Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption
Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 1497 - 9 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe
3
C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe
3
C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (
RL
min
) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB
≤−10 dB
) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.
Fe
3
C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption |
---|---|
AbstractList | Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe
3
C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe
3
C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (
RL
min
) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB
≤−10 dB
) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe 3 C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe 3 C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss ( RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB ≤−10 dB ) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. Fe 3 C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤−10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.Fe3C microflakes with high magnetic anisotropy are prepared through solid-state phase transformation and electrochemical dealloying. The magnetic anisotropy can be tuned by adjusting the morphology, resulting in optimized ferromagnetic resonance behavior for microwave absorption Abstract Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RL min ) is −52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤−10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is -52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤-10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials.Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency ferromagnetic resonances and microwave absorption properties. Here, two-dimensional (2D) Fe3C microflakes with crystal orientation are obtained by solid-state phase transformation assisted by electrochemical dealloying. The shape anisotropy can be further regulated by manipulating the thickness of 2D Fe3C microflakes under different isothermally quenching temperatures. Thus, the resonant frequency is adjusted effectively from 9.47 and 11.56 GHz under isothermal quenching from 700 °C to 550 °C. The imaginary part of the complex permeability can reach 0.9 at 11.56 GHz, and the minimum reflection loss (RLmin) is -52.09 dB (15.85 GHz, 2.90 mm) with an effective absorption bandwidth (EAB≤-10 dB) of 2.55 GHz. This study provides insight into the preparation of high-frequency magnetic loss materials for obtaining high-performance microwave absorbers and achieves the preparation of functional materials from traditional structural materials. |
ArticleNumber | 1497 |
Author | Sun, Zhuo Li, Yixing Zhang, Zhengyu Ji, Lianze Liu, Xiaolian Zhang, Zhenhua Hu, Chenglong Zhang, Xuefeng Qin, Gaowu Gao, Tong Zhao, Rongzhi |
Author_xml | – sequence: 1 givenname: Rongzhi orcidid: 0000-0001-8528-2104 surname: Zhao fullname: Zhao, Rongzhi organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 2 givenname: Tong surname: Gao fullname: Gao, Tong organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 3 givenname: Yixing orcidid: 0000-0002-6180-9730 surname: Li fullname: Li, Yixing email: liyx@mail.neu.edu.cn organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 4 givenname: Zhuo surname: Sun fullname: Sun, Zhuo organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 5 givenname: Zhengyu surname: Zhang fullname: Zhang, Zhengyu organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 6 givenname: Lianze surname: Ji fullname: Ji, Lianze organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University – sequence: 7 givenname: Chenglong surname: Hu fullname: Hu, Chenglong organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University – sequence: 8 givenname: Xiaolian surname: Liu fullname: Liu, Xiaolian organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University – sequence: 9 givenname: Zhenhua surname: Zhang fullname: Zhang, Zhenhua organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University – sequence: 10 givenname: Xuefeng orcidid: 0000-0003-4110-8096 surname: Zhang fullname: Zhang, Xuefeng email: zhang@hdu.edu.cn organization: Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University – sequence: 11 givenname: Gaowu orcidid: 0000-0002-0852-6715 surname: Qin fullname: Qin, Gaowu organization: Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University |
BookMark | eNp9Uk1vGyEUXFWp1DTNH-gJqZdetuFrFzhVldU0kSL10p7Rg2Vt3DW4gG3534d4E7XJIVx4gpnhzWPeN2chBtc0Hwn-QjCTV5kT3osWU97yTpKuPbxpzinmpCWCsrP_6nfNZc5rXBdTRHJ-3uxv_HI1HREEn2NJcestunZsgTbepjhO8MdlZGPIJe1scQMyR5Tj5Ic2FygObVeQHSoJQh5j2kDxMaBaITeO3noXyqx0gL1DYHJM2wfIh-btCFN2l4_7RfP7-vuvxU179_PH7eLbXWs7IksLDpxSfS9lNwpDGHTDQInCth8tCA5iYIQbJpXCQnVGOSsdNYRLjAkYztlFczvrDhHWepv8BtJRR_D6dBDTUkMq3k5OS9ExqzAdBGGcGmUABis714PioKypWl9nre3ObNxgq7cE0zPR5zfBr_Qy7jXBUvSdwFXh86NCin93Lhe98dm6aYLg4i5rqmh1yjsuK_TTC-g67lKoszqhOKdKioqSM6pOOOfkRm19Of1BbcBP9WX9kBA9J0TXhOhTQvShUukL6pORV0lsJuUKDkuX_nX1CuseizzT7g |
CitedBy_id | crossref_primary_10_1016_j_jmst_2024_08_016 crossref_primary_10_1016_j_jre_2024_12_008 crossref_primary_10_1016_j_matt_2024_101956 crossref_primary_10_1016_j_compositesa_2024_108700 crossref_primary_10_1002_adfm_202502671 crossref_primary_10_1016_j_jmst_2024_06_048 crossref_primary_10_1016_j_ceramint_2024_10_129 crossref_primary_10_1002_adfm_202419266 crossref_primary_10_1002_smll_202408396 crossref_primary_10_1016_j_matt_2025_102004 crossref_primary_10_1002_cey2_638 crossref_primary_10_1002_adma_202410466 crossref_primary_10_1002_anie_202418338 crossref_primary_10_1002_adfm_202405523 crossref_primary_10_1016_j_coco_2024_102157 crossref_primary_10_1016_j_apsusc_2025_162303 crossref_primary_10_1063_5_0231419 crossref_primary_10_1016_j_apsusc_2024_161633 crossref_primary_10_1016_j_compositesb_2024_111924 crossref_primary_10_1016_j_mseb_2024_117590 crossref_primary_10_1016_j_cej_2024_155786 crossref_primary_10_1039_D4TA07294D crossref_primary_10_1016_j_xcrp_2024_102097 crossref_primary_10_1016_j_jallcom_2024_176229 crossref_primary_10_1063_5_0214740 crossref_primary_10_1016_j_decarb_2024_100065 crossref_primary_10_1002_adma_202415351 crossref_primary_10_1002_ange_202418338 crossref_primary_10_1007_s10854_024_13651_9 crossref_primary_10_1016_j_corsci_2025_112796 crossref_primary_10_1016_j_diamond_2025_112145 crossref_primary_10_1016_j_coco_2024_101993 crossref_primary_10_1016_j_jmst_2024_12_012 crossref_primary_10_1002_adfm_202420679 crossref_primary_10_1016_j_compositesa_2024_108565 crossref_primary_10_1021_acsaelm_4c02057 crossref_primary_10_1007_s12613_024_3028_z crossref_primary_10_1039_D4TC02284J crossref_primary_10_1038_s41467_024_54904_9 crossref_primary_10_1016_j_jma_2024_10_008 crossref_primary_10_1002_advs_202412890 crossref_primary_10_1039_D5TA00564G crossref_primary_10_1038_s41467_024_55776_9 crossref_primary_10_1021_acs_inorgchem_4c01583 crossref_primary_10_1016_j_apsusc_2025_162400 crossref_primary_10_1016_j_jmst_2024_04_011 crossref_primary_10_1016_j_cej_2024_153783 crossref_primary_10_1002_adfm_202414694 crossref_primary_10_1016_j_coco_2025_102276 crossref_primary_10_1016_j_ceramint_2024_12_452 crossref_primary_10_1016_j_colsurfa_2024_134610 crossref_primary_10_1039_D4MH00793J crossref_primary_10_1039_D4TA08263J crossref_primary_10_1002_pssr_202500065 crossref_primary_10_1002_smll_202401939 crossref_primary_10_1016_j_jallcom_2024_177891 crossref_primary_10_1002_smll_202411058 crossref_primary_10_1021_acsami_4c22824 |
Cites_doi | 10.1021/acsnano.0c09982 10.1016/j.jmmm.2017.07.089 10.1002/adfm.202102777 10.1016/j.corsci.2016.04.042 10.1021/acsami.2c15916 10.1016/j.jmmm.2017.10.114 10.1016/j.jallcom.2020.153674 10.1002/adfm.202102812 10.1016/j.jmmm.2015.10.093 10.1016/j.jmmm.2019.166008 10.1038/160090a0 10.1021/acsnano.2c07111 10.1016/j.scib.2020.01.009 10.1002/adma.201405788 10.1016/j.jmst.2021.05.061 10.1002/smll.202107265 10.1039/D0TA10942H 10.1002/adfm.202112294 10.1063/1.4899186 10.1016/j.jallcom.2015.08.107 10.1021/acs.chemrev.1c00860 10.1088/1361-6463/ac6cb2 10.1002/adfm.202200123 10.1016/j.actamat.2022.117854 10.1063/1.5108576 10.1016/j.jmst.2022.04.049 10.1002/adfm.202200544 10.1016/j.actamat.2018.08.023 10.1021/acsami.1c07792 10.1016/j.jallcom.2020.157835 10.1016/j.actamat.2022.117694 10.1038/s41467-018-07372-x 10.1021/acs.nanolett.0c00789 10.1016/j.apsusc.2018.06.196 10.1126/science.aba7977 10.1063/5.0001477 10.1021/acs.nanolett.1c03992 10.1063/1.4918964 10.1063/1.3464975 10.1016/j.jmmm.2019.165828 10.1063/1.4876598 10.1016/S0968-4328(02)00017-3 10.1021/acs.cgd.0c01533 10.1002/adfm.202204370 10.1016/j.actamat.2017.12.042 10.1002/adfm.202103436 10.1002/adma.202103360 10.1007/s11661-018-4735-8 10.1038/s41467-019-11079-y 10.1016/j.actamat.2021.117223 10.1039/C8NR08601J 10.1016/j.carbon.2018.06.030 10.1063/1.4813137 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-45815-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_8753c902d71342b9baadc85e6a94a9cb PMC10876570 10_1038_s41467_024_45815_w |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52201202; U22A20117; 52225312 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation) grantid: 2019C01121; 2021C01033 funderid: https://doi.org/10.13039/501100004731 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-aeae9966885f7b13a5dd2190c6fca74a7d314b38990795b9ec8e2b148001ab443 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:22:05 EDT 2025 Thu Aug 21 18:34:58 EDT 2025 Fri Jul 11 12:05:09 EDT 2025 Wed Aug 13 09:51:38 EDT 2025 Tue Jul 01 02:10:59 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-aeae9966885f7b13a5dd2190c6fca74a7d314b38990795b9ec8e2b148001ab443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6180-9730 0000-0002-0852-6715 0000-0003-4110-8096 0000-0001-8528-2104 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-45815-w |
PQID | 2928442987 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8753c902d71342b9baadc85e6a94a9cb pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876570 proquest_miscellaneous_2928854548 proquest_journals_2928442987 crossref_citationtrail_10_1038_s41467_024_45815_w crossref_primary_10_1038_s41467_024_45815_w springer_journals_10_1038_s41467_024_45815_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-19 |
PublicationDateYYYYMMDD | 2024-02-19 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xu (CR23) 2016; 401 Ma (CR39) 2018; 457 Li (CR6) 2022; 18 Vansteenkiste (CR49) 2014; 4 Li (CR44) 2018; 139 Gao (CR5) 2022; 32 Zhou, Shao, Zheng, Ma (CR33) 2022; 101 Yasuda (CR28) 2019; 10 Tsybenko (CR30) 2022; 227 Li (CR19) 2019; 11 Liang (CR1) 2021; 15 Zhang (CR14) 2019; 126 Wei (CR52) 2014; 85 Bo, Hu, Zhao, Zhang (CR54) 2022; 55 Yang (CR20) 2018; 145 Di, Duan, Pang, Jia, Liu (CR8) 2022; 14 Qing (CR24) 2015; 651 Zhang (CR22) 2020; 494 Liu (CR41) 2021; 31 Zhang (CR4) 2015; 27 Hämäläinen, Madami, Qin, Gubbiotti, Dijken (CR53) 2018; 9 Liu, Zhang, Wu (CR43) 2022; 32 Liang (CR27) 2018; 49A Zhang (CR17) 2021; 31 Gao (CR42) 2022; 32 Fang (CR46) 2021; 13 Snoek (CR9) 1947; 160 Li (CR35) 2022; 231 Iqbal (CR10) 2020; 369 Cai, Wang, Zhang, Nestler (CR26) 2021; 219 Liu (CR7) 2021; 9 Deng, Han (CR38) 2010; 97 Man (CR2) 2020; 20 Volkov, Zhu, De Graef (CR50) 2002; 33 Li (CR45) 2020; 65 Ma, Duan, Huang, Ma, Lei (CR21) 2022; 130 Feng (CR40) 2020; 497 Qin, Zhang, Zhao, Wu (CR3) 2021; 31 Chua (CR16) 2021; 33 Wu, Sun, Styles, Arlazarov, Hutchinson (CR31) 2018; 159 Phuoc, Ong (CR47) 2013; 114 Cheng (CR12) 2022; 32 Hao, Dong, Etim, Wei, Ke (CR29) 2016; 110 Zhang, Guan, Dong (CR37) 2010; 97 Ping, Chen, Xiang (CR32) 2021; 21 Yamamoto (CR34) 2018; 451 Ma, Mohapatra, Wei, Liu, Sun (CR36) 2023; 123 Cheng (CR11) 2022; 16 Kim, Park (CR15) 2021; 21 Lei, Du (CR25) 2020; 822 Yu (CR51) 2015; 106 Ma (CR48) 2017; 444 Wang (CR13) 2020; 116 Shi, Su, Luo, Zhang, Zhang (CR18) 2021; 859 VV Volkov (45815_CR50) 2002; 33 Y Cai (45815_CR26) 2021; 219 X Hao (45815_CR29) 2016; 110 YT Zhou (45815_CR33) 2022; 101 J Liu (45815_CR43) 2022; 32 T Ma (45815_CR48) 2017; 444 Y Qing (45815_CR24) 2015; 651 S Yamamoto (45815_CR34) 2018; 451 T Gao (45815_CR5) 2022; 32 TY Ma (45815_CR39) 2018; 457 C Lei (45815_CR25) 2020; 822 JL Snoek (45815_CR9) 1947; 160 M Cheng (45815_CR11) 2022; 16 TY Kim (45815_CR15) 2021; 21 YX Wu (45815_CR31) 2018; 159 M Qin (45815_CR3) 2021; 31 P Wang (45815_CR13) 2020; 116 W Yang (45815_CR20) 2018; 145 Y Zhang (45815_CR4) 2015; 27 XF Zhang (45815_CR37) 2010; 97 J Di (45815_CR8) 2022; 14 Z Man (45815_CR2) 2020; 20 Z Ma (45815_CR36) 2023; 123 NN Phuoc (45815_CR47) 2013; 114 A Vansteenkiste (45815_CR49) 2014; 4 R Chua (45815_CR16) 2021; 33 P Liu (45815_CR41) 2021; 31 J Wei (45815_CR52) 2014; 85 L Bo (45815_CR54) 2022; 55 Z Gao (45815_CR42) 2022; 32 C Shi (45815_CR18) 2021; 859 S Zhang (45815_CR14) 2019; 126 C Zhang (45815_CR17) 2021; 31 H Xu (45815_CR23) 2016; 401 Y Zhang (45815_CR22) 2020; 494 X Ma (45815_CR21) 2022; 130 SJ Hämäläinen (45815_CR53) 2018; 9 JW Fang (45815_CR46) 2021; 13 L Liang (45815_CR1) 2021; 15 Y Liang (45815_CR27) 2018; 49A Q Li (45815_CR35) 2022; 231 Y Li (45815_CR45) 2020; 65 A Iqbal (45815_CR10) 2020; 369 H Tsybenko (45815_CR30) 2022; 227 H Yasuda (45815_CR28) 2019; 10 Y Li (45815_CR44) 2018; 139 D-h Ping (45815_CR32) 2021; 21 Y Yu (45815_CR51) 2015; 106 Y Li (45815_CR6) 2022; 18 LJ Deng (45815_CR38) 2010; 97 D Liu (45815_CR7) 2021; 9 J Cheng (45815_CR12) 2022; 32 X Li (45815_CR19) 2019; 11 H Feng (45815_CR40) 2020; 497 |
References_xml | – volume: 15 start-page: 6622 year: 2021 end-page: 6632 ident: CR1 article-title: Multifunctional magnetic Ti C T MXene/graphene aerogel with superior electromagnetic wave absorption performance publication-title: ACS Nano doi: 10.1021/acsnano.0c09982 – volume: 444 start-page: 119 year: 2017 end-page: 124 ident: CR48 article-title: Micrometer thick soft magnetic films with magnetic moments restricted strictly in plane by negative magnetocrystalline anisotropy publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.07.089 – volume: 31 year: 2021 ident: CR17 article-title: 3D printing of functional magnetic materials: from design to applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102777 – volume: 110 start-page: 296 year: 2016 end-page: 304 ident: CR29 article-title: Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank publication-title: Corros. Sci. doi: 10.1016/j.corsci.2016.04.042 – volume: 14 start-page: 51545 year: 2022 end-page: 51554 ident: CR8 article-title: Two-dimensional basalt/ni microflakes with uniform and compact nanolayers for optimized microwave absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c15916 – volume: 451 start-page: 1 year: 2018 end-page: 4 ident: CR34 article-title: Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.10.114 – volume: 822 year: 2020 ident: CR25 article-title: Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2020.153674 – volume: 31 year: 2021 ident: CR41 article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 401 start-page: 567 year: 2016 end-page: 571 ident: CR23 article-title: Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO in 1-18 GHz publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.10.093 – volume: 497 year: 2020 ident: CR40 article-title: Static and dynamic magnetic properties of Fe Ni and Co Fe B material-modulated stripe-patterned thin films publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.166008 – volume: 160 start-page: 90 year: 1947 end-page: 90 ident: CR9 article-title: Gyromagnetic resonance in ferrites publication-title: Nature doi: 10.1038/160090a0 – volume: 16 start-page: 16996 year: 2022 end-page: 17007 ident: CR11 article-title: Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites publication-title: ACS Nano doi: 10.1021/acsnano.2c07111 – volume: 65 start-page: 623 year: 2020 end-page: 630 ident: CR45 article-title: Oxygen-sulfur co-substitutional Fe@C nanocapsules for improving microwave absorption properties publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.009 – volume: 27 start-page: 2049 year: 2015 end-page: 2053 ident: CR4 article-title: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam publication-title: Adv. Mater. doi: 10.1002/adma.201405788 – volume: 101 start-page: 28 year: 2022 end-page: 36 ident: CR33 article-title: Structure evolution of the Fe C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.061 – volume: 18 year: 2022 ident: CR6 article-title: Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption publication-title: Small doi: 10.1002/smll.202107265 – volume: 9 start-page: 5086 year: 2021 end-page: 5096 ident: CR7 article-title: Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10942H – volume: 32 year: 2022 ident: CR42 article-title: Synergistic polarization loss of MoS -based multiphase solid solution for electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112294 – volume: 4 year: 2014 ident: CR49 article-title: The design and verification of MuMax3 publication-title: AIP Adv. doi: 10.1063/1.4899186 – volume: 651 start-page: 259 year: 2015 end-page: 265 ident: CR24 article-title: Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al O ceramics by plasma spraying publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2015.08.107 – volume: 123 start-page: 3904 year: 2023 end-page: 3943 ident: CR36 article-title: Magnetic nanoparticles: synthesis, anisotropy, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00860 – volume: 55 start-page: 333001 year: 2022 ident: CR54 article-title: Micromagnetic manipulation and spin excitation of skyrmionic structures publication-title: J. Phys. D Appl Phys. doi: 10.1088/1361-6463/ac6cb2 – volume: 32 year: 2022 ident: CR12 article-title: Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200123 – volume: 231 year: 2022 ident: CR35 article-title: Emerging magnetodielectric materials for 5G communications: 18H hexaferrites publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117854 – volume: 126 year: 2019 ident: CR14 article-title: First-principles study of the easy-plane magnetocrystalline anisotropy in bulk HCP Co Ir publication-title: J. Appl. Phys. doi: 10.1063/1.5108576 – volume: 130 start-page: 86 year: 2022 end-page: 92 ident: CR21 article-title: Multicomponent induced localized coupling in Penrose tiling for electromagnetic wave absorption and multiband compatibility publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.04.049 – volume: 32 year: 2022 ident: CR43 article-title: Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200544 – volume: 159 start-page: 209 year: 2018 end-page: 224 ident: CR31 article-title: Cementite coarsening during the tempering of Fe-C-Mn martensite publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.023 – volume: 13 start-page: 33496 year: 2021 end-page: 33504 ident: CR46 article-title: Metal-organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07792 – volume: 859 year: 2021 ident: CR18 article-title: Microwave absorption properties of spheres-assembled flake-like FeNi3 particles prepared by electrodeposition publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2020.157835 – volume: 227 year: 2022 ident: CR30 article-title: Deformation and phase transformation in polycrystalline cementite (Fe C) during single- and multi-pass sliding wear publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117694 – volume: 97 start-page: 033107 year: 2010 ident: CR38 article-title: Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability publication-title: Appl. Phys. Lett. – volume: 9 year: 2018 ident: CR53 article-title: Control of spin-wave transmission by a programmable domain wall publication-title: Nat. Commun. doi: 10.1038/s41467-018-07372-x – volume: 20 start-page: 3769 year: 2020 end-page: 3777 ident: CR2 article-title: Two birds with one stone: FeS @C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00789 – volume: 457 start-page: 598 year: 2018 end-page: 603 ident: CR39 article-title: Tuning the static and dynamic magnetic properties of c-axis oriented HCP-(CoIr) thin films by the addition of Cr publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.196 – volume: 369 start-page: 446 year: 2020 end-page: 450 ident: CR10 article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti C T (MXene) publication-title: Science doi: 10.1126/science.aba7977 – volume: 116 year: 2020 ident: CR13 article-title: Preparation and study of Ce Fe N microflakes with easy-plane anisotropy and high working frequencies publication-title: Appl. Phys. Lett. doi: 10.1063/5.0001477 – volume: 21 start-page: 10114 year: 2021 end-page: 10121 ident: CR15 article-title: Magnetic anisotropy and magnetic ordering of transition-metal phosphorus trisulfides publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03992 – volume: 106 year: 2015 ident: CR51 article-title: Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918964 – volume: 97 year: 2010 ident: CR37 article-title: Transform between the permeability and permittivity in the close-packed Ni nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.3464975 – volume: 494 year: 2020 ident: CR22 article-title: Enhanced microwave absorption properties of barium ferrites by Zr -Ni doping and oxygen-deficient sintering publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165828 – volume: 85 year: 2014 ident: CR52 article-title: An induction method to calculate the complex permeability of soft magnetic films without a reference sample publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4876598 – volume: 33 start-page: 411 year: 2002 end-page: 416 ident: CR50 article-title: A new symmetrized solution for phase retrieval using the transport of intensity equation publication-title: Micron doi: 10.1016/S0968-4328(02)00017-3 – volume: 21 start-page: 1683 year: 2021 end-page: 1688 ident: CR32 article-title: Formation of θ-Fe C cementite via θ′-Fe C (ω-Fe C) in Fe-C alloys publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01533 – volume: 32 year: 2022 ident: CR5 article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 145 start-page: 331 year: 2018 end-page: 336 ident: CR20 article-title: Tunable magnetic and microwave absorption properties of Sm Y Fe Si and their composites publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.12.042 – volume: 31 start-page: 2103436 year: 2021 ident: CR3 article-title: Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103436 – volume: 33 year: 2021 ident: CR16 article-title: Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy publication-title: Adv. Mater. doi: 10.1002/adma.202103360 – volume: 49A start-page: 4785 year: 2018 end-page: 4797 ident: CR27 article-title: Kinetic behavior and microstructure of pearlite isothermal transformation under high undercooling publication-title: Met. Mater. Trans. A doi: 10.1007/s11661-018-4735-8 – volume: 10 year: 2019 ident: CR28 article-title: Dendrite fragmentation induced by massive-like δ–γ transformation in Fe-C alloys publication-title: Nat. Commun. doi: 10.1038/s41467-019-11079-y – volume: 219 year: 2021 ident: CR26 article-title: Phase-field investigation on the peritectic transition in Fe-C system publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117223 – volume: 11 start-page: 2694 year: 2019 end-page: 2702 ident: CR19 article-title: Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units publication-title: Nanoscale doi: 10.1039/C8NR08601J – volume: 139 start-page: 181 year: 2018 end-page: 188 ident: CR44 article-title: Improved microwave absorption properties by atomic-scale substitutions publication-title: Carbon doi: 10.1016/j.carbon.2018.06.030 – volume: 114 year: 2013 ident: CR47 article-title: Thermal stability of high frequency properties of gradient-composition-sputtered FeCoHf films with and without stripe domains publication-title: J. Appl. Phys. doi: 10.1063/1.4813137 – volume: 497 year: 2020 ident: 45815_CR40 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.166008 – volume: 110 start-page: 296 year: 2016 ident: 45815_CR29 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2016.04.042 – volume: 49A start-page: 4785 year: 2018 ident: 45815_CR27 publication-title: Met. Mater. Trans. A doi: 10.1007/s11661-018-4735-8 – volume: 18 year: 2022 ident: 45815_CR6 publication-title: Small doi: 10.1002/smll.202107265 – volume: 9 start-page: 5086 year: 2021 ident: 45815_CR7 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10942H – volume: 126 year: 2019 ident: 45815_CR14 publication-title: J. Appl. Phys. doi: 10.1063/1.5108576 – volume: 32 year: 2022 ident: 45815_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200544 – volume: 231 year: 2022 ident: 45815_CR35 publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117854 – volume: 31 start-page: 2103436 year: 2021 ident: 45815_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103436 – volume: 11 start-page: 2694 year: 2019 ident: 45815_CR19 publication-title: Nanoscale doi: 10.1039/C8NR08601J – volume: 32 year: 2022 ident: 45815_CR5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 97 year: 2010 ident: 45815_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3464975 – volume: 13 start-page: 33496 year: 2021 ident: 45815_CR46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07792 – volume: 106 year: 2015 ident: 45815_CR51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918964 – volume: 219 year: 2021 ident: 45815_CR26 publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117223 – volume: 55 start-page: 333001 year: 2022 ident: 45815_CR54 publication-title: J. Phys. D Appl Phys. doi: 10.1088/1361-6463/ac6cb2 – volume: 15 start-page: 6622 year: 2021 ident: 45815_CR1 publication-title: ACS Nano doi: 10.1021/acsnano.0c09982 – volume: 123 start-page: 3904 year: 2023 ident: 45815_CR36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00860 – volume: 451 start-page: 1 year: 2018 ident: 45815_CR34 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.10.114 – volume: 16 start-page: 16996 year: 2022 ident: 45815_CR11 publication-title: ACS Nano doi: 10.1021/acsnano.2c07111 – volume: 227 year: 2022 ident: 45815_CR30 publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117694 – volume: 4 year: 2014 ident: 45815_CR49 publication-title: AIP Adv. doi: 10.1063/1.4899186 – volume: 10 year: 2019 ident: 45815_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11079-y – volume: 651 start-page: 259 year: 2015 ident: 45815_CR24 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2015.08.107 – volume: 114 year: 2013 ident: 45815_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.4813137 – volume: 20 start-page: 3769 year: 2020 ident: 45815_CR2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00789 – volume: 14 start-page: 51545 year: 2022 ident: 45815_CR8 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c15916 – volume: 9 year: 2018 ident: 45815_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07372-x – volume: 21 start-page: 1683 year: 2021 ident: 45815_CR32 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01533 – volume: 32 year: 2022 ident: 45815_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112294 – volume: 130 start-page: 86 year: 2022 ident: 45815_CR21 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.04.049 – volume: 65 start-page: 623 year: 2020 ident: 45815_CR45 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.009 – volume: 101 start-page: 28 year: 2022 ident: 45815_CR33 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.061 – volume: 160 start-page: 90 year: 1947 ident: 45815_CR9 publication-title: Nature doi: 10.1038/160090a0 – volume: 457 start-page: 598 year: 2018 ident: 45815_CR39 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.196 – volume: 21 start-page: 10114 year: 2021 ident: 45815_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03992 – volume: 33 start-page: 411 year: 2002 ident: 45815_CR50 publication-title: Micron doi: 10.1016/S0968-4328(02)00017-3 – volume: 494 year: 2020 ident: 45815_CR22 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165828 – volume: 31 year: 2021 ident: 45815_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 27 start-page: 2049 year: 2015 ident: 45815_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201405788 – volume: 369 start-page: 446 year: 2020 ident: 45815_CR10 publication-title: Science doi: 10.1126/science.aba7977 – volume: 31 year: 2021 ident: 45815_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102777 – volume: 139 start-page: 181 year: 2018 ident: 45815_CR44 publication-title: Carbon doi: 10.1016/j.carbon.2018.06.030 – volume: 116 year: 2020 ident: 45815_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0001477 – volume: 859 year: 2021 ident: 45815_CR18 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2020.157835 – volume: 97 start-page: 033107 year: 2010 ident: 45815_CR38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3464975 – volume: 401 start-page: 567 year: 2016 ident: 45815_CR23 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.10.093 – volume: 33 year: 2021 ident: 45815_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202103360 – volume: 85 year: 2014 ident: 45815_CR52 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4876598 – volume: 822 year: 2020 ident: 45815_CR25 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2020.153674 – volume: 444 start-page: 119 year: 2017 ident: 45815_CR48 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.07.089 – volume: 145 start-page: 331 year: 2018 ident: 45815_CR20 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.12.042 – volume: 32 year: 2022 ident: 45815_CR12 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200123 – volume: 159 start-page: 209 year: 2018 ident: 45815_CR31 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.08.023 |
SSID | ssj0000391844 |
Score | 2.6689389 |
Snippet | Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency... Abstract Soft magnetic materials with flake geometry can provide shape anisotropy for breaking the Snoek limit, which is promising for achieving high-frequency... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1497 |
SubjectTerms | 147/135 147/137 147/143 639/301/357/997 639/925/357/551 Absorption Anisotropy Cementite Crystal structure Dealloying Electrochemistry Ferromagnetic resonance Ferromagnetism Functional materials Genetic transformation Humanities and Social Sciences Iron carbides Magnetic anisotropy Magnetic materials Microwave absorbers Microwave absorption multidisciplinary Permeability Phase transitions Quenching Resonant frequencies Science Science (multidisciplinary) Solid state Thickness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIHgRP7G6KxG8adg2H9Pk6C4Oi6AnF_YWXj7KDo7tsJ3dYf57X9LOOF1QL95Kk7RJ3jd5-T1C3gehJA_KMR00Big8SGaUBBZBBInCV0LOzfn6bXZxKb9cqauDUl8pJ2yABx427jT5096UPKRLj9wZBxC8VnEGRoLxLmlftHkHwVTWwcJg6CLHWzKl0Ke9zDoBTRKTSleKbSaWKAP2T7zM-zmS9w5Ks_2ZPyGPR8eRfhom_JQ8iO0z8nAoJbl9Tu5SwsZyS6Fd9N36plstPJ1HcU5_poy7Zgk_Yk99N-LFxkDdliLbLQLLV4ro6hrNGV0fuLFdS_GJxowxgdMbvrSBu0jB9d1N1jUvyOX88_fzCzbWVGBeVXrNIEJMIY7WqqldJUCFgEqr9LPGQy2hDqKSLoHulbVRzkSvI3cYM6E5AyeleEmO2q6NrwgVBspGG64bYaSPjWvqGuU5NMEAN1IVpNrtr_Uj4Hiqe7G0-eBbaDvQxCJNbKaJ3RTkw37MaoDb-Gvvs0S2fc8ElZ1fIAPZkYHsvxioIMc7ottRfnvLcVkSTbWuC_Ju34ySl45ToI3d7dBHowMqdUH0hFkmE5q2tIvrjOFdJShAVZcF-bjjq99___OKX_-PFb8hj3iSg1TWxhyTI2S8eIKu1dq9zVL0C20PIvE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4lOEDWQkbmAtie3GPiGYKBMSnJi0m_X8EVZRktJ0q_rf8-y4HZ3EblFsJ07et_38e4S89VyK2kvLlFcYoNReMC0FsADcCxS-ElJuzrfvk9Mz8fVcnucFtyGnVW51YlLUvndxjfy41qhIUXmq5sPiD4tVo-Luai6hcZfcq9DSxJQuNf2yW2OJ6Oc4KJ-VKbk6HkTSDGiYmJCqkmy9Z48SbP-er3kzU_LGdmmyQtNH5GF2H-nHkd6PyZ3QPSH3x4KSm6fkKqZtzDcUutnQr5b9YuboNPAT-jvm3bVz-BUG6vqMGhs8tRuKzDfzLB0soosLNGp09Y8z23cUr2hISBM4vfFJa7gKFOzQL5PGeUbOpp9_nJyyXFmBOVmpFYMAIQY6Ssm2sRUH6T2qrtJNWgeNgMbzStgIvVc2WlodnAq1xcgJjRpYIfhzctD1XXhBKNdQtgqJ03ItXGht2zQo1b71GmotZEGq7f81LsOOx-oXc5O2v7kyI00M0sQkmph1Qd7txixG0I1be3-KZNv1jIDZ6Ua__Gmy_JkYljld1j6ena2ttgDeKRkmoAVoZwtytCW6yVI8mGueK8ibXTPKX9xUgS70l2MfhW6oUAVRe8yyN6H9lm52kZC8qwgIKJuyIO-3fHX99v9_8cvbJ3tIHtSRw2PZGn1EDpClwit0nVb2dZKPvy1cGg0 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8ID5FYCAj8QYRiT8a-7FMVFMleIFJe7POH2EVXVI1ZVX_e2wnKXQCJN6i-JzYuTvfXXz3M8AbxwSnTphcOhkCFOp4rgTH3CNzPChfgSk359PnyfkFn1-KyyOgYy1MStpPkJZpmR6zw953PKl0sCg5F7IU-fYOnESo9iDbJ9Pp_Mt8_2clYp5LzocKmYLJP3Q-sEIJrP_Aw7ydH3lrkzTZntkDuD84jWTaD_MhHPnmEdztj5HcPYabmKyx3BFsFl27WberhSUzz87Idcy2q5f43XfEtgNWrHfE7EgQuYXLUzkRWV0FU0Y2v7mwbUPCFfEJXyIMr3_SFm88QdO167TOPIGL2cevZ-f5cJ5CbkUpNzl69DG8kVLUlSkZCufCglXYSW2x4lg5VnITAfeKSgmjvJWemhAvBVOGhnP2FI6btvHPgDCFRS0VlTVT3Pra1FUVdNnVTiFVXGRQjt9X2wFsPJ55sdRp05tJ3fNEB57oxBO9zeDtvs-qh9r4J_WHyLY9ZYTJTjfa9Tc9iI2OwZhVBXWxYpYaZRCdlcJPUHFU1mRwOjJdD7rbaRqmxYOZllUGr_fNQeviVgo2vv3R08jgfHKZgTwQloMBHbY0i6uE311GGEBRFRm8G-Xq19v_PuPn_0f-Au7RKPHx8Bp1CsdBxPzL4EBtzKtBY34CG4MZpg priority: 102 providerName: Springer Nature |
Title | Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption |
URI | https://link.springer.com/article/10.1038/s41467-024-45815-w https://www.proquest.com/docview/2928442987 https://www.proquest.com/docview/2928854548 https://pubmed.ncbi.nlm.nih.gov/PMC10876570 https://doaj.org/article/8753c902d71342b9baadc85e6a94a9cb |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0hcVjxFYKmMxA0Cedi1fUCoW21ZVdoVAir1FvkVtqIk3bZs6b9n7KSFrhYOXJLIduLHzHhmYvsbgJc2ZzSzTMfCCnRQMktjyaiKncotReFLVNibc37RPRvR4ZiN92AT7qgdwMWtrp2PJzWaT9_8vFq_R4F_1xwZF28XNIg7apuYMpGyeLUPh6iZuI9ocN6a-2FmziU6NLQ9O3P7qzv6KcD479ieN3dO3lg-DVppcA-OWnOS9Br634c9Vz2AO02AyfVDuPbbOKZroqrJol7O69nEkIHL--S734dXTtU3tyCmblFknSV6TZAZJzYOB43I7BKVHFn-YdzWFcEn4gLyBDav-dJKXTui9KKehxnoEYwGp1_6Z3EbaSE2LBXLWDnlvOMjBCu5TnPFrMWpLDHd0ihOFbd5SrWH4ku4ZFo6I1ym0ZNCJac0pfljOKjqyj0BkkuVlEJmoswlNa7UJeco5ba0UmWSsgjSzfgWpoUh99EwpkVYDs9F0dCkQJoUgSbFKoJX23dmDQjHP0ufeLJtS3oA7ZBQz78WrTwW3k0zMsmsP0ubaamVskYw11WSKml0BMcbohcbpiwy7BZFBS54BC-22SiPfpFFVa7-0ZQRaJZSEYHYYZadBu3mVJPLgOydeoBAxpMIXm_46nftf-_x0_-v6RnczTz3-xA38hgOkN3cczSzlroD-3zM8SoGHzpw2OsNPw_xfnJ68fETpva7_U74gdEJMvYLd8Mv_w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxFULDDASPIG1JLYb-wEhGJSOXZ42aW_Gt7CKkpSmrOqf4jdy7CQdncTe9hY1buLkfOfi-JzvIPTKUc5yxw0RTsACJXeMSM408Zo6BsqX6pibc3g0GJ2wr6f8dAP96WthQlplbxOjoXa1Dd_Id3IJhhSMpyjeT3-R0DUq7K72LTRaWOz75QKWbM27vU8g39d5Pvx8vDsiXVcBYnkm5kR77UOQLwQvC5NRzZ0DtU3toLS6YLpwNGMm0M6lheRGeit8bmDVAAZdG8YoXPcGuskoePJQmT78svqmE9jWYZJdbU5KxU7DoiUCR0gYFxknizX_F9sErMW2lzMzL23PRq83vIfuduEq_tDi6z7a8NUDdKttYLl8iM5DmshkiXU1bur5rJ6OLR56uot_hjy_cqJ_-AbbumOp9Q6bJQawjx2JhUx4egZOFM__CZ7rCsMR9pHZAqbXXmmhzz3Wpqln0cI9QifX8s4fo82qrvwWwlTqtBQAhpJKZn1pyqIAK-JKJ3UuGU9Q1r9fZTua89BtY6LidjsVqpWJApmoKBO1SNCb1X-mLcnHlaM_BrGtRgaC7vhDPfuuOn1XYRloZZq7UKubG2m0dlZwP9CSaWlNgrZ7oavOajTqAuMJerk6DfoeNnF05evf7RgBYS8TCRJrYFmb0PqZanwWmcOzQEDIizRBb3tcXdz9_0_85OrJvkC3R8eHB-pg72j_KbqTB7SHljlyG20CvPwzCNvm5nnUFYy-Xbdy_gV2D1Zx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIJo87A39gEh-li1FFYVolJvwa_QFdtk2Sxd7V_j1zF2ki1bid56ixIncTLffJ6xxzMAr03KaGKYCrnh6KAkhoaCURlamRqKyhdJH5vzZTQ4OKGfTtnpBvzp9sK4sMqOEz1Rm0q7OfJ-IpBIkTx51i_asIjjveGH6a_QVZByK61dOY0GIkd2uUD3rX5_uIeyfpMkw_1vuwdhW2Eg1Czm81BaaZ3BzzkrMhWnkhmDKhzpQaFlRmVm0pgql4IuygRTwmpuE4UeBJK7VJSm-NxbsJk5r6gHmzv7o-Ovqxkel3sdu9zu1IlS3q-p5yUcFkPKeMzCxdpo6IsGrFm6V-M0ryzW-jFweB_utcYr-dig7QFs2PIh3G7KWS4fwYULGpksiSzHdTWfVdOxJkOb7pJzF_VXTORPWxNdtTlrrSFqSRD6YxP6bU1keoZDKpn_Y0pXJcEjYn2eC-xe86SFvLBEqrqaeb57DCc38tefQK-sSvsUSCpkVHCERpEKqm2hiixDTjGFETIRlAUQd_83123Sc1d7Y5L7xfeU541McpRJ7mWSLwJ4u7pn2qT8uLb1jhPbqqVL1-1PVLMfeav9uXMKtYgS43buJkooKY3mzA6koFJoFcB2J_S85ZA6v0R8AK9Wl1H73ZKOLG31u2nD0QimPAC-Bpa1Dq1fKcdnPo947NIRsiwK4F2Hq8u3__-Lt67v7Eu4g4qZfz4cHT2Du4kDu6ufI7ahh-iyz9GGm6sXrbIQ-H7T-vkXAKxcAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+anisotropic+Fe3C+microflakes+constructed+by+solid-state+phase+transformation+for+efficient+microwave+absorption&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Rongzhi&rft.au=Gao%2C+Tong&rft.au=Li%2C+Yixing&rft.au=Sun%2C+Zhuo&rft.date=2024-02-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-45815-w&rft.externalDocID=PMC10876570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |