Research on anti-clogging of ore conveyor belt with static image based on improved Fast-SCNN and U-Net

This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accurac...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 17880 - 15
Main Authors Liu, Jingyi, Zhang, Hanquan, Xiao, Dong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-45186-0

Cover

Loading…
Abstract This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.
AbstractList This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.
Abstract This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.
This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.
ArticleNumber 17880
Author Liu, Jingyi
Zhang, Hanquan
Xiao, Dong
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Liu
  fullname: Liu, Jingyi
  organization: School of Sciences, Northeastern University
– sequence: 2
  givenname: Hanquan
  surname: Zhang
  fullname: Zhang, Hanquan
  email: hanquanzhang@yeah.net
  organization: School of Information Science and Engineering, Northeastern University
– sequence: 3
  givenname: Dong
  surname: Xiao
  fullname: Xiao, Dong
  organization: School of Information Science and Engineering, Northeastern University
BookMark eNp9Uk1v1DAQtVARLaV_gJMlLlwC_oydE0KrFipViwT0bDnOJOtV1l7s7KL-e5ymAtpD5-LR-L03z-N5jU5CDIDQW0o-UML1xyyobHRFGK-EpLquyAt0xoiQFeOMnfyXn6KLnLekhGSNoM0rdMqVlkrV6gz13yGDTW6DY8A2TL5yYxwGHwYcexwTYBfDEe5iwi2ME_7tpw3Ok528w35nB8CtzdDNbL_bp3gs-ZXNU_VjtV4XwQ7fVmuY3qCXvR0zXDyc5-j26vLn6mt18-3L9erzTeXKG6bKCiV1DdZyxamVirda9bxEoxx1smXSdkTyknWNdUpaSbtSaEFDbXtC-Dm6XnS7aLdmn4rFdGei9ea-ENNgbCreRzCdIwKI1I5QJgSIVtcdF0pbxYXsoS5anxat_aHdQecgTMmOj0Qf3wS_MUM8GlpUFVG8KLx_UEjx1wHyZHY-OxhHGyAesmFaE9LUhM7N3j2BbuMhhTKrglK6YTURtKDYgnIp5pyg_-uGEjOvhVnWwpS1MPdrYeaZ6Cck5-cPjLNrPz5P5Qs1lz5hgPTP1TOsP017y4s
CitedBy_id crossref_primary_10_1080_19392699_2024_2434891
Cites_doi 10.1109/JSEN.2020.3016458
10.1109/TCAD.2019.2897701
10.1109/TMI.2018.2859478
10.1109/TPAMI.2022.3225573
10.1016/j.cpart.2007.04.005
10.1016/j.net.2023.01.005
10.1109/TPEL.2019.2906664
10.1109/TMI.2021.3074808
10.1109/TPAMI.2019.2913372
10.1109/TMI.2014.2366792
10.1109/TMECH.2019.2892401
10.1038/s41598-022-11351-0
10.1039/c9ra05877j
10.1109/ICICEE.2012.8
10.1109/ICIIS.1999.810267
10.1109/INDIN41052.2019.8972162
10.1109/IGARSS39084.2020.9324218
10.1109/CVPR.2018.00745
10.1007/978-3-319-24574-4_28
10.1109/CAC57257.2022.10055952
10.1109/RADIOELEK.2011.5936391
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-45186-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_dc04e058c01244e4b86d3478a7345fe6
PMC10587073
10_1038_s41598_023_45186_0
GrantInformation_xml – fundername: Liaoning Revitalization Talents Program, China
  grantid: XLYC2008020
– fundername: National Key Research and Development Program of China
  grantid: 2020AAA0109203
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 52074064
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: XLYC2008020
– fundername: ;
  grantid: 2020AAA0109203
– fundername: ;
  grantid: 52074064
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-a47586eaa3731a573b87f333397c1c5b25ad053c5bd9ac75a51dd05be8e6af003
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:13 EDT 2025
Thu Aug 21 18:36:01 EDT 2025
Mon Jul 21 11:56:02 EDT 2025
Wed Aug 13 08:43:17 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Tue Jul 01 03:57:42 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a47586eaa3731a573b87f333397c1c5b25ad053c5bd9ac75a51dd05be8e6af003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-45186-0
PMID 37857767
PQID 2878926041
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_dc04e058c01244e4b86d3478a7345fe6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10587073
proquest_miscellaneous_2880096016
proquest_journals_2878926041
crossref_primary_10_1038_s41598_023_45186_0
crossref_citationtrail_10_1038_s41598_023_45186_0
springer_journals_10_1038_s41598_023_45186_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-19
PublicationDateYYYYMMDD 2023-10-19
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Guo, Wang, Yang (CR1) 2022; 12
van Opbroek, Ikram, Vernooij, de Bruijne (CR8) 2015; 34
Li, Duan, Huang, Gromiha, Han, Hussain (CR15) 2018
Melki, Tourni, Konofagou (CR7) 2021; 40
Lin, Huang, Chen, Hsu (CR30) 2019; 34
CR19
CR17
CR13
CR11
Zou, Cheng, Hu, Huang, Pan (CR28) 2018; 54
CR10
Van Opbroek, Achterberg, Vernooij, De Bruijne (CR9) 2019; 38
Gao, Huang, Zheng (CR23) 2022; 60
Yang, Huang, Wang, Luo (CR18) 2021; 21
Liu, Zhang, Jing, Wang, Zhao (CR16) 2020; 10
CR4
Huang, Cai, Jia, Zhang (CR3) 2023
Petruk, Pinard, Finch (CR5) 1986; 3
Han, Liang, Chen, Zhang, Ge (CR24) 2022; 60
Chen, Chiang, Liu, Chang (CR27) 2019; 24
Zhou, Porikli, Crandall, Van Gool, Wang (CR14) 2023; 45
CR25
CR22
CR20
Liang, Lu, Xiao, Yan (CR26) 2020; 39
Su, Xu, Cai (CR6) 2007; 5
Jiao (CR2) 2020; 1
Hu, Shen, Albanie, Sun, Wu (CR21) 2020; 42
Yu, Wang, Wang, Ma, Liu (CR29) 2023; 70
Li, Zou (CR12) 2022; 25
A van Opbroek (45186_CR8) 2015; 34
M Li (45186_CR12) 2022; 25
Wu Jiao (45186_CR2) 2020; 1
T Zhou (45186_CR14) 2023; 45
45186_CR22
45186_CR25
Y Zou (45186_CR28) 2018; 54
45186_CR10
H Yang (45186_CR18) 2021; 21
X Liu (45186_CR16) 2020; 10
S-Y Chen (45186_CR27) 2019; 24
H Huang (45186_CR3) 2023
Y Li (45186_CR15) 2018
K Gao (45186_CR23) 2022; 60
M Su (45186_CR6) 2007; 5
45186_CR19
J Hu (45186_CR21) 2020; 42
J Yu (45186_CR29) 2023; 70
A Van Opbroek (45186_CR9) 2019; 38
45186_CR17
Q Guo (45186_CR1) 2022; 12
45186_CR11
45186_CR13
L Han (45186_CR24) 2022; 60
Y Liang (45186_CR26) 2020; 39
45186_CR20
L Melki (45186_CR7) 2021; 40
F-J Lin (45186_CR30) 2019; 34
45186_CR4
W Petruk (45186_CR5) 1986; 3
References_xml – ident: CR22
– volume: 21
  start-page: 11469
  issue: 10
  year: 2021
  end-page: 11475
  ident: CR18
  article-title: An improved encoder–decoder network for ore image segmentation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3016458
– ident: CR4
– volume: 39
  start-page: 857
  issue: 4
  year: 2020
  end-page: 870
  ident: CR26
  article-title: Evaluating fast algorithms for convolutional neural networks on FPGAs
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2019.2897701
– volume: 38
  start-page: 213
  issue: 1
  year: 2019
  end-page: 224
  ident: CR9
  article-title: Transfer learning for image segmentation by combining image weighting and kernel learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2859478
– volume: 45
  start-page: 7099
  issue: 6
  year: 2023
  end-page: 7122
  ident: CR14
  article-title: A survey on deep learning technique for video segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3225573
– ident: CR10
– volume: 5
  start-page: 295
  issue: 4
  year: 2007
  end-page: 299
  ident: CR6
  article-title: Optimization of regularization parameter of inversion in particle sizing using light extinction method
  publication-title: China Particuol.
  doi: 10.1016/j.cpart.2007.04.005
– ident: CR25
– year: 2023
  ident: CR3
  article-title: Identification of Pb–Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2023.01.005
– ident: CR19
– volume: 25
  start-page: 37
  issue: 01
  year: 2022
  end-page: 40
  ident: CR12
  article-title: Research on threshold image segmentation method based on improved genetic algorithm
  publication-title: Softw. Eng.
– volume: 1
  start-page: 60
  year: 2020
  end-page: 62
  ident: CR2
  article-title: Full flow control technology of material conveying in bulk terminal
  publication-title: Port Load. Unload.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: CR23
  article-title: Fault detection on seismic structural images using a nested residual U-Net
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 12080
  issue: 12
  year: 2019
  end-page: 12094
  ident: CR30
  article-title: Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent legendre fuzzy neural network
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2906664
– volume: 40
  start-page: 2258
  issue: 9
  year: 2021
  end-page: 2271
  ident: CR7
  article-title: Electromechanical wave imaging with machine learning for automated isochrone generation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3074808
– ident: CR17
– volume: 3
  start-page: 60
  issue: 1
  year: 1986
  end-page: 62
  ident: CR5
  article-title: Relationship between observed mineral liberations in screened fractions and in composite samples
  publication-title: Min. Metall. Explor.
– volume: 70
  start-page: 1525
  issue: 4
  year: 2023
  end-page: 1529
  ident: CR29
  article-title: Command filtered adaptive fuzzy control for induction motors with iron losses and stochastic disturbances via reduced-order observer
  publication-title: IEEE Trans. Circuits Syst. II Expr. Br.
– ident: CR13
– ident: CR11
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  end-page: 2023
  ident: CR21
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– year: 2018
  ident: CR15
  article-title: A method of ore image segmentation based on deep learning
  publication-title: Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science
– volume: 34
  start-page: 1018
  issue: 5
  year: 2015
  end-page: 1030
  ident: CR8
  article-title: Transfer learning improves supervised image segmentation across imaging protocols
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2366792
– volume: 24
  start-page: 741
  issue: 2
  year: 2019
  end-page: 752
  ident: CR27
  article-title: Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2892401
– volume: 12
  start-page: 7143
  year: 2022
  ident: CR1
  article-title: A method of blasted rock image segmentation based on improved watershed algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11351-0
– volume: 10
  start-page: 9396
  issue: 16
  year: 2020
  end-page: 9406
  ident: CR16
  article-title: Ore image segmentation method using U-Net and Res_Unet convolutional networks
  publication-title: RSC Adv.
  doi: 10.1039/c9ra05877j
– ident: CR20
– volume: 54
  start-page: 1
  issue: 11
  year: 2018
  end-page: 5
  ident: CR28
  article-title: A new decoupled rotlin motor with fuzzy sliding mode control
  publication-title: IEEE Trans. Magn.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR24
  article-title: Convective precipitation nowcasting using U-net model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 45186_CR21
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 54
  start-page: 1
  issue: 11
  year: 2018
  ident: 45186_CR28
  publication-title: IEEE Trans. Magn.
– volume: 40
  start-page: 2258
  issue: 9
  year: 2021
  ident: 45186_CR7
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3074808
– volume: 21
  start-page: 11469
  issue: 10
  year: 2021
  ident: 45186_CR18
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3016458
– year: 2023
  ident: 45186_CR3
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2023.01.005
– volume: 45
  start-page: 7099
  issue: 6
  year: 2023
  ident: 45186_CR14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3225573
– ident: 45186_CR11
  doi: 10.1109/ICICEE.2012.8
– volume: 10
  start-page: 9396
  issue: 16
  year: 2020
  ident: 45186_CR16
  publication-title: RSC Adv.
  doi: 10.1039/c9ra05877j
– volume: 3
  start-page: 60
  issue: 1
  year: 1986
  ident: 45186_CR5
  publication-title: Min. Metall. Explor.
– ident: 45186_CR13
  doi: 10.1109/ICIIS.1999.810267
– volume: 60
  start-page: 1
  year: 2022
  ident: 45186_CR24
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 45186_CR4
  doi: 10.1109/INDIN41052.2019.8972162
– volume: 39
  start-page: 857
  issue: 4
  year: 2020
  ident: 45186_CR26
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2019.2897701
– volume: 5
  start-page: 295
  issue: 4
  year: 2007
  ident: 45186_CR6
  publication-title: China Particuol.
  doi: 10.1016/j.cpart.2007.04.005
– volume: 1
  start-page: 60
  year: 2020
  ident: 45186_CR2
  publication-title: Port Load. Unload.
– volume: 24
  start-page: 741
  issue: 2
  year: 2019
  ident: 45186_CR27
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2892401
– ident: 45186_CR17
  doi: 10.1109/IGARSS39084.2020.9324218
– ident: 45186_CR20
  doi: 10.1109/CVPR.2018.00745
– volume: 38
  start-page: 213
  issue: 1
  year: 2019
  ident: 45186_CR9
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2859478
– volume: 60
  start-page: 1
  year: 2022
  ident: 45186_CR23
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 45186_CR25
– volume: 34
  start-page: 1018
  issue: 5
  year: 2015
  ident: 45186_CR8
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2366792
– volume: 25
  start-page: 37
  issue: 01
  year: 2022
  ident: 45186_CR12
  publication-title: Softw. Eng.
– volume-title: Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science
  year: 2018
  ident: 45186_CR15
– ident: 45186_CR22
  doi: 10.1007/978-3-319-24574-4_28
– ident: 45186_CR19
  doi: 10.1109/CAC57257.2022.10055952
– volume: 12
  start-page: 7143
  year: 2022
  ident: 45186_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11351-0
– volume: 70
  start-page: 1525
  issue: 4
  year: 2023
  ident: 45186_CR29
  publication-title: IEEE Trans. Circuits Syst. II Expr. Br.
– volume: 34
  start-page: 12080
  issue: 12
  year: 2019
  ident: 45186_CR30
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2906664
– ident: 45186_CR10
  doi: 10.1109/RADIOELEK.2011.5936391
SSID ssj0000529419
Score 2.4181
Snippet This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While...
Abstract This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17880
SubjectTerms 639/166
639/166/988
Accuracy
Humanities and Social Sciences
Image processing
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIHgRf2LdXYngTcM2TdIkx3XxsQi-iz7YW0iTFAtrK-91D_vfO5P2PbcL6sWeSpM2TWamk6-ZfEPIO1-r4KUAkOO5wWVGxaxMlpkQNSAi3QaOu5G_rOvLjfx8pa7upPrCmLCJHngauLMYSplKZUKJnijJxtRRSG28FlK1KZNtg8-7A6YmVu_KQsPzLplSmLMdeCrcTVYJJhU3AKMXnigT9i9mmfdjJO8tlGb_s3pCHs8TR3o-vfBT8iD1z8jDKZXk7XPS7kPo6NBTGK2OBSjADER0aOmwTTTHl98OW9qk65Hi_1eKu4m6QLsf8FGh6M8i3t3l_wxwvvK7kX29WK_hgZFu2DqNL8hm9enbxSWbcyiwAL0cmZcACOrkvdCCe6VFA-Mv4LA68KCaSvkIdghn0fqglVc8woUmmVT7Fkz-JTnqhz69IlRGq5EujFsTJSBF01RtFWutPcBK601B-H48XZgJxjHPxbXLC93CuEkGDmTgsgxcWZD3h3t-TvQaf639EcV0qInU2PkCKIybFcb9S2EKcrIXspvtdecANxoL0E7ygrw9FIOl4fKJ79Nwg3VMBnwcHmEWyrF4oWVJ333PnN0wjYUvoxYF-bDXo9-t_7nHr_9Hj4_Jowr1HuNw7Ak5Grc36RSmUmPzJlvNLyyxFqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IFhCBUrkSN7Aax3bsnBBUrCok9gIr7c1ybAcitUnZTQ_9e2a8yVapRHOy4rfHY8_LM4R8cKXyTgpgchw3qGZUrJKxYsYHDRyRbjzH18g_luXFSn5fq_UocNuOZpXTmZgO6tB7lJGfAWVvKiC-Jf98_Zdh1CjUro4hNB6TJ-i6DJkvvdZ7GQtqsaD78a1MLszZFu4rfFNWCCYVN8BMz-6j5LZ_Rmvet5S8py5Nt9DiBXk-ko_0yw7eh-RR7I7I011AyduXpJkM6WjfUVizlnnIwDhEtG9ov4k0WZnf9htax8uBohSW4pui1tP2Co4WirdawNptkjZAeuG2A_t5vlxCg4Gu2DIOr8hq8e3X-QUbIykwD7McmJPAFpTROaEFd0qLGqAg4Ku0517VhXIBsBFSoXJeK6d4gB91NLF0DSD-a3LQ9V18Q6gMlUanYbwyQQK_aOqiKUKptQPmsnImI3xaT-tHN-MY7eLSJnW3MHYHAwswsAkGNs_Ix32d652TjQdLf0Uw7Uuig-z0o9_8tiO-2eBzGXNlfI4ETJS1KYOQ2jgtpGpimZHjCch2xNqtvdtjGTndZwO-oRLFdbG_wTImsX0cmjCzzTEb0Dyna_8kz91AzML5qEVGPk376K73_8_47cODfUeeFbij0c6mOiYHw-YmvgdSaahPEj78AySRDtY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9QwFA_riuBF_MTqKhG8abBpkiY56uCwCM5FB_YW0iTVwtrKTPew_73vZdqRLirYU2i-2ry85P3yPkLIa1-r4KUAkOO5QTWjYlYmy0yIGhCRbgNHb-TPm_p8Kz9dqIsTUs2-MNloP4e0zMv0bB32bg8bDTqDVYJJxQ2g4FvkNoZuRzO-Vb06nqug5gq6nPxjSmH-UHWxB-VQ_Qv58qZ15A0Vad551vfJvUlkpO8PH_mAnKT-IblzuETy-hFpZ-M5OvQUxqljATLw7iE6tHTYJZoty6-HHW3S5Ujx5JWiH1EXaPcDlhOKO1nE2l0-YYD02u9H9mW12UCDkW7ZJo2PyXb98evqnE23J7AAfzkyLwEK1Ml7oQX3SosGRl7AY3XgQTWV8hE4EFLR-qCVVzzCiyaZVPsWmP0JOe2HPj0lVEarMVAYtyZKwIimqdoq1lp7AJTWm4LweTxdmEKL4w0Xly6ruIVxBxo4oIHLNHBlQd4c6_w8BNb4Z-kPSKZjSQyKnV8Mu29umiQuhlKmUplQotCSZGPqKKQ2Xgup2lQX5Gwmsps4de8AMRoLoE7ygrw6ZgOPoeLE92m4wjImQz0OTZjF5Fh80DKn777naN0gwMKaqEVB3s7z6Hfvf__jZ_9X_Dm5W-EMR1sbe0ZOx91VegHi0ti8zPzxC2QODJw
  priority: 102
  providerName: Springer Nature
Title Research on anti-clogging of ore conveyor belt with static image based on improved Fast-SCNN and U-Net
URI https://link.springer.com/article/10.1038/s41598-023-45186-0
https://www.proquest.com/docview/2878926041
https://www.proquest.com/docview/2880096016
https://pubmed.ncbi.nlm.nih.gov/PMC10587073
https://doaj.org/article/dc04e058c01244e4b86d3478a7345fe6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ6C9IJ4isFRG4gaBJrZj54BQt9pqVWkrxFKpt8ixnSVSSaDNSvTfM3aSoqwWDvTSyI88PDOe-WzPDMAblXCtGEWQoyLpthl5mDKbhlIbgYhIFDpy3siXi-RiyeYrvjqAPt1RN4DbO6Gdyye13Kzf__q5-4QC_7F1GZcftqiEnKNYTEPGI4kI-RCOUTMJl8rhsjP321jfcYqv0_nO3N31BO5TIbkLcjNQVT6i_8AMvX2I8tZOqldQs4fwoLMsyaRlhUdwYKvHcK_NNbl7AkV_xo7UFcHhLEONFS5FEakLUm8s8QfQd_WG5HbdELdAS5y7UalJ-R1nHeIUnnG9S78QgdcztW3Cq-ligTc0ZBkubPMUlrPzr9OLsEuyEGr84CZUDBFDYpWigkaKC5ojgSj-UqEjzfOYK4OCilcmVVpwxSODBbmVNlEFzgnP4KiqK_scCDOpcPHEolQahlBS5nERm0QIhbgzVTKAqB_PTHcRyF0ijHXmd8KpzFpyZEiOzJMjGwfwdt_nRxt_45-tzxyZ9i1d7GxfUG-us04UM6PHzI651GNn21iWy8RQJqQSlPHCJgGc9kTOen7MEFjKFLEfiwJ4va9GUXT7K6qy9Y1rIz0ijPAWcsAcgxca1lTlNx_UG-1cnDoFDeBdz0d_nv73L37x_096CSexY3x3PCc9haNmc2NfoYXV5CM4FCsxguPJZH41x_-z88XnL1g6TaYjv2ox8oL1G0LSJW0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbIbggniJQwEhwgqhJbMfOASFautrSNkLQlXpzHduBSCUpu6nQ_hTfyEw22Wor0VtzimLHdjIPz3hehLwxqbCGM1ByTKzQzCjCjPssVNZJ0IhkaWOMRj7K08mUfzkRJxvk7xALg26VA0_sGLVrLJ6Rb4NkrzIQvnn88fx3iFWj0Lo6lNBYosWBX_wBlW3-Yf8zwPdtkoz3jncnYV9VILQiVm1oOIjIqTeGSRYbIVkBK2JwZdLGVhSJMA4wE-5cZqwURsQOHhRe-dSUQAQw7i2yyRmICiOyubOXf_22OtVBuxl8cB-dEzG1PYcdEqPYEhZymB_U97UdsCsUsCbdXvXNvGKg7fa98X1yrxdY6aclhj0gG75-SG4vS1guHpFycN2jTU0BSlVooQErH9GmpM3M086vfdHMaOHPWornvhSjmCpLq1_AzCjuow7frrrzDbgfm3kbft_NcxjQ0WmY-_Yxmd7IX35CRnVT-6eEcpdJTFMWZ8px0FBVkZSJS6U0oM5mRgUkHv6ntn1ic6yvcaY7AztTegkDDTDQHQx0FJB3q3fOl2k9ru29g2Ba9cSU3N2DZvZD9xSunY24j4SyEYpMnhcqdYxLZSTjovRpQLYGIOueT8z1JVYH5PWqGSgczTam9s0F9lGdohnDEGoNOdYWtN5SVz-7XOEgPgNHliwg7wc8upz9_1_87PrFviJ3JsdHh_pwPz94Tu4miN3o5ZNtkVE7u_AvQFBri5c9dVByetME-Q_cg00f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDIF4Qn1rHACPBE0RNYjt2HhCCjWpjUCFBpb4Zx3ag0ki2NhPqX-PXcecknTKJvS1PUezYTu7Od-f7IuSlyYQ1nIGSYxKFZkYR5dznkbJOgkYkS5tgNPKXaXY445_mYr5F_vaxMOhW2e-JYaN2tcUz8jFI9ioH4Zsn47Jzi_h6MHl3ehZhBSm0tPblNFoUOfbrP6C-rd4eHQCsX6Xp5OP3_cOoqzAQWZGoJjIcxOXMG8MkS4yQrIDVMbhyaRMrilQYB1gKdy43VgojEgcPCq98ZkogCBj3BrkpGbBNoCU5l5vzHbSgwad3cToxU-MV8EqMZ0tZxGF2UOQHvDCUDBjIuZe9NC-ZagMHnNwjdzvRlb5vce0-2fLVA3KrLWa5fkjK3omP1hUFeC0iCw1YA4nWJa2XngYP93W9pIU_aSieAFOMZ1pYuvgN2xpFjurw7UU46YD7iVk10bf96RQGdHQWTX3ziMyu5R8_JttVXfkdQrnLJSYsS3LlOOiqqkjL1GVSGlBsc6NGJOn_p7ZdinOstHGig6mdKd3CQAMMdICBjkfk9ead0zbBx5W9PyCYNj0xOXd4UC9_6o7WtbMx97FQNkbhyfNCZY5xqYxkXJQ-G5G9Hsi62zFW-gK_R-TFphloHQ04pvL1OfZRQeVMYAg1QI7BgoYt1eJXyBoOgjTszZKNyJsejy5m__8X71692OfkNpCh_nw0PX5C7qSI3Ojuk--R7WZ57p-CxNYUzwJpUPLjumnxH89hT-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+anti-clogging+of+ore+conveyor+belt+with+static+image+based+on+improved+Fast-SCNN+and+U-Net&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Jingyi&rft.au=Zhang%2C+Hanquan&rft.au=Xiao%2C+Dong&rft.date=2023-10-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-45186-0&rft_id=info%3Apmid%2F37857767&rft.externalDocID=PMC10587073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon