On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging
Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A...
Saved in:
Published in | Lab on a chip Vol. 16; no. 4; pp. 679 - 687 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature
in vivo
. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10
6
particles per s and at high concentration, typically >10
11
particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C
4
F
10
due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US.
In vitro
ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for
in vivo
imaging, compared to microbubbles with an equivalent shell composition.
We present the first on-chip atomisation-like production of phase-change contrast agents at high concentrations towards high-resolution contrast imaging for diagnostic ultrasound. |
---|---|
AbstractList | Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 mu m in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 mu m or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10 super(6) particles per s and at high concentration, typically >10 super(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C sub(4)F sub(10) due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or ‘nanobubbles.’ As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo . However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10 6 particles per s and at high concentration, typically >10 11 particles per mL. The average particle diameter appears to be around 100–200 nm. These particles, suspected of being a mix of liquid and gaseous C 4 F 10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo . However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10 6 particles per s and at high concentration, typically >10 11 particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C 4 F 10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. We present the first on-chip atomisation-like production of phase-change contrast agents at high concentrations towards high-resolution contrast imaging for diagnostic ultrasound. |
Author | Peyman, Sally A Coletta, P. Louise Freear, Steven Evans, Stephen D McLaughlan, James R Johnson, Benjamin R. G Marston, Gemma Markham, Alexander F Abou-Saleh, Radwa H |
AuthorAffiliation | University of Leeds School of Electronic and Electrical Engineering School of Physics and Astronomy Mansoura University Leeds Institute for Molecular Medicine St James's Hospital Faculty of Science Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Mansoura University – sequence: 0 name: Department of Physics – sequence: 0 name: School of Physics and Astronomy – sequence: 0 name: School of Electronic and Electrical Engineering – sequence: 0 name: Leeds Institute for Molecular Medicine – sequence: 0 name: University of Leeds – sequence: 0 name: St James's Hospital – sequence: 0 name: Faculty of Science |
Author_xml | – sequence: 1 givenname: Sally A surname: Peyman fullname: Peyman, Sally A – sequence: 2 givenname: James R surname: McLaughlan fullname: McLaughlan, James R – sequence: 3 givenname: Radwa H surname: Abou-Saleh fullname: Abou-Saleh, Radwa H – sequence: 4 givenname: Gemma surname: Marston fullname: Marston, Gemma – sequence: 5 givenname: Benjamin R. G surname: Johnson fullname: Johnson, Benjamin R. G – sequence: 6 givenname: Steven surname: Freear fullname: Freear, Steven – sequence: 7 givenname: P. Louise surname: Coletta fullname: Coletta, P. Louise – sequence: 8 givenname: Alexander F surname: Markham fullname: Markham, Alexander F – sequence: 9 givenname: Stephen D surname: Evans fullname: Evans, Stephen D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26689151$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLxDAQxoOsuA-9eFdyFKGaNE2THJfiCxb2oicPJU3S3Uo3qUmL-N-bfbgehYEZ-H4zzHwzBSPrrAHgEqM7jIi4V7RVCBORyRMwwRkjCcJcjI61YGMwDeEDIUyznJ-BcZrnXGCKJ-B9aRO1bjrYedNJL_vGWehqaKV1QcnWQOVs72XooVwZ2wfYuy_pdYDrZrVOvAmuHXZNQ7vF3GA1bDZy1djVOTitZRvMxSHPwNvjw2vxnCyWTy_FfJEoinmfVIwRzThhXGskkUhJnhtdVbJWFKW1FMjkGaaKUi1iZFGUKhcVrlDF6hSTGbjZz-28-xxM6MtNE5RpW2mNG0KJOULRiZTz_1HGEcVxARHR2z2qvAvBm7rsfDzMf5cYlVvfy4Iuip3v8whfH-YO1cboI_prdASu9oAP6qj-PY78APwUimI |
CitedBy_id | crossref_primary_10_1039_C9CS00839J crossref_primary_10_1109_TUFFC_2021_3055141 crossref_primary_10_1038_micronano_2017_87 crossref_primary_10_1016_j_jcis_2023_08_173 crossref_primary_10_1016_j_ultras_2020_106245 crossref_primary_10_1002_idm2_12050 crossref_primary_10_1021_acs_langmuir_8b01163 crossref_primary_10_1039_C6SM00956E crossref_primary_10_1039_D3SM00380A crossref_primary_10_1039_D0CS00384K crossref_primary_10_1177_1536012118778216 crossref_primary_10_1021_acs_jpcb_0c02279 crossref_primary_10_1016_j_colsurfb_2019_04_062 crossref_primary_10_3390_mi9080404 crossref_primary_10_1039_C8SM01949E crossref_primary_10_1016_j_ultrasmedbio_2018_07_026 crossref_primary_10_1016_j_heliyon_2019_e01907 crossref_primary_10_1021_acs_chemrev_1c00632 crossref_primary_10_1021_acs_iecr_1c04046 crossref_primary_10_1016_j_jcis_2023_09_066 crossref_primary_10_1039_D1CP01279G crossref_primary_10_1016_j_ultsonch_2024_106809 crossref_primary_10_1039_C7RE00082K crossref_primary_10_1039_C8NR07769J crossref_primary_10_1063_5_0040213 crossref_primary_10_1039_D0NR03332D crossref_primary_10_1021_acsami_7b19755 crossref_primary_10_1039_C7LC00295E crossref_primary_10_1039_D0RA08727K crossref_primary_10_1063_1_5089717 crossref_primary_10_1016_j_colsurfa_2022_130169 crossref_primary_10_1021_acsami_0c07022 crossref_primary_10_1002_smll_202100345 crossref_primary_10_1039_C7SM00128B crossref_primary_10_1016_j_ultsonch_2023_106438 crossref_primary_10_1109_TUFFC_2016_2640342 crossref_primary_10_1126_sciadv_aaz0094 crossref_primary_10_1016_j_cocis_2021_101456 crossref_primary_10_3390_mi14030638 crossref_primary_10_1016_j_ultrasmedbio_2016_09_011 crossref_primary_10_1021_acs_iecr_1c01233 crossref_primary_10_1039_D1RA04890B crossref_primary_10_3389_fphy_2021_654374 crossref_primary_10_1155_2017_6141734 crossref_primary_10_1038_s41598_018_24713_4 crossref_primary_10_1039_C7LC00056A crossref_primary_10_1063_5_0032140 crossref_primary_10_1016_j_addr_2024_115200 crossref_primary_10_1021_acs_langmuir_1c00973 crossref_primary_10_1021_acs_langmuir_2c02303 crossref_primary_10_3390_ph17060755 crossref_primary_10_1039_C6LC01049K |
Cites_doi | 10.1016/j.addr.2014.03.003 10.1021/la703065v 10.1121/1.1901757 10.1039/b701481n 10.1016/j.ijpharm.2009.09.027 10.1016/j.biomaterials.2014.02.036 10.1016/j.biomaterials.2010.06.031 10.1021/la2011259 10.1039/c0lc00731e 10.1016/S0927-7757(97)00033-2 10.1097/00004424-200011000-00003 10.2147/IJN.S30912 10.1016/j.ultrasmedbio.2013.10.010 10.1016/j.ultrasmedbio.2008.12.017 10.1016/j.ultras.2013.10.010 10.1016/j.ces.2009.10.003 10.1021/la062097u 10.1016/j.chemosphere.2011.05.054 10.1016/j.ultrasmedbio.2007.12.011 10.1016/j.jconrel.2010.02.012 10.1016/j.ultrasmedbio.2012.11.017 10.1016/j.ejrad.2006.06.022 10.1002/smll.200902164 10.1016/j.ultrasmedbio.2014.10.020 10.7150/thno.4846 10.1136/bmj.322.7296.1222 10.1016/j.urolonc.2013.01.006 10.1016/j.colsurfa.2013.01.056 10.1016/0301-5629(91)90125-G 10.1016/j.ultrasmedbio.2005.08.009 10.1016/j.cocis.2011.01.010 10.1179/175889709X446507 10.1016/S0301-9322(97)00003-7 10.1016/j.ultrasmedbio.2011.05.021 10.2174/138161212800099883 10.1002/smll.200800591 10.1016/j.colsurfa.2010.03.005 10.1016/j.ultrasmedbio.2011.08.012 10.1016/j.ultrasmedbio.2010.08.012 10.1109/TUFFC.2013.2850 10.1016/j.ultrasmedbio.2013.05.007 10.1021/la304093t 10.1016/j.ultrasmedbio.2013.08.015 10.1039/c2lc40634a 10.1016/j.amjsurg.2011.10.024 10.1016/j.ultrasmedbio.2013.05.016 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M |
DOI | 10.1039/c5lc01394a |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database CrossRef Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1473-0189 |
EndPage | 687 |
ExternalDocumentID | 10_1039_C5LC01394A 26689151 c5lc01394a |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_13066 – fundername: Medical Research Council grantid: MR/L01629X/1 |
GroupedDBID | --- -JG 0-7 0R~ 29L 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L-8 M4U N9A O9- R7B RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SLH VH6 CGR CUY CVF ECM EIF NPM 0UZ 0VX 1TJ 53G 71~ AAYXX ACHDF ACMRT AFFNX AHGXI ANLMG BBWZM CAG CITATION COF EEHRC FEDTE HVGLF IDY J3G J3H NDZJH R56 RCLXC 7QO 8FD FR3 P64 7SP 7TB 7U5 L7M |
ID | FETCH-LOGICAL-c518t-b773d78378dd0a092366edbbafc502fa90e6415c55d95d946edac69b1b0b7f213 |
ISSN | 1473-0197 |
IngestDate | Sat Aug 17 01:20:37 EDT 2024 Fri Aug 16 23:28:22 EDT 2024 Fri Dec 06 04:08:27 EST 2024 Sat Sep 28 08:27:44 EDT 2024 Tue Dec 17 21:00:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c518t-b773d78378dd0a092366edbbafc502fa90e6415c55d95d946edac69b1b0b7f213 |
Notes | vs. Electronic supplementary information (ESI) available: Supporting information S1: video of a bubble sample in a viewing chamber showing microbubbles rising to the top and underneath a population of smaller bubbles moving with Brownian motion. Supporting information S2: high speed imaging of the microspray regime (100 000 000 fps) showing the velocity of the microspray was still too high to capture single bubble formation. Supporting information S3: effect of lipid concentration on microspray particle size and concentration. S4: expansion ratio model used to calculate the predicted increase in nanoparticle diameter on the increase of temperature in Fig. 4a from ref. 42 Supporting information S5: comparison of lipid solution only passing through tubes of the set-up compared to lipid solution going through the microfluidic device. S6: plot to show change in resonant frequency observations in Fig. 7, TIC curves for microbubble only and nanobubble only. See DOI in vivo 10.1039/c5lc01394a bubble diameter. S7: time intensity curves to support ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7858-4155 0000-0002-1600-5100 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2016/lc/c5lc01394a |
PMID | 26689151 |
PQID | 1780513669 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_C5LC01394A pubmed_primary_26689151 rsc_primary_c5lc01394a proquest_miscellaneous_1780513669 proquest_miscellaneous_1800473288 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Lab on a chip |
PublicationTitleAlternate | Lab Chip |
PublicationYear | 2016 |
References | Peyman (C5LC01394A-(cit34)/*[position()=1]) 2012; 12 Needles (C5LC01394A-(cit43)/*[position()=1]) 2008; 34 Maennicke (C5LC01394A-(cit35)/*[position()=1]) 2014; 40 Wang (C5LC01394A-(cit16)/*[position()=1]) 2010; 384 Gorce (C5LC01394A-(cit38)/*[position()=1]) 2000; 35 Abou-Saleh (C5LC01394A-(cit2)/*[position()=1]) 2013; 29 Xing (C5LC01394A-(cit13)/*[position()=1]) 2010 Choi (C5LC01394A-(cit48)/*[position()=1]) 2014; 54 Wang (C5LC01394A-(cit22)/*[position()=1]) 2011; 27 Talu (C5LC01394A-(cit32)/*[position()=1]) 2008; 24 Evans (C5LC01394A-(cit42)/*[position()=1]) 2006; 22 Sun (C5LC01394A-(cit46)/*[position()=1]) 2014; 40 Castro-Hernandez (C5LC01394A-(cit29)/*[position()=1]) 2011; 11 Ruckenstein (C5LC01394A-(cit37)/*[position()=1]) 2013; 423 Zhang (C5LC01394A-(cit17)/*[position()=1]) 2014; 35 McLaughlan (C5LC01394A-(cit45)/*[position()=1]) 2013 Zimmerman (C5LC01394A-(cit8)/*[position()=1]) 2011; 16 Mamou (C5LC01394A-(cit47)/*[position()=1]) 2009; 35 Tong (C5LC01394A-(cit15)/*[position()=1]) 2013; 39 Agarwal (C5LC01394A-(cit9)/*[position()=1]) 2011; 84 Cosgrove (C5LC01394A-(cit1)/*[position()=1]) 2006; 60 Pavlovich (C5LC01394A-(cit36)/*[position()=1]) 2014; 32 Sheeran (C5LC01394A-(cit25)/*[position()=1]) 2013; 39 Sheeran (C5LC01394A-(cit27)/*[position()=1]) 2011; 37 Needles (C5LC01394A-(cit44)/*[position()=1]) 2010; 36 Ushikubo (C5LC01394A-(cit10)/*[position()=1]) 2010; 361 Martz (C5LC01394A-(cit33)/*[position()=1]) 2011; 37 Blomley (C5LC01394A-(cit7)/*[position()=1]) 2001; 322 Sheeran (C5LC01394A-(cit23)/*[position()=1]) 2012; 18 Chen (C5LC01394A-(cit41)/*[position()=1]) 1997; 23 Sirsi (C5LC01394A-(cit3)/*[position()=1]) 2009; 1 Ohgaki (C5LC01394A-(cit11)/*[position()=1]) 2010; 65 Hettiarachchi (C5LC01394A-(cit31)/*[position()=1]) 2007; 7 Alzaraa (C5LC01394A-(cit4)/*[position()=1]) 2012; 204 McLaughlan (C5LC01394A-(cit5)/*[position()=1]) 2013; 60 Anderson (C5LC01394A-(cit21)/*[position()=1]) 2010; 144 Sheeran (C5LC01394A-(cit26)/*[position()=1]) 2015; 41 Kooiman (C5LC01394A-(cit6)/*[position()=1]) 2014; 72 Cavalli (C5LC01394A-(cit18)/*[position()=1]) 2012; 7 Wheatley (C5LC01394A-(cit19)/*[position()=1]) 2006; 32 Hashimoto (C5LC01394A-(cit28)/*[position()=1]) 2010; 6 Matsunaga (C5LC01394A-(cit24)/*[position()=1]) 2012; 2 Wagner (C5LC01394A-(cit20)/*[position()=1]) 2010; 31 Ljunggren (C5LC01394A-(cit12)/*[position()=1]) 1997; 129 Apfel (C5LC01394A-(cit39)/*[position()=1]) 1991; 17 Wu (C5LC01394A-(cit14)/*[position()=1]) 2013; 39 Hashimoto (C5LC01394A-(cit30)/*[position()=1]) 2008; 4 Church (C5LC01394A-(cit40)/*[position()=1]) 2005; 6 |
References_xml | – volume: 72 start-page: 28 year: 2014 ident: C5LC01394A-(cit6)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2014.03.003 contributor: fullname: Kooiman – volume: 24 start-page: 1745 year: 2008 ident: C5LC01394A-(cit32)/*[position()=1] publication-title: Langmuir doi: 10.1021/la703065v contributor: fullname: Talu – volume: 6 start-page: 162 year: 2005 ident: C5LC01394A-(cit40)/*[position()=1] publication-title: Acoust. Res. Lett. Online doi: 10.1121/1.1901757 contributor: fullname: Church – volume: 7 start-page: 463 year: 2007 ident: C5LC01394A-(cit31)/*[position()=1] publication-title: Lab Chip doi: 10.1039/b701481n contributor: fullname: Hettiarachchi – volume: 384 start-page: 148 year: 2010 ident: C5LC01394A-(cit16)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.09.027 contributor: fullname: Wang – volume: 35 start-page: 5148 year: 2014 ident: C5LC01394A-(cit17)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.036 contributor: fullname: Zhang – volume: 31 start-page: 7567 year: 2010 ident: C5LC01394A-(cit20)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.031 contributor: fullname: Wagner – volume: 27 start-page: 6971 year: 2011 ident: C5LC01394A-(cit22)/*[position()=1] publication-title: Langmuir doi: 10.1021/la2011259 contributor: fullname: Wang – volume: 11 start-page: 2023 year: 2011 ident: C5LC01394A-(cit29)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c0lc00731e contributor: fullname: Castro-Hernandez – volume: 129 start-page: 151 year: 1997 ident: C5LC01394A-(cit12)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(97)00033-2 contributor: fullname: Ljunggren – volume: 35 start-page: 661 year: 2000 ident: C5LC01394A-(cit38)/*[position()=1] publication-title: Invest. Radiol. doi: 10.1097/00004424-200011000-00003 contributor: fullname: Gorce – volume: 7 start-page: 3309 year: 2012 ident: C5LC01394A-(cit18)/*[position()=1] publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S30912 contributor: fullname: Cavalli – volume: 40 start-page: 541 year: 2014 ident: C5LC01394A-(cit46)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.10.010 contributor: fullname: Sun – start-page: 21 year: 2010 ident: C5LC01394A-(cit13)/*[position()=1] publication-title: Nanotechnology contributor: fullname: Xing – volume: 35 start-page: 1198 year: 2009 ident: C5LC01394A-(cit47)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2008.12.017 contributor: fullname: Mamou – volume: 54 start-page: 754 year: 2014 ident: C5LC01394A-(cit48)/*[position()=1] publication-title: Ultrasonics doi: 10.1016/j.ultras.2013.10.010 contributor: fullname: Choi – volume: 65 start-page: 1296 year: 2010 ident: C5LC01394A-(cit11)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.003 contributor: fullname: Ohgaki – volume: 22 start-page: 9538 year: 2006 ident: C5LC01394A-(cit42)/*[position()=1] publication-title: Langmuir doi: 10.1021/la062097u contributor: fullname: Evans – volume: 84 start-page: 1175 year: 2011 ident: C5LC01394A-(cit9)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.05.054 contributor: fullname: Agarwal – start-page: 1493 year: 2013 ident: C5LC01394A-(cit45)/*[position()=1] publication-title: IEEE Int. Ultrason. Symp. contributor: fullname: McLaughlan – volume: 34 start-page: 1139 year: 2008 ident: C5LC01394A-(cit43)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2007.12.011 contributor: fullname: Needles – volume: 144 start-page: 151 year: 2010 ident: C5LC01394A-(cit21)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2010.02.012 contributor: fullname: Anderson – volume: 39 start-page: 893 year: 2013 ident: C5LC01394A-(cit25)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2012.11.017 contributor: fullname: Sheeran – volume: 60 start-page: 324 year: 2006 ident: C5LC01394A-(cit1)/*[position()=1] publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2006.06.022 contributor: fullname: Cosgrove – volume: 6 start-page: 1051 year: 2010 ident: C5LC01394A-(cit28)/*[position()=1] publication-title: Small doi: 10.1002/smll.200902164 contributor: fullname: Hashimoto – volume: 41 start-page: 814 year: 2015 ident: C5LC01394A-(cit26)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2014.10.020 contributor: fullname: Sheeran – volume: 2 start-page: 1185 year: 2012 ident: C5LC01394A-(cit24)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.4846 contributor: fullname: Matsunaga – volume: 322 start-page: 1222 year: 2001 ident: C5LC01394A-(cit7)/*[position()=1] publication-title: Br. Med. J. doi: 10.1136/bmj.322.7296.1222 contributor: fullname: Blomley – volume: 32 start-page: 34.e27 year: 2014 ident: C5LC01394A-(cit36)/*[position()=1] publication-title: Urol. Oncol. doi: 10.1016/j.urolonc.2013.01.006 contributor: fullname: Pavlovich – volume: 423 start-page: 112 year: 2013 ident: C5LC01394A-(cit37)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.01.056 contributor: fullname: Ruckenstein – volume: 17 start-page: 179 year: 1991 ident: C5LC01394A-(cit39)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/0301-5629(91)90125-G contributor: fullname: Apfel – volume: 32 start-page: 83 year: 2006 ident: C5LC01394A-(cit19)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2005.08.009 contributor: fullname: Wheatley – volume: 16 start-page: 350 year: 2011 ident: C5LC01394A-(cit8)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2011.01.010 contributor: fullname: Zimmerman – volume: 1 start-page: 3 year: 2009 ident: C5LC01394A-(cit3)/*[position()=1] publication-title: Bubble Sci., Eng., Technol. doi: 10.1179/175889709X446507 contributor: fullname: Sirsi – volume: 23 start-page: 699 year: 1997 ident: C5LC01394A-(cit41)/*[position()=1] publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(97)00003-7 contributor: fullname: Chen – volume: 37 start-page: 1518 year: 2011 ident: C5LC01394A-(cit27)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2011.05.021 contributor: fullname: Sheeran – volume: 18 start-page: 2152 year: 2012 ident: C5LC01394A-(cit23)/*[position()=1] publication-title: Curr. Pharm. Des. doi: 10.2174/138161212800099883 contributor: fullname: Sheeran – volume: 4 start-page: 1795 year: 2008 ident: C5LC01394A-(cit30)/*[position()=1] publication-title: Small doi: 10.1002/smll.200800591 contributor: fullname: Hashimoto – volume: 361 start-page: 31 year: 2010 ident: C5LC01394A-(cit10)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2010.03.005 contributor: fullname: Ushikubo – volume: 37 start-page: 1952 year: 2011 ident: C5LC01394A-(cit33)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2011.08.012 contributor: fullname: Martz – volume: 36 start-page: 2097 year: 2010 ident: C5LC01394A-(cit44)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2010.08.012 contributor: fullname: Needles – volume: 60 start-page: 2511 year: 2013 ident: C5LC01394A-(cit5)/*[position()=1] publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2013.2850 contributor: fullname: McLaughlan – volume: 39 start-page: 2137 year: 2013 ident: C5LC01394A-(cit14)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.05.007 contributor: fullname: Wu – volume: 29 start-page: 4096 year: 2013 ident: C5LC01394A-(cit2)/*[position()=1] publication-title: Langmuir doi: 10.1021/la304093t contributor: fullname: Abou-Saleh – volume: 40 start-page: 244 year: 2014 ident: C5LC01394A-(cit35)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.08.015 contributor: fullname: Maennicke – volume: 12 start-page: 4544 year: 2012 ident: C5LC01394A-(cit34)/*[position()=1] publication-title: Lab Chip doi: 10.1039/c2lc40634a contributor: fullname: Peyman – volume: 204 start-page: 355 year: 2012 ident: C5LC01394A-(cit4)/*[position()=1] publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2011.10.024 contributor: fullname: Alzaraa – volume: 39 start-page: 2147 year: 2013 ident: C5LC01394A-(cit15)/*[position()=1] publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.05.016 contributor: fullname: Tong |
SSID | ssj0015468 |
Score | 2.4725788 |
Snippet | Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 679 |
SubjectTerms | Animals Aorta - diagnostic imaging Bubbles Contrast agents Contrast Media - chemistry Drug Stability Fluorocarbons - chemistry Imaging Lab-On-A-Chip Devices Lipids - chemistry Mice Microfluidics Nanoparticles Nanostructure Particle Size Resonant frequencies Signal-To-Noise Ratio Ultrasonography - instrumentation Ultrasonography - methods Ultrasound |
Title | On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26689151 https://search.proquest.com/docview/1780513669 https://search.proquest.com/docview/1800473288 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA-1h6gPotXT-kVE35bt7Veym8dSTqpUhaMHBz6UZJM9hb1taXeR-uo_7mST_fAqcgplKclmN838mvwyM5lB6K3IaEgJUW4smXSjhEWukJK5ntJWroBwUrv8f_xE5-fRhwtyMRj87HktVaWYpD_-eK7kf6QKZSBXfUr2HyTbPhQK4DvIF64gYbjeSMafCzfVzlabrTIhvA35K3ix3sHYW0d0visdflmfZCtrJ9mdo4MUu7DRtr1zqlzfpjMsOd-u6rxFfdK64ELbFLg--b3p5tJ9ozzleb53ppNOxbfg1eXX3NTWbrjOWVur7UwuNFG1PueMy-_cmXdtuWWjWlt_ZdcMq5Tw-0oJM49GsXbTMq63E9UvMxmD2smX9kAW9WZSanLM2EWZmlX5YL73Qh0udUYWM01lozZiahdU-9pi17og1sb3kK26trfQkY6mGA3R0fR0-X7RGqNIZE5UNr-piXIbspOu9e-85mCzAtRl26SUqanL8gG6b_cceGoA9BANVDFCt00W0v0I3Zk1Sf9G6F4vPuUj9MUCDPcAhtcZbgGGG4BhAzBsAYavAQx3AMMWYI_R-bvT5Wzu2mwcbkr8pHRFHIcy1vkHpPS4BxsDSpUUgmcp8YKMM09RYIMpIZLBJ4JKnlImfOGJOAv88BgNi3WhniIcERKrNKMiAzKbBSLRYRWTRNLME5JzOUZvmrFcbUzQldWhvMbodTPMKxglbejihVpXu5WvE3X40D_2l3sSHSg1DJJkjJ4YGbXvAtKaMKDCY3QMQmuLU5Kn9av5sxt18Dm62_03XqBhua3US6CwpXhlIfYLqYub2A |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-chip+preparation+of+nanoscale+contrast+agents+towards+high-resolution+ultrasound+imaging&rft.jtitle=Lab+on+a+chip&rft.au=Peyman%2C+Sally+A.&rft.au=McLaughlan%2C+James+R.&rft.au=Abou-Saleh%2C+Radwa+H.&rft.au=Marston%2C+Gemma&rft.date=2016-01-01&rft.issn=1473-0197&rft.eissn=1473-0189&rft.volume=16&rft.issue=4&rft.spage=679&rft.epage=687&rft_id=info:doi/10.1039%2FC5LC01394A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5LC01394A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon |