Rotating black hole in Rastall theory
Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 78; no. 9; pp. 1 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2018
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter (
a
=
a
E
), which corresponds to an extremal black hole with degenerate horizons, while for
a
<
a
E
, it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for
a
>
a
E
with value
a
E
is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential. |
---|---|
AbstractList | Abstract Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ($$a=a_{E}$$ a=aE ), which corresponds to an extremal black hole with degenerate horizons, while for $$a<a_{E}$$ a<aE , it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for $$a>a_{E}$$ a>aE with value $$a_E$$ aE is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential. Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter (\[a=a_{E}\]), which corresponds to an extremal black hole with degenerate horizons, while for \[a<a_{E}\], it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for \[a>a_{E}\] with value \[a_E\] is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential. Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr-Newman black hole solution. In turn, we analyze the specific cases of the Kerr-Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ( [Formula omitted]), which corresponds to an extremal black hole with degenerate horizons, while for [Formula omitted], it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for [Formula omitted] with value [Formula omitted] is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential. Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ( a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for a > a E with value a E is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential. |
ArticleNumber | 750 |
Audience | Academic |
Author | Kumar, Rahul Ghosh, Sushant G. |
Author_xml | – sequence: 1 givenname: Rahul surname: Kumar fullname: Kumar, Rahul email: rahul.phy3@gmail.com organization: Centre for Theoretical Physics, Jamia Millia Islamia – sequence: 2 givenname: Sushant G. surname: Ghosh fullname: Ghosh, Sushant G. organization: Centre for Theoretical Physics, Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), Jamia Millia Islamia, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal |
BookMark | eNqFUctq3DAUFSWF5tFfKIbSRRdOrmQ9bOgmhKYdCASm7Vpcy5KjqWNNJQ00fx-5LinpJmghcTiPe3VOyNEcZkvIOwrnlHK4sPuduUgUQLAaaFtLBrKmr8gx5Q2vZYGPnt6cvyEnKe0AgHFoj8mHbciY_TxW_YTmZ3UXJlv5udpiyjhNVb6zIT6ckdcOp2Tf_r1PyY_rz9-vvtY3t182V5c3tRG0zXXnpCjhzjhoDEWulHGqh3YYaCctQ-YagQO2PeOq4x0wBk5Cq0BRhWzom1OyWX2HgDu9j_4e44MO6PUfIMRRY8zeTFZ3xnAzSGH74ia5w85RNEYq3ruhF7J4vV-99jH8OtiU9S4c4lzG14yWUM4Vo4V1vrJGLKZ-diFHNOUM9t6b8tHOF_xSCN6ypgNRBB-fCQon2995xENKevNt-5wrV66JIaVo3dNKFPTSnV6602t3unSnl-70MtWn_4TGLzWVrIh-elmuVnkqefNo47_VX1A-AqpYse4 |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_020_00508_3 crossref_primary_10_1140_epjp_s13360_024_05609_x crossref_primary_10_1016_j_aop_2024_169814 crossref_primary_10_1142_S0218271822500699 crossref_primary_10_1007_s10509_019_3537_9 crossref_primary_10_1016_j_cjph_2024_11_035 crossref_primary_10_1088_1361_6382_ac129d crossref_primary_10_1016_j_jheap_2025_100350 crossref_primary_10_1140_epjc_s10052_023_12184_5 crossref_primary_10_1140_epja_i2018_12642_y crossref_primary_10_1142_S0217751X22501081 crossref_primary_10_1155_2020_4065254 crossref_primary_10_1088_1674_1137_abe84c crossref_primary_10_1088_1475_7516_2021_07_004 crossref_primary_10_1140_epjc_s10052_024_13634_4 crossref_primary_10_1142_S0219887824501068 crossref_primary_10_1016_j_aop_2021_168619 crossref_primary_10_1103_PhysRevD_100_104054 crossref_primary_10_1088_1402_4896_ad25d0 crossref_primary_10_1088_1402_4896_ad764b crossref_primary_10_1140_epjc_s10052_022_10634_0 crossref_primary_10_1016_j_dark_2024_101734 crossref_primary_10_1088_1674_1056_ab7daa crossref_primary_10_1016_j_aop_2021_168572 crossref_primary_10_1016_j_cjph_2020_02_008 crossref_primary_10_1016_j_dark_2024_101705 crossref_primary_10_1016_j_astropartphys_2024_103073 crossref_primary_10_1016_j_dark_2024_101663 crossref_primary_10_1016_j_jheap_2024_08_001 crossref_primary_10_1140_epjp_s13360_022_02872_8 crossref_primary_10_1016_j_dark_2020_100577 crossref_primary_10_3390_universe8100510 crossref_primary_10_1142_S0217751X24501057 crossref_primary_10_1016_j_aop_2018_12_003 crossref_primary_10_1142_S0218271820500212 crossref_primary_10_1140_epjp_s13360_024_05541_0 crossref_primary_10_1142_S0217751X2150233X crossref_primary_10_1142_S0217751X21501530 crossref_primary_10_1007_s10714_019_2548_8 crossref_primary_10_1142_S0219887824501123 crossref_primary_10_1088_1402_4896_acb6bd crossref_primary_10_1016_j_aop_2019_168062 crossref_primary_10_1016_j_dark_2021_100881 crossref_primary_10_3390_universe7020038 crossref_primary_10_1016_j_jheap_2025_100367 crossref_primary_10_1016_j_cjph_2019_10_011 crossref_primary_10_3847_1538_4357_aca411 crossref_primary_10_1088_1361_6382_acbe8a crossref_primary_10_1016_j_aop_2023_169442 crossref_primary_10_1016_j_rinp_2021_104787 crossref_primary_10_1140_epjc_s10052_022_10451_5 crossref_primary_10_1142_S0217732320500340 crossref_primary_10_1007_s10509_020_03861_y crossref_primary_10_1016_j_cjph_2023_07_005 crossref_primary_10_1142_S0217732321501121 crossref_primary_10_1007_s10714_022_02993_6 crossref_primary_10_1007_s10714_022_02906_7 crossref_primary_10_1016_j_nuclphysb_2020_115179 crossref_primary_10_1142_S0217732320500352 crossref_primary_10_1209_0295_5075_129_20004 crossref_primary_10_1140_epjc_s10052_020_8116_2 crossref_primary_10_1088_1402_4896_ad01f3 crossref_primary_10_1140_epjp_i2019_12937_x crossref_primary_10_1016_j_cjph_2024_09_027 crossref_primary_10_1016_j_ascom_2024_100897 crossref_primary_10_1142_S0219887824501949 crossref_primary_10_1007_s10714_024_03225_9 crossref_primary_10_1088_1674_1137_ac7855 crossref_primary_10_1088_1572_9494_aceee2 crossref_primary_10_1140_epjp_s13360_021_01271_9 crossref_primary_10_1142_S0217732321500826 crossref_primary_10_1142_S021827182350102X crossref_primary_10_1088_1674_1137_ad1feb crossref_primary_10_1140_epjp_s13360_022_03632_4 crossref_primary_10_1142_S0219887824502001 crossref_primary_10_1103_PhysRevD_104_104044 crossref_primary_10_1016_j_cjph_2024_01_005 crossref_primary_10_1016_j_newast_2022_101976 crossref_primary_10_1140_epjp_s13360_021_02291_1 crossref_primary_10_1088_1361_6382_ad8d9d crossref_primary_10_1155_2020_8039183 crossref_primary_10_1142_S0219887821500420 crossref_primary_10_1142_S0219887819501329 crossref_primary_10_1088_1674_1137_43_8_083106 crossref_primary_10_1088_1674_1137_ad6551 crossref_primary_10_3389_fspas_2023_1320081 crossref_primary_10_1016_j_cjph_2023_10_004 crossref_primary_10_1103_PhysRevD_101_064067 crossref_primary_10_1103_PhysRevD_104_084033 crossref_primary_10_1007_s10509_020_03859_6 crossref_primary_10_1142_S0217751X22501330 crossref_primary_10_1007_s10714_019_2652_9 crossref_primary_10_1142_S0217751X23500355 crossref_primary_10_1142_S0217751X23500872 crossref_primary_10_1088_1361_6382_acd97b crossref_primary_10_1142_S021988782350007X crossref_primary_10_1088_1402_4896_ad3e36 crossref_primary_10_1007_s10773_024_05810_9 crossref_primary_10_1088_1402_4896_ad87c8 |
Cites_doi | 10.1063/1.1704350 10.1140/epjp/i2016-16275-3 10.1140/epjc/s10052-016-4122-9 10.1140/epjc/s10052-017-4811-z 10.1016/0003-4916(77)90263-9 10.1016/j.physletb.2013.03.025 10.1088/0031-8949/34/3/001 10.1103/PhysRevD.73.084009 10.1088/0264-9381/22/9/002 10.1007/978-0-387-47109-9 10.1140/epjc/s10052-014-3016-y 10.1103/PhysRevD.95.064015 10.1007/s10714-016-2152-0 10.1103/PhysRevD.92.044020 10.1142/S0218271816500760 10.1140/epjc/s10052-016-4051-7 10.1016/j.nuclphysb.2015.11.019 10.1103/PhysRevLett.11.237 10.1007/s10509-016-2850-9 10.1016/j.physletb.2016.03.072 10.1103/PhysRevD.9.1635 10.1063/1.3022513 10.1007/BF01645742 10.1093/mnrasl/slx035 10.1086/151796 10.1007/BF02345020 10.1016/j.physletb.2017.05.064 10.1088/0264-9381/20/6/310 10.1007/BF02113090 10.1140/epjc/s10052-017-5217-7 10.1140/epjc/s10052-014-3145-3 10.1140/epjc/s10052-013-2357-2 10.1142/S0217732314500576 10.1140/epjc/s10052-014-3222-7 10.1016/j.physletb.2018.05.028 10.1103/PhysRevD.15.2738 10.1103/PhysRevD.90.064041 10.1017/CBO9780511606601 10.1103/PhysRevD.93.124020 10.1140/epjc/s10052-015-3740-y 10.1063/1.1704351 10.1016/j.physletb.2014.05.026 10.1139/p76-008 10.1103/PhysRevD.6.3357 10.1103/PhysRevD.77.124011 10.1103/PhysRevD.7.2333 10.1103/PhysRevD.85.084008 10.1103/PhysRevD.12.376 10.1142/S0217732311036929 10.1016/j.physletb.2012.04.020 10.1139/cjp-2017-0040 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 COPYRIGHT 2018 Springer The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 Springer – notice: The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-018-6206-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_9cc4cd65ebb2464fa9f1acc674bfdb56 A554823905 10_1140_epjc_s10052_018_6206_1 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c518t-9f65206fcf03c1a477cf7b08dd196e2a2f35ada8b2479490220f60870717a2db3 |
IEDL.DBID | BENPR |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:27:27 EDT 2025 Fri Jul 25 03:14:24 EDT 2025 Tue Jun 10 20:25:25 EDT 2025 Fri Jun 27 04:34:50 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 01:39:01 EDT 2025 Fri Feb 21 02:35:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-9f65206fcf03c1a477cf7b08dd196e2a2f35ada8b2479490220f60870717a2db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2108744721?pq-origsite=%requestingapplication% |
PQID | 2108744721 |
PQPubID | 2034659 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cc4cd65ebb2464fa9f1acc674bfdb56 proquest_journals_2108744721 gale_infotracacademiconefile_A554823905 gale_incontextgauss_ISR_A554823905 crossref_primary_10_1140_epjc_s10052_018_6206_1 crossref_citationtrail_10_1140_epjc_s10052_018_6206_1 springer_journals_10_1140_epjc_s10052_018_6206_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180900 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180900 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | PoissonEA Relativistic Toolkit2004CambridgeCambridge University Press10.1017/CBO9780511606601 ChandraseckarSMathematical Theory of Black Holes1980OxfordOxford University Press NathanailAMostERRezzollaLMon. Not. R. Astron. Soc.2017469L312017MNRAS.469L..31N10.1093/mnrasl/slx035 V. Majernik, L. Richterek. arXiv:0610070 [gr-qc] Z. Xu, J. Wang. arXiv:1711.04542 [gr-qc] OliveiraAMVeltenHESFabrisJCPhys. Rev. D2016931240202016PhRvD..93l4020O362546510.1103/PhysRevD.93.124020 GhoshSGMaharajSDEur. Phys. J. C20157572015EPJC...75....7G10.1140/epjc/s10052-014-3222-7 CarmeliMKayeMAnn. Phys.1977103971977AnPhy.103...97C10.1016/0003-4916(77)90263-9 GhaderiKMalakolkalamiBNucl. Phys. B2016903102016NuPhB.903...10G10.1016/j.nuclphysb.2015.11.019 KerrRPPhys. Rev. Lett.1963112371963PhRvL..11..237K15667410.1103/PhysRevLett.11.237 MoradpourHHeydarzadeYDarabiFSalakoIGEur. Phys. J. C2017772592017EPJC...77..259M10.1140/epjc/s10052-017-4811-z OliveiraAMVeltenHESFabrisJCCasariniLPhys. Rev. D2015920440202015PhRvD..92d4020O10.1103/PhysRevD.92.044020 Azreg-AïnouMPhys. Rev. D20149060640412014PhRvD..90f4041A10.1103/PhysRevD.90.064041 XuZWangJPhys. Rev. D2017950640152017PhRvD..95f4015X378837810.1103/PhysRevD.95.064015 RastallPPhys. Rev. D1972633571972PhRvD...6.3357R37353310.1103/PhysRevD.6.3357 I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako. arXiv:1710.04612 [gr-qc] CaramêsTRPDaoudaMHFabrisJCOliveiraAMPiattellaOFStrokovVEur. Phys. J. C20147431452014EPJC...74.3145C10.1140/epjc/s10052-014-3145-3 GhoshSGPapnoiUEur. Phys. J. C201474830162014EPJC...74.3016G10.1140/epjc/s10052-014-3016-y BambiCMod. Phys. Lett. A20112624532011MPLA...26.2453B285443110.1142/S0217732311036929 WolfCPhys. Scr.1986341931986PhyS...34..193W10.1088/0031-8949/34/3/001 BekensteinJDPhys. Rev. D1973723331973PhRvD...7.2333B36634310.1103/PhysRevD.7.2333 Al-RawafASTahaMOGen. Relativ. Gravit.1996289351996GReGr..28..935A10.1007/BF02113090 KiselevVVClass. Quantum. Gravit.20032011872003CQGra..20.1187K10.1088/0264-9381/20/6/310 SmalleyLLPhys. Rev. D1975123761975PhRvD..12..376S10.1103/PhysRevD.12.376 MoradpourHPhys. Lett. B20167571872016PhLB..757..187M10.1016/j.physletb.2016.03.072 HeydarzadeYDarabiFPhys. Lett. B20177713652017PhLB..771..365H10.1016/j.physletb.2017.05.064 VisserMPhys. Lett. B2018782832018PhLB..782...83V10.1016/j.physletb.2018.05.028 SalakoIGHoundjoMJSJawadAInt. J. Mod. Phys. D20162516500762016IJMPD..2550076S10.1142/S0218271816500760 OteevTAbdujabbarovAStuchlíkZAhmedovBAstrophys. Space Sci.20163612692016Ap&SS.361..269O10.1007/s10509-016-2850-9 TharanathRVargheseNKuriakoseVCMod. Phys. Lett. A20142914500572014MPLA...2950057T10.1142/S0217732314500576 AtamurotovFGhoshSGAhmedovBEur. Phys. J. C20167652732016EPJC...76..273A10.1140/epjc/s10052-016-4122-9 NevesJCSSaaAPhys. Lett. B2014734442014PhLB..734...44N321928110.1016/j.physletb.2014.05.026 C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: W.H. Freeman 1973) GhoshSGEur. Phys. J. C201575115322015EPJC...75..532G10.1140/epjc/s10052-015-3740-y MoradpourHSadeghnezhadNCan. J. Phys.20179512572017CaJPh..95.1257M10.1139/cjp-2017-0040 NewmanETCouchRChinnaparedKExtonAPrakashATorrenceRJ. Math. Phys.196569181965JMP.....6..918N10.1063/1.1704351 E. Spallucci, A. Smailagic. arXiv:1709.05795 [gr-qc] SmalleyLLPhys. Rev. D1974916351974PhRvD...9.1635S10.1103/PhysRevD.9.1635 MaMSZhaoREur. Phys. J. C2017776292017EPJC...77..629M10.1140/epjc/s10052-017-5217-7 HussainIAliSEur. Phys. J. Plus201613127510.1140/epjp/i2016-16275-3 BatistaCEMDaoudaMHFabrisJCPiattellaOFRodriguesDCPhys. Rev. D2012850840082012PhRvD..85h4008B10.1103/PhysRevD.85.084008 BronnikovKAFabrisJCPiattellaOFSantosECGen. Relativ. Gravit.2016481622016GReGr..48..162B10.1007/s10714-016-2152-0 GibbonsGWPerryMJPopeCNClass. Quantum Gravit.20052215032005CQGra..22.1503G10.1088/0264-9381/22/9/002 FabrisJCDaoudaMHPiattellaOFPhys. Lett. B20127112322012PhLB..711..232F10.1016/j.physletb.2012.04.020 CamposJPFabrisJCPerezRPiattellaOFVeltenHEur. Phys. J. C20137323572013EPJC...73.2357C10.1140/epjc/s10052-013-2357-2 RuffiniRWheelerJAPhys. Today197124301971PhT....24A..30R10.1063/1.3022513 BardeenJMPressWHTeukolskySAAstrophys. J.19721783471972ApJ...178..347B10.1086/151796 MoradpourHSalakoIGAdv. High Energy Phys.201620163492796 SekiwaYPhys. Rev. D2006730840092006PhRvD..73h4009S222137910.1103/PhysRevD.73.084009 GhoshSGEur. Phys. J. C2016762222016EPJC...76..222G10.1140/epjc/s10052-016-4051-7 GibbonsGWHawkingSWPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738 RastallPCan. J. Phys.197654661976CaJPh..54...66R10.1139/p76-008 BambiCModestoLPhys. Lett. B20137213292013PhLB..721..329B304248610.1016/j.physletb.2013.03.025 BardeenJMCarterBHawkingSWCommun. Math. Phys.1973311611973CMaPh..31..161B10.1007/BF01645742 ChenSWangBSuRPhys. Rev. D2008771240112008PhRvD..77l4011C243478810.1103/PhysRevD.77.124011 PenroseRRiv. Nuovo Cim.196912521969NCimR...1..252P NewmanETJanisAIJ. Math. Phys.196569151965JMP.....6..915N10.1063/1.1704350 GlendenningNKSpecial and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes2007New YorkSpringer10.1007/978-0-387-47109-9 HawkingSWCommun. Math. Phys.1975431991975CMaPh..43..199H10.1007/BF02345020 AM Oliveira (6206_CR17) 2015; 92 Z Xu (6206_CR43) 2017; 95 F Atamurotov (6206_CR29) 2016; 76 LL Smalley (6206_CR13) 1974; 9 H Moradpour (6206_CR19) 2016; 2016 T Oteev (6206_CR55) 2016; 361 JM Bardeen (6206_CR41) 1972; 178 P Rastall (6206_CR2) 1976; 54 M Carmeli (6206_CR39) 1977; 103 JD Bekenstein (6206_CR48) 1973; 7 M Visser (6206_CR40) 2018; 782 6206_CR45 MS Ma (6206_CR23) 2017; 77 CEM Batista (6206_CR10) 2012; 85 JP Campos (6206_CR6) 2013; 73 6206_CR3 6206_CR59 KA Bronnikov (6206_CR21) 2016; 48 RP Kerr (6206_CR37) 1963; 11 E Poisson (6206_CR4) 2004 H Moradpour (6206_CR8) 2016; 757 SG Ghosh (6206_CR30) 2015; 75 JM Bardeen (6206_CR49) 1973; 31 Y Sekiwa (6206_CR52) 2006; 73 ET Newman (6206_CR33) 1965; 6 JCS Neves (6206_CR42) 2014; 734 SG Ghosh (6206_CR26) 2016; 76 C Wolf (6206_CR15) 1986; 34 K Ghaderi (6206_CR54) 2016; 903 H Moradpour (6206_CR16) 2017; 77 R Ruffini (6206_CR44) 1971; 24 SG Ghosh (6206_CR31) 2014; 74 H Moradpour (6206_CR18) 2017; 95 C Bambi (6206_CR32) 2011; 26 SG Ghosh (6206_CR38) 2015; 75 C Bambi (6206_CR34) 2013; 721 GW Gibbons (6206_CR46) 1977; 15 6206_CR25 6206_CR24 AS Al-Rawaf (6206_CR9) 1996; 28 TRP Caramês (6206_CR11) 2014; 74 M Azreg-Aïnou (6206_CR35) 2014; 90 S Chen (6206_CR51) 2008; 77 Y Heydarzade (6206_CR22) 2017; 771 S Chandraseckar (6206_CR57) 1980 SW Hawking (6206_CR47) 1975; 43 VV Kiselev (6206_CR27) 2003; 20 GW Gibbons (6206_CR53) 2005; 22 IG Salako (6206_CR12) 2016; 25 NK Glendenning (6206_CR5) 2007 ET Newman (6206_CR36) 1965; 6 R Penrose (6206_CR58) 1969; 1 AM Oliveira (6206_CR20) 2016; 93 JC Fabris (6206_CR7) 2012; 711 LL Smalley (6206_CR14) 1975; 12 I Hussain (6206_CR56) 2016; 131 P Rastall (6206_CR1) 1972; 6 A Nathanail (6206_CR28) 2017; 469 R Tharanath (6206_CR50) 2014; 29 |
References_xml | – reference: V. Majernik, L. Richterek. arXiv:0610070 [gr-qc] – reference: OliveiraAMVeltenHESFabrisJCPhys. Rev. D2016931240202016PhRvD..93l4020O362546510.1103/PhysRevD.93.124020 – reference: C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: W.H. Freeman 1973) – reference: MoradpourHHeydarzadeYDarabiFSalakoIGEur. Phys. J. C2017772592017EPJC...77..259M10.1140/epjc/s10052-017-4811-z – reference: CarmeliMKayeMAnn. Phys.1977103971977AnPhy.103...97C10.1016/0003-4916(77)90263-9 – reference: Z. Xu, J. Wang. arXiv:1711.04542 [gr-qc] – reference: VisserMPhys. Lett. B2018782832018PhLB..782...83V10.1016/j.physletb.2018.05.028 – reference: BambiCMod. Phys. Lett. A20112624532011MPLA...26.2453B285443110.1142/S0217732311036929 – reference: HussainIAliSEur. Phys. J. Plus201613127510.1140/epjp/i2016-16275-3 – reference: BardeenJMPressWHTeukolskySAAstrophys. J.19721783471972ApJ...178..347B10.1086/151796 – reference: GhoshSGEur. Phys. J. C2016762222016EPJC...76..222G10.1140/epjc/s10052-016-4051-7 – reference: KiselevVVClass. Quantum. Gravit.20032011872003CQGra..20.1187K10.1088/0264-9381/20/6/310 – reference: GibbonsGWHawkingSWPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738 – reference: ChandraseckarSMathematical Theory of Black Holes1980OxfordOxford University Press – reference: HeydarzadeYDarabiFPhys. Lett. B20177713652017PhLB..771..365H10.1016/j.physletb.2017.05.064 – reference: ChenSWangBSuRPhys. Rev. D2008771240112008PhRvD..77l4011C243478810.1103/PhysRevD.77.124011 – reference: BardeenJMCarterBHawkingSWCommun. Math. Phys.1973311611973CMaPh..31..161B10.1007/BF01645742 – reference: BronnikovKAFabrisJCPiattellaOFSantosECGen. Relativ. Gravit.2016481622016GReGr..48..162B10.1007/s10714-016-2152-0 – reference: BambiCModestoLPhys. Lett. B20137213292013PhLB..721..329B304248610.1016/j.physletb.2013.03.025 – reference: SekiwaYPhys. Rev. D2006730840092006PhRvD..73h4009S222137910.1103/PhysRevD.73.084009 – reference: GhoshSGPapnoiUEur. Phys. J. C201474830162014EPJC...74.3016G10.1140/epjc/s10052-014-3016-y – reference: WolfCPhys. Scr.1986341931986PhyS...34..193W10.1088/0031-8949/34/3/001 – reference: SmalleyLLPhys. Rev. D1975123761975PhRvD..12..376S10.1103/PhysRevD.12.376 – reference: MoradpourHSalakoIGAdv. High Energy Phys.201620163492796 – reference: I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako. arXiv:1710.04612 [gr-qc] – reference: OteevTAbdujabbarovAStuchlíkZAhmedovBAstrophys. Space Sci.20163612692016Ap&SS.361..269O10.1007/s10509-016-2850-9 – reference: SmalleyLLPhys. Rev. D1974916351974PhRvD...9.1635S10.1103/PhysRevD.9.1635 – reference: PoissonEA Relativistic Toolkit2004CambridgeCambridge University Press10.1017/CBO9780511606601 – reference: NevesJCSSaaAPhys. Lett. B2014734442014PhLB..734...44N321928110.1016/j.physletb.2014.05.026 – reference: FabrisJCDaoudaMHPiattellaOFPhys. Lett. B20127112322012PhLB..711..232F10.1016/j.physletb.2012.04.020 – reference: Azreg-AïnouMPhys. Rev. D20149060640412014PhRvD..90f4041A10.1103/PhysRevD.90.064041 – reference: BekensteinJDPhys. Rev. D1973723331973PhRvD...7.2333B36634310.1103/PhysRevD.7.2333 – reference: MoradpourHPhys. Lett. B20167571872016PhLB..757..187M10.1016/j.physletb.2016.03.072 – reference: E. Spallucci, A. Smailagic. arXiv:1709.05795 [gr-qc] – reference: TharanathRVargheseNKuriakoseVCMod. Phys. Lett. A20142914500572014MPLA...2950057T10.1142/S0217732314500576 – reference: GlendenningNKSpecial and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes2007New YorkSpringer10.1007/978-0-387-47109-9 – reference: CaramêsTRPDaoudaMHFabrisJCOliveiraAMPiattellaOFStrokovVEur. Phys. J. C20147431452014EPJC...74.3145C10.1140/epjc/s10052-014-3145-3 – reference: GhoshSGEur. Phys. J. C201575115322015EPJC...75..532G10.1140/epjc/s10052-015-3740-y – reference: GibbonsGWPerryMJPopeCNClass. Quantum Gravit.20052215032005CQGra..22.1503G10.1088/0264-9381/22/9/002 – reference: RastallPCan. J. Phys.197654661976CaJPh..54...66R10.1139/p76-008 – reference: Al-RawafASTahaMOGen. Relativ. Gravit.1996289351996GReGr..28..935A10.1007/BF02113090 – reference: RastallPPhys. Rev. D1972633571972PhRvD...6.3357R37353310.1103/PhysRevD.6.3357 – reference: AtamurotovFGhoshSGAhmedovBEur. Phys. J. C20167652732016EPJC...76..273A10.1140/epjc/s10052-016-4122-9 – reference: SalakoIGHoundjoMJSJawadAInt. J. Mod. Phys. D20162516500762016IJMPD..2550076S10.1142/S0218271816500760 – reference: OliveiraAMVeltenHESFabrisJCCasariniLPhys. Rev. D2015920440202015PhRvD..92d4020O10.1103/PhysRevD.92.044020 – reference: KerrRPPhys. Rev. Lett.1963112371963PhRvL..11..237K15667410.1103/PhysRevLett.11.237 – reference: BatistaCEMDaoudaMHFabrisJCPiattellaOFRodriguesDCPhys. Rev. D2012850840082012PhRvD..85h4008B10.1103/PhysRevD.85.084008 – reference: RuffiniRWheelerJAPhys. Today197124301971PhT....24A..30R10.1063/1.3022513 – reference: HawkingSWCommun. Math. Phys.1975431991975CMaPh..43..199H10.1007/BF02345020 – reference: MoradpourHSadeghnezhadNCan. J. Phys.20179512572017CaJPh..95.1257M10.1139/cjp-2017-0040 – reference: NewmanETJanisAIJ. Math. Phys.196569151965JMP.....6..915N10.1063/1.1704350 – reference: GhoshSGMaharajSDEur. Phys. J. C20157572015EPJC...75....7G10.1140/epjc/s10052-014-3222-7 – reference: XuZWangJPhys. Rev. D2017950640152017PhRvD..95f4015X378837810.1103/PhysRevD.95.064015 – reference: PenroseRRiv. Nuovo Cim.196912521969NCimR...1..252P – reference: CamposJPFabrisJCPerezRPiattellaOFVeltenHEur. Phys. J. C20137323572013EPJC...73.2357C10.1140/epjc/s10052-013-2357-2 – reference: NathanailAMostERRezzollaLMon. Not. R. Astron. Soc.2017469L312017MNRAS.469L..31N10.1093/mnrasl/slx035 – reference: GhaderiKMalakolkalamiBNucl. Phys. B2016903102016NuPhB.903...10G10.1016/j.nuclphysb.2015.11.019 – reference: NewmanETCouchRChinnaparedKExtonAPrakashATorrenceRJ. Math. Phys.196569181965JMP.....6..918N10.1063/1.1704351 – reference: MaMSZhaoREur. Phys. J. C2017776292017EPJC...77..629M10.1140/epjc/s10052-017-5217-7 – volume: 6 start-page: 915 year: 1965 ident: 6206_CR33 publication-title: J. Math. Phys. doi: 10.1063/1.1704350 – volume: 131 start-page: 275 year: 2016 ident: 6206_CR56 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2016-16275-3 – volume: 76 start-page: 273 issue: 5 year: 2016 ident: 6206_CR29 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4122-9 – volume: 77 start-page: 259 year: 2017 ident: 6206_CR16 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4811-z – volume: 103 start-page: 97 year: 1977 ident: 6206_CR39 publication-title: Ann. Phys. doi: 10.1016/0003-4916(77)90263-9 – ident: 6206_CR24 – volume: 721 start-page: 329 year: 2013 ident: 6206_CR34 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2013.03.025 – volume: 34 start-page: 193 year: 1986 ident: 6206_CR15 publication-title: Phys. Scr. doi: 10.1088/0031-8949/34/3/001 – volume: 73 start-page: 084009 year: 2006 ident: 6206_CR52 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.084009 – volume: 22 start-page: 1503 year: 2005 ident: 6206_CR53 publication-title: Class. Quantum Gravit. doi: 10.1088/0264-9381/22/9/002 – volume-title: Special and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes year: 2007 ident: 6206_CR5 doi: 10.1007/978-0-387-47109-9 – volume: 74 start-page: 3016 issue: 8 year: 2014 ident: 6206_CR31 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-3016-y – volume: 95 start-page: 064015 year: 2017 ident: 6206_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.064015 – volume: 48 start-page: 162 year: 2016 ident: 6206_CR21 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-016-2152-0 – volume: 92 start-page: 044020 year: 2015 ident: 6206_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.044020 – volume-title: Mathematical Theory of Black Holes year: 1980 ident: 6206_CR57 – volume: 25 start-page: 1650076 year: 2016 ident: 6206_CR12 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271816500760 – volume: 76 start-page: 222 year: 2016 ident: 6206_CR26 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4051-7 – ident: 6206_CR3 – ident: 6206_CR25 – volume: 903 start-page: 10 year: 2016 ident: 6206_CR54 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2015.11.019 – volume: 11 start-page: 237 year: 1963 ident: 6206_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.11.237 – volume: 361 start-page: 269 year: 2016 ident: 6206_CR55 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-016-2850-9 – volume: 757 start-page: 187 year: 2016 ident: 6206_CR8 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.03.072 – volume: 9 start-page: 1635 year: 1974 ident: 6206_CR13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.9.1635 – volume: 24 start-page: 30 year: 1971 ident: 6206_CR44 publication-title: Phys. Today doi: 10.1063/1.3022513 – volume: 31 start-page: 161 year: 1973 ident: 6206_CR49 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645742 – volume: 469 start-page: L31 year: 2017 ident: 6206_CR28 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnrasl/slx035 – volume: 178 start-page: 347 year: 1972 ident: 6206_CR41 publication-title: Astrophys. J. doi: 10.1086/151796 – volume: 43 start-page: 199 year: 1975 ident: 6206_CR47 publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume: 771 start-page: 365 year: 2017 ident: 6206_CR22 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.05.064 – volume: 20 start-page: 1187 year: 2003 ident: 6206_CR27 publication-title: Class. Quantum. Gravit. doi: 10.1088/0264-9381/20/6/310 – volume: 28 start-page: 935 year: 1996 ident: 6206_CR9 publication-title: Gen. Relativ. Gravit. doi: 10.1007/BF02113090 – volume: 77 start-page: 629 year: 2017 ident: 6206_CR23 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5217-7 – volume: 74 start-page: 3145 year: 2014 ident: 6206_CR11 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-3145-3 – volume: 73 start-page: 2357 year: 2013 ident: 6206_CR6 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2357-2 – volume: 29 start-page: 1450057 year: 2014 ident: 6206_CR50 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732314500576 – volume: 75 start-page: 7 year: 2015 ident: 6206_CR38 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-3222-7 – ident: 6206_CR45 – volume: 2016 start-page: 3492796 year: 2016 ident: 6206_CR19 publication-title: Adv. High Energy Phys. – volume: 782 start-page: 83 year: 2018 ident: 6206_CR40 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.05.028 – volume: 15 start-page: 2738 year: 1977 ident: 6206_CR46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2738 – volume: 90 start-page: 064041 issue: 6 year: 2014 ident: 6206_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.064041 – volume-title: A Relativistic Toolkit year: 2004 ident: 6206_CR4 doi: 10.1017/CBO9780511606601 – ident: 6206_CR59 – volume: 93 start-page: 124020 year: 2016 ident: 6206_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.124020 – volume: 75 start-page: 532 issue: 11 year: 2015 ident: 6206_CR30 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3740-y – volume: 6 start-page: 918 year: 1965 ident: 6206_CR36 publication-title: J. Math. Phys. doi: 10.1063/1.1704351 – volume: 734 start-page: 44 year: 2014 ident: 6206_CR42 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.05.026 – volume: 54 start-page: 66 year: 1976 ident: 6206_CR2 publication-title: Can. J. Phys. doi: 10.1139/p76-008 – volume: 6 start-page: 3357 year: 1972 ident: 6206_CR1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.6.3357 – volume: 77 start-page: 124011 year: 2008 ident: 6206_CR51 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.124011 – volume: 7 start-page: 2333 year: 1973 ident: 6206_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2333 – volume: 85 start-page: 084008 year: 2012 ident: 6206_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.084008 – volume: 12 start-page: 376 year: 1975 ident: 6206_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.12.376 – volume: 26 start-page: 2453 year: 2011 ident: 6206_CR32 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732311036929 – volume: 1 start-page: 252 year: 1969 ident: 6206_CR58 publication-title: Riv. Nuovo Cim. – volume: 711 start-page: 232 year: 2012 ident: 6206_CR7 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.04.020 – volume: 95 start-page: 1257 year: 2017 ident: 6206_CR18 publication-title: Can. J. Phys. doi: 10.1139/cjp-2017-0040 |
SSID | ssj0002408 |
Score | 2.5919573 |
Snippet | Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation.... Abstract Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Astronomy Astrophysics and Cosmology Black holes Elementary Particles Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Parameters Particle motion Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Rotation String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SELyIP3G1yiKKp-Vls0ne5ljFUj14eFroLWQmSVEe-4rv9eB_70w2r1oK9uJ1k0DyTSaZ2cx8I8QbBJV6A9hFwyXMggsdZIRuTGhTTxa6g8L2-cWenOrPZ-bsr1JfHBM20wPPwC0cosZoTQJQ2uocXO4Dol1qyBFMIdumO2_vTNUzmIm7Sl7RoDsrta65weRNLNLFD-TMOWk4JmHsrOJKNNeupcLef_OMvvFYWu6g4wfifjUe26N50g_FnTQ9EndLECduH4u3qw0_rE_nLfBvuZZL37bfp3YVyARcr9uStPjriTg9_vjtw0lXyyB0aPpx17lsDc0xY5YD9kEvmUkI5BgjaU9SQeXBhBhGwoeUy3HqbLaS9JA8taAiDE_FwbSZ0jPRxhhsb7HPgRAKcoSsDISMToJbwjI1wuxR8Fg5wrlUxdrP-cvSM3p-Rs8Tep7R830jFlfjLmaWjFtHvGeQr3ozy3X5QLL3Vfb-Ntk34jWLyDOPxcSBMufhcrv1n76u_BGZSaManDSNeFc75Q2tBUPNOyBEmPrqWs_Dvah91eStJ5eYKwSQo9wIuRf_n-Z_r_L5_1jlC3FP8UYtgW2H4mD38zK9JEtoB6_Kpv8NmKMCJQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVKKyQuqJQiQguKEKinqLYTO_GxrFoVDhy2VOrN8oztCrTKVt3tgb_H4_UuVBWgXhM7it94nHE87w1jHxBkEAqw8YpKmDnjGogIzRBQB5EidANZ7fOrPr_svlypq7JRJC7Mn-f3KfY_Djc_kHhuXFEGwdBoSXVjnrAdJdqeSjVM9GSz8pJcV2YTtV2jedcVRvDfn3PvY5Q1-x-uzA-OSPOX52yXPS8hY32ysvELthXGPfY0p27i4iX7OJ3Tcfp4XQP9jKup4G39faynLgV-s1mdqYo_99nl2em3yXlTih80qMSwbEzUKr1jxMhbFK7rST8I-OB98pkgnYytct4NIEkj3hBhNmqevC_tz5z00L5i2-N8DK9Z7b3TQqOILiHk-ABRKnARDQfTQx8qptYoWCzK4FSgYmZXrGVuCT27Qs8m9CyhZ0XFjjf9blbaGP_t8YlA3rQmbet8IZncFlexBrFDr1WANDbdRWeicIi67yB6ULpi78lEltQrRkqPuXZ3i4X9fDG1Jyk4GmRruKrYUWkU52ks6ArbICFCglf3Wh6uTW2L_y5s2ghTXYC0Pa4YX5v_9-1_j_LN47scsGeSpmVOXjtk28vbu_A2RTtLeJen-C8rA_O5 priority: 102 providerName: Springer Nature |
Title | Rotating black hole in Rastall theory |
URI | https://link.springer.com/article/10.1140/epjc/s10052-018-6206-1 https://www.proquest.com/docview/2108744721 https://doaj.org/article/9cc4cd65ebb2464fa9f1acc674bfdb56 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED7WlMFexn6ybF0wY2NPJrZsKfLTSEOzbg9lZAv0TUgnKXQEO6vTh_330ylKSil0LwbbkrE-Sac76e47gI9omCu5wdxySmGmG50bjyaXDoUrg4bemMj2eSHOl_X3S36ZNtz65Fa5l4lRUNsOaY98HEwTYmoPBsuXzZ-cskbR6WpKoXEEx0EESzmA49Ozix-LgywmAq8YX1TVuSjqOsUIB6ti7Da_kSLoCk6-CTIXjDLS3FmeIov_fVl979A0rkXzZ_A0KZHZdNfrz-GRa1_A4-jMif1L-LTo6IC9XWWGtucySoGbXbXZQgdVcL3OYvDi31ewnJ_9mp3nKR1CjryU27zxgod_9OiLCktdT4hRyBTS2jCLHNPMV1xbLQ0j1viGQmi9CKCRxaaZNdVrGLRd695AZq0WpcDS64CQLqTxjBvtsSlMMzETNwS-R0Fh4gqnlBVrtYtjLhShp3boqYCeIvRUOYTxod5mx5bx3xqnBPKhNLFdxwfd9UqlyaMaxBqt4M6Etona68aXGlFMauOt4WIIH6iLFPFZtOQws9I3fa--_VyoaVCXJKuagg_hcyrku9AW1Cn-ICBCFFh3Sp7su1qlGd2r2_E3hGLf_bevH27l24e_-A6eMBqC0XXtBAbb6xv3Pug6WzOCIzn_OkrDOtzNWE1XMRvF3YNwXbLpP-23_Vs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgSXik81tJQIUXGK1nFib3JAqFCWXVp6WFqpN-PPFWiVbJutqv4pfiMeJ9mqqlROvSZOIj9P7Bl73huA91pRmzKlE8OwhJksZaKcVklhNbep99BLFdQ-j_j4JP9-yk7X4G_PhcG0yn5ODBO1qTXukQ98aIJK7T5g-bQ4S7BqFJ6u9iU0WrM4sFeXPmRrPk72_fjuUjr6evxlnHRVBRLN0mKZlI4zSrjTjmQ6lfkQhXkUKYzxxmippC5j0shCURRfL5GJ6rj_NgY-khqV-fc-gId55ldyZKaPvq1mfpQLC2ymLE84yfOOkexjmIFd_NHI1yMMMyGKhFOsf3NjMQw1A26vDLeOaMPKN3oKG53LGu-1NvYM1mz1HB6F1FHdvIDdaY3H-dUsVrgZGGPB3fh3FU-ldzzn8zhQJa9ewsm9wPQK1qu6spsQGyN5ynXqpEdIkkI5ypR0uiSqHKqhjYD1KAjdKZNjgYy5aFnTRCB6okVPePQEoifSCAar5xatNsd_n_iMIK9ao7Z2uFCfz0T3q4pS61wbzqzyfeO5k6VLpdZ8mCtnFOMRvMMhEqieUWF6zkxeNI2Y_JyKPe-cFTQrCYvgQ9fI1b4vWnZsB48ICm7daLndD7Xo5o9GXFt7BKQf_uvbd_fy9d1vfAuPx8c_DsXh5OhgC55QNMeQNLcN68vzC_vGe1lLtRNMO4Zf9_0v_QMgJTN9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDS29lD6Jm7Q1paEns7LWku1DKUmTJduUJWwbyE3Vc2lZ7E28oeSv9ddVY8sbQiA95WpLxvpmJM1IM98AfNCK2pQpnRiGJcxkKRPltEoKq7lNvYVeqpbtc8qPTrOvZ-xsA_72uTAYVtmvie1CbWqNZ-RD75ogU7t3WIYuhEWcHIw_L88TrCCFN619OY1ORY7t1R_vvjWfJgde1ruUjg9_fDlKQoWBRLO0WCWl44wS7rQjI53KLEeSHkUKY7xiWiqpGzFpZKEoErGXmJXquP8PdIIkNWrkv_sANnP0igawuX84PZmt9wEkD2tzm0ZZwkmWhfxk79EM7fK3xuw9wjAuokg4xWo4N7bGtoLA7X3i1oVtuw-On8KTYMDGe53GPYMNWz2Hh20gqW5ewO6sxsv9ah4rPBqMsfxu_KuKZ9KboYtF3CZOXr2E03sB6hUMqrqyWxAbI3nKdeqkR0iSQjnKlHS6JKrMVW4jYD0KQgeeciyXsRBdDjURiJ7o0BMePYHoiTSC4brfsmPq-G-PfQR53RqZttsH9cVchIkrSq0zbTizyo-NZ06WLpVa8zxTzijGI3iPIhLIpVGhVs7lZdOIyfeZ2POmWkFHJWERfAyNXO3HomXIffCIIP3WjZY7vahFWE0aca37EZBe_Nev7x7l67u_-A4e-Xkkvk2mx9vwmKI2thF0OzBYXVzaN97kWqm3Qbdj-Hnf0-kf7qI5Dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotating+black+hole+in+Rastall+theory&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Kumar%2C+Rahul&rft.au=Ghosh%2C+Sushant+G&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=78&rft.issue=9&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-018-6206-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |