Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress
Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize....
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 15899 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((
S
)-
beta-macrocarpene synthase
,
zealexin A1 synthase
,
polyphenol oxidase I
,
chloroplastic
,
pathogenesis-related protein 10
,
CHY1
,
chitinase chem 5
,
barwin
, and uncharacterized
LOC100273479
were proved to be differentially upregulated under biotic stress condition. |
---|---|
AbstractList | Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition. Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes (( S )- beta-macrocarpene synthase , zealexin A1 synthase , polyphenol oxidase I , chloroplastic , pathogenesis-related protein 10 , CHY1 , chitinase chem 5 , barwin , and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition. Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition.Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition. Abstract Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the identification of resistant genes paves the way to the development of disease-resistant cultivars and is essential for reliable production in maize. Identifying different gene expression patterns can deepen our perception of maize resistance to disease. This study includes machine learning and deep learning-based application for classifying genes expressed under normal and biotic stress in maize. Machine learning algorithms used are Naive Bayes (NB), K-Nearest Neighbor (KNN), Ensemble, Support Vector Machine (SVM), and Decision Tree (DT). A Bidirectional Long Short Term Memory (BiLSTM) based network with Recurrent Neural Network (RNN) architecture is proposed for gene classification with deep learning. To increase the performance of these algorithms, feature selection is made from the raw gene features through the Relief feature selection algorithm. The obtained finding indicated the efficacy of BiLSTM over other machine learning algorithms. Some top genes ((S)-beta-macrocarpene synthase, zealexin A1 synthase, polyphenol oxidase I, chloroplastic, pathogenesis-related protein 10, CHY1, chitinase chem 5, barwin, and uncharacterized LOC100273479 were proved to be differentially upregulated under biotic stress condition. |
ArticleNumber | 15899 |
Author | Nazari, Leyla Aslan, Muhammet Fatih Ropelewska, Ewa Sabanci, Kadir |
Author_xml | – sequence: 1 givenname: Leyla orcidid: 0000-0003-0940-8486 surname: Nazari fullname: Nazari, Leyla email: l.nazari@areeo.ac.ir organization: Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO) – sequence: 2 givenname: Muhammet Fatih orcidid: 0000-0001-7549-0137 surname: Aslan fullname: Aslan, Muhammet Fatih organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University – sequence: 3 givenname: Kadir orcidid: 0000-0003-0238-9606 surname: Sabanci fullname: Sabanci, Kadir organization: Electrical and Electronics Engineering, Karamanoglu Mehmetbey University – sequence: 4 givenname: Ewa orcidid: 0000-0001-8891-236X surname: Ropelewska fullname: Ropelewska, Ewa organization: Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research |
BookMark | eNp9ks9u1DAQxiNUREvpC3CKxIVLwP8S2yeEKmhXqsQFztbEnixeJfZieyuVp-FZeDK8uxXQHuqL7fH3_Twez8vmJMSATfOakneUcPU-C9pr1RHGO8G0Ep141pwxIvqOccZO_lufNhc5b0gdPdOC6hfNKZdSUDX0Z01ZhYLrBAVdWxKEbJPflrh4-_vXggU6CDDfZZ9bCK61cdlCFftbbCEVP3nrYW59ZcyzX2Ow2C7R4ZxrrF3A_8R2FxymdvSxeNvmkjDnV83zCeaMF_fzefPt86evl9fdzZer1eXHm872VJUORiBMOjYKynvVI9qhZ3wSjqNWVFFNxmGwAiTTmnFJnFSMgnZyxHGSo-TnzerIdRE2Zpv8AunORPDmEIhpbfavsDOawYF1ehypUCisJgqZU1D3ONl-Al5ZH46s7W5c0FkMtVzzA-jDk-C_m3W8NZT0VGq9J7y9J6T4Y4e5mMVnWwsHAeMuG6YGRRnv5VClbx5JN3GX6k8cVHLYE1VVsaPKpphzwulvNpSYfZOYY5OY2iTm0CRGVJN6ZLK-1B-N-6z9_LSVH6253hPWmP5l9YTrD7zM1as |
CitedBy_id | crossref_primary_10_1016_j_cpb_2024_100432 crossref_primary_10_3390_plants13091238 crossref_primary_10_1016_j_cpb_2024_100370 crossref_primary_10_3390_agronomy14071495 |
Cites_doi | 10.1186/s12864-021-08028-9 10.1016/j.patrec.2020.07.042 10.1038/nprot.2008.211 10.1074/jbc.M104679200 10.1089/omi.2014.0125 10.1016/j.pmpp.2006.06.004 10.1016/j.asoc.2020.106912 10.1186/1471-2164-8-303 10.1016/j.eswa.2019.07.019 10.1007/s11738-021-03296-0 10.1016/j.jplph.2011.07.013 10.1093/bioinformatics/bts034 10.3390/plants8030052 10.1007/s11103-019-00881-3 10.1007/s12161-022-02251-0 10.1016/j.bspc.2021.102716 10.1016/j.plantsci.2004.04.008 10.1007/s11101-017-9508-2 10.1016/j.compeleceng.2022.108562 10.3389/fpls.2018.01961 10.7717/peerj.4631 10.3390/en12142804 10.1016/j.neucom.2019.01.078 10.1093/biostatistics/4.2.249 10.1007/s00217-022-04029-4 10.1093/mp/ssn063 10.1074/jbc.M802682200 10.1162/neco.1997.9.8.1735 10.1162/089976600300015015 10.1016/j.drudis.2017.08.010 10.1016/j.phytochem.2015.10.003 10.1186/s12911-017-0566-6 10.1007/s42452-019-1786-4 10.1093/bioinformatics/btg1058 10.1007/s12652-020-02761-x 10.1007/s00521-019-04365-9 10.1073/pnas.97.1.262 10.1016/j.jbi.2018.07.014 10.1093/nar/gkac194 10.1016/j.plaphy.2009.01.007 10.1371/journal.pmed.0050184 10.1002/2050-7038.12637 10.3389/fgene.2021.798107 10.1080/00031305.1992.10475879 10.1007/978-3-030-44289-7_5 10.1016/B978-1-55860-247-2.50037-1 10.3389/fgene.2020.603808 10.1109/ICBBT.2010.5479003 10.1109/ICCUBEA.2018.8697222 10.3389/fpls.2022.868874 10.1038/s41598-018-37186-2 10.1186/s12870-019-2170-7 10.1111/jfpe.13955 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-42984-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_6dacd9bb148e4c908e2d8abb1efc5fa3 PMC10517993 10_1038_s41598_023_42984_4 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-aba027d2b413585eec6523f4d3e9818190b66c4a72992370d7821a9d7bebf7b73 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:21:07 EDT 2025 Thu Aug 21 18:36:28 EDT 2025 Fri Jul 11 15:23:19 EDT 2025 Sat Aug 23 13:04:24 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 03:57:31 EDT 2025 Fri Feb 21 02:37:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-aba027d2b413585eec6523f4d3e9818190b66c4a72992370d7821a9d7bebf7b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-0940-8486 0000-0001-7549-0137 0000-0003-0238-9606 0000-0001-8891-236X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-42984-4 |
PMID | 37741865 |
PQID | 2867651798 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6dacd9bb148e4c908e2d8abb1efc5fa3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10517993 proquest_miscellaneous_2868123576 proquest_journals_2867651798 crossref_primary_10_1038_s41598_023_42984_4 crossref_citationtrail_10_1038_s41598_023_42984_4 springer_journals_10_1038_s41598_023_42984_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-23 |
PublicationDateYYYYMMDD | 2023-09-23 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shen (CR64) 2019; 100 Sakr (CR25) 2017; 17 Wu (CR33) 2021; 31 Gers, Schmidhuber, Cummins (CR36) 2000; 12 Thipyapong, Melkonian, Wolfe, Steffens (CR61) 2004; 167 Zhu, Ye, Fu, Liu, Shen (CR34) 2019; 9 CR37 CR31 Altman (CR22) 1992; 46 CR30 Dong (CR52) 2009; 2 Aslan, Unlersen, Sabanci, Durdu (CR40) 2021; 98 Liu, Ekramoddoullah (CR59) 2006; 68 He (CR60) 2021; 22 Sabanci, Balci, Aslan (CR24) 2019; 1 CR3 Hochreiter, Schmidhuber (CR35) 1997; 9 Zolman (CR53) 2001; 276 CR8 Vaughan, Block, Christensen, Allen, Schmelz (CR4) 2018; 17 CR7 Wang, Jiang, Zhao, Fang, Jiao (CR54) 2020; 20 Köllner (CR50) 2008; 283 CR44 Irizarry (CR14) 2003; 4 CR43 Wang, Xiao, Xiong (CR55) 2011; 168 Liu, Guo (CR39) 2019; 337 CR41 Zhang, Tan, Han, Zhu (CR28) 2017; 22 Qu, Wei, Yu, Wang (CR12) 2019; 9 Ramasamy, Mondry, Holmes, Altman (CR5) 2008; 5 Zhu, Maher, Masoud, Dixon, Lamb (CR57) 1994; 12 Aslan, Durdu, Sabanci (CR26) 2020; 32 Aslan (CR10) 2023; 105 Czajkowski, Kretowski (CR49) 2019; 137 Gong, Yang, Tai, Hu, Wang (CR2) 2014; 18 Unlersen (CR9) 2022; 248 Leek, Johnson, Parker, Jaffe, Storey (CR15) 2012; 28 Sherman (CR46) 2022; 50 Cao, Tan (CR56) 2019; 8 CR17 Bernardo, Smith (CR23) 2009 CR16 Mao, Liu, Ren, Peters, Wang (CR63) 2016; 121 CR13 Clare, King (CR11) 2003; 19 CR51 Kotsiantis, Zaharakis, Pintelas (CR47) 2007; 160 Urbanowicz, Meeker, La Cava, Olson, Moore (CR29) 2018; 85 Kim, Lee (CR38) 2019; 12 Salika, Riffat (CR1) 2021; 43 Abbasimehr, Paki (CR32) 2022; 13 Vapnik (CR21) 1999 Aslan, Sabanci, Durdu (CR19) 2021; 68 Wang, Fan, Wang (CR18) 2021; 141 CR27 CR20 Ashrafi-Dehkordi, Alemzadeh, Tanaka, Razi (CR6) 2018; 6 Mantri, Ford, Coram, Pang (CR62) 2007; 8 Sabanci, Aslan, Ropelewska, Unlersen, Durdu (CR42) 2022 Huang, Sherman, Lempicki (CR45) 2009; 4 Brown (CR48) 2000; 97 López, Gómez-Gómez (CR58) 2009; 47 BK Zolman (42984_CR53) 2001; 276 42984_CR17 42984_CR16 L Zhang (42984_CR28) 2017; 22 42984_CR13 J-G Kim (42984_CR38) 2019; 12 S Sakr (42984_CR25) 2017; 17 Q Shen (42984_CR64) 2019; 100 DW Huang (42984_CR45) 2009; 4 42984_CR51 RC López (42984_CR58) 2009; 47 R Salika (42984_CR1) 2021; 43 NL Mantri (42984_CR62) 2007; 8 E Ashrafi-Dehkordi (42984_CR6) 2018; 6 42984_CR7 42984_CR8 MF Aslan (42984_CR40) 2021; 98 42984_CR3 MF Aslan (42984_CR19) 2021; 68 MF Aslan (42984_CR26) 2020; 32 K Qu (42984_CR12) 2019; 9 42984_CR27 SB Kotsiantis (42984_CR47) 2007; 160 N Wang (42984_CR55) 2011; 168 MM Vaughan (42984_CR4) 2018; 17 42984_CR20 P Wang (42984_CR18) 2021; 141 H Abbasimehr (42984_CR32) 2022; 13 P Thipyapong (42984_CR61) 2004; 167 F Zhu (42984_CR34) 2019; 9 FA Gers (42984_CR36) 2000; 12 K Sabanci (42984_CR42) 2022 RJ Urbanowicz (42984_CR29) 2018; 85 M Czajkowski (42984_CR49) 2019; 137 J Wang (42984_CR54) 2020; 20 H Mao (42984_CR63) 2016; 121 G Liu (42984_CR39) 2019; 337 42984_CR37 JT Leek (42984_CR15) 2012; 28 BT Sherman (42984_CR46) 2022; 50 S Hochreiter (42984_CR35) 1997; 9 42984_CR31 NS Altman (42984_CR22) 1992; 46 42984_CR30 J-J Liu (42984_CR59) 2006; 68 A Ramasamy (42984_CR5) 2008; 5 JM Bernardo (42984_CR23) 2009 A Clare (42984_CR11) 2003; 19 Q Zhu (42984_CR57) 1994; 12 V Vapnik (42984_CR21) 1999 K Wu (42984_CR33) 2021; 31 J Cao (42984_CR56) 2019; 8 RA Irizarry (42984_CR14) 2003; 4 MF Unlersen (42984_CR9) 2022; 248 42984_CR44 42984_CR43 42984_CR41 F He (42984_CR60) 2021; 22 MP Brown (42984_CR48) 2000; 97 K Sabanci (42984_CR24) 2019; 1 TG Köllner (42984_CR50) 2008; 283 F Gong (42984_CR2) 2014; 18 MF Aslan (42984_CR10) 2023; 105 C-H Dong (42984_CR52) 2009; 2 |
References_xml | – volume: 22 start-page: 1 year: 2021 end-page: 15 ident: CR60 article-title: Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in publication-title: BMC Genom. doi: 10.1186/s12864-021-08028-9 – volume: 141 start-page: 61 year: 2021 end-page: 67 ident: CR18 article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.042 – volume: 4 start-page: 44 year: 2009 end-page: 57 ident: CR45 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: CR34 article-title: Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network publication-title: Sci. Rep. – volume: 276 start-page: 31037 year: 2001 end-page: 31046 ident: CR53 article-title: chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104679200 – ident: CR16 – ident: CR51 – volume: 18 start-page: 714 year: 2014 end-page: 732 ident: CR2 article-title: “Omics” of maize stress response for sustainable food production: Opportunities and challenges publication-title: Omics J. Integr. Biol. doi: 10.1089/omi.2014.0125 – volume: 160 start-page: 3 year: 2007 end-page: 24 ident: CR47 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 68 start-page: 3 year: 2006 end-page: 13 ident: CR59 article-title: The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2006.06.004 – volume: 98 year: 2021 ident: CR40 article-title: CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106912 – volume: 8 start-page: 1 year: 2007 end-page: 14 ident: CR62 article-title: Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought publication-title: BMC Genom. doi: 10.1186/1471-2164-8-303 – volume: 137 start-page: 392 year: 2019 end-page: 404 ident: CR49 article-title: Decision tree underfitting in mining of gene expression data. An evolutionary multi-test tree approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.07.019 – ident: CR8 – year: 2009 ident: CR23 publication-title: Bayesian theory – volume: 43 start-page: 1 year: 2021 end-page: 22 ident: CR1 article-title: Abiotic stress responses in maize: A review publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-021-03296-0 – volume: 168 start-page: 2212 year: 2011 end-page: 2224 ident: CR55 article-title: Identification of a cluster of PR4-like genes involved in stress responses in rice publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.07.013 – volume: 28 start-page: 882 year: 2012 end-page: 883 ident: CR15 article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts034 – volume: 8 start-page: 52 year: 2019 ident: CR56 article-title: Comprehensive analysis of the chitinase family genes in tomato ( ) publication-title: Plants doi: 10.3390/plants8030052 – volume: 100 start-page: 579 year: 2019 end-page: 589 ident: CR64 article-title: CYP71Z18 overexpression confers elevated blast resistance in transgenic rice publication-title: Plant Mol. Biol. doi: 10.1007/s11103-019-00881-3 – year: 1999 ident: CR21 publication-title: The nature of statistical learning theory – year: 2022 ident: CR42 article-title: A novel convolutional-recurrent hybrid network for Sunn Pest-damaged wheat grain detection publication-title: Food Anal. Methods doi: 10.1007/s12161-022-02251-0 – volume: 68 start-page: 102716 year: 2021 ident: CR19 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102716 – volume: 167 start-page: 693 year: 2004 end-page: 703 ident: CR61 article-title: Suppression of polyphenol oxidases increases stress tolerance in tomato publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.04.008 – volume: 17 start-page: 37 year: 2018 end-page: 49 ident: CR4 article-title: The effects of climate change associated abiotic stresses on maize phytochemical defenses publication-title: Phytochem. Rev. doi: 10.1007/s11101-017-9508-2 – volume: 105 start-page: 108562 year: 2023 ident: CR10 article-title: A hybrid end-to-end learning approach for breast cancer diagnosis: Convolutional recurrent network publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108562 – volume: 9 start-page: 1961 year: 2019 ident: CR12 article-title: Identifying plant pentatricopeptide repeat coding gene/protein using mixed feature extraction methods publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01961 – volume: 6 year: 2018 ident: CR6 article-title: Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato publication-title: PeerJ doi: 10.7717/peerj.4631 – volume: 12 start-page: 2804 year: 2019 ident: CR38 article-title: Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM publication-title: Energies doi: 10.3390/en12142804 – ident: CR43 – volume: 337 start-page: 325 year: 2019 end-page: 338 ident: CR39 article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 20 start-page: 1 year: 2020 end-page: 14 ident: CR54 article-title: Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of spp publication-title: BMC Plant Biol. – volume: 4 start-page: 249 year: 2003 end-page: 264 ident: CR14 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – ident: CR37 – ident: CR30 – volume: 248 start-page: 2043 year: 2022 end-page: 2052 ident: CR9 article-title: CNN–SVM hybrid model for varietal classification of wheat based on bulk samples publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-022-04029-4 – volume: 12 start-page: 807 year: 1994 end-page: 812 ident: CR57 article-title: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco publication-title: Bio/Technology – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: CR22 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. – volume: 2 start-page: 59 year: 2009 end-page: 72 ident: CR52 article-title: Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling publication-title: Mol. Plant doi: 10.1093/mp/ssn063 – volume: 283 start-page: 20779 year: 2008 end-page: 20788 ident: CR50 article-title: Protonation of a neutral (S)-β-bisabolene intermediate is involved in (S)-β-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802682200 – ident: CR27 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR35 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: CR36 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – ident: CR44 – volume: 22 start-page: 1680 year: 2017 end-page: 1685 ident: CR28 article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.08.010 – volume: 121 start-page: 4 year: 2016 end-page: 10 ident: CR63 article-title: Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.10.003 – volume: 17 start-page: 174 year: 2017 end-page: 174 ident: CR25 article-title: Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry ford exercIse testing (FIT) project publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-017-0566-6 – volume: 1 start-page: 1 year: 2019 end-page: 8 ident: CR24 article-title: An ensemble learning estimation of the effect of magnetic coupling on switching frequency value in wireless power transfer system for electric vehicles publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1786-4 – volume: 19 start-page: ii42 year: 2003 end-page: ii49 ident: CR11 article-title: Predicting gene function in publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1058 – ident: CR3 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 13 start-page: 673 year: 2022 end-page: 691 ident: CR32 article-title: Improving time series forecasting using LSTM and attention models publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02761-x – volume: 32 start-page: 8585 year: 2020 end-page: 8597 ident: CR26 article-title: Human action recognition with bag of visual words using different machine learning methods and hyperparameter optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04365-9 – volume: 97 start-page: 262 year: 2000 end-page: 267 ident: CR48 article-title: Knowledge-based analysis of microarray gene expression data by using support vector machines publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.97.1.262 – volume: 85 start-page: 189 year: 2018 end-page: 203 ident: CR29 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – ident: CR7 – ident: CR41 – volume: 50 start-page: W216 year: 2022 end-page: W221 ident: CR46 article-title: DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac194 – volume: 47 start-page: 426 year: 2009 end-page: 434 ident: CR58 article-title: Isolation of a new fungi and wound-induced chitinase class in corms of publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.01.007 – volume: 5 year: 2008 ident: CR5 article-title: Key issues in conducting a meta-analysis of gene expression microarray datasets publication-title: PLoS Med. doi: 10.1371/journal.pmed.0050184 – ident: CR20 – volume: 31 year: 2021 ident: CR33 article-title: An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12637 – volume: 141 start-page: 61 year: 2021 ident: 42984_CR18 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.042 – volume: 85 start-page: 189 year: 2018 ident: 42984_CR29 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – ident: 42984_CR13 doi: 10.3389/fgene.2021.798107 – volume-title: Bayesian theory year: 2009 ident: 42984_CR23 – volume: 28 start-page: 882 year: 2012 ident: 42984_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts034 – volume: 46 start-page: 175 year: 1992 ident: 42984_CR22 publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 31 year: 2021 ident: 42984_CR33 publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12637 – ident: 42984_CR16 doi: 10.1007/978-3-030-44289-7_5 – volume: 248 start-page: 2043 year: 2022 ident: 42984_CR9 publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-022-04029-4 – volume: 12 start-page: 2804 year: 2019 ident: 42984_CR38 publication-title: Energies doi: 10.3390/en12142804 – volume: 68 start-page: 102716 year: 2021 ident: 42984_CR19 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102716 – volume: 50 start-page: W216 year: 2022 ident: 42984_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac194 – volume: 18 start-page: 714 year: 2014 ident: 42984_CR2 publication-title: Omics J. Integr. Biol. doi: 10.1089/omi.2014.0125 – volume: 276 start-page: 31037 year: 2001 ident: 42984_CR53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104679200 – volume: 8 start-page: 1 year: 2007 ident: 42984_CR62 publication-title: BMC Genom. doi: 10.1186/1471-2164-8-303 – volume: 168 start-page: 2212 year: 2011 ident: 42984_CR55 publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.07.013 – volume: 19 start-page: ii42 year: 2003 ident: 42984_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1058 – volume: 17 start-page: 174 year: 2017 ident: 42984_CR25 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-017-0566-6 – volume: 5 year: 2008 ident: 42984_CR5 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0050184 – ident: 42984_CR31 doi: 10.1016/B978-1-55860-247-2.50037-1 – ident: 42984_CR7 doi: 10.3389/fgene.2020.603808 – volume: 6 year: 2018 ident: 42984_CR6 publication-title: PeerJ doi: 10.7717/peerj.4631 – volume: 12 start-page: 2451 year: 2000 ident: 42984_CR36 publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 17 start-page: 37 year: 2018 ident: 42984_CR4 publication-title: Phytochem. Rev. doi: 10.1007/s11101-017-9508-2 – volume: 13 start-page: 673 year: 2022 ident: 42984_CR32 publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02761-x – volume: 105 start-page: 108562 year: 2023 ident: 42984_CR10 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108562 – ident: 42984_CR43 – volume: 100 start-page: 579 year: 2019 ident: 42984_CR64 publication-title: Plant Mol. Biol. doi: 10.1007/s11103-019-00881-3 – volume: 22 start-page: 1 year: 2021 ident: 42984_CR60 publication-title: BMC Genom. doi: 10.1186/s12864-021-08028-9 – volume: 137 start-page: 392 year: 2019 ident: 42984_CR49 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.07.019 – volume: 12 start-page: 807 year: 1994 ident: 42984_CR57 publication-title: Bio/Technology – ident: 42984_CR37 – volume: 4 start-page: 249 year: 2003 ident: 42984_CR14 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – year: 2022 ident: 42984_CR42 publication-title: Food Anal. Methods doi: 10.1007/s12161-022-02251-0 – volume: 121 start-page: 4 year: 2016 ident: 42984_CR63 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.10.003 – volume-title: The nature of statistical learning theory year: 1999 ident: 42984_CR21 – volume: 8 start-page: 52 year: 2019 ident: 42984_CR56 publication-title: Plants doi: 10.3390/plants8030052 – volume: 97 start-page: 262 year: 2000 ident: 42984_CR48 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.97.1.262 – volume: 4 start-page: 44 year: 2009 ident: 42984_CR45 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – volume: 68 start-page: 3 year: 2006 ident: 42984_CR59 publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2006.06.004 – volume: 9 start-page: 1961 year: 2019 ident: 42984_CR12 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01961 – volume: 1 start-page: 1 year: 2019 ident: 42984_CR24 publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1786-4 – ident: 42984_CR8 doi: 10.1109/ICBBT.2010.5479003 – ident: 42984_CR27 – volume: 2 start-page: 59 year: 2009 ident: 42984_CR52 publication-title: Mol. Plant doi: 10.1093/mp/ssn063 – volume: 32 start-page: 8585 year: 2020 ident: 42984_CR26 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04365-9 – volume: 47 start-page: 426 year: 2009 ident: 42984_CR58 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.01.007 – volume: 22 start-page: 1680 year: 2017 ident: 42984_CR28 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.08.010 – ident: 42984_CR17 doi: 10.1109/ICCUBEA.2018.8697222 – volume: 160 start-page: 3 year: 2007 ident: 42984_CR47 publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 337 start-page: 325 year: 2019 ident: 42984_CR39 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 9 start-page: 1735 year: 1997 ident: 42984_CR35 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 42984_CR3 – ident: 42984_CR30 – ident: 42984_CR51 doi: 10.3389/fpls.2022.868874 – volume: 167 start-page: 693 year: 2004 ident: 42984_CR61 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.04.008 – volume: 9 start-page: 1 year: 2019 ident: 42984_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – volume: 43 start-page: 1 year: 2021 ident: 42984_CR1 publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-021-03296-0 – volume: 20 start-page: 1 year: 2020 ident: 42984_CR54 publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2170-7 – ident: 42984_CR41 – volume: 98 year: 2021 ident: 42984_CR40 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106912 – ident: 42984_CR20 – ident: 42984_CR44 doi: 10.1111/jfpe.13955 – volume: 283 start-page: 20779 year: 2008 ident: 42984_CR50 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802682200 |
SSID | ssj0000529419 |
Score | 2.443502 |
Snippet | Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the... Abstract Biotic stress imposed by pathogens, including fungal, bacterial, and viral, can cause heavy damage leading to yield reduction in maize. Therefore, the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15899 |
SubjectTerms | 631/337 631/449 639/705 Algorithms Artificial intelligence Corn Crop production Cultivars Deep learning Disease resistance Feature selection Gene expression Genes Humanities and Social Sciences Learning algorithms Long short-term memory Machine learning Meta-analysis multidisciplinary Neural networks Polyphenol oxidase Science Science (multidisciplinary) Transcriptomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsW3SNDmqKCroScFbyKu4oF1x60F_jb_FX-Yk6a5bQb14bJs2aWaS-YbJfIPQHgWMYYSnxyMCHBSR8VTpMk9Lk9VVYRwTxOcOX12z81t6eVfeTZX68mfCIj1wnLhDZpWxQmuA7Y4a-JYrLFdw7WpT1irwfILNm3KmIqt3IWguuiyZjPDDEVgqn01WkBS2YE5T2rNEgbC_hzK_n5H8FigN9udsES10wBEfxQEvoRnXLKO5WErydQW1F2PeB4tbb3_CbuBTjj_eH12rUtWxj2DVWGy-OL-xn4JII4EHU_ycONTIGcE9_KgGbw77bLNnrAdDGACOKSar6Pbs9ObkPO0qKqSmzHkLYlDghtpCg-kCP8E5w8ARraklToDlBnCgGTNUAeIG4FdlFvBDroSttNN1pSuyhmabYePWERb-JWpL7gQD0KcVzbjVpnLMkMxmIkH5eHal6ejGfdWLBxnC3oTLKBEJEpFBIpImaH_yzlMk2_i19bEX2qSlJ8oON0B9ZKc-8i_1SdDWWOSyW70jWXBWsUDllqDdyWNYdz6Yoho3fAltuM8zrliCeE9VegPqP2kG94HBOw_MaAJ6Pxhr1VfvP__xxn_88SaaL_wq8JE1soVm2-cXtw3AqtU7YQ19Alh2JEk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN4iaxI4fJwSIqiDBiUp7s_xaWIkmZZMe4Nd3xnF2SSV6jOPISWbs-cbj-YaQ1xwwhtdIj8c0OCi6UqV1bV22vlrLxkehGeYOf_0mTs_4l1W7yhtuQz5WOa-JaaEOvcc98uNGCSkSvda7i98lVo3C6GouoXGb3EHqMjzSJVdyt8eCUSxe65wrUzF1PIC9wpyyhpWwECte8oU9SrT9C6x5_aTktXBpskInD8j9DB_p-0neD8mt2D0id6eCkn8ek-HzzP4Q6IhWKK0JmHhMz-NoS5spSKjtAvV74m-KCjRxSdDNPySdNBXKGaCNntvN30gx5WxL3aaH8emUZ_KEnJ18-v7xtMxlFUrf1moEWVjwRUPjwH6BsxCjF-CNrnlgUYP5BoTghPDcAuwG9CerACCitjpIF91aOsmekoOu7-IzQjU-xEOrohaA_JzllQrOyyg8q0KlC1LPP9f4zDmOpS9-mRT7ZspMAjEgEJMEYnhB3uyeuZgYN27s_QFltuuJbNmpod_-MHnyGRGsD9o5cP0i96CPsQnKwnVc-3ZtWUGOZombPIUHs1e4grza3YbJhxEV28X-MvVRmGwsRUHUQlMWL7S8021-JhrvOtGjaRj97axU-9H__8XPb37ZQ3KvQfXGwBk7Igfj9jK-ANw0updpclwBeNcYWQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuVfkTgYKMxA0ikthx7GNZURUkOFGpN8t_gZVottpND_Rp-ix9MmacZEsqQOIYx5btzNjzTcbzGeC1QIzhNdHjcY0Oii5Ubl1d5rUv2qbyUWpOucOfv8jjE_HptD7dgWrKhUmH9hOlZdqmp9Nh7zZoaCgZrOI57qBK5OIO3CXqdtLqhVxs_6tQ5EqUesyPKbj6Q9OZDUpU_TN8eft05K0QabI8R_uwN0JGdjgM8gHsxO4h3Bsukfz5CPqPE-NDYD1ZnrQPULLx9dVZ7G1uR94RZrvA_A3bN6NpDwQSbPkbMydLt-NssIyd2eVlZJRntmZuucIBsCG55DGcHH34ujjOx7sUcl-XqkcBWHRAQ-XQaKGHEKOX6IK2IvCo0WYjLHBSemERayPka4qAyKG0OjQuurZxDX8Cu92qi0-BaWokQq2ilgj3nBWFCs43UXpehEJnUE5f1_iRaJzuu_hhUsCbKzNIxKBETJKIERm82bY5H2g2_ln7PQltW5MoslPBav3NjCpjZLA-aOfQ34vCoxLGKiiLz7H1dWt5BgeTyM24bjemUrKRicQtg1fb17jiKIxiu7i6SHUUZRg3MgM1U5XZgOZvuuX3xN1dJk40jb2_nbTqpve_z_jZ_1V_Dvcr0neKnvED2O3XF_EFgqfevUyr5RdkmBdY priority: 102 providerName: Springer Nature |
Title | Integrated transcriptomic meta-analysis and comparative artificial intelligence models in maize under biotic stress |
URI | https://link.springer.com/article/10.1038/s41598-023-42984-4 https://www.proquest.com/docview/2867651798 https://www.proquest.com/docview/2868123576 https://pubmed.ncbi.nlm.nih.gov/PMC10517993 https://doaj.org/article/6dacd9bb148e4c908e2d8abb1efc5fa3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD70guCLeMVoXUbwTaO5TObyILJdWupCi6gL-xbmlrrQZnU3Beuv8bf4yzwzSbamVMGnkLmQSc45Od_J5HwH4AVFjGGkp8fLJQYoMhGx0kUaFyapeGYck7nPHT4-YUczOp0X8y3oyx11D3B9Y2jn60nNVmevv3-7fIcG_7ZNGRdv1uiEfKJYlsf4dhU0ptuwi56Je0M97uB-y_WdSZrKLnfm5qkD_xRo_AfY8_qfk9e2T4NXOrwLdzo4Scat_O_Blqvvw622wOTlA2je92wQljTeK4V3hE9E_vXz3DUqVh0nCVG1JeaKCZx4jWrJJcjiD9ZOEirnrLGNnKvFD0d8DtqK6MUSF0DaxJOHMDs8-Dw5irs6C7EpUtGgcBQGpzbT6NAwenDOMAxPK2pzJ9GfI2TQjBmqEIcjHOSJRVSRKmm5drrimuePYKde1u4xEOknUVsIJxlCQa1oIqw23DGTJzaREaT90y1NR0Lua2GclWEzPBdlK5ESJVIGiZQ0gpebOV9bCo5_jt73QtuM9PTZoWG5Oi07ayyZVcZKrTEWdNSggrrMCoXnrjJFpfII9nqRl71KlplgnAWCtwieb7rRGv0Wi6rd8iKMET77mLMIxEBVBgsa9tSLL4HXOw18aRKv_qrXqqur__2On_zf8KdwO_P67nfW8j3YaVYX7hkCq0aPYJvP-Qh2x-Pppyke9w9OPnzE1gmbjMLHilGwp99NtybV |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IK5axwAjwRNES2LHsR8QYrCpZVuF0CbtzfgWqMTSre2Exo_iN3LsJC2dxN72mMSJnZy7T853AF4x9DGsDPB4VGKAIlORaFNkSWHTqsyt55KG2uHDER8cs88nxcka_OlqYcJvlZ1OjIraTWzYI9_OBS95hNd6f3aehK5RIbvatdBo2GLfX_7CkG32bvgJ6fs6z_d2jz4OkrarQGKLTMxxKRpDMZcbVN_oK3tvOQZjFXPUS7ReaCAN55Zp9DrR-SlThzY009KVxpuqNCXF596CdUYxlOnB-s7u6MvXxa5OyJuxTLbVOSkV2zO0kKGKLacJqn7BErZiAWOjgBXv9uq_mVcStNHu7d2He63DSj40HPYA1nz9EG43LSwvH8Fs2OFNODIPdi9qoVDqTE79XCe6BT0hunbELqHGSWDZBr2CjP-BBSWxNc8Mz5FTPf7tSShymxIznuD8pKlseQzHN_LJn0CvntR-A4gMNzFXCC85-ppGs1Q4Y0vPLU1dKvuQdR9X2RblPDTb-Klitp0K1RBEIUFUJIhifXizuOeswfi4dvROoNliZMDnjicm0--qFXfFnbZOGoPBpmcWJcDnTmg89pUtKk37sNVRXLVKY6aWLN6Hl4vLKO4hh6NrP7mIY0Qoby55H8QKp6wsaPVKPf4RgcOzCMgmcfa3HVMtZ___G29ev9gXcGdwdHigDoaj_adwNw-sHtJ2dAt68-mFf4Ze29w8b0WFwLebls6_JWxVsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxFMNFFgkOIEV27vexwEhoEQNhYoDlXJb9mWIRJ2SpELlp_HrmFnbCalEbz3aXnvXnrdn5xtCnnHwMbxGeDymIUDRucqsq4qs8nktSx-FZlg7_OlQ7B_xD5NqskX-9LUwuK2y14lJUYeZx3_kw1IJKRK81rDutkV83hu9PvmZYQcpzLT27TRaFjmIZ78gfFu8Gu8BrZ-X5ej9l3f7WddhIPNVoZawLAthWSgdqHLwm2P0AgKzmgcWNVgyMJZOCM8teKDgCMk8gD0trA7SRVdLJxk89wq5KllVoIzJiVz938EMGi90V6eTMzVcgK3EeraSZWAEFM_4hi1MLQM2_NzzuzTPpWqTBRzdIjc715W-aXntNtmKzR1yrW1meXaXLMY98kSgS7SASR9h0TM9jkub2Q7-hNomUL8GHafIvC2OBZ3-AxBKU5OeBZyjx3b6O1Isd5tTN53B_LStcblHji7lg98n282siTuEaryJh0pFLcDrdJbnKjgvo_AsD7kekKL_uMZ3eOfYduOHSXl3pkxLEAMEMYkghg_Ii9U9Jy3ax4Wj3yLNViMRqTudmM2_mU7wjQjWB-0chJ2Re5CFWAZl4TjWvqotG5DdnuKmUx8Ls2b2AXm6ugyCj9kc28TZaRqjsNBZigFRG5yysaDNK830e4IQLxI0m4bZX_ZMtZ79_2_84OLFPiHXQSbNx_HhwUNyo0ROx_wd2yXby_lpfATu29I9TnJCydfLFsy_LI9Ygg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+transcriptomic%C2%A0meta-analysis+and+comparative+artificial+intelligence+models+in+maize+under+biotic+stress&rft.jtitle=Scientific+reports&rft.au=Nazari%2C+Leyla&rft.au=Aslan%2C+Muhammet+Fatih&rft.au=Sabanci%2C+Kadir&rft.au=Ropelewska%2C+Ewa&rft.date=2023-09-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-42984-4&rft.externalDocID=10_1038_s41598_023_42984_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |