Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress

Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize....

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 15899 - 12
Main Authors Nazari, Leyla, Aslan, Muhammet Fatih, Sabanci, Kadir, Ropelewska, Ewa
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes (( S )- beta-macrocarpene synthase , zealexin A1 synthase , polyphenol oxidase I , chloroplastic , pathogenesis-related protein 10 , CHY1 , chitinase chem 5 , barwin , and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.
AbstractList Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.
Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes (( S )- beta-macrocarpene synthase , zealexin A1 synthase , polyphenol oxidase I , chloroplastic , pathogenesis-related protein 10 , CHY1 , chitinase chem 5 , barwin , and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.
Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.
Abstract Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.
ArticleNumber 15899
Author Nazari, Leyla
Aslan, Muhammet Fatih
Ropelewska, Ewa
Sabanci, Kadir
Author_xml – sequence: 1
  givenname: Leyla
  orcidid: 0000-0003-0940-8486
  surname: Nazari
  fullname: Nazari, Leyla
  email: l.nazari@areeo.ac.ir
  organization: Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO)
– sequence: 2
  givenname: Muhammet Fatih
  orcidid: 0000-0001-7549-0137
  surname: Aslan
  fullname: Aslan, Muhammet Fatih
  organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University
– sequence: 3
  givenname: Kadir
  orcidid: 0000-0003-0238-9606
  surname: Sabanci
  fullname: Sabanci, Kadir
  organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University
– sequence: 4
  givenname: Ewa
  orcidid: 0000-0001-8891-236X
  surname: Ropelewska
  fullname: Ropelewska, Ewa
  organization: Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research
BookMark eNp9ks9u1DAQxiNUREvpC3CKxIVLwP8S2yeEKmhXqsQFztbEnixeJfZieyuVp-FZeDK8uxXQHuqL7fH3_Twez8vmJMSATfOakneUcPU-C9pr1RHGO8G0Ep141pwxIvqOccZO_lufNhc5b0gdPdOC6hfNKZdSUDX0Z01ZhYLrBAVdWxKEbJPflrh4-_vXggU6CDDfZZ9bCK61cdlCFftbbCEVP3nrYW59ZcyzX2Ow2C7R4ZxrrF3A_8R2FxymdvSxeNvmkjDnV83zCeaMF_fzefPt86evl9fdzZer1eXHm872VJUORiBMOjYKynvVI9qhZ3wSjqNWVFFNxmGwAiTTmnFJnFSMgnZyxHGSo-TnzerIdRE2Zpv8AunORPDmEIhpbfavsDOawYF1ehypUCisJgqZU1D3ONl-Al5ZH46s7W5c0FkMtVzzA-jDk-C_m3W8NZT0VGq9J7y9J6T4Y4e5mMVnWwsHAeMuG6YGRRnv5VClbx5JN3GX6k8cVHLYE1VVsaPKpphzwulvNpSYfZOYY5OY2iTm0CRGVJN6ZLK-1B-N-6z9_LSVH6253hPWmP5l9YTrD7zM1as
CitedBy_id crossref_primary_10_1016_j_cpb_2024_100432
crossref_primary_10_3390_plants13091238
crossref_primary_10_1016_j_cpb_2024_100370
crossref_primary_10_3390_agronomy14071495
Cites_doi 10.1186/s12864-021-08028-9
10.1016/j.patrec.2020.07.042
10.1038/nprot.2008.211
10.1074/jbc.M104679200
10.1089/omi.2014.0125
10.1016/j.pmpp.2006.06.004
10.1016/j.asoc.2020.106912
10.1186/1471-2164-8-303
10.1016/j.eswa.2019.07.019
10.1007/s11738-021-03296-0
10.1016/j.jplph.2011.07.013
10.1093/bioinformatics/bts034
10.3390/plants8030052
10.1007/s11103-019-00881-3
10.1007/s12161-022-02251-0
10.1016/j.bspc.2021.102716
10.1016/j.plantsci.2004.04.008
10.1007/s11101-017-9508-2
10.1016/j.compeleceng.2022.108562
10.3389/fpls.2018.01961
10.7717/peerj.4631
10.3390/en12142804
10.1016/j.neucom.2019.01.078
10.1093/biostatistics/4.2.249
10.1007/s00217-022-04029-4
10.1093/mp/ssn063
10.1074/jbc.M802682200
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
10.1016/j.drudis.2017.08.010
10.1016/j.phytochem.2015.10.003
10.1186/s12911-017-0566-6
10.1007/s42452-019-1786-4
10.1093/bioinformatics/btg1058
10.1007/s12652-020-02761-x
10.1007/s00521-019-04365-9
10.1073/pnas.97.1.262
10.1016/j.jbi.2018.07.014
10.1093/nar/gkac194
10.1016/j.plaphy.2009.01.007
10.1371/journal.pmed.0050184
10.1002/2050-7038.12637
10.3389/fgene.2021.798107
10.1080/00031305.1992.10475879
10.1007/978-3-030-44289-7_5
10.1016/B978-1-55860-247-2.50037-1
10.3389/fgene.2020.603808
10.1109/ICBBT.2010.5479003
10.1109/ICCUBEA.2018.8697222
10.3389/fpls.2022.868874
10.1038/s41598-018-37186-2
10.1186/s12870-019-2170-7
10.1111/jfpe.13955
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-42984-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_6dacd9bb148e4c908e2d8abb1efc5fa3
PMC10517993
10_1038_s41598_023_42984_4
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-aba027d2b413585eec6523f4d3e9818190b66c4a72992370d7821a9d7bebf7b73
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:21:07 EDT 2025
Thu Aug 21 18:36:28 EDT 2025
Fri Jul 11 15:23:19 EDT 2025
Sat Aug 23 13:04:24 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 03:57:31 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-aba027d2b413585eec6523f4d3e9818190b66c4a72992370d7821a9d7bebf7b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-0940-8486
0000-0001-7549-0137
0000-0003-0238-9606
0000-0001-8891-236X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-42984-4
PMID 37741865
PQID 2867651798
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6dacd9bb148e4c908e2d8abb1efc5fa3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10517993
proquest_miscellaneous_2868123576
proquest_journals_2867651798
crossref_primary_10_1038_s41598_023_42984_4
crossref_citationtrail_10_1038_s41598_023_42984_4
springer_journals_10_1038_s41598_023_42984_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-23
PublicationDateYYYYMMDD 2023-09-23
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shen (CR64) 2019; 100
Sakr (CR25) 2017; 17
Wu (CR33) 2021; 31
Gers, Schmidhuber, Cummins (CR36) 2000; 12
Thipyapong, Melkonian, Wolfe, Steffens (CR61) 2004; 167
Zhu, Ye, Fu, Liu, Shen (CR34) 2019; 9
CR37
CR31
Altman (CR22) 1992; 46
CR30
Dong (CR52) 2009; 2
Aslan, Unlersen, Sabanci, Durdu (CR40) 2021; 98
Liu, Ekramoddoullah (CR59) 2006; 68
He (CR60) 2021; 22
Sabanci, Balci, Aslan (CR24) 2019; 1
CR3
Hochreiter, Schmidhuber (CR35) 1997; 9
Zolman (CR53) 2001; 276
CR8
Vaughan, Block, Christensen, Allen, Schmelz (CR4) 2018; 17
CR7
Wang, Jiang, Zhao, Fang, Jiao (CR54) 2020; 20
Köllner (CR50) 2008; 283
CR44
Irizarry (CR14) 2003; 4
CR43
Wang, Xiao, Xiong (CR55) 2011; 168
Liu, Guo (CR39) 2019; 337
CR41
Zhang, Tan, Han, Zhu (CR28) 2017; 22
Qu, Wei, Yu, Wang (CR12) 2019; 9
Ramasamy, Mondry, Holmes, Altman (CR5) 2008; 5
Zhu, Maher, Masoud, Dixon, Lamb (CR57) 1994; 12
Aslan, Durdu, Sabanci (CR26) 2020; 32
Aslan (CR10) 2023; 105
Czajkowski, Kretowski (CR49) 2019; 137
Gong, Yang, Tai, Hu, Wang (CR2) 2014; 18
Unlersen (CR9) 2022; 248
Leek, Johnson, Parker, Jaffe, Storey (CR15) 2012; 28
Sherman (CR46) 2022; 50
Cao, Tan (CR56) 2019; 8
CR17
Bernardo, Smith (CR23) 2009
CR16
Mao, Liu, Ren, Peters, Wang (CR63) 2016; 121
CR13
Clare, King (CR11) 2003; 19
CR51
Kotsiantis, Zaharakis, Pintelas (CR47) 2007; 160
Urbanowicz, Meeker, La Cava, Olson, Moore (CR29) 2018; 85
Kim, Lee (CR38) 2019; 12
Salika, Riffat (CR1) 2021; 43
Abbasimehr, Paki (CR32) 2022; 13
Vapnik (CR21) 1999
Aslan, Sabanci, Durdu (CR19) 2021; 68
Wang, Fan, Wang (CR18) 2021; 141
CR27
CR20
Ashrafi-Dehkordi, Alemzadeh, Tanaka, Razi (CR6) 2018; 6
Mantri, Ford, Coram, Pang (CR62) 2007; 8
Sabanci, Aslan, Ropelewska, Unlersen, Durdu (CR42) 2022
Huang, Sherman, Lempicki (CR45) 2009; 4
Brown (CR48) 2000; 97
López, Gómez-Gómez (CR58) 2009; 47
BK Zolman (42984_CR53) 2001; 276
42984_CR17
42984_CR16
L Zhang (42984_CR28) 2017; 22
42984_CR13
J-G Kim (42984_CR38) 2019; 12
S Sakr (42984_CR25) 2017; 17
Q Shen (42984_CR64) 2019; 100
DW Huang (42984_CR45) 2009; 4
42984_CR51
RC López (42984_CR58) 2009; 47
R Salika (42984_CR1) 2021; 43
NL Mantri (42984_CR62) 2007; 8
E Ashrafi-Dehkordi (42984_CR6) 2018; 6
42984_CR7
42984_CR8
MF Aslan (42984_CR40) 2021; 98
42984_CR3
MF Aslan (42984_CR19) 2021; 68
MF Aslan (42984_CR26) 2020; 32
K Qu (42984_CR12) 2019; 9
42984_CR27
SB Kotsiantis (42984_CR47) 2007; 160
N Wang (42984_CR55) 2011; 168
MM Vaughan (42984_CR4) 2018; 17
42984_CR20
P Wang (42984_CR18) 2021; 141
H Abbasimehr (42984_CR32) 2022; 13
P Thipyapong (42984_CR61) 2004; 167
F Zhu (42984_CR34) 2019; 9
FA Gers (42984_CR36) 2000; 12
K Sabanci (42984_CR42) 2022
RJ Urbanowicz (42984_CR29) 2018; 85
M Czajkowski (42984_CR49) 2019; 137
J Wang (42984_CR54) 2020; 20
H Mao (42984_CR63) 2016; 121
G Liu (42984_CR39) 2019; 337
42984_CR37
JT Leek (42984_CR15) 2012; 28
BT Sherman (42984_CR46) 2022; 50
S Hochreiter (42984_CR35) 1997; 9
42984_CR31
NS Altman (42984_CR22) 1992; 46
42984_CR30
J-J Liu (42984_CR59) 2006; 68
A Ramasamy (42984_CR5) 2008; 5
JM Bernardo (42984_CR23) 2009
A Clare (42984_CR11) 2003; 19
Q Zhu (42984_CR57) 1994; 12
V Vapnik (42984_CR21) 1999
K Wu (42984_CR33) 2021; 31
J Cao (42984_CR56) 2019; 8
RA Irizarry (42984_CR14) 2003; 4
MF Unlersen (42984_CR9) 2022; 248
42984_CR44
42984_CR43
42984_CR41
F He (42984_CR60) 2021; 22
MP Brown (42984_CR48) 2000; 97
K Sabanci (42984_CR24) 2019; 1
TG Köllner (42984_CR50) 2008; 283
F Gong (42984_CR2) 2014; 18
MF Aslan (42984_CR10) 2023; 105
C-H Dong (42984_CR52) 2009; 2
References_xml – volume: 22
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR60
  article-title: Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in
  publication-title: BMC Genom.
  doi: 10.1186/s12864-021-08028-9
– volume: 141
  start-page: 61
  year: 2021
  end-page: 67
  ident: CR18
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.042
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: CR45
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR34
  article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
  publication-title: Sci. Rep.
– volume: 276
  start-page: 31037
  year: 2001
  end-page: 31046
  ident: CR53
  article-title: chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104679200
– ident: CR16
– ident: CR51
– volume: 18
  start-page: 714
  year: 2014
  end-page: 732
  ident: CR2
  article-title: “Omics” of maize stress response for sustainable food production: Opportunities and challenges
  publication-title: Omics J. Integr. Biol.
  doi: 10.1089/omi.2014.0125
– volume: 160
  start-page: 3
  year: 2007
  end-page: 24
  ident: CR47
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 68
  start-page: 3
  year: 2006
  end-page: 13
  ident: CR59
  article-title: The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2006.06.004
– volume: 98
  year: 2021
  ident: CR40
  article-title: CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106912
– volume: 8
  start-page: 1
  year: 2007
  end-page: 14
  ident: CR62
  article-title: Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-8-303
– volume: 137
  start-page: 392
  year: 2019
  end-page: 404
  ident: CR49
  article-title: Decision tree underfitting in mining of gene expression data. An evolutionary multi-test tree approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.019
– ident: CR8
– year: 2009
  ident: CR23
  publication-title: Bayesian theory
– volume: 43
  start-page: 1
  year: 2021
  end-page: 22
  ident: CR1
  article-title: Abiotic stress responses in maize: A review
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-021-03296-0
– volume: 168
  start-page: 2212
  year: 2011
  end-page: 2224
  ident: CR55
  article-title: Identification of a cluster of PR4-like genes involved in stress responses in rice
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.07.013
– volume: 28
  start-page: 882
  year: 2012
  end-page: 883
  ident: CR15
  article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts034
– volume: 8
  start-page: 52
  year: 2019
  ident: CR56
  article-title: Comprehensive analysis of the chitinase family genes in tomato ( )
  publication-title: Plants
  doi: 10.3390/plants8030052
– volume: 100
  start-page: 579
  year: 2019
  end-page: 589
  ident: CR64
  article-title: CYP71Z18 overexpression confers elevated blast resistance in transgenic rice
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-019-00881-3
– year: 1999
  ident: CR21
  publication-title: The nature of statistical learning theory
– year: 2022
  ident: CR42
  article-title: A novel convolutional-recurrent hybrid network for Sunn Pest-damaged wheat grain detection
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-022-02251-0
– volume: 68
  start-page: 102716
  year: 2021
  ident: CR19
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102716
– volume: 167
  start-page: 693
  year: 2004
  end-page: 703
  ident: CR61
  article-title: Suppression of polyphenol oxidases increases stress tolerance in tomato
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.04.008
– volume: 17
  start-page: 37
  year: 2018
  end-page: 49
  ident: CR4
  article-title: The effects of climate change associated abiotic stresses on maize phytochemical defenses
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-017-9508-2
– volume: 105
  start-page: 108562
  year: 2023
  ident: CR10
  article-title: A hybrid end-to-end learning approach for breast cancer diagnosis: Convolutional recurrent network
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108562
– volume: 9
  start-page: 1961
  year: 2019
  ident: CR12
  article-title: Identifying plant pentatricopeptide repeat coding gene/protein using mixed feature extraction methods
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01961
– volume: 6
  year: 2018
  ident: CR6
  article-title: Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato
  publication-title: PeerJ
  doi: 10.7717/peerj.4631
– volume: 12
  start-page: 2804
  year: 2019
  ident: CR38
  article-title: Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM
  publication-title: Energies
  doi: 10.3390/en12142804
– ident: CR43
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  ident: CR39
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 20
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR54
  article-title: Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of spp
  publication-title: BMC Plant Biol.
– volume: 4
  start-page: 249
  year: 2003
  end-page: 264
  ident: CR14
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– ident: CR37
– ident: CR30
– volume: 248
  start-page: 2043
  year: 2022
  end-page: 2052
  ident: CR9
  article-title: CNN–SVM hybrid model for varietal classification of wheat based on bulk samples
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-022-04029-4
– volume: 12
  start-page: 807
  year: 1994
  end-page: 812
  ident: CR57
  article-title: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco
  publication-title: Bio/Technology
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: CR22
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 2
  start-page: 59
  year: 2009
  end-page: 72
  ident: CR52
  article-title: Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn063
– volume: 283
  start-page: 20779
  year: 2008
  end-page: 20788
  ident: CR50
  article-title: Protonation of a neutral (S)-β-bisabolene intermediate is involved in (S)-β-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802682200
– ident: CR27
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR35
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: CR36
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– ident: CR44
– volume: 22
  start-page: 1680
  year: 2017
  end-page: 1685
  ident: CR28
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.08.010
– volume: 121
  start-page: 4
  year: 2016
  end-page: 10
  ident: CR63
  article-title: Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2015.10.003
– volume: 17
  start-page: 174
  year: 2017
  end-page: 174
  ident: CR25
  article-title: Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry ford exercIse testing (FIT) project
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-017-0566-6
– volume: 1
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR24
  article-title: An ensemble learning estimation of the effect of magnetic coupling on switching frequency value in wireless power transfer system for electric vehicles
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1786-4
– volume: 19
  start-page: ii42
  year: 2003
  end-page: ii49
  ident: CR11
  article-title: Predicting gene function in
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1058
– ident: CR3
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 13
  start-page: 673
  year: 2022
  end-page: 691
  ident: CR32
  article-title: Improving time series forecasting using LSTM and attention models
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02761-x
– volume: 32
  start-page: 8585
  year: 2020
  end-page: 8597
  ident: CR26
  article-title: Human action recognition with bag of visual words using different machine learning methods and hyperparameter optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04365-9
– volume: 97
  start-page: 262
  year: 2000
  end-page: 267
  ident: CR48
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.97.1.262
– volume: 85
  start-page: 189
  year: 2018
  end-page: 203
  ident: CR29
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– ident: CR7
– ident: CR41
– volume: 50
  start-page: W216
  year: 2022
  end-page: W221
  ident: CR46
  article-title: DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac194
– volume: 47
  start-page: 426
  year: 2009
  end-page: 434
  ident: CR58
  article-title: Isolation of a new fungi and wound-induced chitinase class in corms of
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2009.01.007
– volume: 5
  year: 2008
  ident: CR5
  article-title: Key issues in conducting a meta-analysis of gene expression microarray datasets
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0050184
– ident: CR20
– volume: 31
  year: 2021
  ident: CR33
  article-title: An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12637
– volume: 141
  start-page: 61
  year: 2021
  ident: 42984_CR18
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.042
– volume: 85
  start-page: 189
  year: 2018
  ident: 42984_CR29
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– ident: 42984_CR13
  doi: 10.3389/fgene.2021.798107
– volume-title: Bayesian theory
  year: 2009
  ident: 42984_CR23
– volume: 28
  start-page: 882
  year: 2012
  ident: 42984_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts034
– volume: 46
  start-page: 175
  year: 1992
  ident: 42984_CR22
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 31
  year: 2021
  ident: 42984_CR33
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12637
– ident: 42984_CR16
  doi: 10.1007/978-3-030-44289-7_5
– volume: 248
  start-page: 2043
  year: 2022
  ident: 42984_CR9
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-022-04029-4
– volume: 12
  start-page: 2804
  year: 2019
  ident: 42984_CR38
  publication-title: Energies
  doi: 10.3390/en12142804
– volume: 68
  start-page: 102716
  year: 2021
  ident: 42984_CR19
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102716
– volume: 50
  start-page: W216
  year: 2022
  ident: 42984_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac194
– volume: 18
  start-page: 714
  year: 2014
  ident: 42984_CR2
  publication-title: Omics J. Integr. Biol.
  doi: 10.1089/omi.2014.0125
– volume: 276
  start-page: 31037
  year: 2001
  ident: 42984_CR53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104679200
– volume: 8
  start-page: 1
  year: 2007
  ident: 42984_CR62
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-8-303
– volume: 168
  start-page: 2212
  year: 2011
  ident: 42984_CR55
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.07.013
– volume: 19
  start-page: ii42
  year: 2003
  ident: 42984_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1058
– volume: 17
  start-page: 174
  year: 2017
  ident: 42984_CR25
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-017-0566-6
– volume: 5
  year: 2008
  ident: 42984_CR5
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0050184
– ident: 42984_CR31
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: 42984_CR7
  doi: 10.3389/fgene.2020.603808
– volume: 6
  year: 2018
  ident: 42984_CR6
  publication-title: PeerJ
  doi: 10.7717/peerj.4631
– volume: 12
  start-page: 2451
  year: 2000
  ident: 42984_CR36
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 17
  start-page: 37
  year: 2018
  ident: 42984_CR4
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-017-9508-2
– volume: 13
  start-page: 673
  year: 2022
  ident: 42984_CR32
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02761-x
– volume: 105
  start-page: 108562
  year: 2023
  ident: 42984_CR10
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108562
– ident: 42984_CR43
– volume: 100
  start-page: 579
  year: 2019
  ident: 42984_CR64
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-019-00881-3
– volume: 22
  start-page: 1
  year: 2021
  ident: 42984_CR60
  publication-title: BMC Genom.
  doi: 10.1186/s12864-021-08028-9
– volume: 137
  start-page: 392
  year: 2019
  ident: 42984_CR49
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.019
– volume: 12
  start-page: 807
  year: 1994
  ident: 42984_CR57
  publication-title: Bio/Technology
– ident: 42984_CR37
– volume: 4
  start-page: 249
  year: 2003
  ident: 42984_CR14
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– year: 2022
  ident: 42984_CR42
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-022-02251-0
– volume: 121
  start-page: 4
  year: 2016
  ident: 42984_CR63
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2015.10.003
– volume-title: The nature of statistical learning theory
  year: 1999
  ident: 42984_CR21
– volume: 8
  start-page: 52
  year: 2019
  ident: 42984_CR56
  publication-title: Plants
  doi: 10.3390/plants8030052
– volume: 97
  start-page: 262
  year: 2000
  ident: 42984_CR48
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.97.1.262
– volume: 4
  start-page: 44
  year: 2009
  ident: 42984_CR45
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 68
  start-page: 3
  year: 2006
  ident: 42984_CR59
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2006.06.004
– volume: 9
  start-page: 1961
  year: 2019
  ident: 42984_CR12
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01961
– volume: 1
  start-page: 1
  year: 2019
  ident: 42984_CR24
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1786-4
– ident: 42984_CR8
  doi: 10.1109/ICBBT.2010.5479003
– ident: 42984_CR27
– volume: 2
  start-page: 59
  year: 2009
  ident: 42984_CR52
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn063
– volume: 32
  start-page: 8585
  year: 2020
  ident: 42984_CR26
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04365-9
– volume: 47
  start-page: 426
  year: 2009
  ident: 42984_CR58
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2009.01.007
– volume: 22
  start-page: 1680
  year: 2017
  ident: 42984_CR28
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.08.010
– ident: 42984_CR17
  doi: 10.1109/ICCUBEA.2018.8697222
– volume: 160
  start-page: 3
  year: 2007
  ident: 42984_CR47
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 337
  start-page: 325
  year: 2019
  ident: 42984_CR39
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 9
  start-page: 1735
  year: 1997
  ident: 42984_CR35
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 42984_CR3
– ident: 42984_CR30
– ident: 42984_CR51
  doi: 10.3389/fpls.2022.868874
– volume: 167
  start-page: 693
  year: 2004
  ident: 42984_CR61
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.04.008
– volume: 9
  start-page: 1
  year: 2019
  ident: 42984_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 43
  start-page: 1
  year: 2021
  ident: 42984_CR1
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-021-03296-0
– volume: 20
  start-page: 1
  year: 2020
  ident: 42984_CR54
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2170-7
– ident: 42984_CR41
– volume: 98
  year: 2021
  ident: 42984_CR40
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106912
– ident: 42984_CR20
– ident: 42984_CR44
  doi: 10.1111/jfpe.13955
– volume: 283
  start-page: 20779
  year: 2008
  ident: 42984_CR50
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802682200
SSID ssj0000529419
Score 2.443502
Snippet Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the...
Abstract Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15899
SubjectTerms 631/337
631/449
639/705
Algorithms
Artificial intelligence
Corn
Crop production
Cultivars
Deep learning
Disease resistance
Feature selection
Gene expression
Genes
Humanities and Social Sciences
Learning algorithms
Long short-term memory
Machine learning
Meta-analysis
multidisciplinary
Neural networks
Polyphenol oxidase
Science
Science (multidisciplinary)
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsW3SNDmqKCroScFbyKu4oF1x60F_jb_FX-Yk6a5bQb14bJs2aWaS-YbJfIPQHgWMYYSnxyMCHBSR8VTpMk9Lk9VVYRwTxOcOX12z81t6eVfeTZX68mfCIj1wnLhDZpWxQmuA7Y4a-JYrLFdw7WpT1irwfILNm3KmIqt3IWguuiyZjPDDEVgqn01WkBS2YE5T2rNEgbC_hzK_n5H8FigN9udsES10wBEfxQEvoRnXLKO5WErydQW1F2PeB4tbb3_CbuBTjj_eH12rUtWxj2DVWGy-OL-xn4JII4EHU_ycONTIGcE9_KgGbw77bLNnrAdDGACOKSar6Pbs9ObkPO0qKqSmzHkLYlDghtpCg-kCP8E5w8ARraklToDlBnCgGTNUAeIG4FdlFvBDroSttNN1pSuyhmabYePWERb-JWpL7gQD0KcVzbjVpnLMkMxmIkH5eHal6ejGfdWLBxnC3oTLKBEJEpFBIpImaH_yzlMk2_i19bEX2qSlJ8oON0B9ZKc-8i_1SdDWWOSyW70jWXBWsUDllqDdyWNYdz6Yoho3fAltuM8zrliCeE9VegPqP2kG94HBOw_MaAJ6Pxhr1VfvP__xxn_88SaaL_wq8JE1soVm2-cXtw3AqtU7YQ19Alh2JEk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN4iaxI4fJwSIqiDBiUp7s_xaWIkmZZMe4Nd3xnF2SSV6jOPISWbs-cbj-YaQ1xwwhtdIj8c0OCi6UqV1bV22vlrLxkehGeYOf_0mTs_4l1W7yhtuQz5WOa-JaaEOvcc98uNGCSkSvda7i98lVo3C6GouoXGb3EHqMjzSJVdyt8eCUSxe65wrUzF1PIC9wpyyhpWwECte8oU9SrT9C6x5_aTktXBpskInD8j9DB_p-0neD8mt2D0id6eCkn8ek-HzzP4Q6IhWKK0JmHhMz-NoS5spSKjtAvV74m-KCjRxSdDNPySdNBXKGaCNntvN30gx5WxL3aaH8emUZ_KEnJ18-v7xtMxlFUrf1moEWVjwRUPjwH6BsxCjF-CNrnlgUYP5BoTghPDcAuwG9CerACCitjpIF91aOsmekoOu7-IzQjU-xEOrohaA_JzllQrOyyg8q0KlC1LPP9f4zDmOpS9-mRT7ZspMAjEgEJMEYnhB3uyeuZgYN27s_QFltuuJbNmpod_-MHnyGRGsD9o5cP0i96CPsQnKwnVc-3ZtWUGOZombPIUHs1e4grza3YbJhxEV28X-MvVRmGwsRUHUQlMWL7S8021-JhrvOtGjaRj97axU-9H__8XPb37ZQ3KvQfXGwBk7Igfj9jK-ANw0updpclwBeNcYWQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuVfkTgYKMxA0ikthx7GNZURUkOFGpN8t_gZVottpND_Rp-ix9MmacZEsqQOIYx5btzNjzTcbzGeC1QIzhNdHjcY0Oii5Ubl1d5rUv2qbyUWpOucOfv8jjE_HptD7dgWrKhUmH9hOlZdqmp9Nh7zZoaCgZrOI57qBK5OIO3CXqdtLqhVxs_6tQ5EqUesyPKbj6Q9OZDUpU_TN8eft05K0QabI8R_uwN0JGdjgM8gHsxO4h3Bsukfz5CPqPE-NDYD1ZnrQPULLx9dVZ7G1uR94RZrvA_A3bN6NpDwQSbPkbMydLt-NssIyd2eVlZJRntmZuucIBsCG55DGcHH34ujjOx7sUcl-XqkcBWHRAQ-XQaKGHEKOX6IK2IvCo0WYjLHBSemERayPka4qAyKG0OjQuurZxDX8Cu92qi0-BaWokQq2ilgj3nBWFCs43UXpehEJnUE5f1_iRaJzuu_hhUsCbKzNIxKBETJKIERm82bY5H2g2_ln7PQltW5MoslPBav3NjCpjZLA-aOfQ34vCoxLGKiiLz7H1dWt5BgeTyM24bjemUrKRicQtg1fb17jiKIxiu7i6SHUUZRg3MgM1U5XZgOZvuuX3xN1dJk40jb2_nbTqpve_z_jZ_1V_Dvcr0neKnvED2O3XF_EFgqfevUyr5RdkmBdY
  priority: 102
  providerName: Springer Nature
Title Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress
URI https://link.springer.com/article/10.1038/s41598-023-42984-4
https://www.proquest.com/docview/2867651798
https://www.proquest.com/docview/2868123576
https://pubmed.ncbi.nlm.nih.gov/PMC10517993
https://doaj.org/article/6dacd9bb148e4c908e2d8abb1efc5fa3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD70guCLeMVoXUbwTaO5TObyILJdWupCi6gL-xbmlrrQZnU3Beuv8bf4yzwzSbamVMGnkLmQSc45Od_J5HwH4AVFjGGkp8fLJQYoMhGx0kUaFyapeGYck7nPHT4-YUczOp0X8y3oyx11D3B9Y2jn60nNVmevv3-7fIcG_7ZNGRdv1uiEfKJYlsf4dhU0ptuwi56Je0M97uB-y_WdSZrKLnfm5qkD_xRo_AfY8_qfk9e2T4NXOrwLdzo4Scat_O_Blqvvw622wOTlA2je92wQljTeK4V3hE9E_vXz3DUqVh0nCVG1JeaKCZx4jWrJJcjiD9ZOEirnrLGNnKvFD0d8DtqK6MUSF0DaxJOHMDs8-Dw5irs6C7EpUtGgcBQGpzbT6NAwenDOMAxPK2pzJ9GfI2TQjBmqEIcjHOSJRVSRKmm5drrimuePYKde1u4xEOknUVsIJxlCQa1oIqw23DGTJzaREaT90y1NR0Lua2GclWEzPBdlK5ESJVIGiZQ0gpebOV9bCo5_jt73QtuM9PTZoWG5Oi07ayyZVcZKrTEWdNSggrrMCoXnrjJFpfII9nqRl71KlplgnAWCtwieb7rRGv0Wi6rd8iKMET77mLMIxEBVBgsa9tSLL4HXOw18aRKv_qrXqqur__2On_zf8KdwO_P67nfW8j3YaVYX7hkCq0aPYJvP-Qh2x-Pppyke9w9OPnzE1gmbjMLHilGwp99NtybV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IK5axwAjwRNES2LHsR8QYrCpZVuF0CbtzfgWqMTSre2Exo_iN3LsJC2dxN72mMSJnZy7T853AF4x9DGsDPB4VGKAIlORaFNkSWHTqsyt55KG2uHDER8cs88nxcka_OlqYcJvlZ1OjIraTWzYI9_OBS95hNd6f3aehK5RIbvatdBo2GLfX_7CkG32bvgJ6fs6z_d2jz4OkrarQGKLTMxxKRpDMZcbVN_oK3tvOQZjFXPUS7ReaCAN55Zp9DrR-SlThzY009KVxpuqNCXF596CdUYxlOnB-s7u6MvXxa5OyJuxTLbVOSkV2zO0kKGKLacJqn7BErZiAWOjgBXv9uq_mVcStNHu7d2He63DSj40HPYA1nz9EG43LSwvH8Fs2OFNODIPdi9qoVDqTE79XCe6BT0hunbELqHGSWDZBr2CjP-BBSWxNc8Mz5FTPf7tSShymxIznuD8pKlseQzHN_LJn0CvntR-A4gMNzFXCC85-ppGs1Q4Y0vPLU1dKvuQdR9X2RblPDTb-Klitp0K1RBEIUFUJIhifXizuOeswfi4dvROoNliZMDnjicm0--qFXfFnbZOGoPBpmcWJcDnTmg89pUtKk37sNVRXLVKY6aWLN6Hl4vLKO4hh6NrP7mIY0Qoby55H8QKp6wsaPVKPf4RgcOzCMgmcfa3HVMtZ___G29ev9gXcGdwdHigDoaj_adwNw-sHtJ2dAt68-mFf4Ze29w8b0WFwLebls6_JWxVsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxFMNFFgkOIEV27vexwEhoEQNhYoDlXJb9mWIRJ2SpELlp_HrmFnbCalEbz3aXnvXnrdn5xtCnnHwMbxGeDymIUDRucqsq4qs8nktSx-FZlg7_OlQ7B_xD5NqskX-9LUwuK2y14lJUYeZx3_kw1IJKRK81rDutkV83hu9PvmZYQcpzLT27TRaFjmIZ78gfFu8Gu8BrZ-X5ej9l3f7WddhIPNVoZawLAthWSgdqHLwm2P0AgKzmgcWNVgyMJZOCM8teKDgCMk8gD0trA7SRVdLJxk89wq5KllVoIzJiVz938EMGi90V6eTMzVcgK3EeraSZWAEFM_4hi1MLQM2_NzzuzTPpWqTBRzdIjc715W-aXntNtmKzR1yrW1meXaXLMY98kSgS7SASR9h0TM9jkub2Q7-hNomUL8GHafIvC2OBZ3-AxBKU5OeBZyjx3b6O1Isd5tTN53B_LStcblHji7lg98n282siTuEaryJh0pFLcDrdJbnKjgvo_AsD7kekKL_uMZ3eOfYduOHSXl3pkxLEAMEMYkghg_Ii9U9Jy3ax4Wj3yLNViMRqTudmM2_mU7wjQjWB-0chJ2Re5CFWAZl4TjWvqotG5DdnuKmUx8Ls2b2AXm6ugyCj9kc28TZaRqjsNBZigFRG5yysaDNK830e4IQLxI0m4bZX_ZMtZ79_2_84OLFPiHXQSbNx_HhwUNyo0ROx_wd2yXby_lpfATu29I9TnJCydfLFsy_LI9Ygg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+transcriptomic%C2%A0meta-analysis+and+comparative+artificial+intelligence+models+in+maize+under+biotic+stress&rft.jtitle=Scientific+reports&rft.au=Nazari%2C+Leyla&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.au=Ropelewska%2C+Ewa&rft.date=2023-09-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-42984-4&rft.externalDocID=10_1038_s41598_023_42984_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon