Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter

The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is ob...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 77; no. 7; pp. 1 - 9
Main Authors Mukhopadhyay, Somnath, Atta, Debasis, Imam, Kouser, Basu, D. N., Samanta, C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2017
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∼ 1.94 M ⊙ with radius ∼ 10.4 km.
AbstractList The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∼1.94M⊙ with radius ∼10.4 km.
The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∼ 1.94 M ⊙ with radius ∼ 10.4 km.
The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be [Formula omitted] with radius [Formula omitted] km.
Abstract The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be $${\sim }1.94 \;\mathrm{M}_\odot $$ ∼ 1.94 M ⊙ with radius $${\sim }10.4$$ ∼ 10.4 km.
ArticleNumber 440
Audience Academic
Author Samanta, C.
Imam, Kouser
Basu, D. N.
Atta, Debasis
Mukhopadhyay, Somnath
Author_xml – sequence: 1
  givenname: Somnath
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Somnath
  organization: Variable Energy Cyclotron Centre, HBNI
– sequence: 2
  givenname: Debasis
  surname: Atta
  fullname: Atta, Debasis
  organization: Variable Energy Cyclotron Centre, HBNI, Government General Degree College
– sequence: 3
  givenname: Kouser
  surname: Imam
  fullname: Imam, Kouser
  organization: Variable Energy Cyclotron Centre, HBNI, Department of Physics, Aliah University
– sequence: 4
  givenname: D. N.
  surname: Basu
  fullname: Basu, D. N.
  email: dnb@vecc.gov.in
  organization: Variable Energy Cyclotron Centre, HBNI
– sequence: 5
  givenname: C.
  surname: Samanta
  fullname: Samanta, C.
  organization: Department of Physics and Astronomy, Virginia Military Institute
BookMark eNqFUstq3DAUNSWFJml_oRi66sKJZFmSXboJQ9sMBAp9rMXVyyPXtqaShmT-vnIcQtJFixb3cjjn6j7OWXEy-9kUxVuMLjBu0KXZD-oyYoRoXSHMK4oQq8iL4hQ3pKlYhk8e86Z5VZzFOCCE6ga1p8Ww8dMeVCqls-PB6XJ3lCGHmCDED-UOdPCzU-UEKZlQTu7O6PLWpV0ZzWgrN2c0y93cl9aEyd2TIR6nyaSQUw3h14P4dfHSwhjNm4d4Xvz8_OnH5rq6-fplu7m6qRTFbaqAUWlIRyQgbRUBjiRhFjMNHeu4Iq2smWTIaN1wpZkkClGGu5ZgkK3WnJwX27Wu9jCIfXAThKPw4MQ94EMvICSnRiOoaqWVtaUctw1jtNW0Vpx3qgWOAde51ru11j743wcTkxj8Icy5fYE7ztuOE0oz62Jl9ZCLutn6lJeSnzaTU_la1mX8ii5bpw1bWnz_TJA5ydylHg4xiu33b8-5bOWq4GMMxj6OhJFYDCAWA4jVACIbQCwGECQLP_4lVC5ByifK3bnx_3K-ymP-b-5NeDL6v5V_AErozFY
CitedBy_id crossref_primary_10_3847_1538_4357_ad5cf1
crossref_primary_10_3390_universe9050202
crossref_primary_10_1093_mnras_stac2675
crossref_primary_10_1088_1475_7516_2021_09_027
crossref_primary_10_1103_PhysRevD_108_064009
crossref_primary_10_1103_PhysRevD_107_115028
crossref_primary_10_1016_j_dark_2024_101665
crossref_primary_10_1140_epjp_s13360_020_00364_1
crossref_primary_10_1016_j_physletb_2018_04_048
crossref_primary_10_1103_PhysRevD_97_123007
crossref_primary_10_1088_1475_7516_2023_12_008
crossref_primary_10_1140_epjp_s13360_020_00650_y
crossref_primary_10_1103_PhysRevD_110_103013
crossref_primary_10_1142_S0218271819500020
crossref_primary_10_3847_1538_4357_ac8544
crossref_primary_10_1103_PhysRevD_106_123027
crossref_primary_10_3390_universe6120231
crossref_primary_10_1103_PhysRevD_105_023001
crossref_primary_10_1093_mnras_stab1056
crossref_primary_10_1103_PhysRevD_109_043038
crossref_primary_10_3847_1538_4357_ad4701
crossref_primary_10_1088_1475_7516_2021_10_086
crossref_primary_10_1088_1475_7516_2023_08_016
crossref_primary_10_1103_PhysRevD_104_083016
crossref_primary_10_3847_1538_4357_acb3be
crossref_primary_10_1088_1475_7516_2018_05_038
crossref_primary_10_1140_epjc_s10052_022_10335_8
crossref_primary_10_3390_universe8120652
crossref_primary_10_1051_epjconf_201818202107
crossref_primary_10_1088_1361_6471_aca1d5
crossref_primary_10_1088_1475_7516_2022_10_028
crossref_primary_10_1016_j_rinp_2023_106967
crossref_primary_10_1088_1475_7516_2024_09_052
crossref_primary_10_3390_universe9070307
Cites_doi 10.1016/j.astropartphys.2009.09.005
10.1103/PhysRevD.90.015023
10.1103/PhysRev.75.1561
10.1111/j.1365-2966.2011.18890.x
10.1103/PhysRevC.89.025803
10.1002/andp.201200212
10.1016/j.physrep.2013.12.001
10.1016/j.physletb.2010.11.021
10.1103/PhysRevD.92.123002
10.1016/0029-5582(62)90153-0
10.1103/PhysRevD.92.103513
10.1093/mnras/sts514
10.1093/mnras/stv774
10.1103/PhysRevD.77.043515
10.1088/0004-637X/804/2/131
10.1086/112290
10.3847/1538-4357/833/2/156
10.1103/PhysRevD.77.023006
10.1016/j.nuclphysa.2003.11.003
10.1007/s12648-016-0906-x
10.1016/j.physletb.2012.03.065
10.1016/0370-2693(89)90064-6
10.1103/PhysRevLett.100.051101
10.1103/RevModPhys.75.1021
10.1103/PhysRevC.73.067302
10.1103/PhysRevC.80.057304
10.1088/1475-7516/2012/06/001
10.1016/0375-9474(77)90392-X
10.1016/j.nuclphysa.2008.07.009
10.1103/PhysRevD.74.063003
10.1103/PhysRevC.89.028801
10.1086/151216
10.1088/0143-0807/26/3/003
10.1103/PhysRevC.75.035808
10.1002/9783527617661
10.1103/PhysRevD.40.3221
10.1103/PhysRevLett.99.162503
10.1016/0375-9474(71)90281-8
10.1103/PhysRevD.89.115017
10.1016/j.physrep.2004.08.031
10.1103/PhysRevD.84.107301
10.1103/PhysRevD.83.083512
10.1103/PhysRevC.80.011305
10.1103/PhysRevD.82.063531
10.1038/311517a0
10.1016/j.physletb.2013.07.017
10.1103/PhysRevC.90.035802
10.1103/PhysRevLett.105.011301
10.1088/0305-4616/9/12/009
10.1051/0004-6361/201220697
10.1103/PhysRevLett.115.021301
10.1016/j.astropartphys.2012.07.006
10.1016/0370-1573(79)90081-4
10.1103/PhysRevD.81.123521
10.1088/0305-4470/14/11/009
10.1103/PhysRevD.81.083520
ContentType Journal Article
Copyright The Author(s) 2017. Corrected publication August 2017
COPYRIGHT 2017 Springer
The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017. Corrected publication August 2017
– notice: COPYRIGHT 2017 Springer
– notice: The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-017-5006-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 9
ExternalDocumentID oai_doaj_org_article_5c8bfb2f571846658d52c779c8a71a12
A500025467
10_1140_epjc_s10052_017_5006_3
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c518t-a65be393ba0dfc3a70b36f16da9697c38b26b60edd47cd6b3c05619831ab8dd73
IEDL.DBID C6C
ISSN 1434-6044
IngestDate Wed Aug 27 01:32:43 EDT 2025
Sun Jul 13 03:58:42 EDT 2025
Tue Jun 10 20:47:02 EDT 2025
Fri Jun 27 04:20:35 EDT 2025
Tue Jul 01 01:38:14 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Fri Feb 21 02:34:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a65be393ba0dfc3a70b36f16da9697c38b26b60edd47cd6b3c05619831ab8dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1140/epjc/s10052-017-5006-3
PQID 1977897355
PQPubID 2034659
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5c8bfb2f571846658d52c779c8a71a12
proquest_journals_1977897355
gale_infotracacademiconefile_A500025467
gale_incontextgauss_ISR_A500025467
crossref_primary_10_1140_epjc_s10052_017_5006_3
crossref_citationtrail_10_1140_epjc_s10052_017_5006_3
springer_journals_10_1140_epjc_s10052_017_5006_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170700
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 7
  year: 2017
  text: 20170700
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References GoldmanIMohapatraRNNussinovSRosenbaumDTeplitzVPhys. Lett. B20137252002013PhLB..725..200G10.1016/j.physletb.2013.07.017
RoyerGGautierCPhys. Rev. C2006730673022006PhRvC..73f7302R10.1103/PhysRevC.73.067302
SeifWMBasuDNPhys. Rev. C2014890288012014PhRvC..89b8801S10.1103/PhysRevC.89.028801
LeungS-CChuM-CLinL-MPhys. Rev. D2011841073012011PhRvD..84j7301L10.1103/PhysRevD.84.107301
E. Gourgoulhon (2011). arXiv:1003.5015v2
KämpferBJ. Phys. A198114L47110.1088/0305-4470/14/11/009
AudiGWapstraAHThibaultCNucl. Phys. A20037293372003NuPhA.729..337A10.1016/j.nuclphysa.2003.11.003
BasuDNChowdhuryPRSamantaCPhys. Rev. C2009800573042009PhRvC..80e7304B10.1103/PhysRevC.80.057304
FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561
TolosLSchaffner-BielichJPhys. Rev. D2015921230022015PhRvD..92l3002T10.1103/PhysRevD.92.123002
BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8
FrandsenMTSarkarSPhys. Rev. Lett.20101050113012010PhRvL.105a1301F10.1103/PhysRevLett.105.011301
Pérez-GarcíaMASilkJPhys. Lett. B201271162012PhLB..711....6P10.1016/j.physletb.2012.03.065
LiAHuangFRen-XinXAstropart. Phys.201237702012APh....37...70L10.1016/j.astropartphys.2012.07.006
J.M. Cline, Z. Liu, G.D. Moore, W. Xue, Phys. Rev. D 90, 015023 (2014)
BertoneGFairbairnMPhys. Rev. D2008770435152008PhRvD..77d3515B10.1103/PhysRevD.77.043515
XiangQ-FJiangW-ZZhangD-RYangR-YPhys. Rev. C2014890258032014PhRvC..89b5803X10.1103/PhysRevC.89.025803
ChowdhuryPRBasuDNSamantaCPhys. Rev. C200980011305(R)2009PhRvC..80a1305C10.1103/PhysRevC.80.011305
BasuDNChowdhuryPRSamantaCNucl. Phys. A20088111402008NuPhA.811..140B10.1016/j.nuclphysa.2008.07.009
KouvarisCPhys. Rev. D2008770230062008PhRvD..77b3006K10.1103/PhysRevD.77.023006
G.R. Satchler, Int. series of monographs on Physics. Direct nuclear reactions (Oxford University Press, Oxford, 1983), p. 470
LiXYWangFYChengKSJCAP2012100312012JCAP...10..031L10.1088/1475-7516/2012/10/031
SamantaCBandyopadhyayDDeJNPhys. Lett. B19892173811989PhLB..217..381S10.1016/0370-2693(89)90064-6
SatchlerGRLoveWGPhys. Rep.1979551831979PhR....55..183S10.1016/0370-1573(79)90081-4
ChowdhuryPRBasuDNActa Phys. Pol. B20063718332006AcPPB..37.1833C
FrenkCSWhiteSDMAnn. Phys.201252450710.1002/andp.201200212
KouvarisCTinyakovPPhys. Rev. D2011830835122011PhRvD..83h3512K10.1103/PhysRevD.83.083512
ChenC-SLinG-LLinY-HJCAP2016010132016JCAP...01..013C
SharmaBKPandaPKPatraSKPhys. Rev. C2007750358082007PhRvC..75c5808S10.1103/PhysRevC.75.035808
UtsumiYAstrophys. J.20168331562016ApJ...833..156U10.3847/1538-4357/833/2/156
SpolyarDFreeseKGondoloPPhys. Rev. Lett.20081000511012008PhRvL.100e1101S10.1103/PhysRevLett.100.051101
BaymGPethickCJSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216
ZdunikJLHaenselPA&A2013551A612013A&A...551A..61Z10.1051/0004-6361/201220697
GuthAHHertzbergMPPrescod-WeinsteinCPhys. Rev. D2015921035132015PhRvD..92j3513G10.1103/PhysRevD.92.103513
NarainGSchaffner-BielichJMishustinINPhys. Rev. D2006740630032006PhRvD..74f3003N10.1103/PhysRevD.74.063003
de LavallazAFairbairnMPhys. Rev. D2010811235212010PhRvD..81l3521D10.1103/PhysRevD.81.123521
KingSMerleAJCAP20120161208
LiTGargULiuYPhys. Rev. Lett.2007991625032007PhRvL..99p2503L10.1103/PhysRevLett.99.162503
BertschGBorysowiczJMcManusHLoveWGNucl. Phys. A19772843991977NuPhA.284..399B10.1016/0375-9474(77)90392-X
JacobsDMStarkmanGDLynnBWMNRAS201545034182015MNRAS.450.3418J10.1093/mnras/stv774
PollackJSpergelDNSteinhardtPJAstrophys. J.20158041312015ApJ...804..131P10.1088/0004-637X/804/2/131
McCulloughMFairbairnMPhys. Rev. D2010810835202010PhRvD..81h3520M10.1103/PhysRevD.81.083520
KouvarisCTinyakovPPhys. Rev. D2010820635312010PhRvD..82f3531K10.1103/PhysRevD.82.063531
AttaDBasuDNPhys. Rev. C2014900358022014PhRvC..90c5802A10.1103/PhysRevC.90.035802
KämpferBJ. Phys. G1983914871983JPhG....9.1487K10.1088/0305-4616/9/12/009
K.K. Boddy, J.L. Feng, M. Kaplinghat, M.P. Tim, Tait. Phys. Rev. D 89, 115017 (2014)
LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0
GoldmanINussinovSPhys. Rev. D19894032211989PhRvD..40.3221G10.1103/PhysRevD.40.3221
HawkinsMRSMon. Not. R. Astron. Soc.201141527442011MNRAS.415.2744H10.1111/j.1365-2966.2011.18890.x
S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)
BertoneGHooperDSilkJPhys. Rep.20054052792005PhR...405..279B10.1016/j.physrep.2004.08.031
LiXHarkoTChengKJCAP2012060012012JCAP...06..001L10.1088/1475-7516/2012/06/001
G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Nature 311, 517 (1984)
CiarcellutiPSandinFPhys. Lett. B2011695192011PhLB..695...19C10.1016/j.physletb.2010.11.021
HochbergYKuflikEMurayamaHVolanskyTWackerJGPhys. Rev. Lett.20151150213012015PhRvL.115b1301H10.1103/PhysRevLett.115.021301
SandinFCiarcellutiPAstropart. Phys.2009322782009APh....32..278S10.1016/j.astropartphys.2009.09.005
RochaMPeterAHGBullockJSKaplinghatMGarrison-KimmelSOñorbeJMoustakasLAMNRAS2013430812013MNRAS.430...81R10.1093/mnras/sts514
ZurekKMPhys. Rep.2014537912014PhR...537...91Z10.1016/j.physrep.2013.12.001
SteigmanGSarazinCQuintanaHFaulknerJAstron. J.19780610501978AJ.....83.1050S10.1086/112290
AttaDMukhopadhyaySBasuDNIndian J. Phys.2017912352017InJPh..91..235A10.1007/s12648-016-0906-x
MacherJSchaffner-BeilichJEur. J. Phys.20052634110.1088/0143-0807/26/3/003
LunneyDPearsonJMThibaultCRev. Mod. Phys.20037510212003RvMP...75.1021L10.1103/RevModPhys.75.1021
F Sandin (5006_CR57) 2009; 32
KM Zurek (5006_CR5) 2014; 537
G Bertone (5006_CR2) 2005; 405
JL Zdunik (5006_CR62) 2013; 551
RP Feynman (5006_CR48) 1949; 75
G Steigman (5006_CR10) 1978; 06
A Li (5006_CR25) 2012; 37
Q-F Xiang (5006_CR26) 2014; 89
5006_CR3
G Royer (5006_CR46) 2006; 73
C Samanta (5006_CR42) 1989; 217
Y Hochberg (5006_CR31) 2015; 115
L Tolos (5006_CR28) 2015; 92
CS Frenk (5006_CR6) 2012; 524
5006_CR34
C Kouvaris (5006_CR18) 2010; 82
5006_CR33
DN Basu (5006_CR55) 2009; 80
AM Lane (5006_CR37) 1962; 35
C Kouvaris (5006_CR21) 2008; 77
X Li (5006_CR9) 2012; 06
MRS Hawkins (5006_CR27) 2011; 415
S King (5006_CR4) 2012; 016
AH Guth (5006_CR8) 2015; 92
5006_CR38
5006_CR36
P Ciarcelluti (5006_CR14) 2011; 695
B Kämpfer (5006_CR58) 1981; 14
G Narain (5006_CR24) 2006; 74
GR Satchler (5006_CR41) 1979; 55
DM Jacobs (5006_CR20) 2015; 450
G Bertsch (5006_CR40) 1977; 284
C Kouvaris (5006_CR19) 2011; 83
S-C Leung (5006_CR15) 2011; 84
A Lavallaz de (5006_CR17) 2010; 81
G Bertone (5006_CR12) 2008; 77
MA Pérez-García (5006_CR23) 2012; 711
WM Seif (5006_CR53) 2014; 89
5006_CR56
XY Li (5006_CR16) 2012; 10
Y Utsumi (5006_CR1) 2016; 833
J Pollack (5006_CR30) 2015; 804
M Rocha (5006_CR35) 2013; 430
I Goldman (5006_CR11) 1989; 40
MT Frandsen (5006_CR13) 2010; 105
D Lunney (5006_CR45) 2003; 75
C-S Chen (5006_CR32) 2016; 01
G Audi (5006_CR44) 2003; 729
I Goldman (5006_CR29) 2013; 725
B Kämpfer (5006_CR59) 1983; 9
BK Sharma (5006_CR61) 2007; 75
DN Basu (5006_CR39) 2008; 811
T Li (5006_CR47) 2007; 99
G Baym (5006_CR49) 1971; 170
D Atta (5006_CR51) 2017; 91
M McCullough (5006_CR22) 2010; 81
PR Chowdhury (5006_CR54) 2009; 80
G Baym (5006_CR50) 1971; 175
D Atta (5006_CR52) 2014; 90
D Spolyar (5006_CR7) 2008; 100
PR Chowdhury (5006_CR43) 2006; 37
J Macher (5006_CR60) 2005; 26
References_xml – reference: AttaDMukhopadhyaySBasuDNIndian J. Phys.2017912352017InJPh..91..235A10.1007/s12648-016-0906-x
– reference: LiXYWangFYChengKSJCAP2012100312012JCAP...10..031L10.1088/1475-7516/2012/10/031
– reference: AttaDBasuDNPhys. Rev. C2014900358022014PhRvC..90c5802A10.1103/PhysRevC.90.035802
– reference: GoldmanINussinovSPhys. Rev. D19894032211989PhRvD..40.3221G10.1103/PhysRevD.40.3221
– reference: ZdunikJLHaenselPA&A2013551A612013A&A...551A..61Z10.1051/0004-6361/201220697
– reference: LiAHuangFRen-XinXAstropart. Phys.201237702012APh....37...70L10.1016/j.astropartphys.2012.07.006
– reference: NarainGSchaffner-BielichJMishustinINPhys. Rev. D2006740630032006PhRvD..74f3003N10.1103/PhysRevD.74.063003
– reference: LiTGargULiuYPhys. Rev. Lett.2007991625032007PhRvL..99p2503L10.1103/PhysRevLett.99.162503
– reference: de LavallazAFairbairnMPhys. Rev. D2010811235212010PhRvD..81l3521D10.1103/PhysRevD.81.123521
– reference: K.K. Boddy, J.L. Feng, M. Kaplinghat, M.P. Tim, Tait. Phys. Rev. D 89, 115017 (2014)
– reference: GoldmanIMohapatraRNNussinovSRosenbaumDTeplitzVPhys. Lett. B20137252002013PhLB..725..200G10.1016/j.physletb.2013.07.017
– reference: SeifWMBasuDNPhys. Rev. C2014890288012014PhRvC..89b8801S10.1103/PhysRevC.89.028801
– reference: UtsumiYAstrophys. J.20168331562016ApJ...833..156U10.3847/1538-4357/833/2/156
– reference: SpolyarDFreeseKGondoloPPhys. Rev. Lett.20081000511012008PhRvL.100e1101S10.1103/PhysRevLett.100.051101
– reference: ZurekKMPhys. Rep.2014537912014PhR...537...91Z10.1016/j.physrep.2013.12.001
– reference: S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)
– reference: BertoneGHooperDSilkJPhys. Rep.20054052792005PhR...405..279B10.1016/j.physrep.2004.08.031
– reference: Pérez-GarcíaMASilkJPhys. Lett. B201271162012PhLB..711....6P10.1016/j.physletb.2012.03.065
– reference: LeungS-CChuM-CLinL-MPhys. Rev. D2011841073012011PhRvD..84j7301L10.1103/PhysRevD.84.107301
– reference: AudiGWapstraAHThibaultCNucl. Phys. A20037293372003NuPhA.729..337A10.1016/j.nuclphysa.2003.11.003
– reference: SandinFCiarcellutiPAstropart. Phys.2009322782009APh....32..278S10.1016/j.astropartphys.2009.09.005
– reference: BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8
– reference: FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561
– reference: FrandsenMTSarkarSPhys. Rev. Lett.20101050113012010PhRvL.105a1301F10.1103/PhysRevLett.105.011301
– reference: RoyerGGautierCPhys. Rev. C2006730673022006PhRvC..73f7302R10.1103/PhysRevC.73.067302
– reference: JacobsDMStarkmanGDLynnBWMNRAS201545034182015MNRAS.450.3418J10.1093/mnras/stv774
– reference: ChenC-SLinG-LLinY-HJCAP2016010132016JCAP...01..013C
– reference: HochbergYKuflikEMurayamaHVolanskyTWackerJGPhys. Rev. Lett.20151150213012015PhRvL.115b1301H10.1103/PhysRevLett.115.021301
– reference: BertoneGFairbairnMPhys. Rev. D2008770435152008PhRvD..77d3515B10.1103/PhysRevD.77.043515
– reference: SharmaBKPandaPKPatraSKPhys. Rev. C2007750358082007PhRvC..75c5808S10.1103/PhysRevC.75.035808
– reference: KouvarisCPhys. Rev. D2008770230062008PhRvD..77b3006K10.1103/PhysRevD.77.023006
– reference: XiangQ-FJiangW-ZZhangD-RYangR-YPhys. Rev. C2014890258032014PhRvC..89b5803X10.1103/PhysRevC.89.025803
– reference: BasuDNChowdhuryPRSamantaCNucl. Phys. A20088111402008NuPhA.811..140B10.1016/j.nuclphysa.2008.07.009
– reference: BaymGPethickCJSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216
– reference: KämpferBJ. Phys. G1983914871983JPhG....9.1487K10.1088/0305-4616/9/12/009
– reference: SamantaCBandyopadhyayDDeJNPhys. Lett. B19892173811989PhLB..217..381S10.1016/0370-2693(89)90064-6
– reference: McCulloughMFairbairnMPhys. Rev. D2010810835202010PhRvD..81h3520M10.1103/PhysRevD.81.083520
– reference: G.R. Satchler, Int. series of monographs on Physics. Direct nuclear reactions (Oxford University Press, Oxford, 1983), p. 470
– reference: ChowdhuryPRBasuDNActa Phys. Pol. B20063718332006AcPPB..37.1833C
– reference: GuthAHHertzbergMPPrescod-WeinsteinCPhys. Rev. D2015921035132015PhRvD..92j3513G10.1103/PhysRevD.92.103513
– reference: KämpferBJ. Phys. A198114L47110.1088/0305-4470/14/11/009
– reference: RochaMPeterAHGBullockJSKaplinghatMGarrison-KimmelSOñorbeJMoustakasLAMNRAS2013430812013MNRAS.430...81R10.1093/mnras/sts514
– reference: E. Gourgoulhon (2011). arXiv:1003.5015v2
– reference: PollackJSpergelDNSteinhardtPJAstrophys. J.20158041312015ApJ...804..131P10.1088/0004-637X/804/2/131
– reference: LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0
– reference: LiXHarkoTChengKJCAP2012060012012JCAP...06..001L10.1088/1475-7516/2012/06/001
– reference: KouvarisCTinyakovPPhys. Rev. D2010820635312010PhRvD..82f3531K10.1103/PhysRevD.82.063531
– reference: TolosLSchaffner-BielichJPhys. Rev. D2015921230022015PhRvD..92l3002T10.1103/PhysRevD.92.123002
– reference: CiarcellutiPSandinFPhys. Lett. B2011695192011PhLB..695...19C10.1016/j.physletb.2010.11.021
– reference: BasuDNChowdhuryPRSamantaCPhys. Rev. C2009800573042009PhRvC..80e7304B10.1103/PhysRevC.80.057304
– reference: KingSMerleAJCAP20120161208
– reference: FrenkCSWhiteSDMAnn. Phys.201252450710.1002/andp.201200212
– reference: SteigmanGSarazinCQuintanaHFaulknerJAstron. J.19780610501978AJ.....83.1050S10.1086/112290
– reference: KouvarisCTinyakovPPhys. Rev. D2011830835122011PhRvD..83h3512K10.1103/PhysRevD.83.083512
– reference: LunneyDPearsonJMThibaultCRev. Mod. Phys.20037510212003RvMP...75.1021L10.1103/RevModPhys.75.1021
– reference: G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Nature 311, 517 (1984)
– reference: J.M. Cline, Z. Liu, G.D. Moore, W. Xue, Phys. Rev. D 90, 015023 (2014)
– reference: HawkinsMRSMon. Not. R. Astron. Soc.201141527442011MNRAS.415.2744H10.1111/j.1365-2966.2011.18890.x
– reference: MacherJSchaffner-BeilichJEur. J. Phys.20052634110.1088/0143-0807/26/3/003
– reference: BertschGBorysowiczJMcManusHLoveWGNucl. Phys. A19772843991977NuPhA.284..399B10.1016/0375-9474(77)90392-X
– reference: SatchlerGRLoveWGPhys. Rep.1979551831979PhR....55..183S10.1016/0370-1573(79)90081-4
– reference: ChowdhuryPRBasuDNSamantaCPhys. Rev. C200980011305(R)2009PhRvC..80a1305C10.1103/PhysRevC.80.011305
– volume: 32
  start-page: 278
  year: 2009
  ident: 5006_CR57
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2009.09.005
– ident: 5006_CR33
  doi: 10.1103/PhysRevD.90.015023
– volume: 75
  start-page: 1561
  year: 1949
  ident: 5006_CR48
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.75.1561
– ident: 5006_CR38
– volume: 415
  start-page: 2744
  year: 2011
  ident: 5006_CR27
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.18890.x
– volume: 89
  start-page: 025803
  year: 2014
  ident: 5006_CR26
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.025803
– volume: 524
  start-page: 507
  year: 2012
  ident: 5006_CR6
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201200212
– volume: 537
  start-page: 91
  year: 2014
  ident: 5006_CR5
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.12.001
– volume: 695
  start-page: 19
  year: 2011
  ident: 5006_CR14
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2010.11.021
– volume: 92
  start-page: 123002
  year: 2015
  ident: 5006_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.123002
– volume: 35
  start-page: 676
  year: 1962
  ident: 5006_CR37
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(62)90153-0
– volume: 92
  start-page: 103513
  year: 2015
  ident: 5006_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.103513
– volume: 430
  start-page: 81
  year: 2013
  ident: 5006_CR35
  publication-title: MNRAS
  doi: 10.1093/mnras/sts514
– volume: 450
  start-page: 3418
  year: 2015
  ident: 5006_CR20
  publication-title: MNRAS
  doi: 10.1093/mnras/stv774
– volume: 77
  start-page: 043515
  year: 2008
  ident: 5006_CR12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.043515
– volume: 804
  start-page: 131
  year: 2015
  ident: 5006_CR30
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/804/2/131
– volume: 06
  start-page: 1050
  year: 1978
  ident: 5006_CR10
  publication-title: Astron. J.
  doi: 10.1086/112290
– volume: 833
  start-page: 156
  year: 2016
  ident: 5006_CR1
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/833/2/156
– volume: 77
  start-page: 023006
  year: 2008
  ident: 5006_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.023006
– volume: 729
  start-page: 337
  year: 2003
  ident: 5006_CR44
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2003.11.003
– volume: 91
  start-page: 235
  year: 2017
  ident: 5006_CR51
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-016-0906-x
– volume: 711
  start-page: 6
  year: 2012
  ident: 5006_CR23
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.03.065
– volume: 217
  start-page: 381
  year: 1989
  ident: 5006_CR42
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(89)90064-6
– volume: 100
  start-page: 051101
  year: 2008
  ident: 5006_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.051101
– volume: 75
  start-page: 1021
  year: 2003
  ident: 5006_CR45
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.75.1021
– volume: 73
  start-page: 067302
  year: 2006
  ident: 5006_CR46
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.73.067302
– volume: 80
  start-page: 057304
  year: 2009
  ident: 5006_CR55
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.057304
– volume: 06
  start-page: 001
  year: 2012
  ident: 5006_CR9
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/06/001
– volume: 284
  start-page: 399
  year: 1977
  ident: 5006_CR40
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(77)90392-X
– volume: 811
  start-page: 140
  year: 2008
  ident: 5006_CR39
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2008.07.009
– volume: 74
  start-page: 063003
  year: 2006
  ident: 5006_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.063003
– volume: 89
  start-page: 028801
  year: 2014
  ident: 5006_CR53
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.028801
– volume: 016
  start-page: 1208
  year: 2012
  ident: 5006_CR4
  publication-title: JCAP
– volume: 170
  start-page: 299
  year: 1971
  ident: 5006_CR49
  publication-title: Astrophys. J.
  doi: 10.1086/151216
– volume: 26
  start-page: 341
  year: 2005
  ident: 5006_CR60
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/26/3/003
– volume: 75
  start-page: 035808
  year: 2007
  ident: 5006_CR61
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.75.035808
– ident: 5006_CR56
  doi: 10.1002/9783527617661
– ident: 5006_CR36
– volume: 01
  start-page: 013
  year: 2016
  ident: 5006_CR32
  publication-title: JCAP
– volume: 40
  start-page: 3221
  year: 1989
  ident: 5006_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.40.3221
– volume: 99
  start-page: 162503
  year: 2007
  ident: 5006_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.162503
– volume: 175
  start-page: 225
  year: 1971
  ident: 5006_CR50
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(71)90281-8
– volume: 37
  start-page: 1833
  year: 2006
  ident: 5006_CR43
  publication-title: Acta Phys. Pol. B
– ident: 5006_CR34
  doi: 10.1103/PhysRevD.89.115017
– volume: 405
  start-page: 279
  year: 2005
  ident: 5006_CR2
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2004.08.031
– volume: 84
  start-page: 107301
  year: 2011
  ident: 5006_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.107301
– volume: 83
  start-page: 083512
  year: 2011
  ident: 5006_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.083512
– volume: 80
  start-page: 011305(R)
  year: 2009
  ident: 5006_CR54
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.011305
– volume: 82
  start-page: 063531
  year: 2010
  ident: 5006_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.063531
– ident: 5006_CR3
  doi: 10.1038/311517a0
– volume: 725
  start-page: 200
  year: 2013
  ident: 5006_CR29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.07.017
– volume: 90
  start-page: 035802
  year: 2014
  ident: 5006_CR52
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.90.035802
– volume: 105
  start-page: 011301
  year: 2010
  ident: 5006_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.011301
– volume: 9
  start-page: 1487
  year: 1983
  ident: 5006_CR59
  publication-title: J. Phys. G
  doi: 10.1088/0305-4616/9/12/009
– volume: 551
  start-page: A61
  year: 2013
  ident: 5006_CR62
  publication-title: A&A
  doi: 10.1051/0004-6361/201220697
– volume: 115
  start-page: 021301
  year: 2015
  ident: 5006_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.021301
– volume: 37
  start-page: 70
  year: 2012
  ident: 5006_CR25
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2012.07.006
– volume: 10
  start-page: 031
  year: 2012
  ident: 5006_CR16
  publication-title: JCAP
– volume: 55
  start-page: 183
  year: 1979
  ident: 5006_CR41
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(79)90081-4
– volume: 81
  start-page: 123521
  year: 2010
  ident: 5006_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.123521
– volume: 14
  start-page: L471
  year: 1981
  ident: 5006_CR58
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/14/11/009
– volume: 81
  start-page: 083520
  year: 2010
  ident: 5006_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.083520
SSID ssj0002408
Score 2.4712396
Snippet The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are...
Abstract The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Astronomy
Astrophysics and Cosmology
Dark matter
Density
Elementary Particles
Equations of state
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear matter
Nuclear Physics
Particle mass
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Relativity
Stars
Stellar rotation
Stellar structure
String Theory
Strong interactions (field theory)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifmK0lUUEn8Il2eyXb1UsVdAHtdC3ZT_bq3dpudyB_e87s9krLQX74msyS7Izk_nIzvyGkPfKSuZTYLWObQcJSmxrbSMkK1Yq3nvIuTh2I3__IQ6P-m_H_PjGqC-sCZvggSfGzbhXLrkucTCivQB_GXjnpdQentLaPF-4A5-3TaaKDUbgrtxXxPpaNH1feoMhm5jFizOPnXMNx5oEWXPMqdktt5TR--_a6DuHpdkHHTwhj0vwSPenl35KHsThGXmYizj9-Jyc5Y_br6mbp8VmHujpJfZjUQgAV-NHempDBsKly4ypSZfzvzFQ_BFLx7hINSJH5J6p4YQmrJHJxHa8XC5x7Janwa7-lMUvyNHBl9-fD-syS6H2vFXr2gruItPM2SYkz6xsHBOpFcFqoaVnynXCiSaG0EsfhGMeUwutWGudCkGyl2RnOB_iK0KVckEqp3veWUjupAP269b3OgQ81xUV4VtWGl-AxnHexcJMTdCNQRGYSQQGRGBQBIZVZHa97mKC2rh3xSeU1DU1QmXnC6BApiiQuU-BKvIO5WwQDGPAapsTuxlH8_XXT7OP0yJwYICsyIdClM5hL96W5gXgCOJn3aLc3eqLKeZgNC1E2UpLiO0q0mx16Mbtf-7y9f_Y5RvyqENtz4XGu2RnvdrEPQin1u5t_nKuAKMqF8E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1baxQxFA66RfBFvOLYKkEEn8LOTCY3X6SVlipYpFroW8htttvuzm53dsH-e3Oy2dVSqK8zyUDmnJxLcr7vIPRBGkFd6ylRoapjghIqokyIyYoRkjUu5lwM0MjfT_jxWfPtnJ3nA7c-l1VubGIy1H7m4Ix8WMVARSoR3ePn-TWBrlFwu5pbaDxEO9EESzlAOweHJz9Ot7YYCLwSvog2hJdNkzHCMasYhvmlAwRdyaA2QRAGuTW95Z4Si_9dW33n0jT5oqOn6EkOIvH-WurP0IPQPUePUjGn61-gy7TJ3RLbcTtZjT2-uAFcFo6B4KL_hC-MT4S4eJq4NfF0_Dt4DAeyuA-TlgCDRMJOdSPcQq1MGmz6m-kU2m857M3iKk9-ic6ODn99OSa5pwJxrJJLYjizgSpqTelbR40oLeVtxb1RXAlHpa255WXwvhHOc0sdpBhK0spY6b2gr9Cgm3XhNcJSWi-kVQ2rTUzyhI2hh6pco7yH-11eILb5ldplwnHoezHRazB0qUEEei0CHUWgQQSaFmi4nTdfU278d8YBSGo7Giiz04PZYqTzDtTMSdvaumXRGzc8Bl6e1U4I5aK6VqaqC_Qe5KyBFKODqpuRWfW9_vrzVO9D1whoHCAK9DEPamdxLc5kEEP8I8CjdWvk3kZfdDYLvf6rxAUqNzr0z-t7V_nm_i_uosc16HEqJd5Dg-ViFd7GgGlp3-Vd8QcPEBFX
  priority: 102
  providerName: ProQuest
Title Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter
URI https://link.springer.com/article/10.1140/epjc/s10052-017-5006-3
https://www.proquest.com/docview/1977897355
https://doaj.org/article/5c8bfb2f571846658d52c779c8a71a12
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdry2AvY5_MWxfEGOzJ1La-95aGZt1gZXQL9E3oy226xC1xAut_P52ihJayjb0YbJ8M8p2kO-l-v0PovTSCuNaTUoW6iQFKqEtlQgxWjJCMuhhzMUAjfz3hxxP65Yyd5UARsDC3z--j738Qri8d4NwqBhkEomQQAZMdtMdqIqBUw4iPtjMv0HUlNBGhJa8ozYjgP3_nzmKUOPvvz8z3jkjTyjN-gh5nlxEP1zp-ih6E7hl6mFI3Xf8cXaYh7ZbYTtvZaurxxQ2gsHB0-xb9R3xhfKK_xfPEpInn01_BY9h-xX2YtSXwRSSkVHeOW8iMScKmv5nPodiWw94sfubGL9BkfPRjdFzmCgqlY7VcloYzG4gi1lS-dcSIyhLe1twbxZVwRNqGW14F76lwnlviIKBQktTGSu8FeYl2u6suvEJYSuuFtIqyxsSQTtjoaKjaUeU9nObyArHNr9Qu04tDlYuZXkOfKw0q0GsV6KgCDSrQpEAH23bXa4KNf7Y4BE1tpYEgOz2IdqPzeNPMSdvapmVx7aU8ulmeNU4I5aJx1qZuCvQO9KyBAqODHJtzs-p7_fn7qR5CjQgoEyAK9CELtVexL85kyEL8I8CadUdyf2MvOk8Cva6jby2ViB5dgaqNDd16_ddevv7_Jm_QowZsOyUT76Pd5WIV3kaXaWkHaEeOPw3Q3uHRybfTeDdq6CCNnUHahIjXSTP8DR1RERI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKEYJLxSpCC1gIxGmUmfF4Q0KoLCGhywFaqTfX26Qp2cgkgvwpfiN-zkygqlROvSb2SOO3j9_3PYReCs2JLR1JpM_yUKD4LJHah2JFc0ELG2ouCmjkg0PWPS6-nNCTDfS7wcJAW2XjE6OjdhML38jbWUhUhOQhPL6b_khgahTcrjYjNFZqseeXP0PJVr3tfQzyfZXnnU9HH7pJPVUgsTQT80QzajyRxOjUlZZonhrCyow5LZnklgiTM8NS71zBrWOGWEiypSCZNsI5TsJzb6CbBQmRHJDpnc9rzw90YRHNRIqEpUVRI5JDDdP203MLeL2UQicETyhU8uRCMIwzAy5HhktXtDHyde6irTplxbsrHbuHNvz4ProVW0dt9QCdR5di59gMyuFi4PDZElBgOKSds-oNPtMu0u_iUWTyxKPBL-8wfP7FlR-WCfBVRKTWuI9L6MyJi3W1HI1g2JfFTs--15sfouNrOetHaHM8GfvHCAthHBdGFjTXoaTkJiQ6MrOFdA5uk1kL0eYola3pzWHKxlCtoNepAhGolQhUEIECESjSQu31vumK4OO_O96DpNargaA7_jCZ9VVt74paYUqTlzTE_oKFNM_R3HIubTCOTGd5C70AOSug4BhDj09fL6pK9b59VbswowLGFPAWel0vKifhXayuIRPhRIC168LKnUZfVO2EKvXXZFoobXTon7-vfMsnVz_xObrdPTrYV_u9w71tdCcHnY5NzDtocz5b-KchVZubZ9E-MDq9boP8A6IUTbk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMEClgIxGmV3fX6hYRQSxu1FKKqUKk349emKXmRTQT5a_w6PM5uoKpUTr3u2pbWM-OZWc_3DUKvhObElo4k0md5SFB8lkjtQ7KiuaCFDTkXBTTy5x7bPyk-ntLTDfS7wcJAWWVzJsaD2k0s_CPvZCFQEZIH99gp67KIo93u--mPBDpIwU1r005jpSKHfvkzpG_Vu4PdIOvXed7d-_phP6k7DCSWZmKeaEaNJ5IYnbrSEs1TQ1iZMaclk9wSYXJmWOqdK7h1zBALAbcUJNNGOMdJWPcG2uSQFbXQ5s5e7-h47QeAPCxim0iRsLQoanxyyGg6fnpuAb2XUqiL4AmFvJ5ccI2xg8BlP3Hpwjb6we5ddKcOYPH2SuPuoQ0_vo9uxkJSWz1A5_GAsXNsBuVwMXD4bAmYMByC0Fn1Fp9pF8l48SjyeuLR4Jd3GH4G48oPywTYKyJua9zHJdTpxMG6Wo5G0PrLYqdn3-vJD9HJtez2I9QaT8b-McJCGMeFkQXNdUgwuQlhj8xsIZ2Du2XWRrTZSmVrsnPouTFUKyB2qkAEaiUCFUSgQASKtFFnPW-6ovv474wdkNR6NNB1xweTWV_V1q-oFaY0eUlDJFCwEPQ5mlvOpQ2mkuksb6OXIGcFhBxjUO2-XlSVOvhyrLahYwU0LeBt9KYeVE7Ct1hdAyjCjgCH14WRW42-qPpIqtRfA2qjtNGhf15f-ZVPrl7xBboVjFF9OugdPkW3c1DpWNG8hVrz2cI_C3Hb3DyvDQSjb9dtk38A6YxTSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+bifluid+hybrid+stars%3A+hadronic+matter+mixed+with+self-interacting+fermionic+asymmetric+dark+matter&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Mukhopadhyay%2C+Somnath&rft.au=Atta%2C+Debasis&rft.au=Imam%2C+Kouser&rft.au=Basu%2C+D.+N.&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=77&rft.issue=7&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-017-5006-3&rft.externalDocID=10_1140_epjc_s10052_017_5006_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon