Structured crowdsourcing enables convolutional segmentation of histology images

Abstract Motivation While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully deli...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 18; pp. 3461 - 3467
Main Authors Amgad, Mohamed, Elfandy, Habiba, Hussein, Hagar, Atteya, Lamees A, Elsebaie, Mai A T, Abo Elnasr, Lamia S, Sakr, Rokia A, Salem, Hazem S E, Ismail, Ahmed F, Saad, Anas M, Ahmed, Joumana, Elsebaie, Maha A T, Rahman, Mustafijur, Ruhban, Inas A, Elgazar, Nada M, Alagha, Yahya, Osman, Mohamed H, Alhusseiny, Ahmed M, Khalaf, Mariam M, Younes, Abo-Alela F, Abdulkarim, Ali, Younes, Duaa M, Gadallah, Ahmed M, Elkashash, Ahmad M, Fala, Salma Y, Zaki, Basma M, Beezley, Jonathan, Chittajallu, Deepak R, Manthey, David, Gutman, David A, Cooper, Lee A D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. Results We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy. Availability and Implementation Dataset is freely available at: https://goo.gl/cNM4EL. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20,000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (Mean AUC= 0.945), and the scale of annotation data provided notable improvements in image classification accuracy. Supplementary dataset hosted at: https://goo.gl/cNM4EL. Additional results and methods are available at Bioinformatics online.
Abstract Motivation While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. Results We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy. Availability and Implementation Dataset is freely available at: https://goo.gl/cNM4EL. Supplementary information Supplementary data are available at Bioinformatics online.
While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images.MOTIVATIONWhile deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images.We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy.RESULTSWe recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy.Dataset is freely available at: https://goo.gl/cNM4EL.AVAILABILITY AND IMPLEMENTATIONDataset is freely available at: https://goo.gl/cNM4EL.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Saad, Anas M
Sakr, Rokia A
Hussein, Hagar
Khalaf, Mariam M
Elkashash, Ahmad M
Elsebaie, Mai A T
Manthey, David
Elsebaie, Maha A T
Younes, Duaa M
Amgad, Mohamed
Chittajallu, Deepak R
Gadallah, Ahmed M
Zaki, Basma M
Beezley, Jonathan
Alagha, Yahya
Osman, Mohamed H
Ahmed, Joumana
Salem, Hazem S E
Rahman, Mustafijur
Cooper, Lee A D
Ismail, Ahmed F
Alhusseiny, Ahmed M
Abdulkarim, Ali
Fala, Salma Y
Younes, Abo-Alela F
Elfandy, Habiba
Elgazar, Nada M
Atteya, Lamees A
Gutman, David A
Abo Elnasr, Lamia S
Ruhban, Inas A
AuthorAffiliation 7 Department of Pathology, Medical Research Institute, Alexandria University , Alexandria, Egypt
2 Department of Pathology, National Cancer Institute , Cairo, Egypt
11 Department of Medicine, Zagazig University , Zagazig, Egypt
12 Department of Medicine, Batterjee Medical College , Jeddah, Saudi Arabia
3 Department of Medicine, Cairo University , Cairo, Egypt
13 Department of Medicine, Suez Canal University , Ismailia, Egypt
16 Department of Biomedical Engineering, Emory University , Atlanta, GA, USA
15 Department of Neurology, Emory University School of Medicine , Atlanta, GA, USA
4 Egyptian Ministry of Health , Cairo, Egypt
1 Department of Biomedical Informatics, Emory University School of Medicine , Atlanta, GA, USA
8 Department of Medicine, Chittagong University , Chittagong, Bangladesh
6 Department of Medicine, Menoufia University , Menoufia, Egypt
14 Kitware Inc., Clifton Park , NY, USA
9 Department of Medicine, Damascus University , Damascus, Syria
10 Department of Medicine, Mansoura Universi
AuthorAffiliation_xml – name: 5 Department of Medicine, Ain Shams University , Cairo, Egypt
– name: 11 Department of Medicine, Zagazig University , Zagazig, Egypt
– name: 12 Department of Medicine, Batterjee Medical College , Jeddah, Saudi Arabia
– name: 15 Department of Neurology, Emory University School of Medicine , Atlanta, GA, USA
– name: 2 Department of Pathology, National Cancer Institute , Cairo, Egypt
– name: 16 Department of Biomedical Engineering, Emory University , Atlanta, GA, USA
– name: 13 Department of Medicine, Suez Canal University , Ismailia, Egypt
– name: 7 Department of Pathology, Medical Research Institute, Alexandria University , Alexandria, Egypt
– name: 8 Department of Medicine, Chittagong University , Chittagong, Bangladesh
– name: 6 Department of Medicine, Menoufia University , Menoufia, Egypt
– name: 10 Department of Medicine, Mansoura University , Mansoura, Egypt
– name: 14 Kitware Inc., Clifton Park , NY, USA
– name: 1 Department of Biomedical Informatics, Emory University School of Medicine , Atlanta, GA, USA
– name: 4 Egyptian Ministry of Health , Cairo, Egypt
– name: 3 Department of Medicine, Cairo University , Cairo, Egypt
– name: 9 Department of Medicine, Damascus University , Damascus, Syria
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0001-7599-6162
  surname: Amgad
  fullname: Amgad, Mohamed
  organization: Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
– sequence: 2
  givenname: Habiba
  surname: Elfandy
  fullname: Elfandy, Habiba
  organization: Department of Pathology, National Cancer Institute, Cairo, Egypt
– sequence: 3
  givenname: Hagar
  surname: Hussein
  fullname: Hussein, Hagar
  organization: Department of Medicine, Cairo University, Cairo, Egypt
– sequence: 4
  givenname: Lamees A
  surname: Atteya
  fullname: Atteya, Lamees A
  organization: Egyptian Ministry of Health, Cairo, Egypt
– sequence: 5
  givenname: Mai A T
  surname: Elsebaie
  fullname: Elsebaie, Mai A T
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 6
  givenname: Lamia S
  surname: Abo Elnasr
  fullname: Abo Elnasr, Lamia S
  organization: Department of Medicine, Menoufia University, Menoufia, Egypt
– sequence: 7
  givenname: Rokia A
  surname: Sakr
  fullname: Sakr, Rokia A
  organization: Department of Medicine, Menoufia University, Menoufia, Egypt
– sequence: 8
  givenname: Hazem S E
  surname: Salem
  fullname: Salem, Hazem S E
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 9
  givenname: Ahmed F
  surname: Ismail
  fullname: Ismail, Ahmed F
  organization: Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
– sequence: 10
  givenname: Anas M
  surname: Saad
  fullname: Saad, Anas M
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 11
  givenname: Joumana
  surname: Ahmed
  fullname: Ahmed, Joumana
  organization: Department of Medicine, Cairo University, Cairo, Egypt
– sequence: 12
  givenname: Maha A T
  surname: Elsebaie
  fullname: Elsebaie, Maha A T
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 13
  givenname: Mustafijur
  surname: Rahman
  fullname: Rahman, Mustafijur
  organization: Department of Medicine, Chittagong University, Chittagong, Bangladesh
– sequence: 14
  givenname: Inas A
  surname: Ruhban
  fullname: Ruhban, Inas A
  organization: Department of Medicine, Damascus University, Damascus, Syria
– sequence: 15
  givenname: Nada M
  surname: Elgazar
  fullname: Elgazar, Nada M
  organization: Department of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 16
  givenname: Yahya
  surname: Alagha
  fullname: Alagha, Yahya
  organization: Department of Medicine, Cairo University, Cairo, Egypt
– sequence: 17
  givenname: Mohamed H
  surname: Osman
  fullname: Osman, Mohamed H
  organization: Department of Medicine, Zagazig University, Zagazig, Egypt
– sequence: 18
  givenname: Ahmed M
  surname: Alhusseiny
  fullname: Alhusseiny, Ahmed M
  organization: Department of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 19
  givenname: Mariam M
  surname: Khalaf
  fullname: Khalaf, Mariam M
  organization: Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
– sequence: 20
  givenname: Abo-Alela F
  surname: Younes
  fullname: Younes, Abo-Alela F
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 21
  givenname: Ali
  surname: Abdulkarim
  fullname: Abdulkarim, Ali
  organization: Department of Medicine, Cairo University, Cairo, Egypt
– sequence: 22
  givenname: Duaa M
  surname: Younes
  fullname: Younes, Duaa M
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 23
  givenname: Ahmed M
  surname: Gadallah
  fullname: Gadallah, Ahmed M
  organization: Department of Medicine, Ain Shams University, Cairo, Egypt
– sequence: 24
  givenname: Ahmad M
  surname: Elkashash
  fullname: Elkashash, Ahmad M
  organization: Department of Medicine, Cairo University, Cairo, Egypt
– sequence: 25
  givenname: Salma Y
  surname: Fala
  fullname: Fala, Salma Y
  organization: Department of Medicine, Suez Canal University, Ismailia, Egypt
– sequence: 26
  givenname: Basma M
  surname: Zaki
  fullname: Zaki, Basma M
  organization: Department of Medicine, Suez Canal University, Ismailia, Egypt
– sequence: 27
  givenname: Jonathan
  surname: Beezley
  fullname: Beezley, Jonathan
  organization: Kitware Inc., Clifton Park, NY, USA
– sequence: 28
  givenname: Deepak R
  surname: Chittajallu
  fullname: Chittajallu, Deepak R
  organization: Kitware Inc., Clifton Park, NY, USA
– sequence: 29
  givenname: David
  surname: Manthey
  fullname: Manthey, David
  organization: Kitware Inc., Clifton Park, NY, USA
– sequence: 30
  givenname: David A
  surname: Gutman
  fullname: Gutman, David A
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
– sequence: 31
  givenname: Lee A D
  orcidid: 0000-0002-3504-4965
  surname: Cooper
  fullname: Cooper, Lee A D
  email: lee.cooper@emory.edu
  organization: Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30726865$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1yAcJmbGvX4ETY9euv0olNKYmJhlOpMlO7g7AQodhsJfoDPz04-lc3Fe9ASE5y3Pc4j2QgwGobcYTjGM5Ey56IKNaZHF6Xymyi_g5BU6wJRB20E_7tU7YUNLOZB9dJjzd4AeU0rfoH0CQ8c46w_Q9beSVl3WZKZGp_hzynFN2oW5MUEqb3KjY7iLfi0uBumbbObFhCIfn020za3LJfo43zdukbPJx-i1lT6bk6fzCN18vrg5v2yvrr98Pf901eoe89JKOmjcqW6EngGfRlDUTFZxrRixtrPAO8m5YaAtpWRURHc9JnIcNRiMCTlCHzfZ3aoWM-kaKUkvdqmmSPciSide_gR3K-Z4J9hA-TCyKvD-SSDFH6vJRSwua-O9DCauWXSYE8xpT6FC3_3p9Wzyu8QK6DdALTDnZOwzBIN4HEu8HEtsY1Xeh7942m3N1sjO_5MNGzuuu_80fAB-D7dt
CitedBy_id crossref_primary_10_1016_j_dsp_2021_103196
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_1016_j_cmpbup_2023_100104
crossref_primary_10_1016_j_ajpath_2020_03_012
crossref_primary_10_1016_j_patter_2023_100688
crossref_primary_10_1016_j_jpi_2022_100103
crossref_primary_10_1109_JBHI_2020_2991043
crossref_primary_10_1016_j_media_2023_103069
crossref_primary_10_1016_j_modpat_2023_100196
crossref_primary_10_3390_data7060075
crossref_primary_10_1200_JCO_23_02641
crossref_primary_10_1200_JCO_24_02279
crossref_primary_10_3233_ICA_220676
crossref_primary_10_23939_ujit2022_02_040
crossref_primary_10_1145_3577011
crossref_primary_10_1007_s12530_023_09491_3
crossref_primary_10_1016_j_cmpb_2021_106464
crossref_primary_10_1002_path_5331
crossref_primary_10_1109_TETCI_2023_3287978
crossref_primary_10_1016_j_media_2022_102487
crossref_primary_10_1186_s12967_020_02502_w
crossref_primary_10_3390_cancers15143635
crossref_primary_10_1109_TSP_2023_3322843
crossref_primary_10_1038_s41598_025_86527_5
crossref_primary_10_1109_ACCESS_2024_3377428
crossref_primary_10_1007_s12257_023_0164_7
crossref_primary_10_34133_2022_9893639
crossref_primary_10_1038_s41523_020_0154_2
crossref_primary_10_1093_bib_bbac367
crossref_primary_10_1186_s12885_024_12962_8
crossref_primary_10_3390_s22166053
crossref_primary_10_1186_s13058_023_01726_0
crossref_primary_10_1002_path_6155
crossref_primary_10_1016_j_compbiomed_2022_106412
crossref_primary_10_1016_j_jpi_2024_100363
crossref_primary_10_3390_sym12010154
crossref_primary_10_1016_j_jpi_2022_100160
crossref_primary_10_1088_1361_6560_acaeee
crossref_primary_10_1016_j_compmedimag_2024_102482
crossref_primary_10_1016_j_cmpb_2022_106828
crossref_primary_10_1016_j_media_2023_102845
crossref_primary_10_2139_ssrn_4202295
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1016_j_jbi_2023_104303
crossref_primary_10_1007_s00521_023_08394_3
crossref_primary_10_1016_j_cmpb_2024_108472
crossref_primary_10_1038_s41598_022_26482_7
crossref_primary_10_1038_s41523_024_00663_1
crossref_primary_10_1093_bioinformatics_btad138
crossref_primary_10_1016_j_compmedimag_2021_101974
crossref_primary_10_1109_ACCESS_2024_3470213
crossref_primary_10_1109_ACCESS_2024_3423701
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1016_j_cmpb_2024_108119
crossref_primary_10_1016_j_medengphy_2025_104284
crossref_primary_10_1109_JBHI_2022_3216293
crossref_primary_10_1038_s41523_021_00346_1
crossref_primary_10_1007_s42979_024_02855_9
crossref_primary_10_1109_TMI_2023_3274652
crossref_primary_10_1016_j_bspc_2024_106493
crossref_primary_10_1109_JBHI_2024_3383590
crossref_primary_10_3389_fdata_2020_00019
crossref_primary_10_1016_j_compmedimag_2022_102155
crossref_primary_10_1016_j_csbj_2024_12_033
crossref_primary_10_1007_s11263_024_02246_w
crossref_primary_10_3389_frai_2021_754641
crossref_primary_10_1109_TMI_2022_3191398
crossref_primary_10_1111_his_15205
crossref_primary_10_1002_cyto_a_24514
crossref_primary_10_1117_1_JMI_11_4_044006
crossref_primary_10_3390_bioengineering9090475
crossref_primary_10_3788_CJL240614
crossref_primary_10_1038_s41598_021_90821_3
crossref_primary_10_1080_21681163_2023_2198037
crossref_primary_10_2196_42723
crossref_primary_10_1007_s10278_024_01043_8
crossref_primary_10_1016_j_ajpath_2022_12_011
crossref_primary_10_3390_mi13122197
crossref_primary_10_1016_j_patcog_2024_110621
crossref_primary_10_3390_s22072775
crossref_primary_10_1016_j_artmed_2023_102686
crossref_primary_10_1109_JBHI_2023_3237137
crossref_primary_10_1109_ACCESS_2023_3237990
crossref_primary_10_1016_j_media_2025_103553
crossref_primary_10_1007_s10916_021_01786_9
crossref_primary_10_1016_j_bspc_2023_104976
crossref_primary_10_1016_j_eswa_2022_117525
crossref_primary_10_1016_j_media_2022_102685
crossref_primary_10_2478_ausi_2023_0006
crossref_primary_10_1016_j_media_2023_102743
crossref_primary_10_1038_s43856_022_00138_z
crossref_primary_10_1371_journal_pone_0314450
crossref_primary_10_3390_bioengineering10040396
crossref_primary_10_1002_pros_24721
crossref_primary_10_4103_jpi_jpi_83_20
crossref_primary_10_1016_j_media_2023_102997
crossref_primary_10_1007_s10278_024_01018_9
crossref_primary_10_1016_j_bspc_2023_105544
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1200_CCI_19_00126
crossref_primary_10_1016_j_bspc_2022_103564
crossref_primary_10_1016_j_addr_2021_113959
crossref_primary_10_1007_s11263_025_02372_z
crossref_primary_10_1016_j_neucom_2024_127834
crossref_primary_10_1016_j_eswa_2023_120128
crossref_primary_10_1038_s41591_023_02504_3
crossref_primary_10_1038_s43856_022_00186_5
crossref_primary_10_1016_j_jvcir_2023_103929
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1109_TCYB_2024_3403927
crossref_primary_10_1007_s10278_024_01041_w
crossref_primary_10_1093_gigascience_giac037
crossref_primary_10_1016_j_imavis_2024_105371
crossref_primary_10_1111_jop_13414
crossref_primary_10_1016_j_media_2022_102594
crossref_primary_10_1007_s11517_023_02970_4
crossref_primary_10_1021_acs_chemrestox_3c00058
crossref_primary_10_1038_s41597_020_0528_1
crossref_primary_10_1016_j_compbiomed_2024_109621
crossref_primary_10_3390_cancers14092148
crossref_primary_10_4103_jpi_jpi_64_19
crossref_primary_10_1007_s00428_021_03213_3
crossref_primary_10_1038_s41551_022_00929_8
crossref_primary_10_1038_s44172_024_00246_9
crossref_primary_10_1088_1742_6596_2504_1_012047
crossref_primary_10_3390_bioengineering11050434
crossref_primary_10_1111_his_14304
crossref_primary_10_1007_s10489_023_05190_3
crossref_primary_10_1016_j_compmedimag_2024_102327
crossref_primary_10_1038_s41698_023_00352_5
crossref_primary_10_1186_s40478_023_01691_x
crossref_primary_10_3390_cancers13123050
crossref_primary_10_1016_j_ebiom_2021_103492
Cites_doi 10.1038/s41592-018-0069-0
10.1097/MD.0000000000004614
10.4103/jpi.jpi_65_17
10.1038/srep43286
10.1109/38.946629
10.1561/0600000071
10.1136/amiajnl-2012-001469
10.1158/0008-5472.CAN-17-0629
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2019
The Author(s) 2019. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2019
– notice: The Author(s) 2019. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz083
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Open Access Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 3467
ExternalDocumentID PMC6748796
30726865
10_1093_bioinformatics_btz083
10.1093/bioinformatics/btz083
Genre Journal Article
GrantInformation_xml – fundername: U.S. National Institutes of Health
– fundername: National Cancer Institute grants
  grantid: U01CA220401; U24CA194362
– fundername: NCI NIH HHS
  grantid: U24 CA194362
– fundername: ;
– fundername: ;
  grantid: U01CA220401; U24CA194362
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
BCRHZ
EJD
M49
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c518t-a47c12b2905608d90b4edfb8cb63ff2f082a88e60cf4439b3c2513a99c0e1133
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 13:47:04 EDT 2025
Thu Jul 10 17:10:34 EDT 2025
Wed Feb 19 02:36:52 EST 2025
Tue Jul 01 02:33:48 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Wed Apr 02 07:04:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a47c12b2905608d90b4edfb8cb63ff2f082a88e60cf4439b3c2513a99c0e1133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3504-4965
0000-0001-7599-6162
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btz083
PMID 30726865
PQID 2183184540
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6748796
proquest_miscellaneous_2183184540
pubmed_primary_30726865
crossref_primary_10_1093_bioinformatics_btz083
crossref_citationtrail_10_1093_bioinformatics_btz083
oup_primary_10_1093_bioinformatics_btz083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Irshad (2023013108054510300_btz083-B8) 2017; 7
Reinhard (2023013108054510300_btz083-B12) 2001; 21
Irshad (2023013108054510300_btz083-B7) 2015
Gutman (2023013108054510300_btz083-B4) 2013; 20
Alialy (2023013108054510300_btz083-B1) 2018; 9
Kovashka (2023013108054510300_btz083-B9) 2016; 10
Su (2023013108054510300_btz083-B14) 2012
Gutman (2023013108054510300_btz083-B5) 2017; 77
Fouad (2023013108054510300_btz083-B3) 2017; 7
Hughes (2023013108054510300_btz083-B6) 2018; 15
Plasilova (2023013108054510300_btz083-B11) 2016; 95
Long (2023013108054510300_btz083-B10) 2015
References_xml – volume: 15
  start-page: 587
  year: 2018
  ident: 2023013108054510300_btz083-B6
  article-title: Quanti.us: a tool for rapid, flexible, crowd-based annotation of images
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0069-0
– start-page: 294
  year: 2015
  ident: 2023013108054510300_btz083-B7
  article-title: Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd
  publication-title: Pac. Symp. Biocomput
– volume: 95
  start-page: e4614.
  year: 2016
  ident: 2023013108054510300_btz083-B11
  article-title: Features of triple-negative breast cancer: analysis of 38, 813 cases from the national cancer database
  publication-title: Medicine
  doi: 10.1097/MD.0000000000004614
– volume: 7
  start-page: 1016
  year: 2017
  ident: 2023013108054510300_btz083-B3
  article-title: Revisiting the hallmarks of cancer
  publication-title: Am. J. Cancer Res
– volume: 9
  start-page: 2.
  year: 2018
  ident: 2023013108054510300_btz083-B1
  article-title: A review on the applications of crowdsourcing in human pathology
  publication-title: J. Pathol. Inform
  doi: 10.4103/jpi.jpi_65_17
– volume: 7
  start-page: 43286.
  year: 2017
  ident: 2023013108054510300_btz083-B8
  article-title: Crowdsourcing scoring of immunohistochemistry images: evaluating Performance of the Crowd and an Automated Computational Method
  publication-title: Sci. Rep
  doi: 10.1038/srep43286
– volume: 21
  start-page: 34
  year: 2001
  ident: 2023013108054510300_btz083-B12
  article-title: Color transfer between images
  publication-title: IEEE Comput. Graph
  doi: 10.1109/38.946629
– volume: 10
  start-page: 177
  year: 2016
  ident: 2023013108054510300_btz083-B9
  article-title: Crowdsourcing in computer vision
  publication-title: Found. Trends Comput. Graph. Vis
  doi: 10.1561/0600000071
– volume: 20
  start-page: 1091
  year: 2013
  ident: 2023013108054510300_btz083-B4
  article-title: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data
  publication-title: J. Am. Med. Inform. Assoc
  doi: 10.1136/amiajnl-2012-001469
– volume-title: Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence
  year: 2012
  ident: 2023013108054510300_btz083-B14
– start-page: 3431
  year: 2015
  ident: 2023013108054510300_btz083-B10
– volume: 77
  start-page: e75
  year: 2017
  ident: 2023013108054510300_btz083-B5
  article-title: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0629
SSID ssj0051444
ssj0005056
Score 2.670421
Snippet Abstract Motivation While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets...
While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3461
SubjectTerms Original Papers
Title Structured crowdsourcing enables convolutional segmentation of histology images
URI https://www.ncbi.nlm.nih.gov/pubmed/30726865
https://www.proquest.com/docview/2183184540
https://pubmed.ncbi.nlm.nih.gov/PMC6748796
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KQfAivo0vInjxELvJ5rVHEUsRtAcr9Bayj2jBJmJaRH-9s9mkNgVRjyG7kzCzu_Pt7sw3AOdUEio5444KCHF8RNhOGulEYEq8jIWKcapzh-_uw8GjfzsOxh0gTS7M6hU-oz0-KWoSUU1c3OOzT4QNuOiiI9Zk-aPh-Dumg2hmGPOASMA3JW01s3dMaJO_85PIlmdqZbstgc7V2MklZ9TfhI0aRdpXxuxb0FH5NqyZupIfOzB8qFhh529K2vixd1kd0aOTslWVKlXaOti8HnQop1RP0zoHKbeLzK5IiLUoezLF9abchVH_ZnQ9cOrKCY4I3HjmpH4kXI97DPVBYskI95XMeCx4SLPMy9Dvp3GsQiIyHxEJpwJhDk0ZE0S5uGvdg25e5OoA7EgT-EWURpJTn8mUe0qkGY1wQ44zPeUW-I3SElGziuviFi-Jud2mSVvXidG1BZeLbq-GVuO3Dhdokb-2PWvsluBk0Tcgaa6KeZloPIhbWkSpFuwbOy5E4mLnhXEYWBC1LLxooIm422_yyXNFyK0LtkQsPPzHPx7BOkKvKlrNDY6hi8NCnSC8mfHTakh_AdfKAHY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+crowdsourcing+enables+convolutional+segmentation+of+histology+images&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Amgad%2C+Mohamed&rft.au=Elfandy%2C+Habiba&rft.au=Hussein%2C+Hagar&rft.au=Atteya%2C+Lamees+A&rft.date=2019-09-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=35&rft.issue=18&rft.spage=3461&rft.epage=3467&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz083&rft_id=info%3Apmid%2F30726865&rft.externalDocID=PMC6748796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon