Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter
The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is ob...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 77; no. 7; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2017
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be
∼
1.94
M
⊙
with radius
∼
10.4
km. |
---|---|
AbstractList | The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∼1.94M⊙ with radius ∼10.4 km. The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∼ 1.94 M ⊙ with radius ∼ 10.4 km. The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be [Formula omitted] with radius [Formula omitted] km. Abstract The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon–nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be $${\sim }1.94 \;\mathrm{M}_\odot $$ ∼ 1.94 M ⊙ with radius $${\sim }10.4$$ ∼ 10.4 km. |
ArticleNumber | 440 |
Audience | Academic |
Author | Samanta, C. Imam, Kouser Basu, D. N. Atta, Debasis Mukhopadhyay, Somnath |
Author_xml | – sequence: 1 givenname: Somnath surname: Mukhopadhyay fullname: Mukhopadhyay, Somnath organization: Variable Energy Cyclotron Centre, HBNI – sequence: 2 givenname: Debasis surname: Atta fullname: Atta, Debasis organization: Variable Energy Cyclotron Centre, HBNI, Government General Degree College – sequence: 3 givenname: Kouser surname: Imam fullname: Imam, Kouser organization: Variable Energy Cyclotron Centre, HBNI, Department of Physics, Aliah University – sequence: 4 givenname: D. N. surname: Basu fullname: Basu, D. N. email: dnb@vecc.gov.in organization: Variable Energy Cyclotron Centre, HBNI – sequence: 5 givenname: C. surname: Samanta fullname: Samanta, C. organization: Department of Physics and Astronomy, Virginia Military Institute |
BookMark | eNqFUstq3DAUNSWFJml_oRi66sKJZFmSXboJQ9sMBAp9rMXVyyPXtqaShmT-vnIcQtJFixb3cjjn6j7OWXEy-9kUxVuMLjBu0KXZD-oyYoRoXSHMK4oQq8iL4hQ3pKlYhk8e86Z5VZzFOCCE6ga1p8Ww8dMeVCqls-PB6XJ3lCGHmCDED-UOdPCzU-UEKZlQTu7O6PLWpV0ZzWgrN2c0y93cl9aEyd2TIR6nyaSQUw3h14P4dfHSwhjNm4d4Xvz8_OnH5rq6-fplu7m6qRTFbaqAUWlIRyQgbRUBjiRhFjMNHeu4Iq2smWTIaN1wpZkkClGGu5ZgkK3WnJwX27Wu9jCIfXAThKPw4MQ94EMvICSnRiOoaqWVtaUctw1jtNW0Vpx3qgWOAde51ru11j743wcTkxj8Icy5fYE7ztuOE0oz62Jl9ZCLutn6lJeSnzaTU_la1mX8ii5bpw1bWnz_TJA5ydylHg4xiu33b8-5bOWq4GMMxj6OhJFYDCAWA4jVACIbQCwGECQLP_4lVC5ByifK3bnx_3K-ymP-b-5NeDL6v5V_AErozFY |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad5cf1 crossref_primary_10_3390_universe9050202 crossref_primary_10_1093_mnras_stac2675 crossref_primary_10_1088_1475_7516_2021_09_027 crossref_primary_10_1103_PhysRevD_108_064009 crossref_primary_10_1103_PhysRevD_107_115028 crossref_primary_10_1016_j_dark_2024_101665 crossref_primary_10_1140_epjp_s13360_020_00364_1 crossref_primary_10_1016_j_physletb_2018_04_048 crossref_primary_10_1103_PhysRevD_97_123007 crossref_primary_10_1088_1475_7516_2023_12_008 crossref_primary_10_1140_epjp_s13360_020_00650_y crossref_primary_10_1103_PhysRevD_110_103013 crossref_primary_10_1142_S0218271819500020 crossref_primary_10_3847_1538_4357_ac8544 crossref_primary_10_1103_PhysRevD_106_123027 crossref_primary_10_3390_universe6120231 crossref_primary_10_1103_PhysRevD_105_023001 crossref_primary_10_1093_mnras_stab1056 crossref_primary_10_1103_PhysRevD_109_043038 crossref_primary_10_3847_1538_4357_ad4701 crossref_primary_10_1088_1475_7516_2021_10_086 crossref_primary_10_1088_1475_7516_2023_08_016 crossref_primary_10_1103_PhysRevD_104_083016 crossref_primary_10_3847_1538_4357_acb3be crossref_primary_10_1088_1475_7516_2018_05_038 crossref_primary_10_1140_epjc_s10052_022_10335_8 crossref_primary_10_3390_universe8120652 crossref_primary_10_1051_epjconf_201818202107 crossref_primary_10_1088_1361_6471_aca1d5 crossref_primary_10_1088_1475_7516_2022_10_028 crossref_primary_10_1016_j_rinp_2023_106967 crossref_primary_10_1088_1475_7516_2024_09_052 crossref_primary_10_3390_universe9070307 |
Cites_doi | 10.1016/j.astropartphys.2009.09.005 10.1103/PhysRevD.90.015023 10.1103/PhysRev.75.1561 10.1111/j.1365-2966.2011.18890.x 10.1103/PhysRevC.89.025803 10.1002/andp.201200212 10.1016/j.physrep.2013.12.001 10.1016/j.physletb.2010.11.021 10.1103/PhysRevD.92.123002 10.1016/0029-5582(62)90153-0 10.1103/PhysRevD.92.103513 10.1093/mnras/sts514 10.1093/mnras/stv774 10.1103/PhysRevD.77.043515 10.1088/0004-637X/804/2/131 10.1086/112290 10.3847/1538-4357/833/2/156 10.1103/PhysRevD.77.023006 10.1016/j.nuclphysa.2003.11.003 10.1007/s12648-016-0906-x 10.1016/j.physletb.2012.03.065 10.1016/0370-2693(89)90064-6 10.1103/PhysRevLett.100.051101 10.1103/RevModPhys.75.1021 10.1103/PhysRevC.73.067302 10.1103/PhysRevC.80.057304 10.1088/1475-7516/2012/06/001 10.1016/0375-9474(77)90392-X 10.1016/j.nuclphysa.2008.07.009 10.1103/PhysRevD.74.063003 10.1103/PhysRevC.89.028801 10.1086/151216 10.1088/0143-0807/26/3/003 10.1103/PhysRevC.75.035808 10.1002/9783527617661 10.1103/PhysRevD.40.3221 10.1103/PhysRevLett.99.162503 10.1016/0375-9474(71)90281-8 10.1103/PhysRevD.89.115017 10.1016/j.physrep.2004.08.031 10.1103/PhysRevD.84.107301 10.1103/PhysRevD.83.083512 10.1103/PhysRevC.80.011305 10.1103/PhysRevD.82.063531 10.1038/311517a0 10.1016/j.physletb.2013.07.017 10.1103/PhysRevC.90.035802 10.1103/PhysRevLett.105.011301 10.1088/0305-4616/9/12/009 10.1051/0004-6361/201220697 10.1103/PhysRevLett.115.021301 10.1016/j.astropartphys.2012.07.006 10.1016/0370-1573(79)90081-4 10.1103/PhysRevD.81.123521 10.1088/0305-4470/14/11/009 10.1103/PhysRevD.81.083520 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Corrected publication August 2017 COPYRIGHT 2017 Springer The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2017. Corrected publication August 2017 – notice: COPYRIGHT 2017 Springer – notice: The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-017-5006-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_5c8bfb2f571846658d52c779c8a71a12 A500025467 10_1140_epjc_s10052_017_5006_3 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c518t-a65be393ba0dfc3a70b36f16da9697c38b26b60edd47cd6b3c05619831ab8dd73 |
IEDL.DBID | C6C |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Sun Jul 13 03:58:42 EDT 2025 Tue Jun 10 20:47:02 EDT 2025 Fri Jun 27 04:20:35 EDT 2025 Tue Jul 01 01:38:14 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Fri Feb 21 02:34:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-a65be393ba0dfc3a70b36f16da9697c38b26b60edd47cd6b3c05619831ab8dd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1140/epjc/s10052-017-5006-3 |
PQID | 1977897355 |
PQPubID | 2034659 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c8bfb2f571846658d52c779c8a71a12 proquest_journals_1977897355 gale_infotracacademiconefile_A500025467 gale_incontextgauss_ISR_A500025467 crossref_primary_10_1140_epjc_s10052_017_5006_3 crossref_citationtrail_10_1140_epjc_s10052_017_5006_3 springer_journals_10_1140_epjc_s10052_017_5006_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170700 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170700 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | GoldmanIMohapatraRNNussinovSRosenbaumDTeplitzVPhys. Lett. B20137252002013PhLB..725..200G10.1016/j.physletb.2013.07.017 RoyerGGautierCPhys. Rev. C2006730673022006PhRvC..73f7302R10.1103/PhysRevC.73.067302 SeifWMBasuDNPhys. Rev. C2014890288012014PhRvC..89b8801S10.1103/PhysRevC.89.028801 LeungS-CChuM-CLinL-MPhys. Rev. D2011841073012011PhRvD..84j7301L10.1103/PhysRevD.84.107301 E. Gourgoulhon (2011). arXiv:1003.5015v2 KämpferBJ. Phys. A198114L47110.1088/0305-4470/14/11/009 AudiGWapstraAHThibaultCNucl. Phys. A20037293372003NuPhA.729..337A10.1016/j.nuclphysa.2003.11.003 BasuDNChowdhuryPRSamantaCPhys. Rev. C2009800573042009PhRvC..80e7304B10.1103/PhysRevC.80.057304 FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561 TolosLSchaffner-BielichJPhys. Rev. D2015921230022015PhRvD..92l3002T10.1103/PhysRevD.92.123002 BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8 FrandsenMTSarkarSPhys. Rev. Lett.20101050113012010PhRvL.105a1301F10.1103/PhysRevLett.105.011301 Pérez-GarcíaMASilkJPhys. Lett. B201271162012PhLB..711....6P10.1016/j.physletb.2012.03.065 LiAHuangFRen-XinXAstropart. Phys.201237702012APh....37...70L10.1016/j.astropartphys.2012.07.006 J.M. Cline, Z. Liu, G.D. Moore, W. Xue, Phys. Rev. D 90, 015023 (2014) BertoneGFairbairnMPhys. Rev. D2008770435152008PhRvD..77d3515B10.1103/PhysRevD.77.043515 XiangQ-FJiangW-ZZhangD-RYangR-YPhys. Rev. C2014890258032014PhRvC..89b5803X10.1103/PhysRevC.89.025803 ChowdhuryPRBasuDNSamantaCPhys. Rev. C200980011305(R)2009PhRvC..80a1305C10.1103/PhysRevC.80.011305 BasuDNChowdhuryPRSamantaCNucl. Phys. A20088111402008NuPhA.811..140B10.1016/j.nuclphysa.2008.07.009 KouvarisCPhys. Rev. D2008770230062008PhRvD..77b3006K10.1103/PhysRevD.77.023006 G.R. Satchler, Int. series of monographs on Physics. Direct nuclear reactions (Oxford University Press, Oxford, 1983), p. 470 LiXYWangFYChengKSJCAP2012100312012JCAP...10..031L10.1088/1475-7516/2012/10/031 SamantaCBandyopadhyayDDeJNPhys. Lett. B19892173811989PhLB..217..381S10.1016/0370-2693(89)90064-6 SatchlerGRLoveWGPhys. Rep.1979551831979PhR....55..183S10.1016/0370-1573(79)90081-4 ChowdhuryPRBasuDNActa Phys. Pol. B20063718332006AcPPB..37.1833C FrenkCSWhiteSDMAnn. Phys.201252450710.1002/andp.201200212 KouvarisCTinyakovPPhys. Rev. D2011830835122011PhRvD..83h3512K10.1103/PhysRevD.83.083512 ChenC-SLinG-LLinY-HJCAP2016010132016JCAP...01..013C SharmaBKPandaPKPatraSKPhys. Rev. C2007750358082007PhRvC..75c5808S10.1103/PhysRevC.75.035808 UtsumiYAstrophys. J.20168331562016ApJ...833..156U10.3847/1538-4357/833/2/156 SpolyarDFreeseKGondoloPPhys. Rev. Lett.20081000511012008PhRvL.100e1101S10.1103/PhysRevLett.100.051101 BaymGPethickCJSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216 ZdunikJLHaenselPA&A2013551A612013A&A...551A..61Z10.1051/0004-6361/201220697 GuthAHHertzbergMPPrescod-WeinsteinCPhys. Rev. D2015921035132015PhRvD..92j3513G10.1103/PhysRevD.92.103513 NarainGSchaffner-BielichJMishustinINPhys. Rev. D2006740630032006PhRvD..74f3003N10.1103/PhysRevD.74.063003 de LavallazAFairbairnMPhys. Rev. D2010811235212010PhRvD..81l3521D10.1103/PhysRevD.81.123521 KingSMerleAJCAP20120161208 LiTGargULiuYPhys. Rev. Lett.2007991625032007PhRvL..99p2503L10.1103/PhysRevLett.99.162503 BertschGBorysowiczJMcManusHLoveWGNucl. Phys. A19772843991977NuPhA.284..399B10.1016/0375-9474(77)90392-X JacobsDMStarkmanGDLynnBWMNRAS201545034182015MNRAS.450.3418J10.1093/mnras/stv774 PollackJSpergelDNSteinhardtPJAstrophys. J.20158041312015ApJ...804..131P10.1088/0004-637X/804/2/131 McCulloughMFairbairnMPhys. Rev. D2010810835202010PhRvD..81h3520M10.1103/PhysRevD.81.083520 KouvarisCTinyakovPPhys. Rev. D2010820635312010PhRvD..82f3531K10.1103/PhysRevD.82.063531 AttaDBasuDNPhys. Rev. C2014900358022014PhRvC..90c5802A10.1103/PhysRevC.90.035802 KämpferBJ. Phys. G1983914871983JPhG....9.1487K10.1088/0305-4616/9/12/009 K.K. Boddy, J.L. Feng, M. Kaplinghat, M.P. Tim, Tait. Phys. Rev. D 89, 115017 (2014) LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0 GoldmanINussinovSPhys. Rev. D19894032211989PhRvD..40.3221G10.1103/PhysRevD.40.3221 HawkinsMRSMon. Not. R. Astron. Soc.201141527442011MNRAS.415.2744H10.1111/j.1365-2966.2011.18890.x S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983) BertoneGHooperDSilkJPhys. Rep.20054052792005PhR...405..279B10.1016/j.physrep.2004.08.031 LiXHarkoTChengKJCAP2012060012012JCAP...06..001L10.1088/1475-7516/2012/06/001 G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Nature 311, 517 (1984) CiarcellutiPSandinFPhys. Lett. B2011695192011PhLB..695...19C10.1016/j.physletb.2010.11.021 HochbergYKuflikEMurayamaHVolanskyTWackerJGPhys. Rev. Lett.20151150213012015PhRvL.115b1301H10.1103/PhysRevLett.115.021301 SandinFCiarcellutiPAstropart. Phys.2009322782009APh....32..278S10.1016/j.astropartphys.2009.09.005 RochaMPeterAHGBullockJSKaplinghatMGarrison-KimmelSOñorbeJMoustakasLAMNRAS2013430812013MNRAS.430...81R10.1093/mnras/sts514 ZurekKMPhys. Rep.2014537912014PhR...537...91Z10.1016/j.physrep.2013.12.001 SteigmanGSarazinCQuintanaHFaulknerJAstron. J.19780610501978AJ.....83.1050S10.1086/112290 AttaDMukhopadhyaySBasuDNIndian J. Phys.2017912352017InJPh..91..235A10.1007/s12648-016-0906-x MacherJSchaffner-BeilichJEur. J. Phys.20052634110.1088/0143-0807/26/3/003 LunneyDPearsonJMThibaultCRev. Mod. Phys.20037510212003RvMP...75.1021L10.1103/RevModPhys.75.1021 F Sandin (5006_CR57) 2009; 32 KM Zurek (5006_CR5) 2014; 537 G Bertone (5006_CR2) 2005; 405 JL Zdunik (5006_CR62) 2013; 551 RP Feynman (5006_CR48) 1949; 75 G Steigman (5006_CR10) 1978; 06 A Li (5006_CR25) 2012; 37 Q-F Xiang (5006_CR26) 2014; 89 5006_CR3 G Royer (5006_CR46) 2006; 73 C Samanta (5006_CR42) 1989; 217 Y Hochberg (5006_CR31) 2015; 115 L Tolos (5006_CR28) 2015; 92 CS Frenk (5006_CR6) 2012; 524 5006_CR34 C Kouvaris (5006_CR18) 2010; 82 5006_CR33 DN Basu (5006_CR55) 2009; 80 AM Lane (5006_CR37) 1962; 35 C Kouvaris (5006_CR21) 2008; 77 X Li (5006_CR9) 2012; 06 MRS Hawkins (5006_CR27) 2011; 415 S King (5006_CR4) 2012; 016 AH Guth (5006_CR8) 2015; 92 5006_CR38 5006_CR36 P Ciarcelluti (5006_CR14) 2011; 695 B Kämpfer (5006_CR58) 1981; 14 G Narain (5006_CR24) 2006; 74 GR Satchler (5006_CR41) 1979; 55 DM Jacobs (5006_CR20) 2015; 450 G Bertsch (5006_CR40) 1977; 284 C Kouvaris (5006_CR19) 2011; 83 S-C Leung (5006_CR15) 2011; 84 A Lavallaz de (5006_CR17) 2010; 81 G Bertone (5006_CR12) 2008; 77 MA Pérez-García (5006_CR23) 2012; 711 WM Seif (5006_CR53) 2014; 89 5006_CR56 XY Li (5006_CR16) 2012; 10 Y Utsumi (5006_CR1) 2016; 833 J Pollack (5006_CR30) 2015; 804 M Rocha (5006_CR35) 2013; 430 I Goldman (5006_CR11) 1989; 40 MT Frandsen (5006_CR13) 2010; 105 D Lunney (5006_CR45) 2003; 75 C-S Chen (5006_CR32) 2016; 01 G Audi (5006_CR44) 2003; 729 I Goldman (5006_CR29) 2013; 725 B Kämpfer (5006_CR59) 1983; 9 BK Sharma (5006_CR61) 2007; 75 DN Basu (5006_CR39) 2008; 811 T Li (5006_CR47) 2007; 99 G Baym (5006_CR49) 1971; 170 D Atta (5006_CR51) 2017; 91 M McCullough (5006_CR22) 2010; 81 PR Chowdhury (5006_CR54) 2009; 80 G Baym (5006_CR50) 1971; 175 D Atta (5006_CR52) 2014; 90 D Spolyar (5006_CR7) 2008; 100 PR Chowdhury (5006_CR43) 2006; 37 J Macher (5006_CR60) 2005; 26 |
References_xml | – reference: AttaDMukhopadhyaySBasuDNIndian J. Phys.2017912352017InJPh..91..235A10.1007/s12648-016-0906-x – reference: LiXYWangFYChengKSJCAP2012100312012JCAP...10..031L10.1088/1475-7516/2012/10/031 – reference: AttaDBasuDNPhys. Rev. C2014900358022014PhRvC..90c5802A10.1103/PhysRevC.90.035802 – reference: GoldmanINussinovSPhys. Rev. D19894032211989PhRvD..40.3221G10.1103/PhysRevD.40.3221 – reference: ZdunikJLHaenselPA&A2013551A612013A&A...551A..61Z10.1051/0004-6361/201220697 – reference: LiAHuangFRen-XinXAstropart. Phys.201237702012APh....37...70L10.1016/j.astropartphys.2012.07.006 – reference: NarainGSchaffner-BielichJMishustinINPhys. Rev. D2006740630032006PhRvD..74f3003N10.1103/PhysRevD.74.063003 – reference: LiTGargULiuYPhys. Rev. Lett.2007991625032007PhRvL..99p2503L10.1103/PhysRevLett.99.162503 – reference: de LavallazAFairbairnMPhys. Rev. D2010811235212010PhRvD..81l3521D10.1103/PhysRevD.81.123521 – reference: K.K. Boddy, J.L. Feng, M. Kaplinghat, M.P. Tim, Tait. Phys. Rev. D 89, 115017 (2014) – reference: GoldmanIMohapatraRNNussinovSRosenbaumDTeplitzVPhys. Lett. B20137252002013PhLB..725..200G10.1016/j.physletb.2013.07.017 – reference: SeifWMBasuDNPhys. Rev. C2014890288012014PhRvC..89b8801S10.1103/PhysRevC.89.028801 – reference: UtsumiYAstrophys. J.20168331562016ApJ...833..156U10.3847/1538-4357/833/2/156 – reference: SpolyarDFreeseKGondoloPPhys. Rev. Lett.20081000511012008PhRvL.100e1101S10.1103/PhysRevLett.100.051101 – reference: ZurekKMPhys. Rep.2014537912014PhR...537...91Z10.1016/j.physrep.2013.12.001 – reference: S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983) – reference: BertoneGHooperDSilkJPhys. Rep.20054052792005PhR...405..279B10.1016/j.physrep.2004.08.031 – reference: Pérez-GarcíaMASilkJPhys. Lett. B201271162012PhLB..711....6P10.1016/j.physletb.2012.03.065 – reference: LeungS-CChuM-CLinL-MPhys. Rev. D2011841073012011PhRvD..84j7301L10.1103/PhysRevD.84.107301 – reference: AudiGWapstraAHThibaultCNucl. Phys. A20037293372003NuPhA.729..337A10.1016/j.nuclphysa.2003.11.003 – reference: SandinFCiarcellutiPAstropart. Phys.2009322782009APh....32..278S10.1016/j.astropartphys.2009.09.005 – reference: BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8 – reference: FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561 – reference: FrandsenMTSarkarSPhys. Rev. Lett.20101050113012010PhRvL.105a1301F10.1103/PhysRevLett.105.011301 – reference: RoyerGGautierCPhys. Rev. C2006730673022006PhRvC..73f7302R10.1103/PhysRevC.73.067302 – reference: JacobsDMStarkmanGDLynnBWMNRAS201545034182015MNRAS.450.3418J10.1093/mnras/stv774 – reference: ChenC-SLinG-LLinY-HJCAP2016010132016JCAP...01..013C – reference: HochbergYKuflikEMurayamaHVolanskyTWackerJGPhys. Rev. Lett.20151150213012015PhRvL.115b1301H10.1103/PhysRevLett.115.021301 – reference: BertoneGFairbairnMPhys. Rev. D2008770435152008PhRvD..77d3515B10.1103/PhysRevD.77.043515 – reference: SharmaBKPandaPKPatraSKPhys. Rev. C2007750358082007PhRvC..75c5808S10.1103/PhysRevC.75.035808 – reference: KouvarisCPhys. Rev. D2008770230062008PhRvD..77b3006K10.1103/PhysRevD.77.023006 – reference: XiangQ-FJiangW-ZZhangD-RYangR-YPhys. Rev. C2014890258032014PhRvC..89b5803X10.1103/PhysRevC.89.025803 – reference: BasuDNChowdhuryPRSamantaCNucl. Phys. A20088111402008NuPhA.811..140B10.1016/j.nuclphysa.2008.07.009 – reference: BaymGPethickCJSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216 – reference: KämpferBJ. Phys. G1983914871983JPhG....9.1487K10.1088/0305-4616/9/12/009 – reference: SamantaCBandyopadhyayDDeJNPhys. Lett. B19892173811989PhLB..217..381S10.1016/0370-2693(89)90064-6 – reference: McCulloughMFairbairnMPhys. Rev. D2010810835202010PhRvD..81h3520M10.1103/PhysRevD.81.083520 – reference: G.R. Satchler, Int. series of monographs on Physics. Direct nuclear reactions (Oxford University Press, Oxford, 1983), p. 470 – reference: ChowdhuryPRBasuDNActa Phys. Pol. B20063718332006AcPPB..37.1833C – reference: GuthAHHertzbergMPPrescod-WeinsteinCPhys. Rev. D2015921035132015PhRvD..92j3513G10.1103/PhysRevD.92.103513 – reference: KämpferBJ. Phys. A198114L47110.1088/0305-4470/14/11/009 – reference: RochaMPeterAHGBullockJSKaplinghatMGarrison-KimmelSOñorbeJMoustakasLAMNRAS2013430812013MNRAS.430...81R10.1093/mnras/sts514 – reference: E. Gourgoulhon (2011). arXiv:1003.5015v2 – reference: PollackJSpergelDNSteinhardtPJAstrophys. J.20158041312015ApJ...804..131P10.1088/0004-637X/804/2/131 – reference: LaneAMNucl. Phys.19623567610.1016/0029-5582(62)90153-0 – reference: LiXHarkoTChengKJCAP2012060012012JCAP...06..001L10.1088/1475-7516/2012/06/001 – reference: KouvarisCTinyakovPPhys. Rev. D2010820635312010PhRvD..82f3531K10.1103/PhysRevD.82.063531 – reference: TolosLSchaffner-BielichJPhys. Rev. D2015921230022015PhRvD..92l3002T10.1103/PhysRevD.92.123002 – reference: CiarcellutiPSandinFPhys. Lett. B2011695192011PhLB..695...19C10.1016/j.physletb.2010.11.021 – reference: BasuDNChowdhuryPRSamantaCPhys. Rev. C2009800573042009PhRvC..80e7304B10.1103/PhysRevC.80.057304 – reference: KingSMerleAJCAP20120161208 – reference: FrenkCSWhiteSDMAnn. Phys.201252450710.1002/andp.201200212 – reference: SteigmanGSarazinCQuintanaHFaulknerJAstron. J.19780610501978AJ.....83.1050S10.1086/112290 – reference: KouvarisCTinyakovPPhys. Rev. D2011830835122011PhRvD..83h3512K10.1103/PhysRevD.83.083512 – reference: LunneyDPearsonJMThibaultCRev. Mod. Phys.20037510212003RvMP...75.1021L10.1103/RevModPhys.75.1021 – reference: G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Nature 311, 517 (1984) – reference: J.M. Cline, Z. Liu, G.D. Moore, W. Xue, Phys. Rev. D 90, 015023 (2014) – reference: HawkinsMRSMon. Not. R. Astron. Soc.201141527442011MNRAS.415.2744H10.1111/j.1365-2966.2011.18890.x – reference: MacherJSchaffner-BeilichJEur. J. Phys.20052634110.1088/0143-0807/26/3/003 – reference: BertschGBorysowiczJMcManusHLoveWGNucl. Phys. A19772843991977NuPhA.284..399B10.1016/0375-9474(77)90392-X – reference: SatchlerGRLoveWGPhys. Rep.1979551831979PhR....55..183S10.1016/0370-1573(79)90081-4 – reference: ChowdhuryPRBasuDNSamantaCPhys. Rev. C200980011305(R)2009PhRvC..80a1305C10.1103/PhysRevC.80.011305 – volume: 32 start-page: 278 year: 2009 ident: 5006_CR57 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2009.09.005 – ident: 5006_CR33 doi: 10.1103/PhysRevD.90.015023 – volume: 75 start-page: 1561 year: 1949 ident: 5006_CR48 publication-title: Phys. Rev. doi: 10.1103/PhysRev.75.1561 – ident: 5006_CR38 – volume: 415 start-page: 2744 year: 2011 ident: 5006_CR27 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.18890.x – volume: 89 start-page: 025803 year: 2014 ident: 5006_CR26 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.025803 – volume: 524 start-page: 507 year: 2012 ident: 5006_CR6 publication-title: Ann. Phys. doi: 10.1002/andp.201200212 – volume: 537 start-page: 91 year: 2014 ident: 5006_CR5 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.12.001 – volume: 695 start-page: 19 year: 2011 ident: 5006_CR14 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2010.11.021 – volume: 92 start-page: 123002 year: 2015 ident: 5006_CR28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.123002 – volume: 35 start-page: 676 year: 1962 ident: 5006_CR37 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(62)90153-0 – volume: 92 start-page: 103513 year: 2015 ident: 5006_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.103513 – volume: 430 start-page: 81 year: 2013 ident: 5006_CR35 publication-title: MNRAS doi: 10.1093/mnras/sts514 – volume: 450 start-page: 3418 year: 2015 ident: 5006_CR20 publication-title: MNRAS doi: 10.1093/mnras/stv774 – volume: 77 start-page: 043515 year: 2008 ident: 5006_CR12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.043515 – volume: 804 start-page: 131 year: 2015 ident: 5006_CR30 publication-title: Astrophys. J. doi: 10.1088/0004-637X/804/2/131 – volume: 06 start-page: 1050 year: 1978 ident: 5006_CR10 publication-title: Astron. J. doi: 10.1086/112290 – volume: 833 start-page: 156 year: 2016 ident: 5006_CR1 publication-title: Astrophys. J. doi: 10.3847/1538-4357/833/2/156 – volume: 77 start-page: 023006 year: 2008 ident: 5006_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.023006 – volume: 729 start-page: 337 year: 2003 ident: 5006_CR44 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2003.11.003 – volume: 91 start-page: 235 year: 2017 ident: 5006_CR51 publication-title: Indian J. Phys. doi: 10.1007/s12648-016-0906-x – volume: 711 start-page: 6 year: 2012 ident: 5006_CR23 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.03.065 – volume: 217 start-page: 381 year: 1989 ident: 5006_CR42 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(89)90064-6 – volume: 100 start-page: 051101 year: 2008 ident: 5006_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.051101 – volume: 75 start-page: 1021 year: 2003 ident: 5006_CR45 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.75.1021 – volume: 73 start-page: 067302 year: 2006 ident: 5006_CR46 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.73.067302 – volume: 80 start-page: 057304 year: 2009 ident: 5006_CR55 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.057304 – volume: 06 start-page: 001 year: 2012 ident: 5006_CR9 publication-title: JCAP doi: 10.1088/1475-7516/2012/06/001 – volume: 284 start-page: 399 year: 1977 ident: 5006_CR40 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(77)90392-X – volume: 811 start-page: 140 year: 2008 ident: 5006_CR39 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2008.07.009 – volume: 74 start-page: 063003 year: 2006 ident: 5006_CR24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.063003 – volume: 89 start-page: 028801 year: 2014 ident: 5006_CR53 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.028801 – volume: 016 start-page: 1208 year: 2012 ident: 5006_CR4 publication-title: JCAP – volume: 170 start-page: 299 year: 1971 ident: 5006_CR49 publication-title: Astrophys. J. doi: 10.1086/151216 – volume: 26 start-page: 341 year: 2005 ident: 5006_CR60 publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/26/3/003 – volume: 75 start-page: 035808 year: 2007 ident: 5006_CR61 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.75.035808 – ident: 5006_CR56 doi: 10.1002/9783527617661 – ident: 5006_CR36 – volume: 01 start-page: 013 year: 2016 ident: 5006_CR32 publication-title: JCAP – volume: 40 start-page: 3221 year: 1989 ident: 5006_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.40.3221 – volume: 99 start-page: 162503 year: 2007 ident: 5006_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.162503 – volume: 175 start-page: 225 year: 1971 ident: 5006_CR50 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(71)90281-8 – volume: 37 start-page: 1833 year: 2006 ident: 5006_CR43 publication-title: Acta Phys. Pol. B – ident: 5006_CR34 doi: 10.1103/PhysRevD.89.115017 – volume: 405 start-page: 279 year: 2005 ident: 5006_CR2 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2004.08.031 – volume: 84 start-page: 107301 year: 2011 ident: 5006_CR15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.107301 – volume: 83 start-page: 083512 year: 2011 ident: 5006_CR19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.083512 – volume: 80 start-page: 011305(R) year: 2009 ident: 5006_CR54 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.011305 – volume: 82 start-page: 063531 year: 2010 ident: 5006_CR18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.063531 – ident: 5006_CR3 doi: 10.1038/311517a0 – volume: 725 start-page: 200 year: 2013 ident: 5006_CR29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2013.07.017 – volume: 90 start-page: 035802 year: 2014 ident: 5006_CR52 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.90.035802 – volume: 105 start-page: 011301 year: 2010 ident: 5006_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.011301 – volume: 9 start-page: 1487 year: 1983 ident: 5006_CR59 publication-title: J. Phys. G doi: 10.1088/0305-4616/9/12/009 – volume: 551 start-page: A61 year: 2013 ident: 5006_CR62 publication-title: A&A doi: 10.1051/0004-6361/201220697 – volume: 115 start-page: 021301 year: 2015 ident: 5006_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.021301 – volume: 37 start-page: 70 year: 2012 ident: 5006_CR25 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2012.07.006 – volume: 10 start-page: 031 year: 2012 ident: 5006_CR16 publication-title: JCAP – volume: 55 start-page: 183 year: 1979 ident: 5006_CR41 publication-title: Phys. Rep. doi: 10.1016/0370-1573(79)90081-4 – volume: 81 start-page: 123521 year: 2010 ident: 5006_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.123521 – volume: 14 start-page: L471 year: 1981 ident: 5006_CR58 publication-title: J. Phys. A doi: 10.1088/0305-4470/14/11/009 – volume: 81 start-page: 083520 year: 2010 ident: 5006_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.083520 |
SSID | ssj0002408 |
Score | 2.4712396 |
Snippet | The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are... Abstract The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Astronomy Astrophysics and Cosmology Dark matter Density Elementary Particles Equations of state Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear matter Nuclear Physics Particle mass Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Relativity Stars Stellar rotation Stellar structure String Theory Strong interactions (field theory) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifmK0lUUEn8Il2eyXb1UsVdAHtdC3ZT_bq3dpudyB_e87s9krLQX74msyS7Izk_nIzvyGkPfKSuZTYLWObQcJSmxrbSMkK1Yq3nvIuTh2I3__IQ6P-m_H_PjGqC-sCZvggSfGzbhXLrkucTCivQB_GXjnpdQentLaPF-4A5-3TaaKDUbgrtxXxPpaNH1feoMhm5jFizOPnXMNx5oEWXPMqdktt5TR--_a6DuHpdkHHTwhj0vwSPenl35KHsThGXmYizj9-Jyc5Y_br6mbp8VmHujpJfZjUQgAV-NHempDBsKly4ypSZfzvzFQ_BFLx7hINSJH5J6p4YQmrJHJxHa8XC5x7Janwa7-lMUvyNHBl9-fD-syS6H2vFXr2gruItPM2SYkz6xsHBOpFcFqoaVnynXCiSaG0EsfhGMeUwutWGudCkGyl2RnOB_iK0KVckEqp3veWUjupAP269b3OgQ81xUV4VtWGl-AxnHexcJMTdCNQRGYSQQGRGBQBIZVZHa97mKC2rh3xSeU1DU1QmXnC6BApiiQuU-BKvIO5WwQDGPAapsTuxlH8_XXT7OP0yJwYICsyIdClM5hL96W5gXgCOJn3aLc3eqLKeZgNC1E2UpLiO0q0mx16Mbtf-7y9f_Y5RvyqENtz4XGu2RnvdrEPQin1u5t_nKuAKMqF8E priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1baxQxFA66RfBFvOLYKkEEn8LOTCY3X6SVlipYpFroW8htttvuzm53dsH-e3Oy2dVSqK8zyUDmnJxLcr7vIPRBGkFd6ylRoapjghIqokyIyYoRkjUu5lwM0MjfT_jxWfPtnJ3nA7c-l1VubGIy1H7m4Ix8WMVARSoR3ePn-TWBrlFwu5pbaDxEO9EESzlAOweHJz9Ot7YYCLwSvog2hJdNkzHCMasYhvmlAwRdyaA2QRAGuTW95Z4Si_9dW33n0jT5oqOn6EkOIvH-WurP0IPQPUePUjGn61-gy7TJ3RLbcTtZjT2-uAFcFo6B4KL_hC-MT4S4eJq4NfF0_Dt4DAeyuA-TlgCDRMJOdSPcQq1MGmz6m-kU2m857M3iKk9-ic6ODn99OSa5pwJxrJJLYjizgSpqTelbR40oLeVtxb1RXAlHpa255WXwvhHOc0sdpBhK0spY6b2gr9Cgm3XhNcJSWi-kVQ2rTUzyhI2hh6pco7yH-11eILb5ldplwnHoezHRazB0qUEEei0CHUWgQQSaFmi4nTdfU278d8YBSGo7Giiz04PZYqTzDtTMSdvaumXRGzc8Bl6e1U4I5aK6VqaqC_Qe5KyBFKODqpuRWfW9_vrzVO9D1whoHCAK9DEPamdxLc5kEEP8I8CjdWvk3kZfdDYLvf6rxAUqNzr0z-t7V_nm_i_uosc16HEqJd5Dg-ViFd7GgGlp3-Vd8QcPEBFX priority: 102 providerName: ProQuest |
Title | Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter |
URI | https://link.springer.com/article/10.1140/epjc/s10052-017-5006-3 https://www.proquest.com/docview/1977897355 https://doaj.org/article/5c8bfb2f571846658d52c779c8a71a12 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdry2AvY5_MWxfEGOzJ1La-95aGZt1gZXQL9E3oy226xC1xAut_P52ihJayjb0YbJ8M8p2kO-l-v0PovTSCuNaTUoW6iQFKqEtlQgxWjJCMuhhzMUAjfz3hxxP65Yyd5UARsDC3z--j738Qri8d4NwqBhkEomQQAZMdtMdqIqBUw4iPtjMv0HUlNBGhJa8ozYjgP3_nzmKUOPvvz8z3jkjTyjN-gh5nlxEP1zp-ih6E7hl6mFI3Xf8cXaYh7ZbYTtvZaurxxQ2gsHB0-xb9R3xhfKK_xfPEpInn01_BY9h-xX2YtSXwRSSkVHeOW8iMScKmv5nPodiWw94sfubGL9BkfPRjdFzmCgqlY7VcloYzG4gi1lS-dcSIyhLe1twbxZVwRNqGW14F76lwnlviIKBQktTGSu8FeYl2u6suvEJYSuuFtIqyxsSQTtjoaKjaUeU9nObyArHNr9Qu04tDlYuZXkOfKw0q0GsV6KgCDSrQpEAH23bXa4KNf7Y4BE1tpYEgOz2IdqPzeNPMSdvapmVx7aU8ulmeNU4I5aJx1qZuCvQO9KyBAqODHJtzs-p7_fn7qR5CjQgoEyAK9CELtVexL85kyEL8I8CadUdyf2MvOk8Cva6jby2ViB5dgaqNDd16_ddevv7_Jm_QowZsOyUT76Pd5WIV3kaXaWkHaEeOPw3Q3uHRybfTeDdq6CCNnUHahIjXSTP8DR1RERI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKEYJLxSpCC1gIxGmUmfF4Q0KoLCGhywFaqTfX26Qp2cgkgvwpfiN-zkygqlROvSb2SOO3j9_3PYReCs2JLR1JpM_yUKD4LJHah2JFc0ELG2ouCmjkg0PWPS6-nNCTDfS7wcJAW2XjE6OjdhML38jbWUhUhOQhPL6b_khgahTcrjYjNFZqseeXP0PJVr3tfQzyfZXnnU9HH7pJPVUgsTQT80QzajyRxOjUlZZonhrCyow5LZnklgiTM8NS71zBrWOGWEiypSCZNsI5TsJzb6CbBQmRHJDpnc9rzw90YRHNRIqEpUVRI5JDDdP203MLeL2UQicETyhU8uRCMIwzAy5HhktXtDHyde6irTplxbsrHbuHNvz4ProVW0dt9QCdR5di59gMyuFi4PDZElBgOKSds-oNPtMu0u_iUWTyxKPBL-8wfP7FlR-WCfBVRKTWuI9L6MyJi3W1HI1g2JfFTs--15sfouNrOetHaHM8GfvHCAthHBdGFjTXoaTkJiQ6MrOFdA5uk1kL0eYola3pzWHKxlCtoNepAhGolQhUEIECESjSQu31vumK4OO_O96DpNargaA7_jCZ9VVt74paYUqTlzTE_oKFNM_R3HIubTCOTGd5C70AOSug4BhDj09fL6pK9b59VbswowLGFPAWel0vKifhXayuIRPhRIC168LKnUZfVO2EKvXXZFoobXTon7-vfMsnVz_xObrdPTrYV_u9w71tdCcHnY5NzDtocz5b-KchVZubZ9E-MDq9boP8A6IUTbk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMEClgIxGmV3fX6hYRQSxu1FKKqUKk349emKXmRTQT5a_w6PM5uoKpUTr3u2pbWM-OZWc_3DUKvhObElo4k0md5SFB8lkjtQ7KiuaCFDTkXBTTy5x7bPyk-ntLTDfS7wcJAWWVzJsaD2k0s_CPvZCFQEZIH99gp67KIo93u--mPBDpIwU1r005jpSKHfvkzpG_Vu4PdIOvXed7d-_phP6k7DCSWZmKeaEaNJ5IYnbrSEs1TQ1iZMaclk9wSYXJmWOqdK7h1zBALAbcUJNNGOMdJWPcG2uSQFbXQ5s5e7-h47QeAPCxim0iRsLQoanxyyGg6fnpuAb2XUqiL4AmFvJ5ccI2xg8BlP3Hpwjb6we5ddKcOYPH2SuPuoQ0_vo9uxkJSWz1A5_GAsXNsBuVwMXD4bAmYMByC0Fn1Fp9pF8l48SjyeuLR4Jd3GH4G48oPywTYKyJua9zHJdTpxMG6Wo5G0PrLYqdn3-vJD9HJtez2I9QaT8b-McJCGMeFkQXNdUgwuQlhj8xsIZ2Du2XWRrTZSmVrsnPouTFUKyB2qkAEaiUCFUSgQASKtFFnPW-6ovv474wdkNR6NNB1xweTWV_V1q-oFaY0eUlDJFCwEPQ5mlvOpQ2mkuksb6OXIGcFhBxjUO2-XlSVOvhyrLahYwU0LeBt9KYeVE7Ct1hdAyjCjgCH14WRW42-qPpIqtRfA2qjtNGhf15f-ZVPrl7xBboVjFF9OugdPkW3c1DpWNG8hVrz2cI_C3Hb3DyvDQSjb9dtk38A6YxTSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+bifluid+hybrid+stars%3A+hadronic+matter+mixed+with+self-interacting+fermionic+asymmetric+dark+matter&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Mukhopadhyay%2C+Somnath&rft.au=Atta%2C+Debasis&rft.au=Imam%2C+Kouser&rft.au=Basu%2C+D.+N.&rft.date=2017-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=77&rft.issue=7&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-017-5006-3&rft.externalDocID=10_1140_epjc_s10052_017_5006_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |