Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls
The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liqui...
Saved in:
Published in | Current Issues in Molecular Biology Vol. 45; no. 6; pp. 4716 - 4734 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques. |
---|---|
AbstractList | The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques. The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques. |
Audience | Academic |
Author | Stimpfel, Martin Ban-Frangez, Helena Ozimic, Sanja |
AuthorAffiliation | 1 Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; sanja.ozimic@kclj.si (S.O.); helena.ban@kclj.si (H.B.-F.) 2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia |
AuthorAffiliation_xml | – name: 2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia – name: 1 Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; sanja.ozimic@kclj.si (S.O.); helena.ban@kclj.si (H.B.-F.) |
Author_xml | – sequence: 1 givenname: Sanja surname: Ozimic fullname: Ozimic, Sanja – sequence: 2 givenname: Helena orcidid: 0000-0002-2652-6671 surname: Ban-Frangez fullname: Ban-Frangez, Helena – sequence: 3 givenname: Martin orcidid: 0000-0002-6495-4845 surname: Stimpfel fullname: Stimpfel, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37367049$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktrGzEQgEVJaR7treey0EsPdqrXSqteimuSNhBooelZSNqRo7C72krrgP995TgJdgk6jBh98zHD6BQdDXEAhN4TfM6Ywp9d6C2vscAM41fohHAh5wzz-mjvfoxOc77DuJaNJG_QMZNMSMzVCfr2e4TUV8u0iWOCDOneTCEO1U1szeZLtRjHFI27hTyrLrwPLsDgNrPKDG31K0zedF1-i16XmOHdYzxDfy4vbpY_5tc_v18tF9dzV5NmmhsJDqBRvjbUN7jlVKnaOm8pk5w6VTNwQrW-YbilngiqGmatstwJ45Vo2Bm62nnbaO70mEJv0kZHE_RDIqaVNmkKrgONpaBYeGhqcJwTY0lNheUYM7DcCltcX3eucW17aB0MUzLdgfTwZQi3ehXvNcG09EJ5MXx6NKT4dw150n3IDrrODBDXWdMyByUNwaqgH3foypTewuBjUbotrhey3q6OUFmo8xeoclrogys796HkDwo-7M_w3PzTcgtAd4BLMecEXrswPay3mENXZtHbH6T3f1Apmv1X9OR9Ef8HrCjFgQ |
CitedBy_id | crossref_primary_10_17221_115_2024_CJAS crossref_primary_10_3390_ijms25147582 crossref_primary_10_1016_j_cryobiol_2024_104937 crossref_primary_10_3390_stresses3040047 crossref_primary_10_1016_j_reprotox_2025_108847 crossref_primary_10_22144_ctujos_2024_329 crossref_primary_10_1016_j_cryobiol_2024_104897 crossref_primary_10_4995_wrs_2023_19690 crossref_primary_10_3390_life14010017 crossref_primary_10_1016_j_anireprosci_2024_107631 crossref_primary_10_3390_jcm13247562 crossref_primary_10_3390_ijms25084157 crossref_primary_10_1007_s40618_024_02435_x crossref_primary_10_1016_j_theriogenology_2024_02_002 crossref_primary_10_1088_1755_1315_1341_1_012002 crossref_primary_10_1016_j_arcmed_2024_103130 crossref_primary_10_3390_ani15040599 crossref_primary_10_4103_aja202466 crossref_primary_10_3389_fvets_2024_1467242 crossref_primary_10_1016_j_cryobiol_2024_104863 crossref_primary_10_3390_ijms25074129 crossref_primary_10_3390_ani14030368 crossref_primary_10_3390_ani15030439 crossref_primary_10_3390_ijms252011124 crossref_primary_10_31857_S0006302924060048 crossref_primary_10_3390_cells13060542 crossref_primary_10_1016_j_carbpol_2023_121704 crossref_primary_10_4103_aja2024122 crossref_primary_10_1039_D4AN00166D crossref_primary_10_1134_S0006350924701094 crossref_primary_10_1080_1828051X_2025_2470269 |
Cites_doi | 10.1016/S0093-691X(01)00674-4 10.1039/c0cp02326d 10.1016/j.theriogenology.2007.05.001 10.1016/S0006-3495(94)80806-9 10.1073/pnas.88.24.11003 10.1016/j.ejogrb.2018.11.028 10.1007/s10815-008-9232-3 10.1016/S0015-0282(16)59175-4 10.1016/j.theriogenology.2011.05.039 10.1016/j.cryobiol.2009.08.009 10.1007/s00441-021-03537-1 10.1089/bio.2020.0008 10.1016/0014-4827(72)90303-5 10.3109/19396368.2011.553984 10.1016/j.fertnstert.2006.01.047 10.1016/j.fertnstert.2012.02.014 10.1080/13685538.2018.1529156 10.1016/j.anireprosci.2007.11.010 10.1038/nrm2330 10.1530/jrf.0.0530389 10.1093/humrep/dead005 10.1111/andr.13208 10.1093/humrep/14.7.1827 10.1002/pmic.201300225 10.1016/j.theriogenology.2012.06.007 10.1152/ajpcell.1996.270.1.C12 10.1177/1933719119828096 10.1016/j.theriogenology.2014.10.027 10.1095/biolreprod.104.028811 10.1007/s43032-021-00572-9 10.1007/978-1-4614-7783-9_9 10.1016/j.theriogenology.2010.02.024 10.1016/j.anireprosci.2021.106904 10.1093/humrep/deg162 10.1093/ilar.41.4.187 10.3389/fcell.2021.669182 10.1159/000485089 10.1093/humupd/dmn061 10.1002/j.1939-4640.1992.tb00316.x 10.1097/01.ju.0000084820.98430.b8 10.1016/j.theriogenology.2011.06.025 10.1002/jcp.10039 10.1016/j.theriogenology.2005.09.010 10.1080/14647273.2018.1456681 10.1016/0011-2240(90)90009-S 10.1002/j.1939-4640.2002.tb02324.x 10.1095/biolreprod49.1.112 10.1111/andr.12279 10.1007/978-1-4939-2193-5_1 10.1016/S0027-5107(03)00101-5 10.1186/1471-213X-11-64 10.4065/mcp.2010.0564 10.1093/humrep/17.3.704 10.1016/0011-2240(92)90063-8 10.1002/bit.22435 10.1186/1741-7007-7-50 10.4103/aja.aja_58_20 10.1016/0011-2240(84)90079-8 10.1016/j.theriogenology.2011.08.001 10.3109/19396368.2014.976720 10.1016/0011-2240(84)90019-1 10.1016/j.fertnstert.2004.02.126 10.1530/REP-08-0349 10.1016/S0090-4295(97)00070-8 10.1016/S0093-691X(02)01231-1 10.1007/s10561-008-9081-4 10.1016/j.cryobiol.2011.12.002 10.1128/br.40.2.270-275.1976 10.1095/biolreprod.103.025627 10.1177/0394632015572080 10.1085/jgp.47.2.347 10.1111/rda.13977 10.1093/humrep/dep214 10.1042/bse0590043 10.1016/j.fertnstert.2010.10.005 10.1016/j.cryobiol.2017.06.008 10.1007/s10815-006-9066-9 10.1089/bio.2019.0037 10.1016/S0301-2115(99)00255-9 10.1016/S0015-0282(98)00351-3 10.1093/humrep/15.10.2160 10.1095/biolreprod.111.091322 10.1093/humrep/12.1.112 10.1016/S1472-6483(10)61710-5 10.2164/jandrol.109.007849 10.3168/jds.S0022-0302(55)94935-3 10.1093/molehr/gap059 10.1152/ajpcell.1984.247.3.C125 10.1038/aja.2008.50 10.4103/aja20229 10.1016/j.tjog.2017.02.004 10.1016/j.fertnstert.2008.04.076 10.3109/19396360903428352 10.1093/humrep/der312 10.1101/558304 10.1046/j.1365-2605.1999.00162.x 10.1530/REP-13-0313 10.14715/cmb/2017.63.8.17 10.1093/humrep/12.5.994 10.1016/j.cryobiol.2016.04.004 10.1016/j.fertnstert.2005.11.046 10.1017/S0967199412000032 10.1016/S0015-0282(16)60079-1 10.2164/jandrol.111.013789 10.1016/j.ejogrb.2021.10.027 10.1095/biolreprod.112.104661 10.1016/j.fertnstert.2008.09.038 10.1111/j.1439-0272.2011.01267.x 10.1093/humupd/dmu063 10.1080/01485010701225675 10.1002/j.1939-4640.1990.tb01583.x 10.1016/j.cryobiol.2013.05.007 10.1055/s-2002-23515 10.3390/ijms24043379 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/cimb45060300 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1467-3045 |
EndPage | 4734 |
ExternalDocumentID | oai_doaj_org_article_076206fe85ec441ab1526b4003eb4b6b PMC10296824 A755060127 37367049 10_3390_cimb45060300 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: UMC Ljubljana, Slovenia grantid: tertiary project no. 20210024 – fundername: Slovenian Research Agency grantid: J3-2531 – fundername: UMC Ljubljana, Slovenia grantid: 20210024 |
GroupedDBID | --- 36B 53G 5GY AAYXX AENEX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION DIK E3Z EMB F5P FRP GROUPED_DOAJ GX1 IAO IGS IHR INH ITC MODMG OK1 PGMZT RNS RPM TR2 M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-c518t-a7ecee89f5a2f80d42995bcfb23742c953ec69df830d2f162983bb9b4c6af9683 |
IEDL.DBID | DOA |
ISSN | 1467-3045 1467-3037 |
IngestDate | Wed Aug 27 01:07:06 EDT 2025 Thu Aug 21 18:37:23 EDT 2025 Fri Jul 11 16:11:42 EDT 2025 Fri Feb 23 00:02:59 EST 2024 Wed Oct 25 08:30:49 EDT 2023 Wed Feb 19 02:23:35 EST 2025 Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 01:56:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | human spermatozoa slow freezing cryodamage cryoprotectant vitrification cryopreservation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-a7ecee89f5a2f80d42995bcfb23742c953ec69df830d2f162983bb9b4c6af9683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2652-6671 0000-0002-6495-4845 |
OpenAccessLink | https://doaj.org/article/076206fe85ec441ab1526b4003eb4b6b |
PMID | 37367049 |
PQID | 2830218109 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_076206fe85ec441ab1526b4003eb4b6b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10296824 proquest_miscellaneous_2830218109 gale_infotracmisc_A755060127 gale_infotracacademiconefile_A755060127 pubmed_primary_37367049 crossref_citationtrail_10_3390_cimb45060300 crossref_primary_10_3390_cimb45060300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230529 |
PublicationDateYYYYMMDD | 2023-05-29 |
PublicationDate_xml | – month: 5 year: 2023 text: 20230529 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Current Issues in Molecular Biology |
PublicationTitleAlternate | Curr Issues Mol Biol |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Doetsch (ref_3) 1976; 40 Paasch (ref_47) 2004; 71 Du (ref_41) 2023; 21 Kremer (ref_36) 1987; 47 Paoli (ref_70) 2014; 791 Silva (ref_44) 2006; 65 Li (ref_62) 2010; 31 Hossain (ref_78) 2007; 53 Gianaroli (ref_100) 2012; 97 Schuster (ref_102) 2003; 18 Desrosiers (ref_11) 2006; 85 Barbas (ref_91) 2008; 10 Hosseini (ref_96) 2019; 22 Sharma (ref_103) 2015; 61 Shiri (ref_85) 2020; 18 Gilmore (ref_89) 1997; 12 Yeste (ref_107) 2022; 246 Woolley (ref_27) 1978; 53 Aghaz (ref_84) 2018; 23 Hidalgo (ref_110) 2021; 9 Medrano (ref_20) 2017; 78 ref_22 Vassena (ref_29) 2023; 38 Isachenko (ref_52) 2004; 71 Simon (ref_40) 2011; 57 Bertolla (ref_48) 2006; 86 Isachenko (ref_99) 2012; 33 Kalthur (ref_82) 2011; 95 Hammadeh (ref_34) 1999; 22 Watson (ref_21) 2015; 59 Fahy (ref_92) 1984; 21 Muldrew (ref_10) 1994; 66 Li (ref_118) 2010; 74 Vutyavanich (ref_95) 2010; 93 Mazur (ref_106) 1972; 71 Verkman (ref_13) 1996; 270 ref_79 Santonastaso (ref_87) 2021; 28 ref_76 Fortunato (ref_46) 2013; 21 Zhu (ref_28) 2000; 2 Giraud (ref_26) 2000; 15 Gao (ref_7) 2000; 41 Wang (ref_112) 2014; 14 Karakus (ref_37) 2021; 267 Mandumpal (ref_80) 2011; 13 Hezavehei (ref_124) 2022; 387 Mazur (ref_6) 1984; 247 Sutton (ref_14) 1992; 29 Centola (ref_38) 1992; 13 Li (ref_39) 2006; 23 Penninckx (ref_66) 1984; 21 Nallella (ref_98) 2004; 82 Pillet (ref_77) 2012; 77 Saragusty (ref_72) 2009; 104 Fraga (ref_94) 1991; 88 Neild (ref_43) 2003; 59 Sawyer (ref_58) 2003; 529 Gao (ref_64) 1993; 49 Gousset (ref_24) 2001; 190 Riel (ref_54) 2011; 85 Cohen (ref_101) 1997; 12 Wang (ref_60) 1997; 49 Rahbar (ref_119) 2017; 63 Li (ref_88) 2019; 233 Critser (ref_65) 1988; 50 McGonagle (ref_75) 2002; 4 Chen (ref_67) 1990; 27 Arciero (ref_63) 2022; 10 Zribi (ref_49) 2010; 93 Bratton (ref_5) 1955; 38 McClure (ref_32) 2002; 17 Pegg (ref_69) 2015; 1257 Loomis (ref_105) 2008; 105 Li (ref_8) 2022; 24 James (ref_9) 1999; 14 Medeiros (ref_16) 2002; 57 Thomson (ref_61) 2009; 24 Oldenhof (ref_71) 2013; 88 Petyim (ref_55) 2007; 59 Grigorieva (ref_74) 2019; 40 Tongdee (ref_50) 2015; 98 Voelker (ref_23) 2008; 9 Flores (ref_109) 2011; 76 He (ref_81) 2017; 44 Aitken (ref_56) 2010; 16 Riva (ref_97) 2018; 22 Benson (ref_1) 2012; 78 Jensen (ref_4) 2011; 86 Ahmad (ref_53) 2010; 56 Selige (ref_73) 2021; 56 Valcarce (ref_115) 2013; 67 (ref_31) 2010; 12 Bogle (ref_116) 2017; 5 ref_114 Anger (ref_2) 2003; 170 Fuller (ref_12) 2004; 25 Abdelhafez (ref_15) 2008; 15 Karimfar (ref_83) 2015; 28 ref_113 Morris (ref_17) 2012; 64 Rahiminia (ref_45) 2017; 56 Mishima (ref_123) 2008; 136 Pegg (ref_68) 2002; 20 Liu (ref_42) 2016; 72 Chan (ref_86) 2021; 23 Stanic (ref_35) 2000; 91 Satirapod (ref_93) 2012; 44 Kopeika (ref_111) 2015; 21 Saleh (ref_57) 2002; 23 Kumar (ref_59) 2019; 17 Chen (ref_117) 2014; 147 Curry (ref_122) 2011; 76 Cankut (ref_51) 2019; 26 Ozkavukcu (ref_18) 2008; 25 ref_104 Isachenko (ref_19) 2003; 6 Lin (ref_33) 1998; 70 Fraser (ref_108) 2007; 68 Biggar (ref_120) 2009; 59 Hammerstedt (ref_25) 1990; 11 Barratt (ref_30) 2011; 26 Zhang (ref_121) 2015; 83 Mazur (ref_90) 1963; 47 |
References_xml | – volume: 57 start-page: 327 year: 2002 ident: ref_16 article-title: Current status of sperm cryopreservation: Why isn’t it better? publication-title: Theriogenology doi: 10.1016/S0093-691X(01)00674-4 – volume: 13 start-page: 3839 year: 2011 ident: ref_80 article-title: A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02326d – volume: 68 start-page: 248 year: 2007 ident: ref_108 article-title: Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing–thawing? publication-title: Theriogenology doi: 10.1016/j.theriogenology.2007.05.001 – volume: 66 start-page: 532 year: 1994 ident: ref_10 article-title: The osmotic rupture hypothesis of intracellular freezing injury publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80806-9 – volume: 88 start-page: 11003 year: 1991 ident: ref_94 article-title: Ascorbic acid protects against endogenous oxidative DNA damage in human sperm publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.24.11003 – volume: 233 start-page: 84 year: 2019 ident: ref_88 article-title: Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol. doi: 10.1016/j.ejogrb.2018.11.028 – volume: 25 start-page: 403 year: 2008 ident: ref_18 article-title: Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-008-9232-3 – volume: 47 start-page: 838 year: 1987 ident: ref_36 article-title: A simplified method for freezing and storage of human semen publication-title: Fertil. Steril. doi: 10.1016/S0015-0282(16)59175-4 – volume: 76 start-page: 1450 year: 2011 ident: ref_109 article-title: Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.05.039 – volume: 40 start-page: 187 year: 2019 ident: ref_74 article-title: Human Gametes Cryopreservation with Cryoprotectant Modified by Egg Yolk publication-title: Cryoletters – volume: 59 start-page: 317 year: 2009 ident: ref_120 article-title: MicroRNA regulation below zero: Differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs publication-title: Cryobiology doi: 10.1016/j.cryobiol.2009.08.009 – volume: 387 start-page: 143 year: 2022 ident: ref_124 article-title: Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm publication-title: Cell Tissue Res. doi: 10.1007/s00441-021-03537-1 – volume: 18 start-page: 329 year: 2020 ident: ref_85 article-title: Aqueous Origanum vulgare Extract Improves the Quality of Cryopreserved Human Spermatozoa Through Its Antioxidant Effects publication-title: Biopreserv. Biobank. doi: 10.1089/bio.2020.0008 – volume: 71 start-page: 345 year: 1972 ident: ref_106 article-title: A two-factor hypothesis of freezing injury: Evidence from Chinese hamster tissue-culture cells publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(72)90303-5 – volume: 57 start-page: 133 year: 2011 ident: ref_40 article-title: Sperm DNA damage or progressive motility: Which one is the better predictor of fertilization in vitro? publication-title: Syst. Biol. Reprod. Med. doi: 10.3109/19396368.2011.553984 – volume: 86 start-page: 597 year: 2006 ident: ref_48 article-title: Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2006.01.047 – volume: 97 start-page: 1067 year: 2012 ident: ref_100 article-title: DNA integrity is maintained after freeze-drying of human spermatozoa publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2012.02.014 – volume: 23 start-page: 469 year: 2018 ident: ref_84 article-title: Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm publication-title: Aging Male doi: 10.1080/13685538.2018.1529156 – volume: 105 start-page: 119 year: 2008 ident: ref_105 article-title: Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2007.11.010 – volume: 9 start-page: 112 year: 2008 ident: ref_23 article-title: Membrane lipids: Where they are and how they behave publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2330 – volume: 53 start-page: 389 year: 1978 ident: ref_27 article-title: Ultrastructural injury to human spermatozoa after freezing and thawing publication-title: Reproduction doi: 10.1530/jrf.0.0530389 – volume: 38 start-page: 400 year: 2023 ident: ref_29 article-title: Sperm cryopreservation does not affect live birth rate in normozoospermic men: Analysis of 7969 oocyte donation cycles publication-title: Hum. Reprod. doi: 10.1093/humrep/dead005 – volume: 10 start-page: 1123 year: 2022 ident: ref_63 article-title: Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa publication-title: Andrology doi: 10.1111/andr.13208 – volume: 14 start-page: 1827 year: 1999 ident: ref_9 article-title: Lipid dynamics in the plasma membrane of fresh and cryopreserved human spermatozoa publication-title: Hum. Reprod. doi: 10.1093/humrep/14.7.1827 – volume: 14 start-page: 298 year: 2014 ident: ref_112 article-title: Proteomic characteristics of human sperm cryopreservation publication-title: Proteomics doi: 10.1002/pmic.201300225 – volume: 78 start-page: 1682 year: 2012 ident: ref_1 article-title: The cryobiology of spermatozoa publication-title: Theriogenology doi: 10.1016/j.theriogenology.2012.06.007 – volume: 270 start-page: C12 year: 1996 ident: ref_13 article-title: Water transport across mammalian cell membranes publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.1996.270.1.C12 – volume: 26 start-page: 1575 year: 2019 ident: ref_51 article-title: Evaluation of Sperm DNA Fragmentation via Halosperm Technique and TUNEL Assay Before and After Cryopreservation publication-title: Reprod. Sci. doi: 10.1177/1933719119828096 – volume: 2 start-page: 135 year: 2000 ident: ref_28 article-title: Cryodamage to plasma membrane integrity in head and tail regions of human sperm publication-title: Asian J. Androl. – volume: 83 start-page: 634 year: 2015 ident: ref_121 article-title: Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation publication-title: Theriogenology doi: 10.1016/j.theriogenology.2014.10.027 – volume: 71 start-page: 1167 year: 2004 ident: ref_52 article-title: Cryoprotectant-Free Cryopreservation of Human Spermatozoa by Vitrification and Freezing in Vapor: Effect on Motility, DNA Integrity, and Fertilization Ability publication-title: Biol. Reprod. doi: 10.1095/biolreprod.104.028811 – volume: 21 start-page: 100337 year: 2023 ident: ref_41 article-title: Correlation of DNA fragments with routine semen parameters and lifestyle and their impact on assisted reproductive outcomes publication-title: Rev. Int. Androl. – volume: 28 start-page: 2895 year: 2021 ident: ref_87 article-title: Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm publication-title: Reprod. Sci. doi: 10.1007/s43032-021-00572-9 – volume: 791 start-page: 137 year: 2014 ident: ref_70 article-title: Sperm Cryopreservation: Effects on Chromatin Structure publication-title: Genet. Damage Hum. Spermatozoa doi: 10.1007/978-1-4614-7783-9_9 – volume: 74 start-page: 413 year: 2010 ident: ref_118 article-title: Ice-age endurance: The effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L. publication-title: Theriogenology doi: 10.1016/j.theriogenology.2010.02.024 – volume: 246 start-page: 106904 year: 2022 ident: ref_107 article-title: Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2021.106904 – volume: 18 start-page: 788 year: 2003 ident: ref_102 article-title: Ultra-rapid freezing of very low numbers of sperm using cryoloops publication-title: Hum. Reprod. doi: 10.1093/humrep/deg162 – volume: 41 start-page: 187 year: 2000 ident: ref_7 article-title: Mechanisms of Cryoinjury in Living Cells publication-title: ILAR J. doi: 10.1093/ilar.41.4.187 – volume: 9 start-page: 669182 year: 2021 ident: ref_110 article-title: Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.669182 – volume: 44 start-page: 532 year: 2017 ident: ref_81 article-title: Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species publication-title: Cell. Physiol. Biochem. doi: 10.1159/000485089 – volume: 15 start-page: 153 year: 2008 ident: ref_15 article-title: Techniques for cryopreservation of individual or small numbers of human spermatozoa: A systematic review publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmn061 – volume: 13 start-page: 283 year: 1992 ident: ref_38 article-title: Cryopreservation of Human Semen: Comparison of Cryopreservatives, Sources of Variability, and Prediction of Post-thaw Survival publication-title: J. Androl. doi: 10.1002/j.1939-4640.1992.tb00316.x – volume: 170 start-page: 1079 year: 2003 ident: ref_2 article-title: Cryopreservation of Sperm: Indications, Methods and Results publication-title: J. Urol. doi: 10.1097/01.ju.0000084820.98430.b8 – volume: 76 start-page: 1532 year: 2011 ident: ref_122 article-title: Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.06.025 – volume: 190 start-page: 117 year: 2001 ident: ref_24 article-title: Evidence for a physiological role for membrane rafts in human platelets publication-title: J. Cell. Physiol. doi: 10.1002/jcp.10039 – volume: 65 start-page: 958 year: 2006 ident: ref_44 article-title: Detection of damage in mammalian sperm cells publication-title: Theriogenology doi: 10.1016/j.theriogenology.2005.09.010 – volume: 22 start-page: 126 year: 2019 ident: ref_96 article-title: Cryopreservation of Low Number of Human Spermatozoa; Which is Better: Vapor Phase or Direct Submerging in Liquid Nitrogen? publication-title: Hum. Fertil. doi: 10.1080/14647273.2018.1456681 – volume: 27 start-page: 171 year: 1990 ident: ref_67 article-title: Cold-induced ultrastructural changes in bull and boar sperm plasma membranes publication-title: Cryobiology doi: 10.1016/0011-2240(90)90009-S – volume: 98 start-page: 33 year: 2015 ident: ref_50 article-title: Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity publication-title: J. Med. Assoc. Thai. – volume: 23 start-page: 737 year: 2002 ident: ref_57 article-title: Oxidative Stress and Male Infertility: From Research Bench to Clinical Practice publication-title: J. Androl. doi: 10.1002/j.1939-4640.2002.tb02324.x – volume: 49 start-page: 112 year: 1993 ident: ref_64 article-title: Hyperosmotic Tolerance of Human Spermatozoa: Separate Effects of Glycerol, Sodium Chloride, and Sucrose on Spermolysis1 publication-title: Biol. Reprod. doi: 10.1095/biolreprod49.1.112 – volume: 5 start-page: 10 year: 2017 ident: ref_116 article-title: Identification of protein changes in human spermatozoa throughout the cryopreservation process publication-title: Andrology doi: 10.1111/andr.12279 – volume: 1257 start-page: 3 year: 2015 ident: ref_69 article-title: Principles of Cryopreservation publication-title: Cryopreserv. Free. Dry. Protoc. doi: 10.1007/978-1-4939-2193-5_1 – volume: 529 start-page: 21 year: 2003 ident: ref_58 article-title: Quantitative analysis of gene-specific DNA damage in human spermatozoa publication-title: Mutat. Res. Mol. Mech. Mutagen. doi: 10.1016/S0027-5107(03)00101-5 – ident: ref_113 doi: 10.1186/1471-213X-11-64 – volume: 86 start-page: 45 year: 2011 ident: ref_4 article-title: Fertility Preservation publication-title: Mayo Clin. Proc. doi: 10.4065/mcp.2010.0564 – volume: 17 start-page: 704 year: 2002 ident: ref_32 article-title: The effects of cryopreservation on sperm morphology, motility and mitochondrial function publication-title: Hum. Reprod. doi: 10.1093/humrep/17.3.704 – volume: 29 start-page: 585 year: 1992 ident: ref_14 article-title: Critical cooling rates for aqueous cryoprotectants in the presence of sugars and polysaccharides publication-title: Cryobiology doi: 10.1016/0011-2240(92)90063-8 – volume: 104 start-page: 719 year: 2009 ident: ref_72 article-title: Do physical forces contribute to cryodamage? publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22435 – ident: ref_22 doi: 10.1186/1741-7007-7-50 – volume: 23 start-page: 150 year: 2021 ident: ref_86 article-title: Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa publication-title: Asian J. Androl. doi: 10.4103/aja.aja_58_20 – volume: 21 start-page: 407 year: 1984 ident: ref_92 article-title: Vitrification as an approach to cryopreservation publication-title: Cryobiology doi: 10.1016/0011-2240(84)90079-8 – volume: 77 start-page: 268 year: 2012 ident: ref_77 article-title: Liposomes as an alternative to egg yolk in stallion freezing extender publication-title: Theriogenology doi: 10.1016/j.theriogenology.2011.08.001 – volume: 61 start-page: 1 year: 2015 ident: ref_103 article-title: Effect of sperm storage and selection techniques on sperm parameters publication-title: Syst. Biol. Reprod. Med. doi: 10.3109/19396368.2014.976720 – volume: 21 start-page: 25 year: 1984 ident: ref_66 article-title: Erythrocyte swelling after rapid dilution of cryoprotectants and its prevention publication-title: Cryobiology doi: 10.1016/0011-2240(84)90019-1 – volume: 82 start-page: 913 year: 2004 ident: ref_98 article-title: Cryopreservation of human spermatozoa: Comparison of two cryopreservation methods and three cryoprotectants publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2004.02.126 – volume: 136 start-page: 811 year: 2008 ident: ref_123 article-title: MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary publication-title: Reproduction doi: 10.1530/REP-08-0349 – volume: 49 start-page: 921 year: 1997 ident: ref_60 article-title: Reactive oxygen species generation by seminal cells during cryopreservation publication-title: Urology doi: 10.1016/S0090-4295(97)00070-8 – volume: 59 start-page: 1693 year: 2003 ident: ref_43 article-title: Membrane changes during different stages of a freeze–thaw protocol for equine semen cryopreservation publication-title: Theriogenology doi: 10.1016/S0093-691X(02)01231-1 – volume: 10 start-page: 49 year: 2008 ident: ref_91 article-title: Cryopreservation of domestic animal sperm cells publication-title: Cell Tissue Bank. doi: 10.1007/s10561-008-9081-4 – volume: 64 start-page: 71 year: 2012 ident: ref_17 article-title: Freezing injury: The special case of the sperm cell publication-title: Cryobiology doi: 10.1016/j.cryobiol.2011.12.002 – volume: 40 start-page: 270 year: 1976 ident: ref_3 article-title: Lazzaro Spallanzani’s Opuscoli of 1776 publication-title: Bacteriol. Rev. doi: 10.1128/br.40.2.270-275.1976 – volume: 71 start-page: 1828 year: 2004 ident: ref_47 article-title: Cryopreservation and Thawing Is Associated with Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa1 publication-title: Biol. Reprod. doi: 10.1095/biolreprod.103.025627 – volume: 28 start-page: 69 year: 2015 ident: ref_83 article-title: The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm publication-title: Int. J. Immunopathol. Pharmacol. doi: 10.1177/0394632015572080 – volume: 47 start-page: 347 year: 1963 ident: ref_90 article-title: Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing publication-title: J. Gen. Physiol. doi: 10.1085/jgp.47.2.347 – volume: 56 start-page: 1152 year: 2021 ident: ref_73 article-title: Effect of pasteurized egg yolk on the quality of cryopreserved boar semen publication-title: Reprod. Domest. Anim. doi: 10.1111/rda.13977 – volume: 24 start-page: 2061 year: 2009 ident: ref_61 article-title: Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis publication-title: Hum. Reprod. doi: 10.1093/humrep/dep214 – volume: 59 start-page: 43 year: 2015 ident: ref_21 article-title: Biological membranes publication-title: Essays Biochem. doi: 10.1042/bse0590043 – volume: 95 start-page: 1149 year: 2011 ident: ref_82 article-title: Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2010.10.005 – volume: 78 start-page: 90 year: 2017 ident: ref_20 article-title: Effectiveness of human spermatozoa biomarkers as indicators of structural damage during cryopreservation publication-title: Cryobiology doi: 10.1016/j.cryobiol.2017.06.008 – volume: 23 start-page: 367 year: 2006 ident: ref_39 article-title: Correlation of sperm DNA damage with IVF and ICSI outcomes: A systematic review and meta-analysis publication-title: J. Assist. Reprod. Genet. doi: 10.1007/s10815-006-9066-9 – volume: 17 start-page: 603 year: 2019 ident: ref_59 article-title: Strategies to Minimize Various Stress-Related Freeze–Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa publication-title: Biopreserv. Biobank. doi: 10.1089/bio.2019.0037 – volume: 91 start-page: 65 year: 2000 ident: ref_35 article-title: Comparison of protective media and freezing techniques for cryopreservation of human semen publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol. doi: 10.1016/S0301-2115(99)00255-9 – volume: 70 start-page: 1148 year: 1998 ident: ref_33 article-title: Plasma membrane integrity of cryopreserved human sperm: An investigation of the results of the hypoosmotic swelling test, the water test, and eosin-y staining publication-title: Fertil. Steril. doi: 10.1016/S0015-0282(98)00351-3 – volume: 15 start-page: 2160 year: 2000 ident: ref_26 article-title: Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa publication-title: Hum. Reprod. doi: 10.1093/humrep/15.10.2160 – volume: 85 start-page: 536 year: 2011 ident: ref_54 article-title: Short-Term Storage of Human Spermatozoa in Electrolyte-Free Medium Without Freezing Maintains Sperm Chromatin Integrity Better Than Cryopreservation publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.091322 – volume: 12 start-page: 112 year: 1997 ident: ref_89 article-title: Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa publication-title: Hum. Reprod. doi: 10.1093/humrep/12.1.112 – volume: 6 start-page: 191 year: 2003 ident: ref_19 article-title: Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From past practical difficulties to present success publication-title: Reprod. Biomed. Online doi: 10.1016/S1472-6483(10)61710-5 – volume: 31 start-page: 437 year: 2010 ident: ref_62 article-title: Protective Effects of Ascorbate and Catalase on Human Spermatozoa During Cryopreservation publication-title: J. Androl. doi: 10.2164/jandrol.109.007849 – ident: ref_76 – volume: 38 start-page: 40 year: 1955 ident: ref_5 article-title: Preliminary Fertility Results with Frozen Bovine Spermatozoa publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(55)94935-3 – volume: 16 start-page: 3 year: 2010 ident: ref_56 article-title: On the possible origins of DNA damage in human spermatozoa publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gap059 – volume: 247 start-page: C125 year: 1984 ident: ref_6 article-title: Freezing of living cells: Mechanisms and implications publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.1984.247.3.C125 – volume: 25 start-page: 375 year: 2004 ident: ref_12 article-title: Cryoprotectants: The essential antifreezes to protect life in the frozen state publication-title: Cryo Lett. – volume: 12 start-page: 33 year: 2010 ident: ref_31 article-title: The usefulness and significance of assessing rapidly progressive spermatozoa publication-title: Asian J. Androl. doi: 10.1038/aja.2008.50 – volume: 24 start-page: 563 year: 2022 ident: ref_8 article-title: Update on techniques for cryopreservation of human spermatozoa publication-title: Asian J. Androl. doi: 10.4103/aja20229 – volume: 56 start-page: 472 year: 2017 ident: ref_45 article-title: Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity publication-title: Taiwan J. Obstet. Gynecol. doi: 10.1016/j.tjog.2017.02.004 – volume: 93 start-page: 1921 year: 2010 ident: ref_95 article-title: Rapid freezing versus slow programmable freezing of human spermatozoa publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2008.04.076 – volume: 56 start-page: 74 year: 2010 ident: ref_53 article-title: Effects of Cryopreservation on Sperm DNA Integrity in Normospermic and Four Categories of Infertile Males publication-title: Syst. Biol. Reprod. Med. doi: 10.3109/19396360903428352 – volume: 26 start-page: 3207 year: 2011 ident: ref_30 article-title: ESHRE special interest group for andrology basic semen analysis course: A continued focus on accuracy, quality, efficiency and clinical relevance publication-title: Hum. Reprod. doi: 10.1093/humrep/der312 – volume: 59 start-page: 298 year: 2007 ident: ref_55 article-title: Freezing Effect on Post-Thawed Sperm Characteristics Especially Sperm DNA Integrity Comparing between Liquid Nitrogen Vapour and Computerized Program Freezer publication-title: Siriraj Med. J. – ident: ref_114 doi: 10.1101/558304 – volume: 22 start-page: 155 year: 1999 ident: ref_34 article-title: Effect of freeze–thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men publication-title: Int. J. Androl. doi: 10.1046/j.1365-2605.1999.00162.x – volume: 147 start-page: 321 year: 2014 ident: ref_117 article-title: Identification of differentially expressed proteins in fresh and frozen–thawed boar spermatozoa by iTRAQ-coupled 2D LC–MS/MS publication-title: Reproduction doi: 10.1530/REP-13-0313 – volume: 63 start-page: 77 year: 2017 ident: ref_119 article-title: New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue publication-title: Cell. Mol. Biol. doi: 10.14715/cmb/2017.63.8.17 – volume: 12 start-page: 994 year: 1997 ident: ref_101 article-title: Cryopreservation of single human spermatozoa publication-title: Hum. Reprod. doi: 10.1093/humrep/12.5.994 – ident: ref_79 – volume: 72 start-page: 210 year: 2016 ident: ref_42 article-title: The effect of two cryopreservation methods on human sperm DNA damage publication-title: Cryobiology doi: 10.1016/j.cryobiol.2016.04.004 – volume: 85 start-page: 1744 year: 2006 ident: ref_11 article-title: Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2005.11.046 – volume: 21 start-page: 330 year: 2013 ident: ref_46 article-title: Effects of cryostorage on human sperm chromatin integrity publication-title: Zygote doi: 10.1017/S0967199412000032 – volume: 50 start-page: 314 year: 1988 ident: ref_65 article-title: Cryopreservation of human spermatozoa. III. The effect of Cryoprotectants on motility publication-title: Fertil. Steril. doi: 10.1016/S0015-0282(16)60079-1 – volume: 33 start-page: 462 year: 2012 ident: ref_99 article-title: Vitrification of Human ICSI/IVF Spermatozoa Without Cryoprotectants: New Capillary Technology publication-title: J. Androl. doi: 10.2164/jandrol.111.013789 – volume: 267 start-page: 161 year: 2021 ident: ref_37 article-title: Effect of curcumin on sperm parameters after the cryopreservation publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol. doi: 10.1016/j.ejogrb.2021.10.027 – volume: 88 start-page: 68 year: 2013 ident: ref_71 article-title: Osmotic Stress and Membrane Phase Changes During Freezing of Stallion Sperm: Mode of Action of Cryoprotective Agents1 publication-title: Biol. Reprod. doi: 10.1095/biolreprod.112.104661 – volume: 93 start-page: 159 year: 2010 ident: ref_49 article-title: Effects of cryopreservation on human sperm deoxyribonucleic acid integrity publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2008.09.038 – volume: 44 start-page: 786 year: 2012 ident: ref_93 article-title: Comparison of cryopreserved human sperm from solid surface vitrification and standard vapor freezing method: On motility, morphology, vitality and DNA integrity publication-title: Andrologia doi: 10.1111/j.1439-0272.2011.01267.x – volume: 22 start-page: 331 year: 2018 ident: ref_97 article-title: Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation publication-title: JBRA Assist. Reprod. – volume: 21 start-page: 209 year: 2015 ident: ref_111 article-title: The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmu063 – volume: 53 start-page: 99 year: 2007 ident: ref_78 article-title: Sole Use of Sucrose in Human Sperm Cryopreservation publication-title: Arch. Androl. doi: 10.1080/01485010701225675 – volume: 11 start-page: 73 year: 1990 ident: ref_25 article-title: Cryopreservation of mammalian sperm: What we ask them to survive publication-title: J. Androl. doi: 10.1002/j.1939-4640.1990.tb01583.x – volume: 67 start-page: 84 year: 2013 ident: ref_115 article-title: Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development publication-title: Cryobiology doi: 10.1016/j.cryobiol.2013.05.007 – volume: 20 start-page: 005 year: 2002 ident: ref_68 article-title: The History and Principles of Cryopreservation publication-title: Semin. Reprod. Med. doi: 10.1055/s-2002-23515 – volume: 4 start-page: 137 year: 2002 ident: ref_75 article-title: The influence of cryoprotective media and processing procedures on motility and migration of frozen-thawed human sperm publication-title: Asian J. Androl. – ident: ref_104 doi: 10.3390/ijms24043379 |
SSID | ssj0057871 ssib044733985 |
Score | 2.5020156 |
SecondaryResourceType | review_article |
Snippet | The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4716 |
SubjectTerms | Analysis Cancer Chemotherapy cryodamage cryopreservation cryoprotectant human spermatozoa Review slow freezing Spermatozoa vitrification |
Title | Sperm Cryopreservation Today: Approaches, Efficiency, and Pitfalls |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37367049 https://www.proquest.com/docview/2830218109 https://pubmed.ncbi.nlm.nih.gov/PMC10296824 https://doaj.org/article/076206fe85ec441ab1526b4003eb4b6b |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOgl9JXUbRJcaMihMZH1stTbJmwIhYRCG8hNWLJEFzZOyG4OufS3Z0b2bm1C6KUXH6zBlkYzmhkx8w0hX8BlbQx3sdCuEYVQLBROUFdI1QRaMRlCunA7v1Bnl-L7lbwatPrCnLAOHrhj3BHE2YyqGLQMHkx37cDgKPgc5cEJpxyevmDzBsEUSJIQFefmryOMYll2dUagUpRXXQo80NAjP7t2AmH2OFa5DYxTwvB_elIPTNU4jXJgl05fk83eocwn3ULekBehfUtedi0mH96R45-3cPbmJ3cPqd3J6go2T-kz3_JJDykeFof5NKFJYCnmYV63Tf5jtoz1fL54Ty5Pp79Ozoq-b0LhZamXRV0FMH3aRFmzqGmDJkc6Hx3jEAh7I3nwyjRRc9qwWCpmNHfOOOFVHY3SfItstDdt-EByT4OjLgjDYhTB6Jo1FbCblpFp7aPKyNcVw6zvQcWxt8XcQnCB7LVD9mZkf01924FpPEN3jLxf0yAEdnoBgmF7wbD_EoyMHODOWVRUmJKv-3oDWBhCXtlJJfF3JasysjOiBAXzo-HPq723OIRZaW24uV_YBJ4GLhI1GdnuZGE9Z14hNJ6AET2SktGixiPt7HfC9wafD3aBiY__gw2fyCsGfhkmPDCzQzaWd_dhF_yopdtLKgPP8z_TvXTN9QjUvhjy |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sperm+Cryopreservation+Today%3A+Approaches%2C+Efficiency%2C+and+Pitfalls&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Ozimic%2C+Sanja&rft.au=Ban-Frangez%2C+Helena&rft.au=Stimpfel%2C+Martin&rft.date=2023-05-29&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=45&rft.issue=6&rft.spage=4716&rft_id=info:doi/10.3390%2Fcimb45060300&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon |