volume: 26
  start-page: 817 e19-27
  year: 2012
  ident: 392_CR3
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2012.05.002
– ident: 392_CR29
  doi: 10.1007/978-3-319-02732-6
– volume: 11
  start-page: 1
  year: 2014
  ident: 392_CR9
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2014.02.001
– volume: 6
  start-page: 23
  year: 2007
  ident: 392_CR25
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/1475-925X-6-23
– volume: 28
  start-page: 420
  year: 1992
  ident: 392_CR16
  publication-title: Electron. Lett.
  doi: 10.1049/el:19920264
– volume: 77
  start-page: 339
  year: 1997
  ident: 392_CR22
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050394
– volume: 98
  start-page: 35
  year: 1996
  ident: 392_CR17
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(95)00186-7
– volume: 53
  start-page: 1943
  year: 2006
  ident: 392_CR30
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.871883
– volume: 31
  start-page: 277
  year: 1988
  ident: 392_CR13
  publication-title: Phys. D. Nonlinear Phenom.
  doi: 10.1016/0167-2789(88)90081-4
– ident: 392_CR21
  doi: 10.1109/ICASSP.2012.6288910
– volume-title: Diseases of ear, nose and throat: Head and neck surgery
  year: 2013
  ident: 392_CR1
– ident: 392_CR15
  doi: 10.1109/ICASSP.1991.150365
– volume: 19
  start-page: 1938
  year: 2011
  ident: 392_CR31
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2010.2104141
– volume: 18
  start-page: 145
  year: 1988
  ident: 392_CR12
  publication-title: Comput. Biol. Med.
  doi: 10.1016/0010-4825(88)90041-8
– volume: 284
  start-page: 355
  year: 2014
  ident: 392_CR8
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-3-319-06596-0_33
– volume: 2
  start-page: 1
  year: 2011
  ident: 392_CR32
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 20
  start-page: 273
  year: 1995
  ident: 392_CR27
  publication-title: Mach. Learn.
– volume: 2013
  start-page: 1
  year: 2013
  ident: 392_CR5
  publication-title: BioMed Res Int
– volume: 39
  start-page: 1006
  year: 2009
  ident: 392_CR20
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2009.08.001
– volume: 48
  start-page: 177
  year: 2001
  ident: 392_CR19
  publication-title: IEEE Trans. Circ. Syst.
  doi: 10.1109/81.904882
– ident: 392_CR10
– volume: 49
  start-page: 1275
  year: 1971
  ident: 392_CR2
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1912490
– ident: 392_CR14
  doi: 10.1109/CBMS.1995.465426
– volume: 2014
  start-page: 7
  year: 2014
  ident: 392_CR6
  publication-title: Math. Probl. Eng.
– volume: 13
  start-page: 634
  year: 2009
  ident: 392_CR11
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.05.003
– volume: 5
  start-page: 114
  year: 2010
  ident: 392_CR18
  publication-title: Biomed. Signal Proc. Control
  doi: 10.1016/j.bspc.2010.01.002
– volume-title: Clinical measurement of speech and voice
  year: 2000
  ident: 392_CR4
– volume: 25
  start-page: e275
  year: 2011
  ident: 392_CR26
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2010.08.003
– ident: 392_CR23
  doi: 10.1109/IEMBS.1992.5761778
– ident: 392_CR28
  doi: 10.1109/ICBBE.2008.840
– reference: 17594480 - Biomed Eng Online. 2007 Jun 26;6:23
– reference: 17019858 - IEEE Trans Biomed Eng. 2006 Oct;53(10):1943-53
– reference: 8689992 - Electroencephalogr Clin Neurophysiol. 1996 Jan;98(1):35-41
– reference: 23177748 - J Voice. 2012 Nov;26(6):817.e19-27
– reference: 21186096 - J Voice. 2011 Nov;25(6):e275-89
– reference: 5552203 - J Acoust Soc Am. 1971 Apr;49(4):Suppl 2:1275+
– reference: 3396335 - Comput Biol Med. 1988;18(3):145-56
– reference: 19535282 - Med Image Anal. 2009 Aug;13(4):634-49
– reference: 19716555 - Comput Biol Med. 2009 Nov;39(11):1006-12
– reference: 9418215 - Biol Cybern. 1997 Nov;77(5):339-50
– reference: 24288686 - Biomed Res Int. 2013;2013:758731
SSID ssj0009667
Score 2.3108807
Snippet Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Accuracy
Algorithms
Analysis
Disorders
Fractal analysis
Fractals
Health Informatics
Health Sciences
Humans
Medicine
Medicine & Public Health
Pathology
Patient Facing Systems
Phonation
Speech
Statistics for Life Sciences
Vibration
Voice
Voice - physiology
Voice communication
Voice Disorders - diagnosis
Voice Disorders - physiopathology
Wavelet Analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS91AEB2KQhFKsda2aa2s4FPLQrLZzSaPUnsRQRH0Ft_CfkysILlS40P99c7k42qxFfqcybJkZidndvacBdhN8xwbtEG6KlpJ9ZeWPg1BqkpFQ0mzUor5zkfHxcFcH56b85HHfTOddp9akn2mfkR2IyhDpa-RKQ0hKe-uGi7dKYjnau9BabcoBo60LiWrj0-tzL8N8efP6AnCfNId7X86s3V4PaJFsTe49w28wHYDXh6N_fANeDXsuomBTPQW7vax689WtWLRiB8LygLixHV9hvst-Iz7hZgxL4oG3Wddf94rE5etcKJn4lLtPYaimNRKeKBjBrZXwrVRTGqdGMXpNWL4KU4vL1iDeRPms-9n3w7keLuCDCYrO-krp9A6h5gan2LpLXmN0WDpCxULE6NtvGpcQK1ChqGXdiu9y9A3eRN0_g5W2kWLH0BUmY5B-8zESuuqyZwhkJhZyg_RWadMAun0meswSo_zDRhX9YNoMnumJs_U7JlaJfBl-cr1oLvxnPHW5Lt6XII3NeEiSkfa2iKBneVjWjzcEXEtLm7ZJu8pMqZ8xobvJlF5nukE3g9xsZyRKgzjrzyBr1OgPJrAv6b78b-sP8EagbRx22cLVrpft_iZgFDnt_vAvwcUhP46
  priority: 102
  providerName: Springer Nature
Title Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals
URI https://link.springer.com/article/10.1007/s10916-015-0392-2
https://www.ncbi.nlm.nih.gov/pubmed/26531753
https://www.proquest.com/docview/1752574776
https://www.proquest.com/docview/1730686258
https://www.proquest.com/docview/1808123314
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEF60BRFKqVVrtJYVfFIWk81uNnmSq71rUXoU68n5FPZXaqEkV5s-1L_emWRzpxTvJYFkE4bMZPbbmZ1vCHkbp6mvvLJMF04xWH8JZmJrGS-4k-A0C86x3vl0mp3MxOe5nIeA203YVjn4xM5Ru8ZijPwDTHNgXUKp7OPimmHXKMyuhhYaD8kmUpfhli41VyvS3Szry6VFzpCIfMhq9qVzAIxgIS1ZDAIx_u-8dA9s3kuUdvPPZIdsB-BIR72mn5AHvt4lj05DanyXbPUBONrXFT0lv498222zqmlT0e8NOAR6ptvO2d1R3O5-QSdYIgUvPUKKfwyb0cuaatoV5cIyPFglHYhL8EVTxLhXVNeODsSd3tHzhff2Jz2_vEA65mdkNhl_-3TCQqMFZmWSt8wUmnultfexNLHPjQIFIjDMTcZdJp1TleGVtl5wm3jbsbzlRifeVGllRfqcbNRN7V8QWiTCWWES6QohiirREvBiosBVOK00lxGJh89c2sBCjs0wrsoVfzJqpgTNlKiZkkfk3fKRRU_BsW7w_qC7MvyNN-XKdiLyZnkb_iNMjujaN7c4Ju2qZWS-Zgy2KeFpmoiI7PV2sZSIZxKhWBqR94Oh_CXA_8R9uV7cV-QxALQQ8tknG-2vW_8aQFBrDjpLh2M-OT4gm6PjH1_GcD4cT8--wtUZH_0BmdEG3w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBBVENF6jUVvQF6Vxpqd7jgcRcV03JrsISSRvk74mBsLMaiZI_FH-Rqvm2FWC-5bn6WmKrqO_7ur6CuBFGMe-9KnlOncpx_OX5Ca0lotcOIVBMxeC6p2ns2SyLz8fqIM1-D3UwtCzyiEmtoHa1ZbuyN_gNofWJdM0eTf_zqlrFGVXhxYanVls-_OfeGQ7fbs1Qv2-FGL8ce_DhPddBbhVUdZwk2vhU629D5UJfWZSlJZQUGYS4RLlXFoaUWrrpbCRty2lWWZ05E0Zl1bGOO8VuCrjOCePysafliS_SdKVZ8uME_H5kEXtSvUQiOHBXfEQF4CLf_fBC-D2QmK23e_Gt-FWD1TZ-86y7sCarzbg2rRPxW_Aze7Cj3V1THfh18g37bOuitUl-1pjAGJfdNMG13NGz-uP2JhKsnDSEbUUoGs6dlwxzdoiYDz2917ABqIUmmhGmPqE6cqxgSjUO7Y7995-Y7vHR0T_fA_2L0UF92G9qiv_EFgeSWeliZTLpczLSCvEp1GKocnpVAsVQDgsc2F71nNqvnFSLPmaSTMFaqYgzRQigFeLX-Yd5ceqwZuD7ore-0-Lpa0G8HzxGf2WkjG68vUZjYnb6hyVrRhDbVFEHEcygAedXSwkEoki6BcH8HowlL8E-J-4j1aL-wyuT_amO8XO1mz7MdxAcNhfN23CevPjzD9BANaYp63VMzi8bDf7A1ZAQZ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFD_MCUMQ0fnVOTWCvihhbZo07YOIeL1szl0Gc3Lfunx1DkZ7t3XI_NP868xpm3uV4X3bc9NwyPnILzk5vwPwOk5TVzlpqCqspP78xamOjaGsYFb4oFkwhvXOe5Ns-5B_mYrpCvwOtTD4rDLExC5Q28bgHfmW3-a8dXEps61qeBaxPxp_mJ1R7CCFmdbQTqM3kV139dMf3y7e74y8rt8wNv787dM2HToMUCOSvKW6UMxJpZyLhY5drqWXHBFRrjNmM2GtrDSrlHGcmcSZjt4s1ypxukorw1M_7y24LVORoI_JqVwQ_mZZX6rNc4ok6CGj2pfteVDmD_GCxn4xKPt3T7wGdK8labu9b3wf7g2glXzsrewBrLh6Hdb2hrT8OtztL_9IX9P0EH6NXNs98apJU5HvjQ9GZF-1XaC9IvjU_piMsTzLTzrC9gJ4ZUdOaqJIVxB87oJHkECaghNNEF-fElVbEkhDnSUHM-fMD3JwcoxU0I_g8EZU8BhW66Z2T4EUCbeG60TYgvOiSpTwWDWRPkxZJRUTEcRhmUszMKBjI47TcsHdjJopvWZK1EzJIng7_2XW038sG7wZdFcOkeCiXNhtBK_mn70PY2JG1a65xDFpV6kj8iVjsEUKS9OER_Ckt4u5RCwTCAPTCN4FQ_lLgP-Ju7Fc3Jew5h2s_Loz2X0GdzxOHG6eNmG1Pb90zz0Wa_WLzugJHN20l_0BLzFFyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Voice+Pathology+using+Fractal+Dimension+in+a+Multiresolution+Analysis+of+Normal+and+Disordered+Speech+Signals&rft.jtitle=Journal+of+medical+systems&rft.au=Ali%2C+Zulfiqar&rft.au=Elamvazuthi%2C+Irraivan&rft.au=Alsulaiman%2C+Mansour&rft.au=Muhammad%2C+Ghulam&rft.date=2016-01-01&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=40&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs10916-015-0392-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon