Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls

The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liqui...

Full description

Saved in:
Bibliographic Details
Published inCurrent Issues in Molecular Biology Vol. 45; no. 6; pp. 4716 - 4734
Main Authors Ozimic, Sanja, Ban-Frangez, Helena, Stimpfel, Martin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
AbstractList The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Audience Academic
Author Stimpfel, Martin
Ban-Frangez, Helena
Ozimic, Sanja
AuthorAffiliation 1 Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; sanja.ozimic@kclj.si (S.O.); helena.ban@kclj.si (H.B.-F.)
2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
AuthorAffiliation_xml – name: 2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
– name: 1 Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; sanja.ozimic@kclj.si (S.O.); helena.ban@kclj.si (H.B.-F.)
Author_xml – sequence: 1
  givenname: Sanja
  surname: Ozimic
  fullname: Ozimic, Sanja
– sequence: 2
  givenname: Helena
  orcidid: 0000-0002-2652-6671
  surname: Ban-Frangez
  fullname: Ban-Frangez, Helena
– sequence: 3
  givenname: Martin
  orcidid: 0000-0002-6495-4845
  surname: Stimpfel
  fullname: Stimpfel, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37367049$$D View this record in MEDLINE/PubMed
BookMark eNptkktrGzEQgEVJaR7treey0EsPdqrXSqteimuSNhBooelZSNqRo7C72krrgP995TgJdgk6jBh98zHD6BQdDXEAhN4TfM6Ywp9d6C2vscAM41fohHAh5wzz-mjvfoxOc77DuJaNJG_QMZNMSMzVCfr2e4TUV8u0iWOCDOneTCEO1U1szeZLtRjHFI27hTyrLrwPLsDgNrPKDG31K0zedF1-i16XmOHdYzxDfy4vbpY_5tc_v18tF9dzV5NmmhsJDqBRvjbUN7jlVKnaOm8pk5w6VTNwQrW-YbilngiqGmatstwJ45Vo2Bm62nnbaO70mEJv0kZHE_RDIqaVNmkKrgONpaBYeGhqcJwTY0lNheUYM7DcCltcX3eucW17aB0MUzLdgfTwZQi3ehXvNcG09EJ5MXx6NKT4dw150n3IDrrODBDXWdMyByUNwaqgH3foypTewuBjUbotrhey3q6OUFmo8xeoclrogys796HkDwo-7M_w3PzTcgtAd4BLMecEXrswPay3mENXZtHbH6T3f1Apmv1X9OR9Ef8HrCjFgQ
CitedBy_id crossref_primary_10_17221_115_2024_CJAS
crossref_primary_10_3390_ijms25147582
crossref_primary_10_1016_j_cryobiol_2024_104937
crossref_primary_10_3390_stresses3040047
crossref_primary_10_1016_j_reprotox_2025_108847
crossref_primary_10_22144_ctujos_2024_329
crossref_primary_10_1016_j_cryobiol_2024_104897
crossref_primary_10_4995_wrs_2023_19690
crossref_primary_10_3390_life14010017
crossref_primary_10_1016_j_anireprosci_2024_107631
crossref_primary_10_3390_jcm13247562
crossref_primary_10_3390_ijms25084157
crossref_primary_10_1007_s40618_024_02435_x
crossref_primary_10_1016_j_theriogenology_2024_02_002
crossref_primary_10_1088_1755_1315_1341_1_012002
crossref_primary_10_1016_j_arcmed_2024_103130
crossref_primary_10_3390_ani15040599
crossref_primary_10_4103_aja202466
crossref_primary_10_3389_fvets_2024_1467242
crossref_primary_10_1016_j_cryobiol_2024_104863
crossref_primary_10_3390_ijms25074129
crossref_primary_10_3390_ani14030368
crossref_primary_10_3390_ani15030439
crossref_primary_10_3390_ijms252011124
crossref_primary_10_31857_S0006302924060048
crossref_primary_10_3390_cells13060542
crossref_primary_10_1016_j_carbpol_2023_121704
crossref_primary_10_4103_aja2024122
crossref_primary_10_1039_D4AN00166D
crossref_primary_10_1134_S0006350924701094
crossref_primary_10_1080_1828051X_2025_2470269
Cites_doi 10.1016/S0093-691X(01)00674-4
10.1039/c0cp02326d
10.1016/j.theriogenology.2007.05.001
10.1016/S0006-3495(94)80806-9
10.1073/pnas.88.24.11003
10.1016/j.ejogrb.2018.11.028
10.1007/s10815-008-9232-3
10.1016/S0015-0282(16)59175-4
10.1016/j.theriogenology.2011.05.039
10.1016/j.cryobiol.2009.08.009
10.1007/s00441-021-03537-1
10.1089/bio.2020.0008
10.1016/0014-4827(72)90303-5
10.3109/19396368.2011.553984
10.1016/j.fertnstert.2006.01.047
10.1016/j.fertnstert.2012.02.014
10.1080/13685538.2018.1529156
10.1016/j.anireprosci.2007.11.010
10.1038/nrm2330
10.1530/jrf.0.0530389
10.1093/humrep/dead005
10.1111/andr.13208
10.1093/humrep/14.7.1827
10.1002/pmic.201300225
10.1016/j.theriogenology.2012.06.007
10.1152/ajpcell.1996.270.1.C12
10.1177/1933719119828096
10.1016/j.theriogenology.2014.10.027
10.1095/biolreprod.104.028811
10.1007/s43032-021-00572-9
10.1007/978-1-4614-7783-9_9
10.1016/j.theriogenology.2010.02.024
10.1016/j.anireprosci.2021.106904
10.1093/humrep/deg162
10.1093/ilar.41.4.187
10.3389/fcell.2021.669182
10.1159/000485089
10.1093/humupd/dmn061
10.1002/j.1939-4640.1992.tb00316.x
10.1097/01.ju.0000084820.98430.b8
10.1016/j.theriogenology.2011.06.025
10.1002/jcp.10039
10.1016/j.theriogenology.2005.09.010
10.1080/14647273.2018.1456681
10.1016/0011-2240(90)90009-S
10.1002/j.1939-4640.2002.tb02324.x
10.1095/biolreprod49.1.112
10.1111/andr.12279
10.1007/978-1-4939-2193-5_1
10.1016/S0027-5107(03)00101-5
10.1186/1471-213X-11-64
10.4065/mcp.2010.0564
10.1093/humrep/17.3.704
10.1016/0011-2240(92)90063-8
10.1002/bit.22435
10.1186/1741-7007-7-50
10.4103/aja.aja_58_20
10.1016/0011-2240(84)90079-8
10.1016/j.theriogenology.2011.08.001
10.3109/19396368.2014.976720
10.1016/0011-2240(84)90019-1
10.1016/j.fertnstert.2004.02.126
10.1530/REP-08-0349
10.1016/S0090-4295(97)00070-8
10.1016/S0093-691X(02)01231-1
10.1007/s10561-008-9081-4
10.1016/j.cryobiol.2011.12.002
10.1128/br.40.2.270-275.1976
10.1095/biolreprod.103.025627
10.1177/0394632015572080
10.1085/jgp.47.2.347
10.1111/rda.13977
10.1093/humrep/dep214
10.1042/bse0590043
10.1016/j.fertnstert.2010.10.005
10.1016/j.cryobiol.2017.06.008
10.1007/s10815-006-9066-9
10.1089/bio.2019.0037
10.1016/S0301-2115(99)00255-9
10.1016/S0015-0282(98)00351-3
10.1093/humrep/15.10.2160
10.1095/biolreprod.111.091322
10.1093/humrep/12.1.112
10.1016/S1472-6483(10)61710-5
10.2164/jandrol.109.007849
10.3168/jds.S0022-0302(55)94935-3
10.1093/molehr/gap059
10.1152/ajpcell.1984.247.3.C125
10.1038/aja.2008.50
10.4103/aja20229
10.1016/j.tjog.2017.02.004
10.1016/j.fertnstert.2008.04.076
10.3109/19396360903428352
10.1093/humrep/der312
10.1101/558304
10.1046/j.1365-2605.1999.00162.x
10.1530/REP-13-0313
10.14715/cmb/2017.63.8.17
10.1093/humrep/12.5.994
10.1016/j.cryobiol.2016.04.004
10.1016/j.fertnstert.2005.11.046
10.1017/S0967199412000032
10.1016/S0015-0282(16)60079-1
10.2164/jandrol.111.013789
10.1016/j.ejogrb.2021.10.027
10.1095/biolreprod.112.104661
10.1016/j.fertnstert.2008.09.038
10.1111/j.1439-0272.2011.01267.x
10.1093/humupd/dmu063
10.1080/01485010701225675
10.1002/j.1939-4640.1990.tb01583.x
10.1016/j.cryobiol.2013.05.007
10.1055/s-2002-23515
10.3390/ijms24043379
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/cimb45060300
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1467-3045
EndPage 4734
ExternalDocumentID oai_doaj_org_article_076206fe85ec441ab1526b4003eb4b6b
PMC10296824
A755060127
37367049
10_3390_cimb45060300
Genre Journal Article
Review
GrantInformation_xml – fundername: UMC Ljubljana, Slovenia
  grantid: tertiary project no. 20210024
– fundername: Slovenian Research Agency
  grantid: J3-2531
– fundername: UMC Ljubljana, Slovenia
  grantid: 20210024
GroupedDBID ---
36B
53G
5GY
AAYXX
AENEX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
DIK
E3Z
EMB
F5P
FRP
GROUPED_DOAJ
GX1
IAO
IGS
IHR
INH
ITC
MODMG
OK1
PGMZT
RNS
RPM
TR2
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-c518t-a7ecee89f5a2f80d42995bcfb23742c953ec69df830d2f162983bb9b4c6af9683
IEDL.DBID DOA
ISSN 1467-3045
1467-3037
IngestDate Wed Aug 27 01:07:06 EDT 2025
Thu Aug 21 18:37:23 EDT 2025
Fri Jul 11 16:11:42 EDT 2025
Fri Feb 23 00:02:59 EST 2024
Wed Oct 25 08:30:49 EDT 2023
Wed Feb 19 02:23:35 EST 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 01:56:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords human spermatozoa
slow freezing
cryodamage
cryoprotectant
vitrification
cryopreservation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a7ecee89f5a2f80d42995bcfb23742c953ec69df830d2f162983bb9b4c6af9683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2652-6671
0000-0002-6495-4845
OpenAccessLink https://doaj.org/article/076206fe85ec441ab1526b4003eb4b6b
PMID 37367049
PQID 2830218109
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_076206fe85ec441ab1526b4003eb4b6b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10296824
proquest_miscellaneous_2830218109
gale_infotracmisc_A755060127
gale_infotracacademiconefile_A755060127
pubmed_primary_37367049
crossref_citationtrail_10_3390_cimb45060300
crossref_primary_10_3390_cimb45060300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230529
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 5
  year: 2023
  text: 20230529
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Current Issues in Molecular Biology
PublicationTitleAlternate Curr Issues Mol Biol
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Doetsch (ref_3) 1976; 40
Paasch (ref_47) 2004; 71
Du (ref_41) 2023; 21
Kremer (ref_36) 1987; 47
Paoli (ref_70) 2014; 791
Silva (ref_44) 2006; 65
Li (ref_62) 2010; 31
Hossain (ref_78) 2007; 53
Gianaroli (ref_100) 2012; 97
Schuster (ref_102) 2003; 18
Desrosiers (ref_11) 2006; 85
Barbas (ref_91) 2008; 10
Hosseini (ref_96) 2019; 22
Sharma (ref_103) 2015; 61
Shiri (ref_85) 2020; 18
Gilmore (ref_89) 1997; 12
Yeste (ref_107) 2022; 246
Woolley (ref_27) 1978; 53
Aghaz (ref_84) 2018; 23
Hidalgo (ref_110) 2021; 9
Medrano (ref_20) 2017; 78
ref_22
Vassena (ref_29) 2023; 38
Isachenko (ref_52) 2004; 71
Simon (ref_40) 2011; 57
Bertolla (ref_48) 2006; 86
Isachenko (ref_99) 2012; 33
Kalthur (ref_82) 2011; 95
Hammadeh (ref_34) 1999; 22
Watson (ref_21) 2015; 59
Fahy (ref_92) 1984; 21
Muldrew (ref_10) 1994; 66
Li (ref_118) 2010; 74
Vutyavanich (ref_95) 2010; 93
Mazur (ref_106) 1972; 71
Verkman (ref_13) 1996; 270
ref_79
Santonastaso (ref_87) 2021; 28
ref_76
Fortunato (ref_46) 2013; 21
Zhu (ref_28) 2000; 2
Giraud (ref_26) 2000; 15
Gao (ref_7) 2000; 41
Wang (ref_112) 2014; 14
Karakus (ref_37) 2021; 267
Mandumpal (ref_80) 2011; 13
Hezavehei (ref_124) 2022; 387
Mazur (ref_6) 1984; 247
Sutton (ref_14) 1992; 29
Centola (ref_38) 1992; 13
Li (ref_39) 2006; 23
Penninckx (ref_66) 1984; 21
Nallella (ref_98) 2004; 82
Pillet (ref_77) 2012; 77
Saragusty (ref_72) 2009; 104
Fraga (ref_94) 1991; 88
Neild (ref_43) 2003; 59
Sawyer (ref_58) 2003; 529
Gao (ref_64) 1993; 49
Gousset (ref_24) 2001; 190
Riel (ref_54) 2011; 85
Cohen (ref_101) 1997; 12
Wang (ref_60) 1997; 49
Rahbar (ref_119) 2017; 63
Li (ref_88) 2019; 233
Critser (ref_65) 1988; 50
McGonagle (ref_75) 2002; 4
Chen (ref_67) 1990; 27
Arciero (ref_63) 2022; 10
Zribi (ref_49) 2010; 93
Bratton (ref_5) 1955; 38
McClure (ref_32) 2002; 17
Pegg (ref_69) 2015; 1257
Loomis (ref_105) 2008; 105
Li (ref_8) 2022; 24
James (ref_9) 1999; 14
Medeiros (ref_16) 2002; 57
Thomson (ref_61) 2009; 24
Oldenhof (ref_71) 2013; 88
Petyim (ref_55) 2007; 59
Grigorieva (ref_74) 2019; 40
Tongdee (ref_50) 2015; 98
Voelker (ref_23) 2008; 9
Flores (ref_109) 2011; 76
He (ref_81) 2017; 44
Aitken (ref_56) 2010; 16
Riva (ref_97) 2018; 22
Benson (ref_1) 2012; 78
Jensen (ref_4) 2011; 86
Ahmad (ref_53) 2010; 56
Selige (ref_73) 2021; 56
Valcarce (ref_115) 2013; 67
(ref_31) 2010; 12
Bogle (ref_116) 2017; 5
ref_114
Anger (ref_2) 2003; 170
Fuller (ref_12) 2004; 25
Abdelhafez (ref_15) 2008; 15
Karimfar (ref_83) 2015; 28
ref_113
Morris (ref_17) 2012; 64
Rahiminia (ref_45) 2017; 56
Mishima (ref_123) 2008; 136
Pegg (ref_68) 2002; 20
Liu (ref_42) 2016; 72
Chan (ref_86) 2021; 23
Stanic (ref_35) 2000; 91
Satirapod (ref_93) 2012; 44
Kopeika (ref_111) 2015; 21
Saleh (ref_57) 2002; 23
Kumar (ref_59) 2019; 17
Chen (ref_117) 2014; 147
Curry (ref_122) 2011; 76
Cankut (ref_51) 2019; 26
Ozkavukcu (ref_18) 2008; 25
ref_104
Isachenko (ref_19) 2003; 6
Lin (ref_33) 1998; 70
Fraser (ref_108) 2007; 68
Biggar (ref_120) 2009; 59
Hammerstedt (ref_25) 1990; 11
Barratt (ref_30) 2011; 26
Zhang (ref_121) 2015; 83
Mazur (ref_90) 1963; 47
References_xml – volume: 57
  start-page: 327
  year: 2002
  ident: ref_16
  article-title: Current status of sperm cryopreservation: Why isn’t it better?
  publication-title: Theriogenology
  doi: 10.1016/S0093-691X(01)00674-4
– volume: 13
  start-page: 3839
  year: 2011
  ident: ref_80
  article-title: A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02326d
– volume: 68
  start-page: 248
  year: 2007
  ident: ref_108
  article-title: Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing–thawing?
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2007.05.001
– volume: 66
  start-page: 532
  year: 1994
  ident: ref_10
  article-title: The osmotic rupture hypothesis of intracellular freezing injury
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80806-9
– volume: 88
  start-page: 11003
  year: 1991
  ident: ref_94
  article-title: Ascorbic acid protects against endogenous oxidative DNA damage in human sperm
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.24.11003
– volume: 233
  start-page: 84
  year: 2019
  ident: ref_88
  article-title: Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/j.ejogrb.2018.11.028
– volume: 25
  start-page: 403
  year: 2008
  ident: ref_18
  article-title: Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-008-9232-3
– volume: 47
  start-page: 838
  year: 1987
  ident: ref_36
  article-title: A simplified method for freezing and storage of human semen
  publication-title: Fertil. Steril.
  doi: 10.1016/S0015-0282(16)59175-4
– volume: 76
  start-page: 1450
  year: 2011
  ident: ref_109
  article-title: Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.05.039
– volume: 40
  start-page: 187
  year: 2019
  ident: ref_74
  article-title: Human Gametes Cryopreservation with Cryoprotectant Modified by Egg Yolk
  publication-title: Cryoletters
– volume: 59
  start-page: 317
  year: 2009
  ident: ref_120
  article-title: MicroRNA regulation below zero: Differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2009.08.009
– volume: 387
  start-page: 143
  year: 2022
  ident: ref_124
  article-title: Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-021-03537-1
– volume: 18
  start-page: 329
  year: 2020
  ident: ref_85
  article-title: Aqueous Origanum vulgare Extract Improves the Quality of Cryopreserved Human Spermatozoa Through Its Antioxidant Effects
  publication-title: Biopreserv. Biobank.
  doi: 10.1089/bio.2020.0008
– volume: 71
  start-page: 345
  year: 1972
  ident: ref_106
  article-title: A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(72)90303-5
– volume: 57
  start-page: 133
  year: 2011
  ident: ref_40
  article-title: Sperm DNA damage or progressive motility: Which one is the better predictor of fertilization in vitro?
  publication-title: Syst. Biol. Reprod. Med.
  doi: 10.3109/19396368.2011.553984
– volume: 86
  start-page: 597
  year: 2006
  ident: ref_48
  article-title: Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2006.01.047
– volume: 97
  start-page: 1067
  year: 2012
  ident: ref_100
  article-title: DNA integrity is maintained after freeze-drying of human spermatozoa
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2012.02.014
– volume: 23
  start-page: 469
  year: 2018
  ident: ref_84
  article-title: Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm
  publication-title: Aging Male
  doi: 10.1080/13685538.2018.1529156
– volume: 105
  start-page: 119
  year: 2008
  ident: ref_105
  article-title: Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2007.11.010
– volume: 9
  start-page: 112
  year: 2008
  ident: ref_23
  article-title: Membrane lipids: Where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 53
  start-page: 389
  year: 1978
  ident: ref_27
  article-title: Ultrastructural injury to human spermatozoa after freezing and thawing
  publication-title: Reproduction
  doi: 10.1530/jrf.0.0530389
– volume: 38
  start-page: 400
  year: 2023
  ident: ref_29
  article-title: Sperm cryopreservation does not affect live birth rate in normozoospermic men: Analysis of 7969 oocyte donation cycles
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/dead005
– volume: 10
  start-page: 1123
  year: 2022
  ident: ref_63
  article-title: Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa
  publication-title: Andrology
  doi: 10.1111/andr.13208
– volume: 14
  start-page: 1827
  year: 1999
  ident: ref_9
  article-title: Lipid dynamics in the plasma membrane of fresh and cryopreserved human spermatozoa
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/14.7.1827
– volume: 14
  start-page: 298
  year: 2014
  ident: ref_112
  article-title: Proteomic characteristics of human sperm cryopreservation
  publication-title: Proteomics
  doi: 10.1002/pmic.201300225
– volume: 78
  start-page: 1682
  year: 2012
  ident: ref_1
  article-title: The cryobiology of spermatozoa
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2012.06.007
– volume: 270
  start-page: C12
  year: 1996
  ident: ref_13
  article-title: Water transport across mammalian cell membranes
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajpcell.1996.270.1.C12
– volume: 26
  start-page: 1575
  year: 2019
  ident: ref_51
  article-title: Evaluation of Sperm DNA Fragmentation via Halosperm Technique and TUNEL Assay Before and After Cryopreservation
  publication-title: Reprod. Sci.
  doi: 10.1177/1933719119828096
– volume: 2
  start-page: 135
  year: 2000
  ident: ref_28
  article-title: Cryodamage to plasma membrane integrity in head and tail regions of human sperm
  publication-title: Asian J. Androl.
– volume: 83
  start-page: 634
  year: 2015
  ident: ref_121
  article-title: Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2014.10.027
– volume: 71
  start-page: 1167
  year: 2004
  ident: ref_52
  article-title: Cryoprotectant-Free Cryopreservation of Human Spermatozoa by Vitrification and Freezing in Vapor: Effect on Motility, DNA Integrity, and Fertilization Ability
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.104.028811
– volume: 21
  start-page: 100337
  year: 2023
  ident: ref_41
  article-title: Correlation of DNA fragments with routine semen parameters and lifestyle and their impact on assisted reproductive outcomes
  publication-title: Rev. Int. Androl.
– volume: 28
  start-page: 2895
  year: 2021
  ident: ref_87
  article-title: Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm
  publication-title: Reprod. Sci.
  doi: 10.1007/s43032-021-00572-9
– volume: 791
  start-page: 137
  year: 2014
  ident: ref_70
  article-title: Sperm Cryopreservation: Effects on Chromatin Structure
  publication-title: Genet. Damage Hum. Spermatozoa
  doi: 10.1007/978-1-4614-7783-9_9
– volume: 74
  start-page: 413
  year: 2010
  ident: ref_118
  article-title: Ice-age endurance: The effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L.
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2010.02.024
– volume: 246
  start-page: 106904
  year: 2022
  ident: ref_107
  article-title: Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2021.106904
– volume: 18
  start-page: 788
  year: 2003
  ident: ref_102
  article-title: Ultra-rapid freezing of very low numbers of sperm using cryoloops
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/deg162
– volume: 41
  start-page: 187
  year: 2000
  ident: ref_7
  article-title: Mechanisms of Cryoinjury in Living Cells
  publication-title: ILAR J.
  doi: 10.1093/ilar.41.4.187
– volume: 9
  start-page: 669182
  year: 2021
  ident: ref_110
  article-title: Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.669182
– volume: 44
  start-page: 532
  year: 2017
  ident: ref_81
  article-title: Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000485089
– volume: 15
  start-page: 153
  year: 2008
  ident: ref_15
  article-title: Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review
  publication-title: Hum. Reprod. Update
  doi: 10.1093/humupd/dmn061
– volume: 13
  start-page: 283
  year: 1992
  ident: ref_38
  article-title: Cryopreservation of Human Semen: Comparison of Cryopreservatives, Sources of Variability, and Prediction of Post-thaw Survival
  publication-title: J. Androl.
  doi: 10.1002/j.1939-4640.1992.tb00316.x
– volume: 170
  start-page: 1079
  year: 2003
  ident: ref_2
  article-title: Cryopreservation of Sperm: Indications, Methods and Results
  publication-title: J. Urol.
  doi: 10.1097/01.ju.0000084820.98430.b8
– volume: 76
  start-page: 1532
  year: 2011
  ident: ref_122
  article-title: Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.06.025
– volume: 190
  start-page: 117
  year: 2001
  ident: ref_24
  article-title: Evidence for a physiological role for membrane rafts in human platelets
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.10039
– volume: 65
  start-page: 958
  year: 2006
  ident: ref_44
  article-title: Detection of damage in mammalian sperm cells
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2005.09.010
– volume: 22
  start-page: 126
  year: 2019
  ident: ref_96
  article-title: Cryopreservation of Low Number of Human Spermatozoa; Which is Better: Vapor Phase or Direct Submerging in Liquid Nitrogen?
  publication-title: Hum. Fertil.
  doi: 10.1080/14647273.2018.1456681
– volume: 27
  start-page: 171
  year: 1990
  ident: ref_67
  article-title: Cold-induced ultrastructural changes in bull and boar sperm plasma membranes
  publication-title: Cryobiology
  doi: 10.1016/0011-2240(90)90009-S
– volume: 98
  start-page: 33
  year: 2015
  ident: ref_50
  article-title: Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity
  publication-title: J. Med. Assoc. Thai.
– volume: 23
  start-page: 737
  year: 2002
  ident: ref_57
  article-title: Oxidative Stress and Male Infertility: From Research Bench to Clinical Practice
  publication-title: J. Androl.
  doi: 10.1002/j.1939-4640.2002.tb02324.x
– volume: 49
  start-page: 112
  year: 1993
  ident: ref_64
  article-title: Hyperosmotic Tolerance of Human Spermatozoa: Separate Effects of Glycerol, Sodium Chloride, and Sucrose on Spermolysis1
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod49.1.112
– volume: 5
  start-page: 10
  year: 2017
  ident: ref_116
  article-title: Identification of protein changes in human spermatozoa throughout the cryopreservation process
  publication-title: Andrology
  doi: 10.1111/andr.12279
– volume: 1257
  start-page: 3
  year: 2015
  ident: ref_69
  article-title: Principles of Cryopreservation
  publication-title: Cryopreserv. Free. Dry. Protoc.
  doi: 10.1007/978-1-4939-2193-5_1
– volume: 529
  start-page: 21
  year: 2003
  ident: ref_58
  article-title: Quantitative analysis of gene-specific DNA damage in human spermatozoa
  publication-title: Mutat. Res. Mol. Mech. Mutagen.
  doi: 10.1016/S0027-5107(03)00101-5
– ident: ref_113
  doi: 10.1186/1471-213X-11-64
– volume: 86
  start-page: 45
  year: 2011
  ident: ref_4
  article-title: Fertility Preservation
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/mcp.2010.0564
– volume: 17
  start-page: 704
  year: 2002
  ident: ref_32
  article-title: The effects of cryopreservation on sperm morphology, motility and mitochondrial function
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/17.3.704
– volume: 29
  start-page: 585
  year: 1992
  ident: ref_14
  article-title: Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides
  publication-title: Cryobiology
  doi: 10.1016/0011-2240(92)90063-8
– volume: 104
  start-page: 719
  year: 2009
  ident: ref_72
  article-title: Do physical forces contribute to cryodamage?
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22435
– ident: ref_22
  doi: 10.1186/1741-7007-7-50
– volume: 23
  start-page: 150
  year: 2021
  ident: ref_86
  article-title: Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa
  publication-title: Asian J. Androl.
  doi: 10.4103/aja.aja_58_20
– volume: 21
  start-page: 407
  year: 1984
  ident: ref_92
  article-title: Vitrification as an approach to cryopreservation
  publication-title: Cryobiology
  doi: 10.1016/0011-2240(84)90079-8
– volume: 77
  start-page: 268
  year: 2012
  ident: ref_77
  article-title: Liposomes as an alternative to egg yolk in stallion freezing extender
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2011.08.001
– volume: 61
  start-page: 1
  year: 2015
  ident: ref_103
  article-title: Effect of sperm storage and selection techniques on sperm parameters
  publication-title: Syst. Biol. Reprod. Med.
  doi: 10.3109/19396368.2014.976720
– volume: 21
  start-page: 25
  year: 1984
  ident: ref_66
  article-title: Erythrocyte swelling after rapid dilution of cryoprotectants and its prevention
  publication-title: Cryobiology
  doi: 10.1016/0011-2240(84)90019-1
– volume: 82
  start-page: 913
  year: 2004
  ident: ref_98
  article-title: Cryopreservation of human spermatozoa: Comparison of two cryopreservation methods and three cryoprotectants
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2004.02.126
– volume: 136
  start-page: 811
  year: 2008
  ident: ref_123
  article-title: MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary
  publication-title: Reproduction
  doi: 10.1530/REP-08-0349
– volume: 49
  start-page: 921
  year: 1997
  ident: ref_60
  article-title: Reactive oxygen species generation by seminal cells during cryopreservation
  publication-title: Urology
  doi: 10.1016/S0090-4295(97)00070-8
– volume: 59
  start-page: 1693
  year: 2003
  ident: ref_43
  article-title: Membrane changes during different stages of a freeze–thaw protocol for equine semen cryopreservation
  publication-title: Theriogenology
  doi: 10.1016/S0093-691X(02)01231-1
– volume: 10
  start-page: 49
  year: 2008
  ident: ref_91
  article-title: Cryopreservation of domestic animal sperm cells
  publication-title: Cell Tissue Bank.
  doi: 10.1007/s10561-008-9081-4
– volume: 64
  start-page: 71
  year: 2012
  ident: ref_17
  article-title: Freezing injury: The special case of the sperm cell
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2011.12.002
– volume: 40
  start-page: 270
  year: 1976
  ident: ref_3
  article-title: Lazzaro Spallanzani’s Opuscoli of 1776
  publication-title: Bacteriol. Rev.
  doi: 10.1128/br.40.2.270-275.1976
– volume: 71
  start-page: 1828
  year: 2004
  ident: ref_47
  article-title: Cryopreservation and Thawing Is Associated with Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa1
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.103.025627
– volume: 28
  start-page: 69
  year: 2015
  ident: ref_83
  article-title: The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm
  publication-title: Int. J. Immunopathol. Pharmacol.
  doi: 10.1177/0394632015572080
– volume: 47
  start-page: 347
  year: 1963
  ident: ref_90
  article-title: Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.47.2.347
– volume: 56
  start-page: 1152
  year: 2021
  ident: ref_73
  article-title: Effect of pasteurized egg yolk on the quality of cryopreserved boar semen
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/rda.13977
– volume: 24
  start-page: 2061
  year: 2009
  ident: ref_61
  article-title: Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/dep214
– volume: 59
  start-page: 43
  year: 2015
  ident: ref_21
  article-title: Biological membranes
  publication-title: Essays Biochem.
  doi: 10.1042/bse0590043
– volume: 95
  start-page: 1149
  year: 2011
  ident: ref_82
  article-title: Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2010.10.005
– volume: 78
  start-page: 90
  year: 2017
  ident: ref_20
  article-title: Effectiveness of human spermatozoa biomarkers as indicators of structural damage during cryopreservation
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2017.06.008
– volume: 23
  start-page: 367
  year: 2006
  ident: ref_39
  article-title: Correlation of sperm DNA damage with IVF and ICSI outcomes: A systematic review and meta-analysis
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/s10815-006-9066-9
– volume: 17
  start-page: 603
  year: 2019
  ident: ref_59
  article-title: Strategies to Minimize Various Stress-Related Freeze–Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa
  publication-title: Biopreserv. Biobank.
  doi: 10.1089/bio.2019.0037
– volume: 91
  start-page: 65
  year: 2000
  ident: ref_35
  article-title: Comparison of protective media and freezing techniques for cryopreservation of human semen
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/S0301-2115(99)00255-9
– volume: 70
  start-page: 1148
  year: 1998
  ident: ref_33
  article-title: Plasma membrane integrity of cryopreserved human sperm: An investigation of the results of the hypoosmotic swelling test, the water test, and eosin-y staining
  publication-title: Fertil. Steril.
  doi: 10.1016/S0015-0282(98)00351-3
– volume: 15
  start-page: 2160
  year: 2000
  ident: ref_26
  article-title: Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/15.10.2160
– volume: 85
  start-page: 536
  year: 2011
  ident: ref_54
  article-title: Short-Term Storage of Human Spermatozoa in Electrolyte-Free Medium Without Freezing Maintains Sperm Chromatin Integrity Better Than Cryopreservation
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.111.091322
– volume: 12
  start-page: 112
  year: 1997
  ident: ref_89
  article-title: Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/12.1.112
– volume: 6
  start-page: 191
  year: 2003
  ident: ref_19
  article-title: Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/S1472-6483(10)61710-5
– volume: 31
  start-page: 437
  year: 2010
  ident: ref_62
  article-title: Protective Effects of Ascorbate and Catalase on Human Spermatozoa During Cryopreservation
  publication-title: J. Androl.
  doi: 10.2164/jandrol.109.007849
– ident: ref_76
– volume: 38
  start-page: 40
  year: 1955
  ident: ref_5
  article-title: Preliminary Fertility Results with Frozen Bovine Spermatozoa
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(55)94935-3
– volume: 16
  start-page: 3
  year: 2010
  ident: ref_56
  article-title: On the possible origins of DNA damage in human spermatozoa
  publication-title: Mol. Hum. Reprod.
  doi: 10.1093/molehr/gap059
– volume: 247
  start-page: C125
  year: 1984
  ident: ref_6
  article-title: Freezing of living cells: Mechanisms and implications
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajpcell.1984.247.3.C125
– volume: 25
  start-page: 375
  year: 2004
  ident: ref_12
  article-title: Cryoprotectants: The essential antifreezes to protect life in the frozen state
  publication-title: Cryo Lett.
– volume: 12
  start-page: 33
  year: 2010
  ident: ref_31
  article-title: The usefulness and significance of assessing rapidly progressive spermatozoa
  publication-title: Asian J. Androl.
  doi: 10.1038/aja.2008.50
– volume: 24
  start-page: 563
  year: 2022
  ident: ref_8
  article-title: Update on techniques for cryopreservation of human spermatozoa
  publication-title: Asian J. Androl.
  doi: 10.4103/aja20229
– volume: 56
  start-page: 472
  year: 2017
  ident: ref_45
  article-title: Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity
  publication-title: Taiwan J. Obstet. Gynecol.
  doi: 10.1016/j.tjog.2017.02.004
– volume: 93
  start-page: 1921
  year: 2010
  ident: ref_95
  article-title: Rapid freezing versus slow programmable freezing of human spermatozoa
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2008.04.076
– volume: 56
  start-page: 74
  year: 2010
  ident: ref_53
  article-title: Effects of Cryopreservation on Sperm DNA Integrity in Normospermic and Four Categories of Infertile Males
  publication-title: Syst. Biol. Reprod. Med.
  doi: 10.3109/19396360903428352
– volume: 26
  start-page: 3207
  year: 2011
  ident: ref_30
  article-title: ESHRE special interest group for andrology basic semen analysis course: A continued focus on accuracy, quality, efficiency and clinical relevance
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/der312
– volume: 59
  start-page: 298
  year: 2007
  ident: ref_55
  article-title: Freezing Effect on Post-Thawed Sperm Characteristics Especially Sperm DNA Integrity Comparing between Liquid Nitrogen Vapour and Computerized Program Freezer
  publication-title: Siriraj Med. J.
– ident: ref_114
  doi: 10.1101/558304
– volume: 22
  start-page: 155
  year: 1999
  ident: ref_34
  article-title: Effect of freeze–thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men
  publication-title: Int. J. Androl.
  doi: 10.1046/j.1365-2605.1999.00162.x
– volume: 147
  start-page: 321
  year: 2014
  ident: ref_117
  article-title: Identification of differentially expressed proteins in fresh and frozen–thawed boar spermatozoa by iTRAQ-coupled 2D LC–MS/MS
  publication-title: Reproduction
  doi: 10.1530/REP-13-0313
– volume: 63
  start-page: 77
  year: 2017
  ident: ref_119
  article-title: New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue
  publication-title: Cell. Mol. Biol.
  doi: 10.14715/cmb/2017.63.8.17
– volume: 12
  start-page: 994
  year: 1997
  ident: ref_101
  article-title: Cryopreservation of single human spermatozoa
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/12.5.994
– ident: ref_79
– volume: 72
  start-page: 210
  year: 2016
  ident: ref_42
  article-title: The effect of two cryopreservation methods on human sperm DNA damage
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2016.04.004
– volume: 85
  start-page: 1744
  year: 2006
  ident: ref_11
  article-title: Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2005.11.046
– volume: 21
  start-page: 330
  year: 2013
  ident: ref_46
  article-title: Effects of cryostorage on human sperm chromatin integrity
  publication-title: Zygote
  doi: 10.1017/S0967199412000032
– volume: 50
  start-page: 314
  year: 1988
  ident: ref_65
  article-title: Cryopreservation of human spermatozoa. III. The effect of Cryoprotectants on motility
  publication-title: Fertil. Steril.
  doi: 10.1016/S0015-0282(16)60079-1
– volume: 33
  start-page: 462
  year: 2012
  ident: ref_99
  article-title: Vitrification of Human ICSI/IVF Spermatozoa Without Cryoprotectants: New Capillary Technology
  publication-title: J. Androl.
  doi: 10.2164/jandrol.111.013789
– volume: 267
  start-page: 161
  year: 2021
  ident: ref_37
  article-title: Effect of curcumin on sperm parameters after the cryopreservation
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/j.ejogrb.2021.10.027
– volume: 88
  start-page: 68
  year: 2013
  ident: ref_71
  article-title: Osmotic Stress and Membrane Phase Changes During Freezing of Stallion Sperm: Mode of Action of Cryoprotective Agents1
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.112.104661
– volume: 93
  start-page: 159
  year: 2010
  ident: ref_49
  article-title: Effects of cryopreservation on human sperm deoxyribonucleic acid integrity
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2008.09.038
– volume: 44
  start-page: 786
  year: 2012
  ident: ref_93
  article-title: Comparison of cryopreserved human sperm from solid surface vitrification and standard vapor freezing method: On motility, morphology, vitality and DNA integrity
  publication-title: Andrologia
  doi: 10.1111/j.1439-0272.2011.01267.x
– volume: 22
  start-page: 331
  year: 2018
  ident: ref_97
  article-title: Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation
  publication-title: JBRA Assist. Reprod.
– volume: 21
  start-page: 209
  year: 2015
  ident: ref_111
  article-title: The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence
  publication-title: Hum. Reprod. Update
  doi: 10.1093/humupd/dmu063
– volume: 53
  start-page: 99
  year: 2007
  ident: ref_78
  article-title: Sole Use of Sucrose in Human Sperm Cryopreservation
  publication-title: Arch. Androl.
  doi: 10.1080/01485010701225675
– volume: 11
  start-page: 73
  year: 1990
  ident: ref_25
  article-title: Cryopreservation of mammalian sperm: What we ask them to survive
  publication-title: J. Androl.
  doi: 10.1002/j.1939-4640.1990.tb01583.x
– volume: 67
  start-page: 84
  year: 2013
  ident: ref_115
  article-title: Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2013.05.007
– volume: 20
  start-page: 005
  year: 2002
  ident: ref_68
  article-title: The History and Principles of Cryopreservation
  publication-title: Semin. Reprod. Med.
  doi: 10.1055/s-2002-23515
– volume: 4
  start-page: 137
  year: 2002
  ident: ref_75
  article-title: The influence of cryoprotective media and processing procedures on motility and migration of frozen-thawed human sperm
  publication-title: Asian J. Androl.
– ident: ref_104
  doi: 10.3390/ijms24043379
SSID ssj0057871
ssib044733985
Score 2.5020156
SecondaryResourceType review_article
Snippet The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4716
SubjectTerms Analysis
Cancer
Chemotherapy
cryodamage
cryopreservation
cryoprotectant
human spermatozoa
Review
slow freezing
Spermatozoa
vitrification
Title Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls
URI https://www.ncbi.nlm.nih.gov/pubmed/37367049
https://www.proquest.com/docview/2830218109
https://pubmed.ncbi.nlm.nih.gov/PMC10296824
https://doaj.org/article/076206fe85ec441ab1526b4003eb4b6b
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOgl9JXUbRJcaMihMZH1stTbJmwIhYRCG8hNWLJEFzZOyG4OufS3Z0b2bm1C6KUXH6zBlkYzmhkx8w0hX8BlbQx3sdCuEYVQLBROUFdI1QRaMRlCunA7v1Bnl-L7lbwatPrCnLAOHrhj3BHE2YyqGLQMHkx37cDgKPgc5cEJpxyevmDzBsEUSJIQFefmryOMYll2dUagUpRXXQo80NAjP7t2AmH2OFa5DYxTwvB_elIPTNU4jXJgl05fk83eocwn3ULekBehfUtedi0mH96R45-3cPbmJ3cPqd3J6go2T-kz3_JJDykeFof5NKFJYCnmYV63Tf5jtoz1fL54Ty5Pp79Ozoq-b0LhZamXRV0FMH3aRFmzqGmDJkc6Hx3jEAh7I3nwyjRRc9qwWCpmNHfOOOFVHY3SfItstDdt-EByT4OjLgjDYhTB6Jo1FbCblpFp7aPKyNcVw6zvQcWxt8XcQnCB7LVD9mZkf01924FpPEN3jLxf0yAEdnoBgmF7wbD_EoyMHODOWVRUmJKv-3oDWBhCXtlJJfF3JasysjOiBAXzo-HPq723OIRZaW24uV_YBJ4GLhI1GdnuZGE9Z14hNJ6AET2SktGixiPt7HfC9wafD3aBiY__gw2fyCsGfhkmPDCzQzaWd_dhF_yopdtLKgPP8z_TvXTN9QjUvhjy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sperm+Cryopreservation+Today%3A+Approaches%2C+Efficiency%2C+and+Pitfalls&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Ozimic%2C+Sanja&rft.au=Ban-Frangez%2C+Helena&rft.au=Stimpfel%2C+Martin&rft.date=2023-05-29&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=45&rft.issue=6&rft.spage=4716&rft_id=info:doi/10.3390%2Fcimb45060300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon