Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals
Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice d...
Saved in:
Published in | Journal of medical systems Vol. 40; no. 1; pp. 20 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1–1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. |
---|---|
AbstractList | Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed.Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1–1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can be detected in a non-invasive way by analyzing the speech signal. In this paper we present a multiband approach for the detection of voice disorders given that the voice source generally interacts with the vocal tract in a non-linear way. In normal phonation, and assuming sustained phonation of a vowel, the lower frequencies of speech are heavily source dependent due to the low frequency glottal formant, while the higher frequencies are less dependent on the source signal. During abnormal phonation, this is still a valid, but turbulent noise of source, because of the irregular vibration, affects also higher frequencies. Motivated by such a model, we suggest a multiband approach based on a three-level discrete wavelet transformation (DWT) and in each band the fractal dimension (FD) of the estimated power spectrum is estimated. The experiments suggest that frequency band 1-1562 Hz, lower frequencies after level 3, exhibits a significant difference in the spectrum of a normal and pathological subject. With this band, a detection rate of 91.28 % is obtained with one feature, and the obtained result is higher than all other frequency bands. Moreover, an accuracy of 92.45 % and an area under receiver operating characteristic curve (AUC) of 95.06 % is acquired when the FD of all levels is fused. Likewise, when the FD of all levels is combined with 22 Multi-Dimensional Voice Program (MDVP) parameters, an improvement of 2.26 % in accuracy and 1.45 % in AUC is observed. |
ArticleNumber | 20 |
Author | Muhammad, Ghulam Ali, Zulfiqar Alsulaiman, Mansour Elamvazuthi, Irraivan |
Author_xml | – sequence: 1 givenname: Zulfiqar orcidid: 0000-0002-1599-1287 surname: Ali fullname: Ali, Zulfiqar email: zuali@ksu.edu.sa, zulfiqar_g02579@utp.edu.my organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University, Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS – sequence: 2 givenname: Irraivan surname: Elamvazuthi fullname: Elamvazuthi, Irraivan organization: Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS – sequence: 3 givenname: Mansour surname: Alsulaiman fullname: Alsulaiman, Mansour organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University – sequence: 4 givenname: Ghulam surname: Muhammad fullname: Muhammad, Ghulam organization: Digital Speech Processing Group, Department of Computer Engineering, King Saud University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26531753$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1PFTEUhhsDkQv6A9yYJm7cjPRj-jFLAgImiCaocdd0OmcuJTPtpZ1ZXH-9HS4khkTj6mye58055z1EeyEGQOgNJR8oIeo4U9JQWREqKsIbVrEXaEWF4pXUzc89tCK01pUQjT5AhznfEUIaKdVLdMCk4FQJvkK_zmACN_kYcOzxj-gd4K92uo1DXG_xnH1Y4_Nk3WQHfOZHCHlBfcAWf56HySfIcZgf_JNgh232eQm6jmkshg1dsXJMHSTo8M0GwN3iG78uaH6F9vsy4PXjPELfzz9-O72srr5cfDo9uaqcoHqq2sYyUNYCENES0K3i0DdK1bqVrJOi61Tfst46qJmj4LhUUunWUmh73ruaH6H3u9xNivcz5MmMPjsYBhsgztlQTTRlnNP_QBUnUksmdEHfPUPv4pyWuwolmFC1UrJQbx-puR2hM5vkR5u25qmAAqgd4FLMOUFvnJ_s8s8pWT8YSsxStdlVbUrVZqnasGLSZ-ZT-L8ctnNyYcMa0h9L_1X6DfYbu9E |
CitedBy_id | crossref_primary_10_3390_s17020267 crossref_primary_10_3389_fninf_2019_00045 crossref_primary_10_1016_j_neures_2021_03_012 crossref_primary_10_1016_j_knosys_2016_05_011 crossref_primary_10_1007_s00521_020_05558_3 crossref_primary_10_1016_j_jvoice_2020_08_006 crossref_primary_10_1109_ACCESS_2020_2984925 crossref_primary_10_1016_j_jvoice_2018_07_014 crossref_primary_10_1016_j_jvoice_2022_08_028 crossref_primary_10_1590_2317_1782_20192018241 crossref_primary_10_1016_j_future_2018_02_021 crossref_primary_10_1109_ACCESS_2019_2901672 crossref_primary_10_1109_ACCESS_2019_2905597 crossref_primary_10_1016_j_bspc_2017_11_019 crossref_primary_10_3390_machines11010111 crossref_primary_10_1016_j_bspc_2018_12_024 crossref_primary_10_3390_app13010118 crossref_primary_10_1016_j_bspc_2022_103771 crossref_primary_10_1016_j_bspc_2021_103410 crossref_primary_10_1016_j_future_2018_05_058 crossref_primary_10_1007_s11042_020_09424_1 crossref_primary_10_1109_ACCESS_2018_2856238 crossref_primary_10_1515_slgr_2016_0044 crossref_primary_10_1016_j_jvoice_2022_11_008 crossref_primary_10_1016_j_future_2017_12_007 crossref_primary_10_1109_ACCESS_2021_3090317 crossref_primary_10_3390_s22218232 crossref_primary_10_3390_s19112590 |
Cites_doi | 10.1016/j.jvoice.2012.05.002 10.1007/978-3-319-02732-6 10.1016/j.bspc.2014.02.001 10.1186/1475-925X-6-23 10.1049/el:19920264 10.1007/s004220050394 10.1016/0013-4694(95)00186-7 10.1109/TBME.2006.871883 10.1016/0167-2789(88)90081-4 10.1109/ICASSP.2012.6288910 10.1109/ICASSP.1991.150365 10.1109/TASL.2010.2104141 10.1016/0010-4825(88)90041-8 10.1007/978-3-319-06596-0_33 10.1145/1961189.1961199 10.1016/j.compbiomed.2009.08.001 10.1109/81.904882 10.1121/1.1912490 10.1109/CBMS.1995.465426 10.1016/j.media.2009.05.003 10.1016/j.bspc.2010.01.002 10.1016/j.jvoice.2010.08.003 10.1109/IEMBS.1992.5761778 10.1109/ICBBE.2008.840 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2016 |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s10916-015-0392-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-689X |
EndPage | 10 |
ExternalDocumentID | 3908347431 26531753 10_1007_s10916_015_0392_2 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia grantid: 12-MED-2474-02 |
GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK ABRTQ F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c518t-b9a2e7aaee05b0e8b73ef97748b62d65dd7fb2face42c1ec367678ba1ebf3fc43 |
IEDL.DBID | 7X7 |
ISSN | 0148-5598 1573-689X |
IngestDate | Fri Jul 11 16:07:30 EDT 2025 Fri Jul 11 04:20:52 EDT 2025 Fri Jul 25 19:16:22 EDT 2025 Thu Apr 03 07:05:57 EDT 2025 Thu Apr 24 23:13:23 EDT 2025 Tue Jul 01 03:30:18 EDT 2025 Fri Feb 21 02:37:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Katz algorithm Wavelet transformation Fractal dimension Higuchi algorithm Voice pathology detection MDVP parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-b9a2e7aaee05b0e8b73ef97748b62d65dd7fb2face42c1ec367678ba1ebf3fc43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1599-1287 |
OpenAccessLink | https://pure.ulster.ac.uk/ws/files/76483465/JOMS_Final_accepted.pdf |
PMID | 26531753 |
PQID | 1752574776 |
PQPubID | 54050 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1808123314 proquest_miscellaneous_1730686258 proquest_journals_1752574776 pubmed_primary_26531753 crossref_citationtrail_10_1007_s10916_015_0392_2 crossref_primary_10_1007_s10916_015_0392_2 springer_journals_10_1007_s10916_015_0392_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160100 2016-1-00 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 1 year: 2016 text: 20160100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of medical systems |
PublicationTitleAbbrev | J Med Syst |
PublicationTitleAlternate | J Med Syst |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Muhammad, G., Ali, Z., Alsulaiman, M., and Al-Mutib K., Vocal fold disorder detection by applying LBP operator on dysphonic speech signal. Proc. Recent Adv. Intell. Control Model. Simul. pp. 222–228, 2014. MishraAKRaghavSLocal fractal dimension based ECG arrhythmia classificationBiomed. Signal Proc. Control2010511412310.1016/j.bspc.2010.01.002 LittleMMcSharryPRobertsSCostelloDMorozIExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. OnLine200762317594480191351410.1186/1475-925X-6-23 LeeJWKangHGChoiJYSonYIAn investigation of vocal tract characteristics for acoustic discrimination of pathological voicesBioMed Res Int20132013111 MuhammadGMelhemMPathological voice detection and binary classification using MPEG-7 audio featuresBiomed. Signal Proc. Control2014111910.1016/j.bspc.2014.02.001 KatzMJFractals and the analysis of waveformsComput. Biol. Med.19881814515633963351:STN:280:DyaL1c3otlWhsA%3D%3D10.1016/0010-4825(88)90041-8 Accardo, A., Fabbro, F., and Mumolo, E., Analysis of normal and pathological voices via short-time fractal dimension, Proc. of 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 1270–1271, 1992. MuhammadGMesallamTAMalkiKHFarahatMMahmoodAAlsulaimanMMultidirectional regression (MDR)-based features for automatic voice disorder detectionJ. Voice201226817 e19-272317774810.1016/j.jvoice.2012.05.002 Massachusetts Eye & Ear Infirmary Voice & Speech LAB, Disordered voice database model 4337 (Ver. 1.03), ed. Boston, MA: Kay Elemetrics Corp, 1994. ArjmandiMKPooyanMMikailiMValiMMoqarehzadehAIdentification of voice disorders using long-time features and support vector machine with different feature reduction methodsJ. Voice201125e275892118609610.1016/j.jvoice.2010.08.003 RaghavendraBSNarayana DuttDA note on fractal dimensions of biomedical waveformsComput. Biol. Med.20093910061012197165551:STN:280:DC%2BD1MnnslOqtQ%3D%3D10.1016/j.compbiomed.2009.08.001 Jung-Won, L., Kim, S., and Hong-Goo, K., Detecting pathological speech using contour modeling of harmonic-to-noise ratio, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5969–5973, 2014. AccardoAAffinitoMCarrozziMBouquetFUse of the fractal dimension for the analysis of electroencephalographic time seriesBiol. Cybern.19977733935094182151:STN:280:DyaK1c%2FnvFCisg%3D%3D10.1007/s004220050394 LopesRBetrouniNFractal and multifractal analysis: A reviewMed. Image Anal.200913634649195352821:STN:280:DC%2BD1MvovFalsQ%3D%3D10.1016/j.media.2009.05.003 Godino-LlorenteJIGómez-VildaPBlanco-VelascoMDimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parametersIEEE Trans. Biomed. Eng.200653194319531701985810.1109/TBME.2006.871883 HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhys. D. Nonlinear Phenom.19883127728310.1016/0167-2789(88)90081-4 KimYWKriebleKKKimCBReedJRae-GrantADDifferentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalographyElectroencephalogr. Clin. Neurophysiol.199698354186899921:STN:280:DyaK283gt1Kltw%3D%3D10.1016/0013-4694(95)00186-7 CortesCVapnikVSupport-vector networksMach. Learn.199520273297 MarkakiMStylianouYVoice pathology detection and discrimination based on modulation spectral featuresIEEE Trans. Audio Speech Lang. Process.2011191938194810.1109/TASL.2010.2104141 Maragos, P., Fractal aspects of speech signals: Dimension and interpolation, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 417–420, 1991. Farouk, M. H., Application of wavelets in speech processing: Springer, 2014. SenevirathneTRBohezELJVan WindenJAAmplitude scale method: New and efficient approach to measure fractal dimension of speech waveformsElectron. Lett.19922842042210.1049/el:19920264 FontesAIRSouzaPTVNetoADDMartinsA d MClassification system of pathological voices using correntropyMath. Probl. Eng.20142014710.1155/2014/924786 MohanBDiseases of ear, nose and throat: Head and neck surgery20131New Delhi, IndiaJaypee Brothers Medical Publishers Vaziri, G., and Almasganj, F., Pathological Assessment of vocal fold nodules and polyp via fractal dimension of patients’ voices, Proc. of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2044–2047, 2008. ChangC-CLinC-JLIBSVM: A library for support vector machinesACM Trans. Intell. Syst. Technol.2011212710.1145/1961189.1961199 BakenRJOrlikoffRClinical measurement of speech and voice20002San Diego, CASingular PanekDSkalskiAGajdaJQuantification of linear and non-linear acoustic analysis applied to voice pathology detection, information technologies in biomedicineAdv Intell Syst Comput201428435536410.1007/978-3-319-06596-0_33 Petrosian, A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, Proc. of the Eighth IEEE Symposium on Computer-Based Medical Systems, pp. 212–217, 1995. Baljekar, P. N., and Patil, H. A., A comparison of waveform fractal dimension techniques for voice pathology classification, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4461–4464, 2012. HeckerMHLKreulEJDescriptions of the speech of patients with cancer of the vocal folds. part I: Measures of fundamental frequencyJ. Acoust. Soc. Am.19714912751282555220310.1121/1.1912490 EstellerRVachtsevanosGEchauzJLittBA comparison of waveform fractal dimension algorithms, circuits and systems I: Fundamental theory and applicationsIEEE Trans. Circ. Syst.20014817718310.1109/81.904882 B Mohan (392_CR1) 2013 D Panek (392_CR8) 2014; 284 C-C Chang (392_CR32) 2011; 2 392_CR29 392_CR28 G Muhammad (392_CR9) 2014; 11 R Esteller (392_CR19) 2001; 48 JI Godino-Llorente (392_CR30) 2006; 53 M Markaki (392_CR31) 2011; 19 AK Mishra (392_CR18) 2010; 5 MHL Hecker (392_CR2) 1971; 49 392_CR23 M Little (392_CR25) 2007; 6 392_CR21 MJ Katz (392_CR12) 1988; 18 392_CR24 BS Raghavendra (392_CR20) 2009; 39 RJ Baken (392_CR4) 2000 A Accardo (392_CR22) 1997; 77 R Lopes (392_CR11) 2009; 13 JW Lee (392_CR5) 2013; 2013 YW Kim (392_CR17) 1996; 98 C Cortes (392_CR27) 1995; 20 T Higuchi (392_CR13) 1988; 31 TR Senevirathne (392_CR16) 1992; 28 392_CR10 392_CR15 392_CR14 G Muhammad (392_CR3) 2012; 26 392_CR7 AIR Fontes (392_CR6) 2014; 2014 MK Arjmandi (392_CR26) 2011; 25 24288686 - Biomed Res Int. 2013;2013:758731 17019858 - IEEE Trans Biomed Eng. 2006 Oct;53(10):1943-53 21186096 - J Voice. 2011 Nov;25(6):e275-89 8689992 - Electroencephalogr Clin Neurophysiol. 1996 Jan;98(1):35-41 19716555 - Comput Biol Med. 2009 Nov;39(11):1006-12 17594480 - Biomed Eng Online. 2007 Jun 26;6:23 5552203 - J Acoust Soc Am. 1971 Apr;49(4):Suppl 2:1275 3396335 - Comput Biol Med. 1988;18(3):145-56 23177748 - J Voice. 2012 Nov;26(6):817.e19-27 9418215 - Biol Cybern. 1997 Nov;77(5):339-50 19535282 - Med Image Anal. 2009 Aug;13(4):634-49 |
References_xml | – reference: HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhys. D. Nonlinear Phenom.19883127728310.1016/0167-2789(88)90081-4 – reference: MuhammadGMelhemMPathological voice detection and binary classification using MPEG-7 audio featuresBiomed. Signal Proc. Control2014111910.1016/j.bspc.2014.02.001 – reference: FontesAIRSouzaPTVNetoADDMartinsA d MClassification system of pathological voices using correntropyMath. Probl. Eng.20142014710.1155/2014/924786 – reference: Maragos, P., Fractal aspects of speech signals: Dimension and interpolation, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 417–420, 1991. – reference: Vaziri, G., and Almasganj, F., Pathological Assessment of vocal fold nodules and polyp via fractal dimension of patients’ voices, Proc. of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 2044–2047, 2008. – reference: Jung-Won, L., Kim, S., and Hong-Goo, K., Detecting pathological speech using contour modeling of harmonic-to-noise ratio, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5969–5973, 2014. – reference: AccardoAAffinitoMCarrozziMBouquetFUse of the fractal dimension for the analysis of electroencephalographic time seriesBiol. Cybern.19977733935094182151:STN:280:DyaK1c%2FnvFCisg%3D%3D10.1007/s004220050394 – reference: KatzMJFractals and the analysis of waveformsComput. Biol. Med.19881814515633963351:STN:280:DyaL1c3otlWhsA%3D%3D10.1016/0010-4825(88)90041-8 – reference: Farouk, M. H., Application of wavelets in speech processing: Springer, 2014. – reference: Accardo, A., Fabbro, F., and Mumolo, E., Analysis of normal and pathological voices via short-time fractal dimension, Proc. of 14th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 1270–1271, 1992. – reference: ArjmandiMKPooyanMMikailiMValiMMoqarehzadehAIdentification of voice disorders using long-time features and support vector machine with different feature reduction methodsJ. Voice201125e275892118609610.1016/j.jvoice.2010.08.003 – reference: LittleMMcSharryPRobertsSCostelloDMorozIExploiting nonlinear recurrence and fractal scaling properties for voice disorder detectionBiomed. Eng. OnLine200762317594480191351410.1186/1475-925X-6-23 – reference: ChangC-CLinC-JLIBSVM: A library for support vector machinesACM Trans. Intell. Syst. Technol.2011212710.1145/1961189.1961199 – reference: LeeJWKangHGChoiJYSonYIAn investigation of vocal tract characteristics for acoustic discrimination of pathological voicesBioMed Res Int20132013111 – reference: MishraAKRaghavSLocal fractal dimension based ECG arrhythmia classificationBiomed. Signal Proc. Control2010511412310.1016/j.bspc.2010.01.002 – reference: MarkakiMStylianouYVoice pathology detection and discrimination based on modulation spectral featuresIEEE Trans. Audio Speech Lang. Process.2011191938194810.1109/TASL.2010.2104141 – reference: LopesRBetrouniNFractal and multifractal analysis: A reviewMed. Image Anal.200913634649195352821:STN:280:DC%2BD1MvovFalsQ%3D%3D10.1016/j.media.2009.05.003 – reference: Baljekar, P. N., and Patil, H. A., A comparison of waveform fractal dimension techniques for voice pathology classification, Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4461–4464, 2012. – reference: Petrosian, A., Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns, Proc. of the Eighth IEEE Symposium on Computer-Based Medical Systems, pp. 212–217, 1995. – reference: BakenRJOrlikoffRClinical measurement of speech and voice20002San Diego, CASingular – reference: SenevirathneTRBohezELJVan WindenJAAmplitude scale method: New and efficient approach to measure fractal dimension of speech waveformsElectron. Lett.19922842042210.1049/el:19920264 – reference: PanekDSkalskiAGajdaJQuantification of linear and non-linear acoustic analysis applied to voice pathology detection, information technologies in biomedicineAdv Intell Syst Comput201428435536410.1007/978-3-319-06596-0_33 – reference: RaghavendraBSNarayana DuttDA note on fractal dimensions of biomedical waveformsComput. Biol. Med.20093910061012197165551:STN:280:DC%2BD1MnnslOqtQ%3D%3D10.1016/j.compbiomed.2009.08.001 – reference: Muhammad, G., Ali, Z., Alsulaiman, M., and Al-Mutib K., Vocal fold disorder detection by applying LBP operator on dysphonic speech signal. Proc. Recent Adv. Intell. Control Model. Simul. pp. 222–228, 2014. – reference: MuhammadGMesallamTAMalkiKHFarahatMMahmoodAAlsulaimanMMultidirectional regression (MDR)-based features for automatic voice disorder detectionJ. Voice201226817 e19-272317774810.1016/j.jvoice.2012.05.002 – reference: EstellerRVachtsevanosGEchauzJLittBA comparison of waveform fractal dimension algorithms, circuits and systems I: Fundamental theory and applicationsIEEE Trans. Circ. Syst.20014817718310.1109/81.904882 – reference: MohanBDiseases of ear, nose and throat: Head and neck surgery20131New Delhi, IndiaJaypee Brothers Medical Publishers – reference: HeckerMHLKreulEJDescriptions of the speech of patients with cancer of the vocal folds. part I: Measures of fundamental frequencyJ. Acoust. Soc. Am.19714912751282555220310.1121/1.1912490 – reference: CortesCVapnikVSupport-vector networksMach. Learn.199520273297 – reference: Godino-LlorenteJIGómez-VildaPBlanco-VelascoMDimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parametersIEEE Trans. Biomed. Eng.200653194319531701985810.1109/TBME.2006.871883 – reference: KimYWKriebleKKKimCBReedJRae-GrantADDifferentiation of alpha coma from awake alpha by nonlinear dynamics of electroencephalographyElectroencephalogr. Clin. Neurophysiol.199698354186899921:STN:280:DyaK283gt1Kltw%3D%3D10.1016/0013-4694(95)00186-7 – reference: Massachusetts Eye & Ear Infirmary Voice & Speech LAB, Disordered voice database model 4337 (Ver. 1.03), ed. Boston, MA: Kay Elemetrics Corp, 1994. – ident: 392_CR7 – ident: 392_CR24 – volume: 26 start-page: 817 e19-27 year: 2012 ident: 392_CR3 publication-title: J. Voice doi: 10.1016/j.jvoice.2012.05.002 – ident: 392_CR29 doi: 10.1007/978-3-319-02732-6 – volume: 11 start-page: 1 year: 2014 ident: 392_CR9 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2014.02.001 – volume: 6 start-page: 23 year: 2007 ident: 392_CR25 publication-title: Biomed. Eng. OnLine doi: 10.1186/1475-925X-6-23 – volume: 28 start-page: 420 year: 1992 ident: 392_CR16 publication-title: Electron. Lett. doi: 10.1049/el:19920264 – volume: 77 start-page: 339 year: 1997 ident: 392_CR22 publication-title: Biol. Cybern. doi: 10.1007/s004220050394 – volume: 98 start-page: 35 year: 1996 ident: 392_CR17 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00186-7 – volume: 53 start-page: 1943 year: 2006 ident: 392_CR30 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.871883 – volume: 31 start-page: 277 year: 1988 ident: 392_CR13 publication-title: Phys. D. Nonlinear Phenom. doi: 10.1016/0167-2789(88)90081-4 – ident: 392_CR21 doi: 10.1109/ICASSP.2012.6288910 – volume-title: Diseases of ear, nose and throat: Head and neck surgery year: 2013 ident: 392_CR1 – ident: 392_CR15 doi: 10.1109/ICASSP.1991.150365 – volume: 19 start-page: 1938 year: 2011 ident: 392_CR31 publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2010.2104141 – volume: 18 start-page: 145 year: 1988 ident: 392_CR12 publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(88)90041-8 – volume: 284 start-page: 355 year: 2014 ident: 392_CR8 publication-title: Adv Intell Syst Comput doi: 10.1007/978-3-319-06596-0_33 – volume: 2 start-page: 1 year: 2011 ident: 392_CR32 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 20 start-page: 273 year: 1995 ident: 392_CR27 publication-title: Mach. Learn. – volume: 2013 start-page: 1 year: 2013 ident: 392_CR5 publication-title: BioMed Res Int – volume: 39 start-page: 1006 year: 2009 ident: 392_CR20 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2009.08.001 – volume: 48 start-page: 177 year: 2001 ident: 392_CR19 publication-title: IEEE Trans. Circ. Syst. doi: 10.1109/81.904882 – ident: 392_CR10 – volume: 49 start-page: 1275 year: 1971 ident: 392_CR2 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1912490 – ident: 392_CR14 doi: 10.1109/CBMS.1995.465426 – volume: 2014 start-page: 7 year: 2014 ident: 392_CR6 publication-title: Math. Probl. Eng. – volume: 13 start-page: 634 year: 2009 ident: 392_CR11 publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.05.003 – volume: 5 start-page: 114 year: 2010 ident: 392_CR18 publication-title: Biomed. Signal Proc. Control doi: 10.1016/j.bspc.2010.01.002 – volume-title: Clinical measurement of speech and voice year: 2000 ident: 392_CR4 – volume: 25 start-page: e275 year: 2011 ident: 392_CR26 publication-title: J. Voice doi: 10.1016/j.jvoice.2010.08.003 – ident: 392_CR23 doi: 10.1109/IEMBS.1992.5761778 – ident: 392_CR28 doi: 10.1109/ICBBE.2008.840 – reference: 17594480 - Biomed Eng Online. 2007 Jun 26;6:23 – reference: 17019858 - IEEE Trans Biomed Eng. 2006 Oct;53(10):1943-53 – reference: 8689992 - Electroencephalogr Clin Neurophysiol. 1996 Jan;98(1):35-41 – reference: 23177748 - J Voice. 2012 Nov;26(6):817.e19-27 – reference: 21186096 - J Voice. 2011 Nov;25(6):e275-89 – reference: 5552203 - J Acoust Soc Am. 1971 Apr;49(4):Suppl 2:1275+ – reference: 3396335 - Comput Biol Med. 1988;18(3):145-56 – reference: 19535282 - Med Image Anal. 2009 Aug;13(4):634-49 – reference: 19716555 - Comput Biol Med. 2009 Nov;39(11):1006-12 – reference: 9418215 - Biol Cybern. 1997 Nov;77(5):339-50 – reference: 24288686 - Biomed Res Int. 2013;2013:758731 |
SSID | ssj0009667 |
Score | 2.3108807 |
Snippet | Voice disorders are associated with irregular vibrations of vocal folds. Based on the source filter theory of speech production, these irregular vibrations can... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Accuracy Algorithms Analysis Disorders Fractal analysis Fractals Health Informatics Health Sciences Humans Medicine Medicine & Public Health Pathology Patient Facing Systems Phonation Speech Statistics for Life Sciences Vibration Voice Voice - physiology Voice communication Voice Disorders - diagnosis Voice Disorders - physiopathology Wavelet Analysis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS91AEB2KQhFKsda2aa2s4FPLQrLZzSaPUnsRQRH0Ft_CfkysILlS40P99c7k42qxFfqcybJkZidndvacBdhN8xwbtEG6KlpJ9ZeWPg1BqkpFQ0mzUor5zkfHxcFcH56b85HHfTOddp9akn2mfkR2IyhDpa-RKQ0hKe-uGi7dKYjnau9BabcoBo60LiWrj0-tzL8N8efP6AnCfNId7X86s3V4PaJFsTe49w28wHYDXh6N_fANeDXsuomBTPQW7vax689WtWLRiB8LygLixHV9hvst-Iz7hZgxL4oG3Wddf94rE5etcKJn4lLtPYaimNRKeKBjBrZXwrVRTGqdGMXpNWL4KU4vL1iDeRPms-9n3w7keLuCDCYrO-krp9A6h5gan2LpLXmN0WDpCxULE6NtvGpcQK1ChqGXdiu9y9A3eRN0_g5W2kWLH0BUmY5B-8zESuuqyZwhkJhZyg_RWadMAun0meswSo_zDRhX9YNoMnumJs_U7JlaJfBl-cr1oLvxnPHW5Lt6XII3NeEiSkfa2iKBneVjWjzcEXEtLm7ZJu8pMqZ8xobvJlF5nukE3g9xsZyRKgzjrzyBr1OgPJrAv6b78b-sP8EagbRx22cLVrpft_iZgFDnt_vAvwcUhP46 priority: 102 providerName: Springer Nature |
Title | Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals |
URI | https://link.springer.com/article/10.1007/s10916-015-0392-2 https://www.ncbi.nlm.nih.gov/pubmed/26531753 https://www.proquest.com/docview/1752574776 https://www.proquest.com/docview/1730686258 https://www.proquest.com/docview/1808123314 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEF60BRFKqVVrtJYVfFIWk81uNnmSq71rUXoU68n5FPZXaqEkV5s-1L_emWRzpxTvJYFkE4bMZPbbmZ1vCHkbp6mvvLJMF04xWH8JZmJrGS-4k-A0C86x3vl0mp3MxOe5nIeA203YVjn4xM5Ru8ZijPwDTHNgXUKp7OPimmHXKMyuhhYaD8kmUpfhli41VyvS3Szry6VFzpCIfMhq9qVzAIxgIS1ZDAIx_u-8dA9s3kuUdvPPZIdsB-BIR72mn5AHvt4lj05DanyXbPUBONrXFT0lv498222zqmlT0e8NOAR6ptvO2d1R3O5-QSdYIgUvPUKKfwyb0cuaatoV5cIyPFglHYhL8EVTxLhXVNeODsSd3tHzhff2Jz2_vEA65mdkNhl_-3TCQqMFZmWSt8wUmnultfexNLHPjQIFIjDMTcZdJp1TleGVtl5wm3jbsbzlRifeVGllRfqcbNRN7V8QWiTCWWES6QohiirREvBiosBVOK00lxGJh89c2sBCjs0wrsoVfzJqpgTNlKiZkkfk3fKRRU_BsW7w_qC7MvyNN-XKdiLyZnkb_iNMjujaN7c4Ju2qZWS-Zgy2KeFpmoiI7PV2sZSIZxKhWBqR94Oh_CXA_8R9uV7cV-QxALQQ8tknG-2vW_8aQFBrDjpLh2M-OT4gm6PjH1_GcD4cT8--wtUZH_0BmdEG3w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBBVENF6jUVvQF6Vxpqd7jgcRcV03JrsISSRvk74mBsLMaiZI_FH-Rqvm2FWC-5bn6WmKrqO_7ur6CuBFGMe-9KnlOncpx_OX5Ca0lotcOIVBMxeC6p2ns2SyLz8fqIM1-D3UwtCzyiEmtoHa1ZbuyN_gNofWJdM0eTf_zqlrFGVXhxYanVls-_OfeGQ7fbs1Qv2-FGL8ce_DhPddBbhVUdZwk2vhU629D5UJfWZSlJZQUGYS4RLlXFoaUWrrpbCRty2lWWZ05E0Zl1bGOO8VuCrjOCePysafliS_SdKVZ8uME_H5kEXtSvUQiOHBXfEQF4CLf_fBC-D2QmK23e_Gt-FWD1TZ-86y7sCarzbg2rRPxW_Aze7Cj3V1THfh18g37bOuitUl-1pjAGJfdNMG13NGz-uP2JhKsnDSEbUUoGs6dlwxzdoiYDz2917ABqIUmmhGmPqE6cqxgSjUO7Y7995-Y7vHR0T_fA_2L0UF92G9qiv_EFgeSWeliZTLpczLSCvEp1GKocnpVAsVQDgsc2F71nNqvnFSLPmaSTMFaqYgzRQigFeLX-Yd5ceqwZuD7ore-0-Lpa0G8HzxGf2WkjG68vUZjYnb6hyVrRhDbVFEHEcygAedXSwkEoki6BcH8HowlL8E-J-4j1aL-wyuT_amO8XO1mz7MdxAcNhfN23CevPjzD9BANaYp63VMzi8bDf7A1ZAQZ4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFD_MCUMQ0fnVOTWCvihhbZo07YOIeL1szl0Gc3Lfunx1DkZ7t3XI_NP868xpm3uV4X3bc9NwyPnILzk5vwPwOk5TVzlpqCqspP78xamOjaGsYFb4oFkwhvXOe5Ns-5B_mYrpCvwOtTD4rDLExC5Q28bgHfmW3-a8dXEps61qeBaxPxp_mJ1R7CCFmdbQTqM3kV139dMf3y7e74y8rt8wNv787dM2HToMUCOSvKW6UMxJpZyLhY5drqWXHBFRrjNmM2GtrDSrlHGcmcSZjt4s1ypxukorw1M_7y24LVORoI_JqVwQ_mZZX6rNc4ok6CGj2pfteVDmD_GCxn4xKPt3T7wGdK8labu9b3wf7g2glXzsrewBrLh6Hdb2hrT8OtztL_9IX9P0EH6NXNs98apJU5HvjQ9GZF-1XaC9IvjU_piMsTzLTzrC9gJ4ZUdOaqJIVxB87oJHkECaghNNEF-fElVbEkhDnSUHM-fMD3JwcoxU0I_g8EZU8BhW66Z2T4EUCbeG60TYgvOiSpTwWDWRPkxZJRUTEcRhmUszMKBjI47TcsHdjJopvWZK1EzJIng7_2XW038sG7wZdFcOkeCiXNhtBK_mn70PY2JG1a65xDFpV6kj8iVjsEUKS9OER_Ckt4u5RCwTCAPTCN4FQ_lLgP-Ju7Fc3Jew5h2s_Loz2X0GdzxOHG6eNmG1Pb90zz0Wa_WLzugJHN20l_0BLzFFyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Voice+Pathology+using+Fractal+Dimension+in+a+Multiresolution+Analysis+of+Normal+and+Disordered+Speech+Signals&rft.jtitle=Journal+of+medical+systems&rft.au=Ali%2C+Zulfiqar&rft.au=Elamvazuthi%2C+Irraivan&rft.au=Alsulaiman%2C+Mansour&rft.au=Muhammad%2C+Ghulam&rft.date=2016-01-01&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=40&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs10916-015-0392-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |