Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization
It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed...
Saved in:
Published in | Biomaterials Vol. 20; no. 18; pp. 1727 - 1741 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.1999
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2–1
μm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure. |
---|---|
AbstractList | This paper reports how resorbable calcium phosphate-based thin films and bulk ceramics were created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The paper also describes the phase composition and microporous morphology of their bioceramics; and shows how their crsytallographic features are linked through the glaserite form of the apatite structure. (Original abstract - amended) It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2–1 μm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure. It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1 microm in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure. It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In particular, an ideal bone-biomaterial would support the activity of osteoblasts in the development of new bone, while simultaneously being resorbed by osteoclasts as part of the lifelong orderly process of bone remodelling. Such resorbable calcium phosphate-based thin films and bulk ceramics have now been created by the high-temperature processing of a fine precipitate, formed from a colloidal sol and stabilized using an additive such as silicon. The materials have two characteristics features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1 mu m in diameter). X-ray diffraction, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and light scattering experiments indicate that the characteristic phase composition arises during sintering through substitution reactions where silicon enters the calcium phosphate lattice under conditions of high chemical reactivity. The crystallographic features are linked through the glaserite form of the apatite structure. |
Author | Langstaff, S. Smith, T.J.N. Hesp, S.A.M. Sayer, M. Thompson, W.T. Pugh, S.M. |
Author_xml | – sequence: 1 givenname: S. surname: Langstaff fullname: Langstaff, S. email: sarah@physics.queensu.ca organization: Department of Physics, Queen's University, Stirling Hall, Rm 206A, Kingston, Ont., Canada K7L 3N6 – sequence: 2 givenname: M. surname: Sayer fullname: Sayer, M. organization: Department of Physics, Queen's University, Stirling Hall, Rm 206A, Kingston, Ont., Canada K7L 3N6 – sequence: 3 givenname: T.J.N. surname: Smith fullname: Smith, T.J.N. organization: Millenium Biologix Inc., Kingston, Ont., Canada – sequence: 4 givenname: S.M. surname: Pugh fullname: Pugh, S.M. organization: Millenium Biologix Inc., Kingston, Ont., Canada – sequence: 5 givenname: S.A.M. surname: Hesp fullname: Hesp, S.A.M. organization: Department of Chemistry, Queen's University, Kingston, Ont., Canada – sequence: 6 givenname: W.T. surname: Thompson fullname: Thompson, W.T. organization: Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ont., Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1951599$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10503974$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtu1DAQhi1URLeFRwD5AqEikeJJ4jjmBlUVh0qVQByurYk9YY1yws4i0SfgsXE2K-Bur0a_55uT_zN2MowDMfYYxCUIqF5-FlDmma4gv9D6uRCirjK4xzZQqzqTWsgTtvmLnLKzGL-LpEWZP2CnIKQotCo37PcnimNosOmIN360FLD3NvIGIzk-DjzO2PjO3yVlsbN-1_NpO8ZpizPFS_4Rw8xvXvGAsx8H7Lij6L8NL3jEfko9p0ATrkmOg-N9Kgs-cXabnu0i7vbZh-x-i12kR4d4zr6-ffPl-n12--HdzfXVbWYl1HOGKBtHFmsLTqZ7mlLlVjuoWkqhkJUSoMGB0hLrwhKhVbZ1uspdqSC3xTl7tvadwvhjR3E2vY-Wug4HGnfRKKHqqs71UTBXAEoCHAehqLRWdQLlCtowxhioNVPwPYZfBoRZTDV7U83imNHa7E01y4AnhwG7pif3X9XqYgKeHgCMyaQ24GB9_MdpCVIvF71eMUr_-9NTMNF6Giw5H8jOxo3-yCZ_AELjwm8 |
CitedBy_id | crossref_primary_10_1039_C6RA19154A crossref_primary_10_1016_j_mad_2004_08_031 crossref_primary_10_1080_21870764_2022_2053278 crossref_primary_10_1016_j_matlet_2006_12_046 crossref_primary_10_1016_j_materresbull_2008_05_013 crossref_primary_10_1016_j_biomaterials_2007_05_003 crossref_primary_10_1016_j_actbio_2007_07_003 crossref_primary_10_3390_jfb1010022 crossref_primary_10_4028_www_scientific_net_KEM_280_283_1515 crossref_primary_10_1111_j_1524_4725_2007_33350_x crossref_primary_10_1016_j_ceramint_2007_05_016 crossref_primary_10_1111_ijac_12664 crossref_primary_10_1111_j_1551_2916_2011_05031_x crossref_primary_10_1007_s10856_016_5706_5 crossref_primary_10_1177_0885328218783585 crossref_primary_10_1016_S0945_053X_03_00012_X crossref_primary_10_1007_s41779_019_00317_7 crossref_primary_10_1097_00001433_200010000_00010 crossref_primary_10_1007_s10853_006_0113_9 crossref_primary_10_1016_j_biomaterials_2005_05_093 crossref_primary_10_1016_j_biomaterials_2006_01_007 crossref_primary_10_4028_www_scientific_net_KEM_361_363_67 crossref_primary_10_1016_j_bioactmat_2021_03_006 crossref_primary_10_1016_j_matlet_2015_10_047 crossref_primary_10_1002_jbm_1213 crossref_primary_10_1016_j_actbio_2013_11_014 crossref_primary_10_1016_j_actbio_2012_03_012 crossref_primary_10_1016_j_ejpb_2017_10_012 crossref_primary_10_1016_j_ceramint_2020_06_168 crossref_primary_10_1016_j_msec_2004_08_006 crossref_primary_10_1021_jp0519823 crossref_primary_10_1002_jcb_20754 crossref_primary_10_1590_S1516_14392011005000065 crossref_primary_10_1016_j_matchar_2011_10_013 crossref_primary_10_1016_j_solidstatesciences_2003_12_007 crossref_primary_10_1098_rsfs_2012_0012 crossref_primary_10_1134_S0020168508020234 crossref_primary_10_1007_s10856_007_3306_0 crossref_primary_10_1016_j_biomaterials_2004_10_013 crossref_primary_10_4139_sfj_62_630 crossref_primary_10_1007_s10853_006_1467_8 crossref_primary_10_1016_j_bsecv_2017_05_001 crossref_primary_10_1007_s11172_005_0220_9 crossref_primary_10_1016_j_ceramint_2006_04_001 crossref_primary_10_1016_j_ceramint_2018_06_071 crossref_primary_10_1016_j_actbio_2019_10_033 crossref_primary_10_1590_S1516_14392012005000087 crossref_primary_10_1016_j_biomaterials_2009_11_050 crossref_primary_10_1089_ten_2006_0015 crossref_primary_10_1902_jop_2006_77_1_39 crossref_primary_10_4262_denkiseiko_79_229 crossref_primary_10_1016_j_actbio_2012_11_029 crossref_primary_10_1016_j_eurpolymj_2018_08_036 crossref_primary_10_1016_j_biomaterials_2009_08_007 crossref_primary_10_1002_adhm_201700612 crossref_primary_10_4028_www_scientific_net_KEM_377_19 crossref_primary_10_1179_1753555714Y_0000000221 crossref_primary_10_1586_17434440_2_1_87 crossref_primary_10_4161_biom_18790 crossref_primary_10_1016_j_matchar_2010_04_010 crossref_primary_10_1557_PROC_711_FF1_10_1 crossref_primary_10_4028_www_scientific_net_JBBTE_4_27 crossref_primary_10_1177_0885328218808038 crossref_primary_10_1038_srep10677 crossref_primary_10_1016_j_msec_2013_11_019 crossref_primary_10_1007_s10856_006_0538_3 crossref_primary_10_1016_j_actbio_2006_06_004 crossref_primary_10_4028_www_scientific_net_AMR_535_537_1104 crossref_primary_10_1016_j_msec_2013_03_024 crossref_primary_10_1016_j_mseb_2011_08_007 crossref_primary_10_1038_35102181 crossref_primary_10_1097_00042728_200712001_00002 crossref_primary_10_1007_s10856_006_8942_2 crossref_primary_10_1007_s10856_012_4744_x crossref_primary_10_1557_PROC_550_313 crossref_primary_10_1007_s10853_005_5532_5 crossref_primary_10_1016_j_msec_2017_08_016 crossref_primary_10_1098_rsif_2015_0190 crossref_primary_10_1063_1_1829995 crossref_primary_10_1134_1_1359830 crossref_primary_10_1007_s10904_020_01479_9 crossref_primary_10_1016_j_actbio_2011_09_003 crossref_primary_10_1016_S0142_9612_01_00320_9 crossref_primary_10_1016_j_msec_2013_05_043 crossref_primary_10_4028_www_scientific_net_KEM_361_363_199 crossref_primary_10_1089_ten_tec_2012_0576 crossref_primary_10_1063_1_2178800 crossref_primary_10_1016_j_ceramint_2015_05_006 crossref_primary_10_1002_jbm_b_30352 crossref_primary_10_1007_s10856_007_0172_8 crossref_primary_10_4028_www_scientific_net_KEM_284_286_419 crossref_primary_10_36410_jcpr_2019_20_1_99 crossref_primary_10_1039_C2BM00108J crossref_primary_10_1016_j_ceramint_2013_01_006 crossref_primary_10_4028_www_scientific_net_KEM_396_398_201 crossref_primary_10_1016_j_biomaterials_2004_09_005 crossref_primary_10_1243_09544119JEIM513 crossref_primary_10_1155_2012_730693 crossref_primary_10_1016_j_actbio_2011_11_021 crossref_primary_10_1016_j_msec_2012_02_006 crossref_primary_10_1163_156856207780852578 crossref_primary_10_4236_jbnb_2018_91003 crossref_primary_10_3390_ma2020399 crossref_primary_10_1089_ten_2007_13_ft_314 crossref_primary_10_1002_mawe_200600007 crossref_primary_10_1002_jbm_b_30385 crossref_primary_10_1007_s10856_009_3852_8 crossref_primary_10_1007_BF02885415 crossref_primary_10_1016_S0142_9612_00_00139_3 crossref_primary_10_1021_cm702928h crossref_primary_10_1016_S0142_9612_02_00327_7 crossref_primary_10_1111_jace_12059 crossref_primary_10_4028_www_scientific_net_JBBTE_18_61 crossref_primary_10_2109_jcersj2_119_266 crossref_primary_10_1016_j_ceramint_2015_02_084 crossref_primary_10_1016_j_msec_2011_07_009 crossref_primary_10_1111_prd_12551 crossref_primary_10_1016_j_ceramint_2016_01_062 crossref_primary_10_1016_j_biomaterials_2010_01_002 crossref_primary_10_1007_s10856_007_3044_3 crossref_primary_10_1016_j_ceramint_2017_09_208 crossref_primary_10_1016_j_actbio_2013_03_011 |
ContentType | Journal Article |
Copyright | 1999 Elsevier Science Ltd 1999 INIST-CNRS |
Copyright_xml | – notice: 1999 Elsevier Science Ltd – notice: 1999 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F28 FR3 7X8 |
DOI | 10.1016/S0142-9612(99)00086-1 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-5905 |
EndPage | 1741 |
ExternalDocumentID | 428940 10_1016_S0142_9612_99_00086_1 10503974 1951599 S0142961299000861 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJUYK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAPBV ABPIF ABPTK IQODW AAHBH AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F28 FR3 7X8 |
ID | FETCH-LOGICAL-c518t-aa5bdeca8c1d5014b472c9d16fec9d35670191d1795a83ceeac7cfd962d4712c3 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Fri Oct 25 03:37:33 EDT 2024 Fri Oct 25 11:44:06 EDT 2024 Fri Oct 25 07:54:36 EDT 2024 Thu Sep 26 19:42:21 EDT 2024 Sat Sep 28 08:39:21 EDT 2024 Sun Oct 29 17:07:03 EDT 2023 Fri Feb 23 02:27:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Tricalcium phosphate Resorbable Hydroxyapatite Osteoclast Orthopedics Bioceramic Orthopedic surgery Phase composition Manufacturing process Calcium phosphate System design Properties of materials Absorbable Biomaterial Ceramic materials |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-aa5bdeca8c1d5014b472c9d16fec9d35670191d1795a83ceeac7cfd962d4712c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Feature-3 ObjectType-Review-1 |
PMID | 10503974 |
PQID | 21369978 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_70786829 proquest_miscellaneous_27117511 proquest_miscellaneous_21369978 crossref_primary_10_1016_S0142_9612_99_00086_1 pubmed_primary_10503974 pascalfrancis_primary_1951599 elsevier_sciencedirect_doi_10_1016_S0142_9612_99_00086_1 |
PublicationCentury | 1900 |
PublicationDate | 1999-09-01 |
PublicationDateYYYYMMDD | 1999-09-01 |
PublicationDate_xml | – month: 09 year: 1999 text: 1999-09-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 1999 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Cotell, Conklin, Auyeung, Wong, Klapperich, Spector (BIB9) 1996; 414 Dickens, Schroeder, Brown (BIB39) 1974; 10 Qiu Q. Fabrication and evaluation of the bioactivity of calcium hydroxyapatite films. M.Sc. Thesis, Queen's University, 1992. Griswold E, Langstaff S. Transmission electron microscopy of calcium phosphate thin films. Unpublished. Labarther J, Bonel G, Montel G. Ann Chim (Paris) 1973;14th Series 8:289–301. Welch J, Gutt W. J Chem Soc 1961:4442–4. Ito, Ooi (BIB18) 1990 Shannon (BIB37) 1976; 32 Driessens F, Verbeeck R, editors. Biominerals. Boston: CRC Press, 1990. LeGeros, Daculsi (BIB20) 1990 Langstaff S, Sayer M, Smith T, Pugh S. Resorbable synthetic bone grafts formed from a silicon-stabilized calcium phosphate bioceramic. Mat Res Soc Symp Proc 1998 (Symposium II, Paper 3.9). Shurvell H, Hesp S. 1997, personal communication. Davies, Shapiro, Lowenberg (BIB2) 1993; 3 Tofe, Brewster, Bowerman (BIB6) 1994 Nurse R, Welch J, Gutt W. High-temperature phase equilibria in the system dicalcium silicate-TCP. J Chem Soc 1959:1077–83. Tolman, Laney (BIB7) 1993; 68 Ohgushi, Okumura, Tamai, Shors, Caplan (BIB19) 1990; 24 JCPDS-International Centre for Diffraction Data, and American Society for Testing and Materials. Powder diffraction file (inorganic and organic). Swarthmore, PA, 1991. Elliott (BIB13) 1994 Gerhart, Miller, Kleshinski, Hayes (BIB4) 1988; 22 Clark, Lunacek, Benedek (BIB26) 1970; 38 Bale CW, Pelton AD, Thompson WT. FACT Database. [computer program]. Facility for the analysis of chemical thermodynamics, royal military college of Canada, Kingston, Ontario, 1997. Davies C, Langstaff S, Sayer M, Smith T, Pugh S. Titanium doping of calcium phosphates: effect of carrier and dopant concentration on phase composition and ceramic morphology. Unpublished. Mathew, Schroeder, Dickens, Brown (BIB42) 1977; 33 Santos, Clayton (BIB15) 1995; 80 Brown, Mathew, Tung (BIB12) 1981; 4 Calvo, Gopal (BIB41) 1975; 60 Qiu, Vincent, Lowenberg, Sayer, Davies (BIB21) 1993; 3 Meyer, Fowler (BIB14) 1997; 21 Elliott (BIB38) 1971; 230 Gomi, Lowenberg, Shapiro, Davies (BIB3) 1993; 14 Langstaff, Sayer, Weaver, Pugh, Smith (BIB23) 1996; 414 Langstaff S, Sayer M, Pugh S, Smith T. Resorbable bioceramics based on stabilized calcium phosphates—Part II: evaluation of biological response. Unpublished. Yamashita, Arashi, Kitagaki, Yamada, Umegaki (BIB10) 1994; 77 Schroeder, Dickens, Brown (BIB31) 1977; 22 Millenium Biologix Inc. Assessment of bone cell activity. Patent. WP 94/26872. PCT/CA94/00285. Date filed: 18 May 1994. Levitt, Crayton, Monroe, Condrate (BIB8) 1969; 3 Schumacher (BIB27) 1986; 54 Brown, Fulmer (BIB17) 1991; 74 Dickens, Brown (BIB33) 1972; 28 Brown, Hocker, Hoyle (BIB16) 1991; 74 Kurashina, Kurita, Hirano, deBlieck, Klein, deGroot (BIB5) 1995; 6 |
References_xml | – volume: 3 start-page: 351 year: 1993 end-page: 360 ident: BIB21 article-title: Bone growth on sol–gel calcium phosphate thin films in vitro publication-title: Cells Mater contributor: fullname: Davies – start-page: 9 year: 1994 end-page: 15 ident: BIB6 article-title: Characterization and performance of calcium phosphate coatings for implants. contributor: fullname: Bowerman – volume: 3 start-page: 683 year: 1969 end-page: 685 ident: BIB8 article-title: Forming method for apatite prostheses publication-title: J Biomed Mater Res contributor: fullname: Condrate – volume: 60 start-page: 120 year: 1975 end-page: 133 ident: BIB41 publication-title: Am Miner contributor: fullname: Gopal – volume: 24 start-page: 1563 year: 1990 end-page: 1570 ident: BIB19 article-title: Marrow cell induced osteogenesis in porous HA and TCP: a comparative histomorphometric study of ectopic bone formation publication-title: J Biomed Mater Res contributor: fullname: Caplan – volume: 68 start-page: 323 year: 1993 end-page: 331 ident: BIB7 article-title: Tissue-integrated dental prostheses: the first 78 months of experience at the Mayo Clinic publication-title: Mayo Clin Proc contributor: fullname: Laney – volume: 21 start-page: 3029 year: 1997 end-page: 3035 ident: BIB14 publication-title: Inorg Chem contributor: fullname: Fowler – volume: 54 start-page: 137 year: 1986 end-page: 141 ident: BIB27 article-title: Brownian motion by light scattering revisited publication-title: Am J Phys contributor: fullname: Schumacher – volume: 32 start-page: 751 year: 1976 ident: BIB37 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr A contributor: fullname: Shannon – volume: 33 start-page: 1325 year: 1977 end-page: 1333 ident: BIB42 article-title: The crystal structure of publication-title: Acta Crystallogr B contributor: fullname: Brown – volume: 6 start-page: 340 year: 1995 end-page: 347 ident: BIB5 article-title: Calcium phosphate cement publication-title: J Mater Sci Mater Med contributor: fullname: deGroot – volume: 77 start-page: 2401 year: 1994 end-page: 2407 ident: BIB10 article-title: Preparation of apatite thin films through rf-sputtering from calcium phosphate glasses publication-title: J Am Ceram Soc contributor: fullname: Umegaki – volume: 414 start-page: 87 year: 1996 end-page: 92 ident: BIB23 article-title: Thin film phosphate based bioactive substrates publication-title: Mat Res Soc Symp Proc contributor: fullname: Smith – year: 1990 ident: BIB20 article-title: CRC handbook of bioactive ceramics contributor: fullname: Daculsi – volume: 14 start-page: 91 year: 1993 end-page: 96 ident: BIB3 article-title: Resorption of sintered synthetic HA by osteoclasts in vitro publication-title: Biomaterials contributor: fullname: Davies – year: 1994 ident: BIB13 article-title: Structure and chemistry of the apatites and other calcium orthophosphates contributor: fullname: Elliott – volume: 10 start-page: 232 year: 1974 end-page: 248 ident: BIB39 publication-title: J Solid State Chem contributor: fullname: Brown – volume: 4 start-page: 59 year: 1981 end-page: 87 ident: BIB12 publication-title: Prog Crystal Growth Charact contributor: fullname: Tung – volume: 74 start-page: 934 year: 1991 end-page: 940 ident: BIB17 article-title: Kinetics of HA formation at low temperature publication-title: J Am Ceram Soc contributor: fullname: Fulmer – volume: 22 start-page: 1071 year: 1988 end-page: 1082 ident: BIB4 article-title: In vitro characterization and biomechanical optimization of a biodegradable particulate composite bone cement publication-title: J Biomed Mater Res contributor: fullname: Hayes – volume: 80 start-page: 336 year: 1995 end-page: 344 ident: BIB15 article-title: The carbonate content in high-temperature apatite: an analytical method applied to apatite from the Jacupiranga alkaline complex publication-title: Amer Mineral contributor: fullname: Clayton – volume: 22 start-page: 253 year: 1977 end-page: 262 ident: BIB31 publication-title: J Solid State Chem contributor: fullname: Brown – volume: 230 start-page: 72 year: 1971 ident: BIB38 article-title: Monoclinic space group of HA publication-title: Nature Phys Sci contributor: fullname: Elliott – volume: 74 start-page: 1848 year: 1991 end-page: 1854 ident: BIB16 article-title: Variations in solution chemistry during the low-temperature formation of HA publication-title: J Am Ceram Soc contributor: fullname: Hoyle – start-page: 39 year: 1990 end-page: 51 ident: BIB18 article-title: CRC handbook of bioactive ceramics contributor: fullname: Ooi – volume: 3 start-page: 245 year: 1993 end-page: 256 ident: BIB2 article-title: Osteoclastic resorption of calcium phosphate ceramic thin films publication-title: Cells Mater contributor: fullname: Lowenberg – volume: 414 start-page: 171 year: 1996 end-page: 182 ident: BIB9 article-title: In vivo evaluation of pulsed laser deposited HA coating for prosthesis-bone bonding publication-title: Mat Res Soc Symp Proc contributor: fullname: Spector – volume: 38 start-page: 575 year: 1970 end-page: 585 ident: BIB26 article-title: A study of Brownian motion using light scattering publication-title: Am J Phys contributor: fullname: Benedek – volume: 28 start-page: 3056 year: 1972 end-page: 3065 ident: BIB33 publication-title: Acta Crystallogr B contributor: fullname: Brown |
SSID | ssj0014042 |
Score | 2.0577724 |
SecondaryResourceType | review_article |
Snippet | It has long been the goal of biomaterials research in the field of orthopedics to develop synthetic structures exhibiting comprehensive bioactivity. In... This paper reports how resorbable calcium phosphate-based thin films and bulk ceramics were created by the high-temperature processing of a fine precipitate,... |
SourceID | proquest crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1727 |
SubjectTerms | Bioceramic Biocompatible Materials - chemistry Biological and medical sciences Bone Bone Remodeling Bone Substitutes - chemistry Calcium compounds Calcium Phosphates - chemistry Ceramic materials Durapatite - chemistry Fourier transform infrared spectroscopy High temperature effects Humans Hydroxyapatite Medical sciences Orthopedics Osteoclast Osteoclasts - metabolism Phase composition Precipitation (chemical) Reference Standards Resorbable Spectrophotometry, Infrared Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Thin films Tricalcium phosphate X ray diffraction analysis X-Ray Diffraction |
Title | Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization |
URI | https://dx.doi.org/10.1016/S0142-9612(99)00086-1 https://www.ncbi.nlm.nih.gov/pubmed/10503974 https://search.proquest.com/docview/21369978 https://search.proquest.com/docview/27117511 https://search.proquest.com/docview/70786829 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV2_b9QwFLZKKyFQhaBQaGmLBwaQyF3sOIndraqorqBWDFTqZjm2o95ALkruFgZm_mzes3PtdbhWYopi-UfsZ_v7Yj9_JuRjWaamzr1IRM1sIqSCeZC7LCmUq1gts8wF-eKLy2JyJb5d59cb5HR5FgbdKoe5P87pYbYeQsZDa47b6XSMbklcAUArFYg5_AJtARxx6NpbJ-ffJ5e3mwkiDXfoYPwEE9wd5ImZhMBPSn0O-SRsHURtt6aHhqvjjRfrKWmAprOX5MXAKelJ_OxXZMM3O-T5itLgDnl6MeyhvyZ_ccW-q_DIFK2mAF8dXknfU8QzR2cNBb6IHrO_4Q2-w04Xv2h7M-vbG6SlI_oDmoeeH9NuWEakLjiBfKG9QaVh2nY-6olDVqZxFChx6OXU3mpDx6Ofb8jV2defp5NkuI8hsTmT88SYvHLeGmmZw-3ISpTcKseK2sMjywuUdmcOhnhuZAboa2xpa6cK7gACuc12yWYza_w7Qn3qKln6zJjCCukqpXgpnbJCpBYIB9sjo6UJdBtlN_SqPxrXaDOtlA4205BALg2l7_UfDdDwWNLDe4a9K1Ah2VN75MPS0BrGHm6omMbPFr3mLCsU_IY_EKNEKVTG1sdAtaVCcijlbexDK_XNU2CLYv__q_aePIsyE-gTd0A2593CHwKJmldH5MnoDzsahso_5TUZAA |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQk8amCW3sA8YYPnDYpKWtHSexd5vQUNko2gEkbpZjO6KHpVHSXjhw5s_ee3YK5dBN2imK5e9n-_1sv_czIUdFMTJV5kUiKmYTIRWsg9ylSa5cySqZpi7QF0_O8_Gl-HGVXW2Q46UvDJpV9mt_XNPDat2HDPveHDbT6RDNkrgCBa1UAOawBXoikG4cBvXg9t7OA-ljeLRj5AlGf3DjiVmEwE9KfQ65JGydgnrRmA66rYrvXawHpEExnbwk2z2ipN9ipV-RDV_vkOcrPIM75Omkv0F_Te7wvL4t0WGKllNQXi0-SN9R1GaOzmoKaBHtZW_gD-php4vftLmedc01gtIB_QWdQ0-_0rY_RKQumIB8oZ1BnmHatD6yiUNWpnYUAHEY49TeM0NHx8835PLk-8XxOOlfY0hsxuQ8MSYrnbdGWubwMrIUBbfKsbzy8EmzHIndmYMJnhmZgu41trCVUzl3oAC5Td-SzXpW-11C_ciVsvCpMbkV0pVK8UI6ZYUYWYAbbI8MliLQTSTd0KvWaFyjzLRSOshMQwK5FJR-NHo0KIZ_JT14JNiHAhVCPbVHDpeC1jDz8DrF1H626DRnaa5gE_6XGAUSoTK2PgZyLeWSQynv4hhaaW82Aqwo3v9_0w7J1vhicqbPTs9_7pNnkXACreM-kM15u_AHAKfm5ccwXf4AcpsZ2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resorbable+bioceramics+based+on+stabilized+calcium+phosphates.+Part+I%3A+rational+design%2C+sample+preparation+and+material+characterization&rft.jtitle=Biomaterials&rft.au=Langstaff%2C+S&rft.au=Sayer%2C+M&rft.au=Smith%2C+T+J&rft.au=Pugh%2C+S+M&rft.date=1999-09-01&rft.issn=0142-9612&rft.volume=20&rft.issue=18&rft.spage=1727&rft_id=info:doi/10.1016%2FS0142-9612%2899%2900086-1&rft_id=info%3Apmid%2F10503974&rft.externalDocID=10503974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |