Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization

It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 20; no. 18; pp. 1727 - 1741
Main Authors Langstaff, S., Sayer, M., Smith, T.J.N., Pugh, S.M., Hesp, S.A.M., Thompson, W.T.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.1999
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2–1 μm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure.
AbstractList This paper reports how resorbable calcium phosphate-based thin films and bulk ceramics were created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The paper also describes the phase composition and microporous morphology of their bioceramics; and shows how their crsytallographic features are linked through the glaserite form of the apatite structure. (Original abstract - amended)
It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2–1 μm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure.
It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1 microm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure.
It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristics features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1 mu m in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure.
Author Langstaff, S.
Smith, T.J.N.
Hesp, S.A.M.
Sayer, M.
Thompson, W.T.
Pugh, S.M.
Author_xml – sequence: 1
  givenname: S.
  surname: Langstaff
  fullname: Langstaff, S.
  email: sarah@physics.queensu.ca
  organization: Department of Physics, Queen's University, Stirling Hall, Rm 206A, Kingston, Ont., Canada K7L 3N6
– sequence: 2
  givenname: M.
  surname: Sayer
  fullname: Sayer, M.
  organization: Department of Physics, Queen's University, Stirling Hall, Rm 206A, Kingston, Ont., Canada K7L 3N6
– sequence: 3
  givenname: T.J.N.
  surname: Smith
  fullname: Smith, T.J.N.
  organization: Millenium Biologix Inc., Kingston, Ont., Canada
– sequence: 4
  givenname: S.M.
  surname: Pugh
  fullname: Pugh, S.M.
  organization: Millenium Biologix Inc., Kingston, Ont., Canada
– sequence: 5
  givenname: S.A.M.
  surname: Hesp
  fullname: Hesp, S.A.M.
  organization: Department of Chemistry, Queen's University, Kingston, Ont., Canada
– sequence: 6
  givenname: W.T.
  surname: Thompson
  fullname: Thompson, W.T.
  organization: Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ont., Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1951599$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10503974$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtu1DAQhi1URLeFRwD5AqEikeJJ4jjmBlUVh0qVQByurYk9YY1yws4i0SfgsXE2K-Bur0a_55uT_zN2MowDMfYYxCUIqF5-FlDmma4gv9D6uRCirjK4xzZQqzqTWsgTtvmLnLKzGL-LpEWZP2CnIKQotCo37PcnimNosOmIN360FLD3NvIGIzk-DjzO2PjO3yVlsbN-1_NpO8ZpizPFS_4Rw8xvXvGAsx8H7Lij6L8NL3jEfko9p0ATrkmOg-N9Kgs-cXabnu0i7vbZh-x-i12kR4d4zr6-ffPl-n12--HdzfXVbWYl1HOGKBtHFmsLTqZ7mlLlVjuoWkqhkJUSoMGB0hLrwhKhVbZ1uspdqSC3xTl7tvadwvhjR3E2vY-Wug4HGnfRKKHqqs71UTBXAEoCHAehqLRWdQLlCtowxhioNVPwPYZfBoRZTDV7U83imNHa7E01y4AnhwG7pif3X9XqYgKeHgCMyaQ24GB9_MdpCVIvF71eMUr_-9NTMNF6Giw5H8jOxo3-yCZ_AELjwm8
CitedBy_id crossref_primary_10_1039_C6RA19154A
crossref_primary_10_1016_j_mad_2004_08_031
crossref_primary_10_1080_21870764_2022_2053278
crossref_primary_10_1016_j_matlet_2006_12_046
crossref_primary_10_1016_j_materresbull_2008_05_013
crossref_primary_10_1016_j_biomaterials_2007_05_003
crossref_primary_10_1016_j_actbio_2007_07_003
crossref_primary_10_3390_jfb1010022
crossref_primary_10_4028_www_scientific_net_KEM_280_283_1515
crossref_primary_10_1111_j_1524_4725_2007_33350_x
crossref_primary_10_1016_j_ceramint_2007_05_016
crossref_primary_10_1111_ijac_12664
crossref_primary_10_1111_j_1551_2916_2011_05031_x
crossref_primary_10_1007_s10856_016_5706_5
crossref_primary_10_1177_0885328218783585
crossref_primary_10_1016_S0945_053X_03_00012_X
crossref_primary_10_1007_s41779_019_00317_7
crossref_primary_10_1097_00001433_200010000_00010
crossref_primary_10_1007_s10853_006_0113_9
crossref_primary_10_1016_j_biomaterials_2005_05_093
crossref_primary_10_1016_j_biomaterials_2006_01_007
crossref_primary_10_4028_www_scientific_net_KEM_361_363_67
crossref_primary_10_1016_j_bioactmat_2021_03_006
crossref_primary_10_1016_j_matlet_2015_10_047
crossref_primary_10_1002_jbm_1213
crossref_primary_10_1016_j_actbio_2013_11_014
crossref_primary_10_1016_j_actbio_2012_03_012
crossref_primary_10_1016_j_ejpb_2017_10_012
crossref_primary_10_1016_j_ceramint_2020_06_168
crossref_primary_10_1016_j_msec_2004_08_006
crossref_primary_10_1021_jp0519823
crossref_primary_10_1002_jcb_20754
crossref_primary_10_1590_S1516_14392011005000065
crossref_primary_10_1016_j_matchar_2011_10_013
crossref_primary_10_1016_j_solidstatesciences_2003_12_007
crossref_primary_10_1098_rsfs_2012_0012
crossref_primary_10_1134_S0020168508020234
crossref_primary_10_1007_s10856_007_3306_0
crossref_primary_10_1016_j_biomaterials_2004_10_013
crossref_primary_10_4139_sfj_62_630
crossref_primary_10_1007_s10853_006_1467_8
crossref_primary_10_1016_j_bsecv_2017_05_001
crossref_primary_10_1007_s11172_005_0220_9
crossref_primary_10_1016_j_ceramint_2006_04_001
crossref_primary_10_1016_j_ceramint_2018_06_071
crossref_primary_10_1016_j_actbio_2019_10_033
crossref_primary_10_1590_S1516_14392012005000087
crossref_primary_10_1016_j_biomaterials_2009_11_050
crossref_primary_10_1089_ten_2006_0015
crossref_primary_10_1902_jop_2006_77_1_39
crossref_primary_10_4262_denkiseiko_79_229
crossref_primary_10_1016_j_actbio_2012_11_029
crossref_primary_10_1016_j_eurpolymj_2018_08_036
crossref_primary_10_1016_j_biomaterials_2009_08_007
crossref_primary_10_1002_adhm_201700612
crossref_primary_10_4028_www_scientific_net_KEM_377_19
crossref_primary_10_1179_1753555714Y_0000000221
crossref_primary_10_1586_17434440_2_1_87
crossref_primary_10_4161_biom_18790
crossref_primary_10_1016_j_matchar_2010_04_010
crossref_primary_10_1557_PROC_711_FF1_10_1
crossref_primary_10_4028_www_scientific_net_JBBTE_4_27
crossref_primary_10_1177_0885328218808038
crossref_primary_10_1038_srep10677
crossref_primary_10_1016_j_msec_2013_11_019
crossref_primary_10_1007_s10856_006_0538_3
crossref_primary_10_1016_j_actbio_2006_06_004
crossref_primary_10_4028_www_scientific_net_AMR_535_537_1104
crossref_primary_10_1016_j_msec_2013_03_024
crossref_primary_10_1016_j_mseb_2011_08_007
crossref_primary_10_1038_35102181
crossref_primary_10_1097_00042728_200712001_00002
crossref_primary_10_1007_s10856_006_8942_2
crossref_primary_10_1007_s10856_012_4744_x
crossref_primary_10_1557_PROC_550_313
crossref_primary_10_1007_s10853_005_5532_5
crossref_primary_10_1016_j_msec_2017_08_016
crossref_primary_10_1098_rsif_2015_0190
crossref_primary_10_1063_1_1829995
crossref_primary_10_1134_1_1359830
crossref_primary_10_1007_s10904_020_01479_9
crossref_primary_10_1016_j_actbio_2011_09_003
crossref_primary_10_1016_S0142_9612_01_00320_9
crossref_primary_10_1016_j_msec_2013_05_043
crossref_primary_10_4028_www_scientific_net_KEM_361_363_199
crossref_primary_10_1089_ten_tec_2012_0576
crossref_primary_10_1063_1_2178800
crossref_primary_10_1016_j_ceramint_2015_05_006
crossref_primary_10_1002_jbm_b_30352
crossref_primary_10_1007_s10856_007_0172_8
crossref_primary_10_4028_www_scientific_net_KEM_284_286_419
crossref_primary_10_36410_jcpr_2019_20_1_99
crossref_primary_10_1039_C2BM00108J
crossref_primary_10_1016_j_ceramint_2013_01_006
crossref_primary_10_4028_www_scientific_net_KEM_396_398_201
crossref_primary_10_1016_j_biomaterials_2004_09_005
crossref_primary_10_1243_09544119JEIM513
crossref_primary_10_1155_2012_730693
crossref_primary_10_1016_j_actbio_2011_11_021
crossref_primary_10_1016_j_msec_2012_02_006
crossref_primary_10_1163_156856207780852578
crossref_primary_10_4236_jbnb_2018_91003
crossref_primary_10_3390_ma2020399
crossref_primary_10_1089_ten_2007_13_ft_314
crossref_primary_10_1002_mawe_200600007
crossref_primary_10_1002_jbm_b_30385
crossref_primary_10_1007_s10856_009_3852_8
crossref_primary_10_1007_BF02885415
crossref_primary_10_1016_S0142_9612_00_00139_3
crossref_primary_10_1021_cm702928h
crossref_primary_10_1016_S0142_9612_02_00327_7
crossref_primary_10_1111_jace_12059
crossref_primary_10_4028_www_scientific_net_JBBTE_18_61
crossref_primary_10_2109_jcersj2_119_266
crossref_primary_10_1016_j_ceramint_2015_02_084
crossref_primary_10_1016_j_msec_2011_07_009
crossref_primary_10_1111_prd_12551
crossref_primary_10_1016_j_ceramint_2016_01_062
crossref_primary_10_1016_j_biomaterials_2010_01_002
crossref_primary_10_1007_s10856_007_3044_3
crossref_primary_10_1016_j_ceramint_2017_09_208
crossref_primary_10_1016_j_actbio_2013_03_011
ContentType Journal Article
Copyright 1999 Elsevier Science Ltd
1999 INIST-CNRS
Copyright_xml – notice: 1999 Elsevier Science Ltd
– notice: 1999 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F28
FR3
7X8
DOI 10.1016/S0142-9612(99)00086-1
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 1741
ExternalDocumentID 428940
10_1016_S0142_9612_99_00086_1
10503974
1951599
S0142961299000861
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJUYK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAPBV
ABPIF
ABPTK
IQODW
AAHBH
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F28
FR3
7X8
ID FETCH-LOGICAL-c518t-aa5bdeca8c1d5014b472c9d16fec9d35670191d1795a83ceeac7cfd962d4712c3
IEDL.DBID AIKHN
ISSN 0142-9612
IngestDate Fri Oct 25 03:37:33 EDT 2024
Fri Oct 25 11:44:06 EDT 2024
Fri Oct 25 07:54:36 EDT 2024
Thu Sep 26 19:42:21 EDT 2024
Sat Sep 28 08:39:21 EDT 2024
Sun Oct 29 17:07:03 EDT 2023
Fri Feb 23 02:27:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Tricalcium phosphate
Resorbable
Hydroxyapatite
Osteoclast
Orthopedics
Bioceramic
Orthopedic surgery
Phase composition
Manufacturing process
Calcium phosphate
System design
Properties of materials
Absorbable
Biomaterial
Ceramic materials
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-aa5bdeca8c1d5014b472c9d16fec9d35670191d1795a83ceeac7cfd962d4712c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
PMID 10503974
PQID 21369978
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_70786829
proquest_miscellaneous_27117511
proquest_miscellaneous_21369978
crossref_primary_10_1016_S0142_9612_99_00086_1
pubmed_primary_10503974
pascalfrancis_primary_1951599
elsevier_sciencedirect_doi_10_1016_S0142_9612_99_00086_1
PublicationCentury 1900
PublicationDate 1999-09-01
PublicationDateYYYYMMDD 1999-09-01
PublicationDate_xml – month: 09
  year: 1999
  text: 1999-09-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 1999
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Cotell, Conklin, Auyeung, Wong, Klapperich, Spector (BIB9) 1996; 414
Dickens, Schroeder, Brown (BIB39) 1974; 10
Qiu Q. Fabrication and evaluation of the bioactivity of calcium hydroxyapatite films. M.Sc. Thesis, Queen's University, 1992.
Griswold E, Langstaff S. Transmission electron microscopy of calcium phosphate thin films. Unpublished.
Labarther J, Bonel G, Montel G. Ann Chim (Paris) 1973;14th Series 8:289–301.
Welch J, Gutt W. J Chem Soc 1961:4442–4.
Ito, Ooi (BIB18) 1990
Shannon (BIB37) 1976; 32
Driessens F, Verbeeck R, editors. Biominerals. Boston: CRC Press, 1990.
LeGeros, Daculsi (BIB20) 1990
Langstaff S, Sayer M, Smith T, Pugh S. Resorbable synthetic bone grafts formed from a silicon-stabilized calcium phosphate bioceramic. Mat Res Soc Symp Proc 1998 (Symposium II, Paper 3.9).
Shurvell H, Hesp S. 1997, personal communication.
Davies, Shapiro, Lowenberg (BIB2) 1993; 3
Tofe, Brewster, Bowerman (BIB6) 1994
Nurse R, Welch J, Gutt W. High-temperature phase equilibria in the system dicalcium silicate-TCP. J Chem Soc 1959:1077–83.
Tolman, Laney (BIB7) 1993; 68
Ohgushi, Okumura, Tamai, Shors, Caplan (BIB19) 1990; 24
JCPDS-International Centre for Diffraction Data, and American Society for Testing and Materials. Powder diffraction file (inorganic and organic). Swarthmore, PA, 1991.
Elliott (BIB13) 1994
Gerhart, Miller, Kleshinski, Hayes (BIB4) 1988; 22
Clark, Lunacek, Benedek (BIB26) 1970; 38
Bale CW, Pelton AD, Thompson WT. FACT Database. [computer program]. Facility for the analysis of chemical thermodynamics, royal military college of Canada, Kingston, Ontario, 1997.
Davies C, Langstaff S, Sayer M, Smith T, Pugh S. Titanium doping of calcium phosphates: effect of carrier and dopant concentration on phase composition and ceramic morphology. Unpublished.
Mathew, Schroeder, Dickens, Brown (BIB42) 1977; 33
Santos, Clayton (BIB15) 1995; 80
Brown, Mathew, Tung (BIB12) 1981; 4
Calvo, Gopal (BIB41) 1975; 60
Qiu, Vincent, Lowenberg, Sayer, Davies (BIB21) 1993; 3
Meyer, Fowler (BIB14) 1997; 21
Elliott (BIB38) 1971; 230
Gomi, Lowenberg, Shapiro, Davies (BIB3) 1993; 14
Langstaff, Sayer, Weaver, Pugh, Smith (BIB23) 1996; 414
Langstaff S, Sayer M, Pugh S, Smith T. Resorbable bioceramics based on stabilized calcium phosphates—Part II: evaluation of biological response. Unpublished.
Yamashita, Arashi, Kitagaki, Yamada, Umegaki (BIB10) 1994; 77
Schroeder, Dickens, Brown (BIB31) 1977; 22
Millenium Biologix Inc. Assessment of bone cell activity. Patent. WP 94/26872. PCT/CA94/00285. Date filed: 18 May 1994.
Levitt, Crayton, Monroe, Condrate (BIB8) 1969; 3
Schumacher (BIB27) 1986; 54
Brown, Fulmer (BIB17) 1991; 74
Dickens, Brown (BIB33) 1972; 28
Brown, Hocker, Hoyle (BIB16) 1991; 74
Kurashina, Kurita, Hirano, deBlieck, Klein, deGroot (BIB5) 1995; 6
References_xml – volume: 3
  start-page: 351
  year: 1993
  end-page: 360
  ident: BIB21
  article-title: Bone growth on sol–gel calcium phosphate thin films in vitro
  publication-title: Cells Mater
  contributor:
    fullname: Davies
– start-page: 9
  year: 1994
  end-page: 15
  ident: BIB6
  article-title: Characterization and performance of calcium phosphate coatings for implants.
  contributor:
    fullname: Bowerman
– volume: 3
  start-page: 683
  year: 1969
  end-page: 685
  ident: BIB8
  article-title: Forming method for apatite prostheses
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Condrate
– volume: 60
  start-page: 120
  year: 1975
  end-page: 133
  ident: BIB41
  publication-title: Am Miner
  contributor:
    fullname: Gopal
– volume: 24
  start-page: 1563
  year: 1990
  end-page: 1570
  ident: BIB19
  article-title: Marrow cell induced osteogenesis in porous HA and TCP: a comparative histomorphometric study of ectopic bone formation
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Caplan
– volume: 68
  start-page: 323
  year: 1993
  end-page: 331
  ident: BIB7
  article-title: Tissue-integrated dental prostheses: the first 78 months of experience at the Mayo Clinic
  publication-title: Mayo Clin Proc
  contributor:
    fullname: Laney
– volume: 21
  start-page: 3029
  year: 1997
  end-page: 3035
  ident: BIB14
  publication-title: Inorg Chem
  contributor:
    fullname: Fowler
– volume: 54
  start-page: 137
  year: 1986
  end-page: 141
  ident: BIB27
  article-title: Brownian motion by light scattering revisited
  publication-title: Am J Phys
  contributor:
    fullname: Schumacher
– volume: 32
  start-page: 751
  year: 1976
  ident: BIB37
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr A
  contributor:
    fullname: Shannon
– volume: 33
  start-page: 1325
  year: 1977
  end-page: 1333
  ident: BIB42
  article-title: The crystal structure of
  publication-title: Acta Crystallogr B
  contributor:
    fullname: Brown
– volume: 6
  start-page: 340
  year: 1995
  end-page: 347
  ident: BIB5
  article-title: Calcium phosphate cement
  publication-title: J Mater Sci Mater Med
  contributor:
    fullname: deGroot
– volume: 77
  start-page: 2401
  year: 1994
  end-page: 2407
  ident: BIB10
  article-title: Preparation of apatite thin films through rf-sputtering from calcium phosphate glasses
  publication-title: J Am Ceram Soc
  contributor:
    fullname: Umegaki
– volume: 414
  start-page: 87
  year: 1996
  end-page: 92
  ident: BIB23
  article-title: Thin film phosphate based bioactive substrates
  publication-title: Mat Res Soc Symp Proc
  contributor:
    fullname: Smith
– year: 1990
  ident: BIB20
  article-title: CRC handbook of bioactive ceramics
  contributor:
    fullname: Daculsi
– volume: 14
  start-page: 91
  year: 1993
  end-page: 96
  ident: BIB3
  article-title: Resorption of sintered synthetic HA by osteoclasts in vitro
  publication-title: Biomaterials
  contributor:
    fullname: Davies
– year: 1994
  ident: BIB13
  article-title: Structure and chemistry of the apatites and other calcium orthophosphates
  contributor:
    fullname: Elliott
– volume: 10
  start-page: 232
  year: 1974
  end-page: 248
  ident: BIB39
  publication-title: J Solid State Chem
  contributor:
    fullname: Brown
– volume: 4
  start-page: 59
  year: 1981
  end-page: 87
  ident: BIB12
  publication-title: Prog Crystal Growth Charact
  contributor:
    fullname: Tung
– volume: 74
  start-page: 934
  year: 1991
  end-page: 940
  ident: BIB17
  article-title: Kinetics of HA formation at low temperature
  publication-title: J Am Ceram Soc
  contributor:
    fullname: Fulmer
– volume: 22
  start-page: 1071
  year: 1988
  end-page: 1082
  ident: BIB4
  article-title: In vitro characterization and biomechanical optimization of a biodegradable particulate composite bone cement
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Hayes
– volume: 80
  start-page: 336
  year: 1995
  end-page: 344
  ident: BIB15
  article-title: The carbonate content in high-temperature apatite: an analytical method applied to apatite from the Jacupiranga alkaline complex
  publication-title: Amer Mineral
  contributor:
    fullname: Clayton
– volume: 22
  start-page: 253
  year: 1977
  end-page: 262
  ident: BIB31
  publication-title: J Solid State Chem
  contributor:
    fullname: Brown
– volume: 230
  start-page: 72
  year: 1971
  ident: BIB38
  article-title: Monoclinic space group of HA
  publication-title: Nature Phys Sci
  contributor:
    fullname: Elliott
– volume: 74
  start-page: 1848
  year: 1991
  end-page: 1854
  ident: BIB16
  article-title: Variations in solution chemistry during the low-temperature formation of HA
  publication-title: J Am Ceram Soc
  contributor:
    fullname: Hoyle
– start-page: 39
  year: 1990
  end-page: 51
  ident: BIB18
  article-title: CRC handbook of bioactive ceramics
  contributor:
    fullname: Ooi
– volume: 3
  start-page: 245
  year: 1993
  end-page: 256
  ident: BIB2
  article-title: Osteoclastic resorption of calcium phosphate ceramic thin films
  publication-title: Cells Mater
  contributor:
    fullname: Lowenberg
– volume: 414
  start-page: 171
  year: 1996
  end-page: 182
  ident: BIB9
  article-title: In vivo evaluation of pulsed laser deposited HA coating for prosthesis-bone bonding
  publication-title: Mat Res Soc Symp Proc
  contributor:
    fullname: Spector
– volume: 38
  start-page: 575
  year: 1970
  end-page: 585
  ident: BIB26
  article-title: A study of Brownian motion using light scattering
  publication-title: Am J Phys
  contributor:
    fullname: Benedek
– volume: 28
  start-page: 3056
  year: 1972
  end-page: 3065
  ident: BIB33
  publication-title: Acta Crystallogr B
  contributor:
    fullname: Brown
SSID ssj0014042
Score 2.0577724
SecondaryResourceType review_article
Snippet It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In...
This paper reports how resorbable calcium phosphate-based thin films and bulk ceramics were created by the high-temperature processing of a fine precipitate,...
SourceID proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1727
SubjectTerms Bioceramic
Biocompatible Materials - chemistry
Biological and medical sciences
Bone
Bone Remodeling
Bone Substitutes - chemistry
Calcium compounds
Calcium Phosphates - chemistry
Ceramic materials
Durapatite - chemistry
Fourier transform infrared spectroscopy
High temperature effects
Humans
Hydroxyapatite
Medical sciences
Orthopedics
Osteoclast
Osteoclasts - metabolism
Phase composition
Precipitation (chemical)
Reference Standards
Resorbable
Spectrophotometry, Infrared
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Thin films
Tricalcium phosphate
X ray diffraction analysis
X-Ray Diffraction
Title Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization
URI https://dx.doi.org/10.1016/S0142-9612(99)00086-1
https://www.ncbi.nlm.nih.gov/pubmed/10503974
https://search.proquest.com/docview/21369978
https://search.proquest.com/docview/27117511
https://search.proquest.com/docview/70786829
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2_b9QwFLZKKyFQhaBQaGmLBwaQyF3sOIndraqorqBWDFTqZjm2o95ALkruFgZm_mzes3PtdbhWYopi-UfsZ_v7Yj9_JuRjWaamzr1IRM1sIqSCeZC7LCmUq1gts8wF-eKLy2JyJb5d59cb5HR5FgbdKoe5P87pYbYeQsZDa47b6XSMbklcAUArFYg5_AJtARxx6NpbJ-ffJ5e3mwkiDXfoYPwEE9wd5ImZhMBPSn0O-SRsHURtt6aHhqvjjRfrKWmAprOX5MXAKelJ_OxXZMM3O-T5itLgDnl6MeyhvyZ_ccW-q_DIFK2mAF8dXknfU8QzR2cNBb6IHrO_4Q2-w04Xv2h7M-vbG6SlI_oDmoeeH9NuWEakLjiBfKG9QaVh2nY-6olDVqZxFChx6OXU3mpDx6Ofb8jV2defp5NkuI8hsTmT88SYvHLeGmmZw-3ISpTcKseK2sMjywuUdmcOhnhuZAboa2xpa6cK7gACuc12yWYza_w7Qn3qKln6zJjCCukqpXgpnbJCpBYIB9sjo6UJdBtlN_SqPxrXaDOtlA4205BALg2l7_UfDdDwWNLDe4a9K1Ah2VN75MPS0BrGHm6omMbPFr3mLCsU_IY_EKNEKVTG1sdAtaVCcijlbexDK_XNU2CLYv__q_aePIsyE-gTd0A2593CHwKJmldH5MnoDzsahso_5TUZAA
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQk8amCW3sA8YYPnDYpKWtHSexd5vQUNko2gEkbpZjO6KHpVHSXjhw5s_ee3YK5dBN2imK5e9n-_1sv_czIUdFMTJV5kUiKmYTIRWsg9ylSa5cySqZpi7QF0_O8_Gl-HGVXW2Q46UvDJpV9mt_XNPDat2HDPveHDbT6RDNkrgCBa1UAOawBXoikG4cBvXg9t7OA-ljeLRj5AlGf3DjiVmEwE9KfQ65JGydgnrRmA66rYrvXawHpEExnbwk2z2ipN9ipV-RDV_vkOcrPIM75Omkv0F_Te7wvL4t0WGKllNQXi0-SN9R1GaOzmoKaBHtZW_gD-php4vftLmedc01gtIB_QWdQ0-_0rY_RKQumIB8oZ1BnmHatD6yiUNWpnYUAHEY49TeM0NHx8835PLk-8XxOOlfY0hsxuQ8MSYrnbdGWubwMrIUBbfKsbzy8EmzHIndmYMJnhmZgu41trCVUzl3oAC5Td-SzXpW-11C_ciVsvCpMbkV0pVK8UI6ZYUYWYAbbI8MliLQTSTd0KvWaFyjzLRSOshMQwK5FJR-NHo0KIZ_JT14JNiHAhVCPbVHDpeC1jDz8DrF1H626DRnaa5gE_6XGAUSoTK2PgZyLeWSQynv4hhaaW82Aqwo3v9_0w7J1vhicqbPTs9_7pNnkXACreM-kM15u_AHAKfm5ccwXf4AcpsZ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resorbable+bioceramics+based+on+stabilized+calcium+phosphates.+Part+I%3A+rational+design%2C+sample+preparation+and+material+characterization&rft.jtitle=Biomaterials&rft.au=Langstaff%2C+S&rft.au=Sayer%2C+M&rft.au=Smith%2C+T+J&rft.au=Pugh%2C+S+M&rft.date=1999-09-01&rft.issn=0142-9612&rft.volume=20&rft.issue=18&rft.spage=1727&rft_id=info:doi/10.1016%2FS0142-9612%2899%2900086-1&rft_id=info%3Apmid%2F10503974&rft.externalDocID=10503974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon