Structured crowdsourcing enables convolutional segmentation of histology images

Abstract Motivation While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully deli...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 18; pp. 3461 - 3467
Main Authors Amgad, Mohamed, Elfandy, Habiba, Hussein, Hagar, Atteya, Lamees A, Elsebaie, Mai A T, Abo Elnasr, Lamia S, Sakr, Rokia A, Salem, Hazem S E, Ismail, Ahmed F, Saad, Anas M, Ahmed, Joumana, Elsebaie, Maha A T, Rahman, Mustafijur, Ruhban, Inas A, Elgazar, Nada M, Alagha, Yahya, Osman, Mohamed H, Alhusseiny, Ahmed M, Khalaf, Mariam M, Younes, Abo-Alela F, Abdulkarim, Ali, Younes, Duaa M, Gadallah, Ahmed M, Elkashash, Ahmad M, Fala, Salma Y, Zaki, Basma M, Beezley, Jonathan, Chittajallu, Deepak R, Manthey, David, Gutman, David A, Cooper, Lee A D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.09.2019
Subjects
Online AccessGet full text

Cover

Loading…