Research on anti-clogging of ore conveyor belt with static image based on improved Fast-SCNN and U-Net
This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accurac...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 17880 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-45186-0 |
Cover
Loading…
Abstract | This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt. |
---|---|
AbstractList | This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt. Abstract This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt. This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt.This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While ensuring the speed of network detection, the accuracy of image segmentation is also considered. The experimental results show that the accuracy rate of improved Fast-SCNN based on the channel attention mechanism is greatly improved compared with the original Fast-SCNN, reaching 88.056%, and the mean intersection over union is also improved to a certain extent, reaching 81.087%, and the detection speed is better than the original Fast-SCNN network. The accuracy of improved U-Net network based on the channel attention mechanism is 0.91805, which is better than the original U-Net network. In terms of detection speed, the improved U-Net network based on channel attention mechanism has greatly improved compared with the original U-Net network, reaching 24.02 frames per second. In addition, a method of preventing clogging of ore conveyor belts based on static image detection is proposed in this paper. By judging and predicting the blockage of the ore conveyor belt. When the conveyor belt is about to be blocked or has been blocked, the fuzzy algorithm is used to control the ore conveyor belt to slow down and stop, to improve the safety and efficiency of the conveyor belt. |
ArticleNumber | 17880 |
Author | Liu, Jingyi Zhang, Hanquan Xiao, Dong |
Author_xml | – sequence: 1 givenname: Jingyi surname: Liu fullname: Liu, Jingyi organization: School of Sciences, Northeastern University – sequence: 2 givenname: Hanquan surname: Zhang fullname: Zhang, Hanquan email: hanquanzhang@yeah.net organization: School of Information Science and Engineering, Northeastern University – sequence: 3 givenname: Dong surname: Xiao fullname: Xiao, Dong organization: School of Information Science and Engineering, Northeastern University |
BookMark | eNp9Uk1v1DAQtVARLaV_gJMlLlwC_oydE0KrFipViwT0bDnOJOtV1l7s7KL-e5ymAtpD5-LR-L03z-N5jU5CDIDQW0o-UML1xyyobHRFGK-EpLquyAt0xoiQFeOMnfyXn6KLnLekhGSNoM0rdMqVlkrV6gz13yGDTW6DY8A2TL5yYxwGHwYcexwTYBfDEe5iwi2ME_7tpw3Ok528w35nB8CtzdDNbL_bp3gs-ZXNU_VjtV4XwQ7fVmuY3qCXvR0zXDyc5-j26vLn6mt18-3L9erzTeXKG6bKCiV1DdZyxamVirda9bxEoxx1smXSdkTyknWNdUpaSbtSaEFDbXtC-Dm6XnS7aLdmn4rFdGei9ea-ENNgbCreRzCdIwKI1I5QJgSIVtcdF0pbxYXsoS5anxat_aHdQecgTMmOj0Qf3wS_MUM8GlpUFVG8KLx_UEjx1wHyZHY-OxhHGyAesmFaE9LUhM7N3j2BbuMhhTKrglK6YTURtKDYgnIp5pyg_-uGEjOvhVnWwpS1MPdrYeaZ6Cck5-cPjLNrPz5P5Qs1lz5hgPTP1TOsP017y4s |
CitedBy_id | crossref_primary_10_1080_19392699_2024_2434891 |
Cites_doi | 10.1109/JSEN.2020.3016458 10.1109/TCAD.2019.2897701 10.1109/TMI.2018.2859478 10.1109/TPAMI.2022.3225573 10.1016/j.cpart.2007.04.005 10.1016/j.net.2023.01.005 10.1109/TPEL.2019.2906664 10.1109/TMI.2021.3074808 10.1109/TPAMI.2019.2913372 10.1109/TMI.2014.2366792 10.1109/TMECH.2019.2892401 10.1038/s41598-022-11351-0 10.1039/c9ra05877j 10.1109/ICICEE.2012.8 10.1109/ICIIS.1999.810267 10.1109/INDIN41052.2019.8972162 10.1109/IGARSS39084.2020.9324218 10.1109/CVPR.2018.00745 10.1007/978-3-319-24574-4_28 10.1109/CAC57257.2022.10055952 10.1109/RADIOELEK.2011.5936391 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-45186-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_dc04e058c01244e4b86d3478a7345fe6 PMC10587073 10_1038_s41598_023_45186_0 |
GrantInformation_xml | – fundername: Liaoning Revitalization Talents Program, China grantid: XLYC2008020 – fundername: National Key Research and Development Program of China grantid: 2020AAA0109203 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 52074064 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: ; grantid: XLYC2008020 – fundername: ; grantid: 2020AAA0109203 – fundername: ; grantid: 52074064 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-a47586eaa3731a573b87f333397c1c5b25ad053c5bd9ac75a51dd05be8e6af003 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:13 EDT 2025 Thu Aug 21 18:36:01 EDT 2025 Mon Jul 21 11:56:02 EDT 2025 Wed Aug 13 08:43:17 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Tue Jul 01 03:57:42 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-a47586eaa3731a573b87f333397c1c5b25ad053c5bd9ac75a51dd05be8e6af003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-45186-0 |
PMID | 37857767 |
PQID | 2878926041 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc04e058c01244e4b86d3478a7345fe6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10587073 proquest_miscellaneous_2880096016 proquest_journals_2878926041 crossref_primary_10_1038_s41598_023_45186_0 crossref_citationtrail_10_1038_s41598_023_45186_0 springer_journals_10_1038_s41598_023_45186_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-19 |
PublicationDateYYYYMMDD | 2023-10-19 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Guo, Wang, Yang (CR1) 2022; 12 van Opbroek, Ikram, Vernooij, de Bruijne (CR8) 2015; 34 Li, Duan, Huang, Gromiha, Han, Hussain (CR15) 2018 Melki, Tourni, Konofagou (CR7) 2021; 40 Lin, Huang, Chen, Hsu (CR30) 2019; 34 CR19 CR17 CR13 CR11 Zou, Cheng, Hu, Huang, Pan (CR28) 2018; 54 CR10 Van Opbroek, Achterberg, Vernooij, De Bruijne (CR9) 2019; 38 Gao, Huang, Zheng (CR23) 2022; 60 Yang, Huang, Wang, Luo (CR18) 2021; 21 Liu, Zhang, Jing, Wang, Zhao (CR16) 2020; 10 CR4 Huang, Cai, Jia, Zhang (CR3) 2023 Petruk, Pinard, Finch (CR5) 1986; 3 Han, Liang, Chen, Zhang, Ge (CR24) 2022; 60 Chen, Chiang, Liu, Chang (CR27) 2019; 24 Zhou, Porikli, Crandall, Van Gool, Wang (CR14) 2023; 45 CR25 CR22 CR20 Liang, Lu, Xiao, Yan (CR26) 2020; 39 Su, Xu, Cai (CR6) 2007; 5 Jiao (CR2) 2020; 1 Hu, Shen, Albanie, Sun, Wu (CR21) 2020; 42 Yu, Wang, Wang, Ma, Liu (CR29) 2023; 70 Li, Zou (CR12) 2022; 25 A van Opbroek (45186_CR8) 2015; 34 M Li (45186_CR12) 2022; 25 Wu Jiao (45186_CR2) 2020; 1 T Zhou (45186_CR14) 2023; 45 45186_CR22 45186_CR25 Y Zou (45186_CR28) 2018; 54 45186_CR10 H Yang (45186_CR18) 2021; 21 X Liu (45186_CR16) 2020; 10 S-Y Chen (45186_CR27) 2019; 24 H Huang (45186_CR3) 2023 Y Li (45186_CR15) 2018 K Gao (45186_CR23) 2022; 60 M Su (45186_CR6) 2007; 5 45186_CR19 J Hu (45186_CR21) 2020; 42 J Yu (45186_CR29) 2023; 70 A Van Opbroek (45186_CR9) 2019; 38 45186_CR17 Q Guo (45186_CR1) 2022; 12 45186_CR11 45186_CR13 L Han (45186_CR24) 2022; 60 Y Liang (45186_CR26) 2020; 39 45186_CR20 L Melki (45186_CR7) 2021; 40 F-J Lin (45186_CR30) 2019; 34 45186_CR4 W Petruk (45186_CR5) 1986; 3 |
References_xml | – ident: CR22 – volume: 21 start-page: 11469 issue: 10 year: 2021 end-page: 11475 ident: CR18 article-title: An improved encoder–decoder network for ore image segmentation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3016458 – ident: CR4 – volume: 39 start-page: 857 issue: 4 year: 2020 end-page: 870 ident: CR26 article-title: Evaluating fast algorithms for convolutional neural networks on FPGAs publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2019.2897701 – volume: 38 start-page: 213 issue: 1 year: 2019 end-page: 224 ident: CR9 article-title: Transfer learning for image segmentation by combining image weighting and kernel learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2859478 – volume: 45 start-page: 7099 issue: 6 year: 2023 end-page: 7122 ident: CR14 article-title: A survey on deep learning technique for video segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3225573 – ident: CR10 – volume: 5 start-page: 295 issue: 4 year: 2007 end-page: 299 ident: CR6 article-title: Optimization of regularization parameter of inversion in particle sizing using light extinction method publication-title: China Particuol. doi: 10.1016/j.cpart.2007.04.005 – ident: CR25 – year: 2023 ident: CR3 article-title: Identification of Pb–Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2023.01.005 – ident: CR19 – volume: 25 start-page: 37 issue: 01 year: 2022 end-page: 40 ident: CR12 article-title: Research on threshold image segmentation method based on improved genetic algorithm publication-title: Softw. Eng. – volume: 1 start-page: 60 year: 2020 end-page: 62 ident: CR2 article-title: Full flow control technology of material conveying in bulk terminal publication-title: Port Load. Unload. – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: CR23 article-title: Fault detection on seismic structural images using a nested residual U-Net publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 12080 issue: 12 year: 2019 end-page: 12094 ident: CR30 article-title: Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent legendre fuzzy neural network publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2906664 – volume: 40 start-page: 2258 issue: 9 year: 2021 end-page: 2271 ident: CR7 article-title: Electromechanical wave imaging with machine learning for automated isochrone generation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3074808 – ident: CR17 – volume: 3 start-page: 60 issue: 1 year: 1986 end-page: 62 ident: CR5 article-title: Relationship between observed mineral liberations in screened fractions and in composite samples publication-title: Min. Metall. Explor. – volume: 70 start-page: 1525 issue: 4 year: 2023 end-page: 1529 ident: CR29 article-title: Command filtered adaptive fuzzy control for induction motors with iron losses and stochastic disturbances via reduced-order observer publication-title: IEEE Trans. Circuits Syst. II Expr. Br. – ident: CR13 – ident: CR11 – volume: 42 start-page: 2011 issue: 8 year: 2020 end-page: 2023 ident: CR21 article-title: Squeeze-and-excitation networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – year: 2018 ident: CR15 article-title: A method of ore image segmentation based on deep learning publication-title: Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science – volume: 34 start-page: 1018 issue: 5 year: 2015 end-page: 1030 ident: CR8 article-title: Transfer learning improves supervised image segmentation across imaging protocols publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2366792 – volume: 24 start-page: 741 issue: 2 year: 2019 end-page: 752 ident: CR27 article-title: Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2892401 – volume: 12 start-page: 7143 year: 2022 ident: CR1 article-title: A method of blasted rock image segmentation based on improved watershed algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-022-11351-0 – volume: 10 start-page: 9396 issue: 16 year: 2020 end-page: 9406 ident: CR16 article-title: Ore image segmentation method using U-Net and Res_Unet convolutional networks publication-title: RSC Adv. doi: 10.1039/c9ra05877j – ident: CR20 – volume: 54 start-page: 1 issue: 11 year: 2018 end-page: 5 ident: CR28 article-title: A new decoupled rotlin motor with fuzzy sliding mode control publication-title: IEEE Trans. Magn. – volume: 60 start-page: 1 year: 2022 end-page: 8 ident: CR24 article-title: Convective precipitation nowcasting using U-net model publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 42 start-page: 2011 issue: 8 year: 2020 ident: 45186_CR21 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2913372 – volume: 54 start-page: 1 issue: 11 year: 2018 ident: 45186_CR28 publication-title: IEEE Trans. Magn. – volume: 40 start-page: 2258 issue: 9 year: 2021 ident: 45186_CR7 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3074808 – volume: 21 start-page: 11469 issue: 10 year: 2021 ident: 45186_CR18 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3016458 – year: 2023 ident: 45186_CR3 publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2023.01.005 – volume: 45 start-page: 7099 issue: 6 year: 2023 ident: 45186_CR14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3225573 – ident: 45186_CR11 doi: 10.1109/ICICEE.2012.8 – volume: 10 start-page: 9396 issue: 16 year: 2020 ident: 45186_CR16 publication-title: RSC Adv. doi: 10.1039/c9ra05877j – volume: 3 start-page: 60 issue: 1 year: 1986 ident: 45186_CR5 publication-title: Min. Metall. Explor. – ident: 45186_CR13 doi: 10.1109/ICIIS.1999.810267 – volume: 60 start-page: 1 year: 2022 ident: 45186_CR24 publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 45186_CR4 doi: 10.1109/INDIN41052.2019.8972162 – volume: 39 start-page: 857 issue: 4 year: 2020 ident: 45186_CR26 publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2019.2897701 – volume: 5 start-page: 295 issue: 4 year: 2007 ident: 45186_CR6 publication-title: China Particuol. doi: 10.1016/j.cpart.2007.04.005 – volume: 1 start-page: 60 year: 2020 ident: 45186_CR2 publication-title: Port Load. Unload. – volume: 24 start-page: 741 issue: 2 year: 2019 ident: 45186_CR27 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2892401 – ident: 45186_CR17 doi: 10.1109/IGARSS39084.2020.9324218 – ident: 45186_CR20 doi: 10.1109/CVPR.2018.00745 – volume: 38 start-page: 213 issue: 1 year: 2019 ident: 45186_CR9 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2859478 – volume: 60 start-page: 1 year: 2022 ident: 45186_CR23 publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 45186_CR25 – volume: 34 start-page: 1018 issue: 5 year: 2015 ident: 45186_CR8 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2366792 – volume: 25 start-page: 37 issue: 01 year: 2022 ident: 45186_CR12 publication-title: Softw. Eng. – volume-title: Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science year: 2018 ident: 45186_CR15 – ident: 45186_CR22 doi: 10.1007/978-3-319-24574-4_28 – ident: 45186_CR19 doi: 10.1109/CAC57257.2022.10055952 – volume: 12 start-page: 7143 year: 2022 ident: 45186_CR1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-11351-0 – volume: 70 start-page: 1525 issue: 4 year: 2023 ident: 45186_CR29 publication-title: IEEE Trans. Circuits Syst. II Expr. Br. – volume: 34 start-page: 12080 issue: 12 year: 2019 ident: 45186_CR30 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2906664 – ident: 45186_CR10 doi: 10.1109/RADIOELEK.2011.5936391 |
SSID | ssj0000529419 |
Score | 2.4181 |
Snippet | This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention mechanism. While... Abstract This paper presents an improved Fast-Segmentation Convolutional Neural Network (Fast-SCNN) and U-Net networks based on the channel attention... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17880 |
SubjectTerms | 639/166 639/166/988 Accuracy Humanities and Social Sciences Image processing multidisciplinary Neural networks Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIHgRf2LdXYngTcM2TdIkx3XxsQi-iz7YW0iTFAtrK-91D_vfO5P2PbcL6sWeSpM2TWamk6-ZfEPIO1-r4KUAkOO5wWVGxaxMlpkQNSAi3QaOu5G_rOvLjfx8pa7upPrCmLCJHngauLMYSplKZUKJnijJxtRRSG28FlK1KZNtg8-7A6YmVu_KQsPzLplSmLMdeCrcTVYJJhU3AKMXnigT9i9mmfdjJO8tlGb_s3pCHs8TR3o-vfBT8iD1z8jDKZXk7XPS7kPo6NBTGK2OBSjADER0aOmwTTTHl98OW9qk65Hi_1eKu4m6QLsf8FGh6M8i3t3l_wxwvvK7kX29WK_hgZFu2DqNL8hm9enbxSWbcyiwAL0cmZcACOrkvdCCe6VFA-Mv4LA68KCaSvkIdghn0fqglVc8woUmmVT7Fkz-JTnqhz69IlRGq5EujFsTJSBF01RtFWutPcBK601B-H48XZgJxjHPxbXLC93CuEkGDmTgsgxcWZD3h3t-TvQaf639EcV0qInU2PkCKIybFcb9S2EKcrIXspvtdecANxoL0E7ygrw9FIOl4fKJ79Nwg3VMBnwcHmEWyrF4oWVJ333PnN0wjYUvoxYF-bDXo9-t_7nHr_9Hj4_Jowr1HuNw7Ak5Grc36RSmUmPzJlvNLyyxFqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IFhCBUrkSN7Aax3bsnBBUrCok9gIr7c1ybAcitUnZTQ_9e2a8yVapRHOy4rfHY8_LM4R8cKXyTgpgchw3qGZUrJKxYsYHDRyRbjzH18g_luXFSn5fq_UocNuOZpXTmZgO6tB7lJGfAWVvKiC-Jf98_Zdh1CjUro4hNB6TJ-i6DJkvvdZ7GQtqsaD78a1MLszZFu4rfFNWCCYVN8BMz-6j5LZ_Rmvet5S8py5Nt9DiBXk-ko_0yw7eh-RR7I7I011AyduXpJkM6WjfUVizlnnIwDhEtG9ov4k0WZnf9htax8uBohSW4pui1tP2Co4WirdawNptkjZAeuG2A_t5vlxCg4Gu2DIOr8hq8e3X-QUbIykwD7McmJPAFpTROaEFd0qLGqAg4Ku0517VhXIBsBFSoXJeK6d4gB91NLF0DSD-a3LQ9V18Q6gMlUanYbwyQQK_aOqiKUKptQPmsnImI3xaT-tHN-MY7eLSJnW3MHYHAwswsAkGNs_Ix32d652TjQdLf0Uw7Uuig-z0o9_8tiO-2eBzGXNlfI4ETJS1KYOQ2jgtpGpimZHjCch2xNqtvdtjGTndZwO-oRLFdbG_wTImsX0cmjCzzTEb0Dyna_8kz91AzML5qEVGPk376K73_8_47cODfUeeFbij0c6mOiYHw-YmvgdSaahPEj78AySRDtY priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9QwFA_riuBF_MTqKhG8abBpkiY56uCwCM5FB_YW0iTVwtrKTPew_73vZdqRLirYU2i-2ry85P3yPkLIa1-r4KUAkOO5QTWjYlYmy0yIGhCRbgNHb-TPm_p8Kz9dqIsTUs2-MNloP4e0zMv0bB32bg8bDTqDVYJJxQ2g4FvkNoZuRzO-Vb06nqug5gq6nPxjSmH-UHWxB-VQ_Qv58qZ15A0Vad551vfJvUlkpO8PH_mAnKT-IblzuETy-hFpZ-M5OvQUxqljATLw7iE6tHTYJZoty6-HHW3S5Ujx5JWiH1EXaPcDlhOKO1nE2l0-YYD02u9H9mW12UCDkW7ZJo2PyXb98evqnE23J7AAfzkyLwEK1Ml7oQX3SosGRl7AY3XgQTWV8hE4EFLR-qCVVzzCiyaZVPsWmP0JOe2HPj0lVEarMVAYtyZKwIimqdoq1lp7AJTWm4LweTxdmEKL4w0Xly6ruIVxBxo4oIHLNHBlQd4c6_w8BNb4Z-kPSKZjSQyKnV8Mu29umiQuhlKmUplQotCSZGPqKKQ2Xgup2lQX5Gwmsps4de8AMRoLoE7ygrw6ZgOPoeLE92m4wjImQz0OTZjF5Fh80DKn777naN0gwMKaqEVB3s7z6Hfvf__jZ_9X_Dm5W-EMR1sbe0ZOx91VegHi0ti8zPzxC2QODJw priority: 102 providerName: Springer Nature |
Title | Research on anti-clogging of ore conveyor belt with static image based on improved Fast-SCNN and U-Net |
URI | https://link.springer.com/article/10.1038/s41598-023-45186-0 https://www.proquest.com/docview/2878926041 https://www.proquest.com/docview/2880096016 https://pubmed.ncbi.nlm.nih.gov/PMC10587073 https://doaj.org/article/dc04e058c01244e4b86d3478a7345fe6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ6C9IJ4isFRG4gaBJrZj54BQt9pqVWkrxFKpt8ixnSVSSaDNSvTfM3aSoqwWDvTSyI88PDOe-WzPDMAblXCtGEWQoyLpthl5mDKbhlIbgYhIFDpy3siXi-RiyeYrvjqAPt1RN4DbO6Gdyye13Kzf__q5-4QC_7F1GZcftqiEnKNYTEPGI4kI-RCOUTMJl8rhsjP321jfcYqv0_nO3N31BO5TIbkLcjNQVT6i_8AMvX2I8tZOqldQs4fwoLMsyaRlhUdwYKvHcK_NNbl7AkV_xo7UFcHhLEONFS5FEakLUm8s8QfQd_WG5HbdELdAS5y7UalJ-R1nHeIUnnG9S78QgdcztW3Cq-ligTc0ZBkubPMUlrPzr9OLsEuyEGr84CZUDBFDYpWigkaKC5ojgSj-UqEjzfOYK4OCilcmVVpwxSODBbmVNlEFzgnP4KiqK_scCDOpcPHEolQahlBS5nERm0QIhbgzVTKAqB_PTHcRyF0ijHXmd8KpzFpyZEiOzJMjGwfwdt_nRxt_45-tzxyZ9i1d7GxfUG-us04UM6PHzI651GNn21iWy8RQJqQSlPHCJgGc9kTOen7MEFjKFLEfiwJ4va9GUXT7K6qy9Y1rIz0ijPAWcsAcgxca1lTlNx_UG-1cnDoFDeBdz0d_nv73L37x_096CSexY3x3PCc9haNmc2NfoYXV5CM4FCsxguPJZH41x_-z88XnL1g6TaYjv2ox8oL1G0LSJW0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbIbggniJQwEhwgqhJbMfOASFautrSNkLQlXpzHduBSCUpu6nQ_hTfyEw22Wor0VtzimLHdjIPz3hehLwxqbCGM1ByTKzQzCjCjPssVNZJ0IhkaWOMRj7K08mUfzkRJxvk7xALg26VA0_sGLVrLJ6Rb4NkrzIQvnn88fx3iFWj0Lo6lNBYosWBX_wBlW3-Yf8zwPdtkoz3jncnYV9VILQiVm1oOIjIqTeGSRYbIVkBK2JwZdLGVhSJMA4wE-5cZqwURsQOHhRe-dSUQAQw7i2yyRmICiOyubOXf_22OtVBuxl8cB-dEzG1PYcdEqPYEhZymB_U97UdsCsUsCbdXvXNvGKg7fa98X1yrxdY6aclhj0gG75-SG4vS1guHpFycN2jTU0BSlVooQErH9GmpM3M086vfdHMaOHPWornvhSjmCpLq1_AzCjuow7frrrzDbgfm3kbft_NcxjQ0WmY-_Yxmd7IX35CRnVT-6eEcpdJTFMWZ8px0FBVkZSJS6U0oM5mRgUkHv6ntn1ic6yvcaY7AztTegkDDTDQHQx0FJB3q3fOl2k9ru29g2Ba9cSU3N2DZvZD9xSunY24j4SyEYpMnhcqdYxLZSTjovRpQLYGIOueT8z1JVYH5PWqGSgczTam9s0F9lGdohnDEGoNOdYWtN5SVz-7XOEgPgNHliwg7wc8upz9_1_87PrFviJ3JsdHh_pwPz94Tu4miN3o5ZNtkVE7u_AvQFBri5c9dVByetME-Q_cg00f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDIF4Qn1rHACPBE0RNYjt2HhCCjWpjUCFBpb4Zx3ag0ki2NhPqX-PXcecknTKJvS1PUezYTu7Od-f7IuSlyYQ1nIGSYxKFZkYR5dznkbJOgkYkS5tgNPKXaXY445_mYr5F_vaxMOhW2e-JYaN2tcUz8jFI9ioH4Zsn47Jzi_h6MHl3ehZhBSm0tPblNFoUOfbrP6C-rd4eHQCsX6Xp5OP3_cOoqzAQWZGoJjIcxOXMG8MkS4yQrIDVMbhyaRMrilQYB1gKdy43VgojEgcPCq98ZkogCBj3BrkpGbBNoCU5l5vzHbSgwad3cToxU-MV8EqMZ0tZxGF2UOQHvDCUDBjIuZe9NC-ZagMHnNwjdzvRlb5vce0-2fLVA3KrLWa5fkjK3omP1hUFeC0iCw1YA4nWJa2XngYP93W9pIU_aSieAFOMZ1pYuvgN2xpFjurw7UU46YD7iVk10bf96RQGdHQWTX3ziMyu5R8_JttVXfkdQrnLJSYsS3LlOOiqqkjL1GVSGlBsc6NGJOn_p7ZdinOstHGig6mdKd3CQAMMdICBjkfk9ead0zbBx5W9PyCYNj0xOXd4UC9_6o7WtbMx97FQNkbhyfNCZY5xqYxkXJQ-G5G9Hsi62zFW-gK_R-TFphloHQ04pvL1OfZRQeVMYAg1QI7BgoYt1eJXyBoOgjTszZKNyJsejy5m__8X71692OfkNpCh_nw0PX5C7qSI3Ojuk--R7WZ57p-CxNYUzwJpUPLjumnxH89hT-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+anti-clogging+of+ore+conveyor+belt+with+static+image+based+on+improved+Fast-SCNN+and+U-Net&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Jingyi&rft.au=Zhang%2C+Hanquan&rft.au=Xiao%2C+Dong&rft.date=2023-10-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-45186-0&rft_id=info%3Apmid%2F37857767&rft.externalDocID=PMC10587073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |