Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption

Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 1497 - 9
Main Authors Zhao, Rongzhi, Gao, Tong, Li, Yixing, Sun, Zhuo, Zhang, Zhengyu, Ji, Lianze, Hu, Chenglong, Liu, Xiaolian, Zhang, Zhenhua, Zhang, Xuefeng, Qin, Gaowu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.02.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe 3 C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss ( RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB ≤−10 dB ) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. Fe 3 C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption
AbstractList Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe 3 C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss ( RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB ≤−10 dB ) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.
Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe 3 C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss ( RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB ≤−10 dB ) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. Fe 3 C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption
Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤−10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.Fe3C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption
Abstract Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤−10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.
Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is -52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤-10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is -52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤-10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.
ArticleNumber 1497
Author Sun, Zhuo
Li, Yixing
Zhang, Zhengyu
Ji, Lianze
Liu, Xiaolian
Zhang, Zhenhua
Hu, Chenglong
Zhang, Xuefeng
Qin, Gaowu
Gao, Tong
Zhao, Rongzhi
Author_xml – sequence: 1
  givenname: Rongzhi
  orcidid: 0000-0001-8528-2104
  surname: Zhao
  fullname: Zhao, Rongzhi
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 2
  givenname: Tong
  surname: Gao
  fullname: Gao, Tong
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 3
  givenname: Yixing
  orcidid: 0000-0002-6180-9730
  surname: Li
  fullname: Li, Yixing
  email: liyx@mail.neu.edu.cn
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 4
  givenname: Zhuo
  surname: Sun
  fullname: Sun, Zhuo
  organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 5
  givenname: Zhengyu
  surname: Zhang
  fullname: Zhang, Zhengyu
  organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 6
  givenname: Lianze
  surname: Ji
  fullname: Ji, Lianze
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University
– sequence: 7
  givenname: Chenglong
  surname: Hu
  fullname: Hu, Chenglong
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University
– sequence: 8
  givenname: Xiaolian
  surname: Liu
  fullname: Liu, Xiaolian
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University
– sequence: 9
  givenname: Zhenhua
  surname: Zhang
  fullname: Zhang, Zhenhua
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University
– sequence: 10
  givenname: Xuefeng
  orcidid: 0000-0003-4110-8096
  surname: Zhang
  fullname: Zhang, Xuefeng
  email: zhang@hdu.edu.cn
  organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
– sequence: 11
  givenname: Gaowu
  orcidid: 0000-0002-0852-6715
  surname: Qin
  fullname: Qin, Gaowu
  organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University
BookMark eNp9Uk1vGyEUXFWp1DTNH-gJqZdetuFrFzhVldU0kSL10p7Rg2Vt3DW4gG3534d4E7XJIVx4gpnhzWPeN2chBtc0Hwn-QjCTV5kT3osWU97yTpKuPbxpzinmpCWCsrP_6nfNZc5rXBdTRHJ-3uxv_HI1HREEn2NJcestunZsgTbepjhO8MdlZGPIJe1scQMyR5Tj5Ic2FygObVeQHSoJQh5j2kDxMaBaITeO3noXyqx0gL1DYHJM2wfIh-btCFN2l4_7RfP7-vuvxU179_PH7eLbXWs7IksLDpxSfS9lNwpDGHTDQInCth8tCA5iYIQbJpXCQnVGOSsdNYRLjAkYztlFczvrDhHWepv8BtJRR_D6dBDTUkMq3k5OS9ExqzAdBGGcGmUABis714PioKypWl9nre3ObNxgq7cE0zPR5zfBr_Qy7jXBUvSdwFXh86NCin93Lhe98dm6aYLg4i5rqmh1yjsuK_TTC-g67lKoszqhOKdKioqSM6pOOOfkRm19Of1BbcBP9WX9kBA9J0TXhOhTQvShUukL6pORV0lsJuUKDkuX_nX1CuseizzT7g
CitedBy_id crossref_primary_10_1016_j_jmst_2024_08_016
crossref_primary_10_1016_j_jre_2024_12_008
crossref_primary_10_1016_j_matt_2024_101956
crossref_primary_10_1016_j_compositesa_2024_108700
crossref_primary_10_1002_adfm_202502671
crossref_primary_10_1016_j_jmst_2024_06_048
crossref_primary_10_1016_j_ceramint_2024_10_129
crossref_primary_10_1002_adfm_202419266
crossref_primary_10_1002_smll_202408396
crossref_primary_10_1016_j_matt_2025_102004
crossref_primary_10_1002_cey2_638
crossref_primary_10_1002_adma_202410466
crossref_primary_10_1002_anie_202418338
crossref_primary_10_1002_adfm_202405523
crossref_primary_10_1016_j_coco_2024_102157
crossref_primary_10_1016_j_apsusc_2025_162303
crossref_primary_10_1063_5_0231419
crossref_primary_10_1016_j_apsusc_2024_161633
crossref_primary_10_1016_j_compositesb_2024_111924
crossref_primary_10_1016_j_mseb_2024_117590
crossref_primary_10_1016_j_cej_2024_155786
crossref_primary_10_1039_D4TA07294D
crossref_primary_10_1016_j_xcrp_2024_102097
crossref_primary_10_1016_j_jallcom_2024_176229
crossref_primary_10_1063_5_0214740
crossref_primary_10_1016_j_decarb_2024_100065
crossref_primary_10_1002_adma_202415351
crossref_primary_10_1002_ange_202418338
crossref_primary_10_1007_s10854_024_13651_9
crossref_primary_10_1016_j_corsci_2025_112796
crossref_primary_10_1016_j_diamond_2025_112145
crossref_primary_10_1016_j_coco_2024_101993
crossref_primary_10_1016_j_jmst_2024_12_012
crossref_primary_10_1002_adfm_202420679
crossref_primary_10_1016_j_compositesa_2024_108565
crossref_primary_10_1021_acsaelm_4c02057
crossref_primary_10_1007_s12613_024_3028_z
crossref_primary_10_1039_D4TC02284J
crossref_primary_10_1038_s41467_024_54904_9
crossref_primary_10_1016_j_jma_2024_10_008
crossref_primary_10_1002_advs_202412890
crossref_primary_10_1039_D5TA00564G
crossref_primary_10_1038_s41467_024_55776_9
crossref_primary_10_1021_acs_inorgchem_4c01583
crossref_primary_10_1016_j_apsusc_2025_162400
crossref_primary_10_1016_j_jmst_2024_04_011
crossref_primary_10_1016_j_cej_2024_153783
crossref_primary_10_1002_adfm_202414694
crossref_primary_10_1016_j_coco_2025_102276
crossref_primary_10_1016_j_ceramint_2024_12_452
crossref_primary_10_1016_j_colsurfa_2024_134610
crossref_primary_10_1039_D4MH00793J
crossref_primary_10_1039_D4TA08263J
crossref_primary_10_1002_pssr_202500065
crossref_primary_10_1002_smll_202401939
crossref_primary_10_1016_j_jallcom_2024_177891
crossref_primary_10_1002_smll_202411058
crossref_primary_10_1021_acsami_4c22824
Cites_doi 10.1021/acsnano.0c09982
10.1016/j.jmmm.2017.07.089
10.1002/adfm.202102777
10.1016/j.corsci.2016.04.042
10.1021/acsami.2c15916
10.1016/j.jmmm.2017.10.114
10.1016/j.jallcom.2020.153674
10.1002/adfm.202102812
10.1016/j.jmmm.2015.10.093
10.1016/j.jmmm.2019.166008
10.1038/160090a0
10.1021/acsnano.2c07111
10.1016/j.scib.2020.01.009
10.1002/adma.201405788
10.1016/j.jmst.2021.05.061
10.1002/smll.202107265
10.1039/D0TA10942H
10.1002/adfm.202112294
10.1063/1.4899186
10.1016/j.jallcom.2015.08.107
10.1021/acs.chemrev.1c00860
10.1088/1361-6463/ac6cb2
10.1002/adfm.202200123
10.1016/j.actamat.2022.117854
10.1063/1.5108576
10.1016/j.jmst.2022.04.049
10.1002/adfm.202200544
10.1016/j.actamat.2018.08.023
10.1021/acsami.1c07792
10.1016/j.jallcom.2020.157835
10.1016/j.actamat.2022.117694
10.1038/s41467-018-07372-x
10.1021/acs.nanolett.0c00789
10.1016/j.apsusc.2018.06.196
10.1126/science.aba7977
10.1063/5.0001477
10.1021/acs.nanolett.1c03992
10.1063/1.4918964
10.1063/1.3464975
10.1016/j.jmmm.2019.165828
10.1063/1.4876598
10.1016/S0968-4328(02)00017-3
10.1021/acs.cgd.0c01533
10.1002/adfm.202204370
10.1016/j.actamat.2017.12.042
10.1002/adfm.202103436
10.1002/adma.202103360
10.1007/s11661-018-4735-8
10.1038/s41467-019-11079-y
10.1016/j.actamat.2021.117223
10.1039/C8NR08601J
10.1016/j.carbon.2018.06.030
10.1063/1.4813137
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-45815-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_8753c902d71342b9baadc85e6a94a9cb
PMC10876570
10_1038_s41467_024_45815_w
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52201202; U22A20117; 52225312
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)
  grantid: 2019C01121; 2021C01033
  funderid: https://doi.org/10.13039/501100004731
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-aeae9966885f7b13a5dd2190c6fca74a7d314b38990795b9ec8e2b148001ab443
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:22:05 EDT 2025
Thu Aug 21 18:34:58 EDT 2025
Fri Jul 11 12:05:09 EDT 2025
Wed Aug 13 09:51:38 EDT 2025
Tue Jul 01 02:10:59 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-aeae9966885f7b13a5dd2190c6fca74a7d314b38990795b9ec8e2b148001ab443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6180-9730
0000-0002-0852-6715
0000-0003-4110-8096
0000-0001-8528-2104
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-45815-w
PQID 2928442987
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_8753c902d71342b9baadc85e6a94a9cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876570
proquest_miscellaneous_2928854548
proquest_journals_2928442987
crossref_citationtrail_10_1038_s41467_024_45815_w
crossref_primary_10_1038_s41467_024_45815_w
springer_journals_10_1038_s41467_024_45815_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-19
PublicationDateYYYYMMDD 2024-02-19
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xu (CR23) 2016; 401
Ma (CR39) 2018; 457
Li (CR6) 2022; 18
Vansteenkiste (CR49) 2014; 4
Li (CR44) 2018; 139
Gao (CR5) 2022; 32
Zhou, Shao, Zheng, Ma (CR33) 2022; 101
Yasuda (CR28) 2019; 10
Tsybenko (CR30) 2022; 227
Li (CR19) 2019; 11
Liang (CR1) 2021; 15
Zhang (CR14) 2019; 126
Wei (CR52) 2014; 85
Bo, Hu, Zhao, Zhang (CR54) 2022; 55
Yang (CR20) 2018; 145
Di, Duan, Pang, Jia, Liu (CR8) 2022; 14
Qing (CR24) 2015; 651
Zhang (CR22) 2020; 494
Liu (CR41) 2021; 31
Zhang (CR4) 2015; 27
Hämäläinen, Madami, Qin, Gubbiotti, Dijken (CR53) 2018; 9
Liu, Zhang, Wu (CR43) 2022; 32
Liang (CR27) 2018; 49A
Zhang (CR17) 2021; 31
Gao (CR42) 2022; 32
Fang (CR46) 2021; 13
Snoek (CR9) 1947; 160
Li (CR35) 2022; 231
Iqbal (CR10) 2020; 369
Cai, Wang, Zhang, Nestler (CR26) 2021; 219
Liu (CR7) 2021; 9
Deng, Han (CR38) 2010; 97
Man (CR2) 2020; 20
Volkov, Zhu, De Graef (CR50) 2002; 33
Li (CR45) 2020; 65
Ma, Duan, Huang, Ma, Lei (CR21) 2022; 130
Feng (CR40) 2020; 497
Qin, Zhang, Zhao, Wu (CR3) 2021; 31
Chua (CR16) 2021; 33
Wu, Sun, Styles, Arlazarov, Hutchinson (CR31) 2018; 159
Phuoc, Ong (CR47) 2013; 114
Cheng (CR12) 2022; 32
Hao, Dong, Etim, Wei, Ke (CR29) 2016; 110
Zhang, Guan, Dong (CR37) 2010; 97
Ping, Chen, Xiang (CR32) 2021; 21
Yamamoto (CR34) 2018; 451
Ma, Mohapatra, Wei, Liu, Sun (CR36) 2023; 123
Cheng (CR11) 2022; 16
Kim, Park (CR15) 2021; 21
Lei, Du (CR25) 2020; 822
Yu (CR51) 2015; 106
Ma (CR48) 2017; 444
Wang (CR13) 2020; 116
Shi, Su, Luo, Zhang, Zhang (CR18) 2021; 859
VV Volkov (45815_CR50) 2002; 33
Y Cai (45815_CR26) 2021; 219
X Hao (45815_CR29) 2016; 110
YT Zhou (45815_CR33) 2022; 101
J Liu (45815_CR43) 2022; 32
T Ma (45815_CR48) 2017; 444
Y Qing (45815_CR24) 2015; 651
S Yamamoto (45815_CR34) 2018; 451
T Gao (45815_CR5) 2022; 32
TY Ma (45815_CR39) 2018; 457
C Lei (45815_CR25) 2020; 822
JL Snoek (45815_CR9) 1947; 160
M Cheng (45815_CR11) 2022; 16
TY Kim (45815_CR15) 2021; 21
YX Wu (45815_CR31) 2018; 159
M Qin (45815_CR3) 2021; 31
P Wang (45815_CR13) 2020; 116
W Yang (45815_CR20) 2018; 145
Y Zhang (45815_CR4) 2015; 27
XF Zhang (45815_CR37) 2010; 97
J Di (45815_CR8) 2022; 14
Z Man (45815_CR2) 2020; 20
Z Ma (45815_CR36) 2023; 123
NN Phuoc (45815_CR47) 2013; 114
A Vansteenkiste (45815_CR49) 2014; 4
R Chua (45815_CR16) 2021; 33
P Liu (45815_CR41) 2021; 31
J Wei (45815_CR52) 2014; 85
L Bo (45815_CR54) 2022; 55
Z Gao (45815_CR42) 2022; 32
C Shi (45815_CR18) 2021; 859
S Zhang (45815_CR14) 2019; 126
C Zhang (45815_CR17) 2021; 31
H Xu (45815_CR23) 2016; 401
Y Zhang (45815_CR22) 2020; 494
X Ma (45815_CR21) 2022; 130
SJ Hämäläinen (45815_CR53) 2018; 9
JW Fang (45815_CR46) 2021; 13
L Liang (45815_CR1) 2021; 15
Y Liang (45815_CR27) 2018; 49A
Q Li (45815_CR35) 2022; 231
Y Li (45815_CR45) 2020; 65
A Iqbal (45815_CR10) 2020; 369
H Tsybenko (45815_CR30) 2022; 227
H Yasuda (45815_CR28) 2019; 10
Y Li (45815_CR44) 2018; 139
D-h Ping (45815_CR32) 2021; 21
Y Yu (45815_CR51) 2015; 106
Y Li (45815_CR6) 2022; 18
LJ Deng (45815_CR38) 2010; 97
D Liu (45815_CR7) 2021; 9
J Cheng (45815_CR12) 2022; 32
X Li (45815_CR19) 2019; 11
H Feng (45815_CR40) 2020; 497
References_xml – volume: 15
  start-page: 6622
  year: 2021
  end-page: 6632
  ident: CR1
  article-title: Multifunctional magnetic Ti C T MXene/graphene aerogel with superior electromagnetic wave absorption performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09982
– volume: 444
  start-page: 119
  year: 2017
  end-page: 124
  ident: CR48
  article-title: Micrometer thick soft magnetic films with magnetic moments restricted strictly in plane by negative magnetocrystalline anisotropy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.07.089
– volume: 31
  year: 2021
  ident: CR17
  article-title: 3D printing of functional magnetic materials: from design to applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102777
– volume: 110
  start-page: 296
  year: 2016
  end-page: 304
  ident: CR29
  article-title: Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2016.04.042
– volume: 14
  start-page: 51545
  year: 2022
  end-page: 51554
  ident: CR8
  article-title: Two-dimensional basalt/ni microflakes with uniform and compact nanolayers for optimized microwave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c15916
– volume: 451
  start-page: 1
  year: 2018
  end-page: 4
  ident: CR34
  article-title: Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.10.114
– volume: 822
  year: 2020
  ident: CR25
  article-title: Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2020.153674
– volume: 31
  year: 2021
  ident: CR41
  article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 401
  start-page: 567
  year: 2016
  end-page: 571
  ident: CR23
  article-title: Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO in 1-18 GHz
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.10.093
– volume: 497
  year: 2020
  ident: CR40
  article-title: Static and dynamic magnetic properties of Fe Ni and Co Fe B material-modulated stripe-patterned thin films
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.166008
– volume: 160
  start-page: 90
  year: 1947
  end-page: 90
  ident: CR9
  article-title: Gyromagnetic resonance in ferrites
  publication-title: Nature
  doi: 10.1038/160090a0
– volume: 16
  start-page: 16996
  year: 2022
  end-page: 17007
  ident: CR11
  article-title: Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07111
– volume: 65
  start-page: 623
  year: 2020
  end-page: 630
  ident: CR45
  article-title: Oxygen-sulfur co-substitutional Fe@C nanocapsules for improving microwave absorption properties
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.009
– volume: 27
  start-page: 2049
  year: 2015
  end-page: 2053
  ident: CR4
  article-title: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405788
– volume: 101
  start-page: 28
  year: 2022
  end-page: 36
  ident: CR33
  article-title: Structure evolution of the Fe C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.061
– volume: 18
  year: 2022
  ident: CR6
  article-title: Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption
  publication-title: Small
  doi: 10.1002/smll.202107265
– volume: 9
  start-page: 5086
  year: 2021
  end-page: 5096
  ident: CR7
  article-title: Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10942H
– volume: 32
  year: 2022
  ident: CR42
  article-title: Synergistic polarization loss of MoS -based multiphase solid solution for electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112294
– volume: 4
  year: 2014
  ident: CR49
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
  doi: 10.1063/1.4899186
– volume: 651
  start-page: 259
  year: 2015
  end-page: 265
  ident: CR24
  article-title: Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al O ceramics by plasma spraying
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2015.08.107
– volume: 123
  start-page: 3904
  year: 2023
  end-page: 3943
  ident: CR36
  article-title: Magnetic nanoparticles: synthesis, anisotropy, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00860
– volume: 55
  start-page: 333001
  year: 2022
  ident: CR54
  article-title: Micromagnetic manipulation and spin excitation of skyrmionic structures
  publication-title: J. Phys. D Appl Phys.
  doi: 10.1088/1361-6463/ac6cb2
– volume: 32
  year: 2022
  ident: CR12
  article-title: Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy?
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200123
– volume: 231
  year: 2022
  ident: CR35
  article-title: Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117854
– volume: 126
  year: 2019
  ident: CR14
  article-title: First-principles study of the easy-plane magnetocrystalline anisotropy in bulk HCP Co Ir
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5108576
– volume: 130
  start-page: 86
  year: 2022
  end-page: 92
  ident: CR21
  article-title: Multicomponent induced localized coupling in Penrose tiling for electromagnetic wave absorption and multiband compatibility
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.04.049
– volume: 32
  year: 2022
  ident: CR43
  article-title: Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200544
– volume: 159
  start-page: 209
  year: 2018
  end-page: 224
  ident: CR31
  article-title: Cementite coarsening during the tempering of Fe-C-Mn martensite
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.023
– volume: 13
  start-page: 33496
  year: 2021
  end-page: 33504
  ident: CR46
  article-title: Metal-organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07792
– volume: 859
  year: 2021
  ident: CR18
  article-title: Microwave absorption properties of spheres-assembled flake-like FeNi3 particles prepared by electrodeposition
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2020.157835
– volume: 227
  year: 2022
  ident: CR30
  article-title: Deformation and phase transformation in polycrystalline cementite (Fe C) during single- and multi-pass sliding wear
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117694
– volume: 97
  start-page: 033107
  year: 2010
  ident: CR38
  article-title: Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2018
  ident: CR53
  article-title: Control of spin-wave transmission by a programmable domain wall
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07372-x
– volume: 20
  start-page: 3769
  year: 2020
  end-page: 3777
  ident: CR2
  article-title: Two birds with one stone: FeS @C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00789
– volume: 457
  start-page: 598
  year: 2018
  end-page: 603
  ident: CR39
  article-title: Tuning the static and dynamic magnetic properties of c-axis oriented HCP-(CoIr) thin films by the addition of Cr
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.196
– volume: 369
  start-page: 446
  year: 2020
  end-page: 450
  ident: CR10
  article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti C T (MXene)
  publication-title: Science
  doi: 10.1126/science.aba7977
– volume: 116
  year: 2020
  ident: CR13
  article-title: Preparation and study of Ce Fe N microflakes with easy-plane anisotropy and high working frequencies
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0001477
– volume: 21
  start-page: 10114
  year: 2021
  end-page: 10121
  ident: CR15
  article-title: Magnetic anisotropy and magnetic ordering of transition-metal phosphorus trisulfides
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03992
– volume: 106
  year: 2015
  ident: CR51
  article-title: Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4918964
– volume: 97
  year: 2010
  ident: CR37
  article-title: Transform between the permeability and permittivity in the close-packed Ni nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3464975
– volume: 494
  year: 2020
  ident: CR22
  article-title: Enhanced microwave absorption properties of barium ferrites by Zr -Ni doping and oxygen-deficient sintering
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165828
– volume: 85
  year: 2014
  ident: CR52
  article-title: An induction method to calculate the complex permeability of soft magnetic films without a reference sample
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4876598
– volume: 33
  start-page: 411
  year: 2002
  end-page: 416
  ident: CR50
  article-title: A new symmetrized solution for phase retrieval using the transport of intensity equation
  publication-title: Micron
  doi: 10.1016/S0968-4328(02)00017-3
– volume: 21
  start-page: 1683
  year: 2021
  end-page: 1688
  ident: CR32
  article-title: Formation of θ-Fe C cementite via θ′-Fe C (ω-Fe C) in Fe-C alloys
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01533
– volume: 32
  year: 2022
  ident: CR5
  article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 145
  start-page: 331
  year: 2018
  end-page: 336
  ident: CR20
  article-title: Tunable magnetic and microwave absorption properties of Sm Y Fe Si and their composites
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.12.042
– volume: 31
  start-page: 2103436
  year: 2021
  ident: CR3
  article-title: Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103436
– volume: 33
  year: 2021
  ident: CR16
  article-title: Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103360
– volume: 49A
  start-page: 4785
  year: 2018
  end-page: 4797
  ident: CR27
  article-title: Kinetic behavior and microstructure of pearlite isothermal transformation under high undercooling
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-018-4735-8
– volume: 10
  year: 2019
  ident: CR28
  article-title: Dendrite fragmentation induced by massive-like δ–γ transformation in Fe-C alloys
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11079-y
– volume: 219
  year: 2021
  ident: CR26
  article-title: Phase-field investigation on the peritectic transition in Fe-C system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117223
– volume: 11
  start-page: 2694
  year: 2019
  end-page: 2702
  ident: CR19
  article-title: Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units
  publication-title: Nanoscale
  doi: 10.1039/C8NR08601J
– volume: 139
  start-page: 181
  year: 2018
  end-page: 188
  ident: CR44
  article-title: Improved microwave absorption properties by atomic-scale substitutions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.030
– volume: 114
  year: 2013
  ident: CR47
  article-title: Thermal stability of high frequency properties of gradient-composition-sputtered FeCoHf films with and without stripe domains
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4813137
– volume: 497
  year: 2020
  ident: 45815_CR40
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.166008
– volume: 110
  start-page: 296
  year: 2016
  ident: 45815_CR29
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2016.04.042
– volume: 49A
  start-page: 4785
  year: 2018
  ident: 45815_CR27
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-018-4735-8
– volume: 18
  year: 2022
  ident: 45815_CR6
  publication-title: Small
  doi: 10.1002/smll.202107265
– volume: 9
  start-page: 5086
  year: 2021
  ident: 45815_CR7
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10942H
– volume: 126
  year: 2019
  ident: 45815_CR14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5108576
– volume: 32
  year: 2022
  ident: 45815_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200544
– volume: 231
  year: 2022
  ident: 45815_CR35
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117854
– volume: 31
  start-page: 2103436
  year: 2021
  ident: 45815_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103436
– volume: 11
  start-page: 2694
  year: 2019
  ident: 45815_CR19
  publication-title: Nanoscale
  doi: 10.1039/C8NR08601J
– volume: 32
  year: 2022
  ident: 45815_CR5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 97
  year: 2010
  ident: 45815_CR37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3464975
– volume: 13
  start-page: 33496
  year: 2021
  ident: 45815_CR46
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07792
– volume: 106
  year: 2015
  ident: 45815_CR51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4918964
– volume: 219
  year: 2021
  ident: 45815_CR26
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117223
– volume: 55
  start-page: 333001
  year: 2022
  ident: 45815_CR54
  publication-title: J. Phys. D Appl Phys.
  doi: 10.1088/1361-6463/ac6cb2
– volume: 15
  start-page: 6622
  year: 2021
  ident: 45815_CR1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09982
– volume: 123
  start-page: 3904
  year: 2023
  ident: 45815_CR36
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00860
– volume: 451
  start-page: 1
  year: 2018
  ident: 45815_CR34
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.10.114
– volume: 16
  start-page: 16996
  year: 2022
  ident: 45815_CR11
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07111
– volume: 227
  year: 2022
  ident: 45815_CR30
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117694
– volume: 4
  year: 2014
  ident: 45815_CR49
  publication-title: AIP Adv.
  doi: 10.1063/1.4899186
– volume: 10
  year: 2019
  ident: 45815_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11079-y
– volume: 651
  start-page: 259
  year: 2015
  ident: 45815_CR24
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2015.08.107
– volume: 114
  year: 2013
  ident: 45815_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4813137
– volume: 20
  start-page: 3769
  year: 2020
  ident: 45815_CR2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00789
– volume: 14
  start-page: 51545
  year: 2022
  ident: 45815_CR8
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c15916
– volume: 9
  year: 2018
  ident: 45815_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07372-x
– volume: 21
  start-page: 1683
  year: 2021
  ident: 45815_CR32
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01533
– volume: 32
  year: 2022
  ident: 45815_CR42
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112294
– volume: 130
  start-page: 86
  year: 2022
  ident: 45815_CR21
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.04.049
– volume: 65
  start-page: 623
  year: 2020
  ident: 45815_CR45
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.009
– volume: 101
  start-page: 28
  year: 2022
  ident: 45815_CR33
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.061
– volume: 160
  start-page: 90
  year: 1947
  ident: 45815_CR9
  publication-title: Nature
  doi: 10.1038/160090a0
– volume: 457
  start-page: 598
  year: 2018
  ident: 45815_CR39
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.196
– volume: 21
  start-page: 10114
  year: 2021
  ident: 45815_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03992
– volume: 33
  start-page: 411
  year: 2002
  ident: 45815_CR50
  publication-title: Micron
  doi: 10.1016/S0968-4328(02)00017-3
– volume: 494
  year: 2020
  ident: 45815_CR22
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165828
– volume: 31
  year: 2021
  ident: 45815_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 27
  start-page: 2049
  year: 2015
  ident: 45815_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405788
– volume: 369
  start-page: 446
  year: 2020
  ident: 45815_CR10
  publication-title: Science
  doi: 10.1126/science.aba7977
– volume: 31
  year: 2021
  ident: 45815_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102777
– volume: 139
  start-page: 181
  year: 2018
  ident: 45815_CR44
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.030
– volume: 116
  year: 2020
  ident: 45815_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0001477
– volume: 859
  year: 2021
  ident: 45815_CR18
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2020.157835
– volume: 97
  start-page: 033107
  year: 2010
  ident: 45815_CR38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3464975
– volume: 401
  start-page: 567
  year: 2016
  ident: 45815_CR23
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.10.093
– volume: 33
  year: 2021
  ident: 45815_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103360
– volume: 85
  year: 2014
  ident: 45815_CR52
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4876598
– volume: 822
  year: 2020
  ident: 45815_CR25
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2020.153674
– volume: 444
  start-page: 119
  year: 2017
  ident: 45815_CR48
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.07.089
– volume: 145
  start-page: 331
  year: 2018
  ident: 45815_CR20
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.12.042
– volume: 32
  year: 2022
  ident: 45815_CR12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200123
– volume: 159
  start-page: 209
  year: 2018
  ident: 45815_CR31
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.023
SSID ssj0000391844
Score 2.6689389
Snippet Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency...
Abstract Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1497
SubjectTerms 147/135
147/137
147/143
639/301/357/997
639/925/357/551
Absorption
Anisotropy
Cementite
Crystal structure
Dealloying
Electrochemistry
Ferromagnetic resonance
Ferromagnetism
Functional materials
Genetic transformation
Humanities and Social Sciences
Iron carbides
Magnetic anisotropy
Magnetic materials
Microwave absorbers
Microwave absorption
multidisciplinary
Permeability
Phase transitions
Quenching
Resonant frequencies
Science
Science (multidisciplinary)
Solid state
Thickness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIHgRP7G6KxG8adg2H9Pk6C4Oi6AnF_YWXj7KDo7tsJ3dYf57X9LOOF1QL95Kk7RJ3jd5-T1C3gehJA_KMR00Big8SGaUBBZBBInCV0LOzfn6bXZxKb9cqauDUl8pJ2yABx427jT5096UPKRLj9wZBxC8VnEGRoLxLmlftHkHwVTWwcJg6CLHWzKl0Ke9zDoBTRKTSleKbSaWKAP2T7zM-zmS9w5Ks_2ZPyGPR8eRfhom_JQ8iO0z8nAoJbl9Tu5SwsZyS6Fd9N36plstPJ1HcU5_poy7Zgk_Yk99N-LFxkDdliLbLQLLV4ro6hrNGV0fuLFdS_GJxowxgdMbvrSBu0jB9d1N1jUvyOX88_fzCzbWVGBeVXrNIEJMIY7WqqldJUCFgEqr9LPGQy2hDqKSLoHulbVRzkSvI3cYM6E5AyeleEmO2q6NrwgVBspGG64bYaSPjWvqGuU5NMEAN1IVpNrtr_Uj4Hiqe7G0-eBbaDvQxCJNbKaJ3RTkw37MaoDb-Gvvs0S2fc8ElZ1fIAPZkYHsvxioIMc7ottRfnvLcVkSTbWuC_Ju34ySl45ToI3d7dBHowMqdUH0hFkmE5q2tIvrjOFdJShAVZcF-bjjq99___OKX_-PFb8hj3iSg1TWxhyTI2S8eIKu1dq9zVL0C20PIvE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4lOEDWQkbmAtie3GPiGYKBMSnJi0m_X8EVZRktJ0q_rf8-y4HZ3EblFsJ07et_38e4S89VyK2kvLlFcYoNReMC0FsADcCxS-ElJuzrfvk9Mz8fVcnucFtyGnVW51YlLUvndxjfy41qhIUXmq5sPiD4tVo-Luai6hcZfcq9DSxJQuNf2yW2OJ6Oc4KJ-VKbk6HkTSDGiYmJCqkmy9Z48SbP-er3kzU_LGdmmyQtNH5GF2H-nHkd6PyZ3QPSH3x4KSm6fkKqZtzDcUutnQr5b9YuboNPAT-jvm3bVz-BUG6vqMGhs8tRuKzDfzLB0soosLNGp09Y8z23cUr2hISBM4vfFJa7gKFOzQL5PGeUbOpp9_nJyyXFmBOVmpFYMAIQY6Ssm2sRUH6T2qrtJNWgeNgMbzStgIvVc2WlodnAq1xcgJjRpYIfhzctD1XXhBKNdQtgqJ03ItXGht2zQo1b71GmotZEGq7f81LsOOx-oXc5O2v7kyI00M0sQkmph1Qd7txixG0I1be3-KZNv1jIDZ6Ua__Gmy_JkYljld1j6ena2ttgDeKRkmoAVoZwtytCW6yVI8mGueK8ibXTPKX9xUgS70l2MfhW6oUAVRe8yyN6H9lm52kZC8qwgIKJuyIO-3fHX99v9_8cvbJ3tIHtSRw2PZGn1EDpClwit0nVb2dZKPvy1cGg0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8ID5FYCAj8QYRiT8a-7FMVFMleIFJe7POH2EVXVI1ZVX_e2wnKXQCJN6i-JzYuTvfXXz3M8AbxwSnTphcOhkCFOp4rgTH3CNzPChfgSk359PnyfkFn1-KyyOgYy1MStpPkJZpmR6zw953PKl0sCg5F7IU-fYOnESo9iDbJ9Pp_Mt8_2clYp5LzocKmYLJP3Q-sEIJrP_Aw7ydH3lrkzTZntkDuD84jWTaD_MhHPnmEdztj5HcPYabmKyx3BFsFl27WberhSUzz87Idcy2q5f43XfEtgNWrHfE7EgQuYXLUzkRWV0FU0Y2v7mwbUPCFfEJXyIMr3_SFm88QdO167TOPIGL2cevZ-f5cJ5CbkUpNzl69DG8kVLUlSkZCufCglXYSW2x4lg5VnITAfeKSgmjvJWemhAvBVOGhnP2FI6btvHPgDCFRS0VlTVT3Pra1FUVdNnVTiFVXGRQjt9X2wFsPJ55sdRp05tJ3fNEB57oxBO9zeDtvs-qh9r4J_WHyLY9ZYTJTjfa9Tc9iI2OwZhVBXWxYpYaZRCdlcJPUHFU1mRwOjJdD7rbaRqmxYOZllUGr_fNQeviVgo2vv3R08jgfHKZgTwQloMBHbY0i6uE311GGEBRFRm8G-Xq19v_PuPn_0f-Au7RKPHx8Bp1CsdBxPzL4EBtzKtBY34CG4MZpg
  priority: 102
  providerName: Springer Nature
Title Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption
URI https://link.springer.com/article/10.1038/s41467-024-45815-w
https://www.proquest.com/docview/2928442987
https://www.proquest.com/docview/2928854548
https://pubmed.ncbi.nlm.nih.gov/PMC10876570
https://doaj.org/article/8753c902d71342b9baadc85e6a94a9cb
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0hcVjxFYKmMxA0Cedi1fUCoW21ZVdoVAir1FvkVtqIk3bZs6b9n7KSFrhYOXJLIduLHzHhmYvsbgJc2ZzSzTMfCCnRQMktjyaiKncotReFLVNibc37RPRvR4ZiN92AT7qgdwMWtrp2PJzWaT9_8vFq_R4F_1xwZF28XNIg7apuYMpGyeLUPh6iZuI9ocN6a-2FmziU6NLQ9O3P7qzv6KcD479ieN3dO3lg-DVppcA-OWnOS9Br634c9Vz2AO02AyfVDuPbbOKZroqrJol7O69nEkIHL--S734dXTtU3tyCmblFknSV6TZAZJzYOB43I7BKVHFn-YdzWFcEn4gLyBDav-dJKXTui9KKehxnoEYwGp1_6Z3EbaSE2LBXLWDnlvOMjBCu5TnPFrMWpLDHd0ihOFbd5SrWH4ku4ZFo6I1ym0ZNCJac0pfljOKjqyj0BkkuVlEJmoswlNa7UJeco5ba0UmWSsgjSzfgWpoUh99EwpkVYDs9F0dCkQJoUgSbFKoJX23dmDQjHP0ufeLJtS3oA7ZBQz78WrTwW3k0zMsmsP0ubaamVskYw11WSKml0BMcbohcbpiwy7BZFBS54BC-22SiPfpFFVa7-0ZQRaJZSEYHYYZadBu3mVJPLgOydeoBAxpMIXm_46nftf-_x0_-v6RnczTz3-xA38hgOkN3cczSzlroD-3zM8SoGHzpw2OsNPw_xfnJ68fETpva7_U74gdEJMvYLd8Mv_w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxFULDDASPIG1JLYb-wEhGJSOXZ42aW_Gt7CKkpSmrOqf4jdy7CQdncTe9hY1buLkfOfi-JzvIPTKUc5yxw0RTsACJXeMSM408Zo6BsqX6pibc3g0GJ2wr6f8dAP96WthQlplbxOjoXa1Dd_Id3IJhhSMpyjeT3-R0DUq7K72LTRaWOz75QKWbM27vU8g39d5Pvx8vDsiXVcBYnkm5kR77UOQLwQvC5NRzZ0DtU3toLS6YLpwNGMm0M6lheRGeit8bmDVAAZdG8YoXPcGuskoePJQmT78svqmE9jWYZJdbU5KxU7DoiUCR0gYFxknizX_F9sErMW2lzMzL23PRq83vIfuduEq_tDi6z7a8NUDdKttYLl8iM5DmshkiXU1bur5rJ6OLR56uot_hjy_cqJ_-AbbumOp9Q6bJQawjx2JhUx4egZOFM__CZ7rCsMR9pHZAqbXXmmhzz3Wpqln0cI9QifX8s4fo82qrvwWwlTqtBQAhpJKZn1pyqIAK-JKJ3UuGU9Q1r9fZTua89BtY6LidjsVqpWJApmoKBO1SNCb1X-mLcnHlaM_BrGtRgaC7vhDPfuuOn1XYRloZZq7UKubG2m0dlZwP9CSaWlNgrZ7oavOajTqAuMJerk6DfoeNnF05evf7RgBYS8TCRJrYFmb0PqZanwWmcOzQEDIizRBb3tcXdz9_0_85OrJvkC3R8eHB-pg72j_KbqTB7SHljlyG20CvPwzCNvm5nnUFYy-Xbdy_gV2D1Zx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIJo87A39gEh-li1FFYVolJvwa_QFdtk2Sxd7V_j1zF2ki1bid56ixIncTLffJ6xxzMAr03KaGKYCrnh6KAkhoaCURlamRqKyhdJH5vzZTQ4OKGfTtnpBvzp9sK4sMqOEz1Rm0q7OfJ-IpBIkTx51i_asIjjveGH6a_QVZByK61dOY0GIkd2uUD3rX5_uIeyfpMkw_1vuwdhW2Eg1Czm81BaaZ3BzzkrMhWnkhmDKhzpQaFlRmVm0pgql4IuygRTwmpuE4UeBJK7VJSm-NxbsJk5r6gHmzv7o-Ovqxkel3sdu9zu1IlS3q-p5yUcFkPKeMzCxdpo6IsGrFm6V-M0ryzW-jFweB_utcYr-dig7QFs2PIh3G7KWS4fwYULGpksiSzHdTWfVdOxJkOb7pJzF_VXTORPWxNdtTlrrSFqSRD6YxP6bU1keoZDKpn_Y0pXJcEjYn2eC-xe86SFvLBEqrqaeb57DCc38tefQK-sSvsUSCpkVHCERpEKqm2hiixDTjGFETIRlAUQd_83123Sc1d7Y5L7xfeU541McpRJ7mWSLwJ4u7pn2qT8uLb1jhPbqqVL1-1PVLMfeav9uXMKtYgS43buJkooKY3mzA6koFJoFcB2J_S85ZA6v0R8AK9Wl1H73ZKOLG31u2nD0QimPAC-Bpa1Dq1fKcdnPo947NIRsiwK4F2Hq8u3__-Lt67v7Eu4g4qZfz4cHT2Du4kDu6ufI7ahh-iyz9GGm6sXrbIQ-H7T-vkXAKxcAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+anisotropic+Fe3C+microflakes+constructed+by+solid-state+phase+transformation+for+efficient+microwave+absorption&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Rongzhi&rft.au=Gao%2C+Tong&rft.au=Li%2C+Yixing&rft.au=Sun%2C+Zhuo&rft.date=2024-02-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-45815-w&rft.externalDocID=PMC10876570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon