Rotating black hole in Rastall theory

Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 78; no. 9; pp. 1 - 13
Main Authors Kumar, Rahul, Ghosh, Sushant G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2018
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ( a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for a > a E with value a E is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
AbstractList Abstract Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ($$a=a_{E}$$ a=aE ), which corresponds to an extremal black hole with degenerate horizons, while for $$a<a_{E}$$ a<aE , it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for $$a>a_{E}$$ a>aE with value $$a_E$$ aE is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter (\[a=a_{E}\]), which corresponds to an extremal black hole with degenerate horizons, while for \[a<a_{E}\], it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for \[a>a_{E}\] with value \[a_E\] is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr-Newman black hole solution. In turn, we analyze the specific cases of the Kerr-Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ( [Formula omitted]), which corresponds to an extremal black hole with degenerate horizons, while for [Formula omitted], it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for [Formula omitted] with value [Formula omitted] is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr–Newman black hole solution. In turn, we analyze the specific cases of the Kerr–Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter ( a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for a > a E with value a E is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.
ArticleNumber 750
Audience Academic
Author Kumar, Rahul
Ghosh, Sushant G.
Author_xml – sequence: 1
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  email: rahul.phy3@gmail.com
  organization: Centre for Theoretical Physics, Jamia Millia Islamia
– sequence: 2
  givenname: Sushant G.
  surname: Ghosh
  fullname: Ghosh, Sushant G.
  organization: Centre for Theoretical Physics, Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), Jamia Millia Islamia, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
BookMark eNqFUctq3DAUFSWF5tFfKIbSRRdOrmQ9bOgmhKYdCASm7Vpcy5KjqWNNJQ00fx-5LinpJmghcTiPe3VOyNEcZkvIOwrnlHK4sPuduUgUQLAaaFtLBrKmr8gx5Q2vZYGPnt6cvyEnKe0AgHFoj8mHbciY_TxW_YTmZ3UXJlv5udpiyjhNVb6zIT6ckdcOp2Tf_r1PyY_rz9-vvtY3t182V5c3tRG0zXXnpCjhzjhoDEWulHGqh3YYaCctQ-YagQO2PeOq4x0wBk5Cq0BRhWzom1OyWX2HgDu9j_4e44MO6PUfIMRRY8zeTFZ3xnAzSGH74ia5w85RNEYq3ruhF7J4vV-99jH8OtiU9S4c4lzG14yWUM4Vo4V1vrJGLKZ-diFHNOUM9t6b8tHOF_xSCN6ypgNRBB-fCQon2995xENKevNt-5wrV66JIaVo3dNKFPTSnV6602t3unSnl-70MtWn_4TGLzWVrIh-elmuVnkqefNo47_VX1A-AqpYse4
CitedBy_id crossref_primary_10_1140_epjp_s13360_020_00508_3
crossref_primary_10_1140_epjp_s13360_024_05609_x
crossref_primary_10_1016_j_aop_2024_169814
crossref_primary_10_1142_S0218271822500699
crossref_primary_10_1007_s10509_019_3537_9
crossref_primary_10_1016_j_cjph_2024_11_035
crossref_primary_10_1088_1361_6382_ac129d
crossref_primary_10_1016_j_jheap_2025_100350
crossref_primary_10_1140_epjc_s10052_023_12184_5
crossref_primary_10_1140_epja_i2018_12642_y
crossref_primary_10_1142_S0217751X22501081
crossref_primary_10_1155_2020_4065254
crossref_primary_10_1088_1674_1137_abe84c
crossref_primary_10_1088_1475_7516_2021_07_004
crossref_primary_10_1140_epjc_s10052_024_13634_4
crossref_primary_10_1142_S0219887824501068
crossref_primary_10_1016_j_aop_2021_168619
crossref_primary_10_1103_PhysRevD_100_104054
crossref_primary_10_1088_1402_4896_ad25d0
crossref_primary_10_1088_1402_4896_ad764b
crossref_primary_10_1140_epjc_s10052_022_10634_0
crossref_primary_10_1016_j_dark_2024_101734
crossref_primary_10_1088_1674_1056_ab7daa
crossref_primary_10_1016_j_aop_2021_168572
crossref_primary_10_1016_j_cjph_2020_02_008
crossref_primary_10_1016_j_dark_2024_101705
crossref_primary_10_1016_j_astropartphys_2024_103073
crossref_primary_10_1016_j_dark_2024_101663
crossref_primary_10_1016_j_jheap_2024_08_001
crossref_primary_10_1140_epjp_s13360_022_02872_8
crossref_primary_10_1016_j_dark_2020_100577
crossref_primary_10_3390_universe8100510
crossref_primary_10_1142_S0217751X24501057
crossref_primary_10_1016_j_aop_2018_12_003
crossref_primary_10_1142_S0218271820500212
crossref_primary_10_1140_epjp_s13360_024_05541_0
crossref_primary_10_1142_S0217751X2150233X
crossref_primary_10_1142_S0217751X21501530
crossref_primary_10_1007_s10714_019_2548_8
crossref_primary_10_1142_S0219887824501123
crossref_primary_10_1088_1402_4896_acb6bd
crossref_primary_10_1016_j_aop_2019_168062
crossref_primary_10_1016_j_dark_2021_100881
crossref_primary_10_3390_universe7020038
crossref_primary_10_1016_j_jheap_2025_100367
crossref_primary_10_1016_j_cjph_2019_10_011
crossref_primary_10_3847_1538_4357_aca411
crossref_primary_10_1088_1361_6382_acbe8a
crossref_primary_10_1016_j_aop_2023_169442
crossref_primary_10_1016_j_rinp_2021_104787
crossref_primary_10_1140_epjc_s10052_022_10451_5
crossref_primary_10_1142_S0217732320500340
crossref_primary_10_1007_s10509_020_03861_y
crossref_primary_10_1016_j_cjph_2023_07_005
crossref_primary_10_1142_S0217732321501121
crossref_primary_10_1007_s10714_022_02993_6
crossref_primary_10_1007_s10714_022_02906_7
crossref_primary_10_1016_j_nuclphysb_2020_115179
crossref_primary_10_1142_S0217732320500352
crossref_primary_10_1209_0295_5075_129_20004
crossref_primary_10_1140_epjc_s10052_020_8116_2
crossref_primary_10_1088_1402_4896_ad01f3
crossref_primary_10_1140_epjp_i2019_12937_x
crossref_primary_10_1016_j_cjph_2024_09_027
crossref_primary_10_1016_j_ascom_2024_100897
crossref_primary_10_1142_S0219887824501949
crossref_primary_10_1007_s10714_024_03225_9
crossref_primary_10_1088_1674_1137_ac7855
crossref_primary_10_1088_1572_9494_aceee2
crossref_primary_10_1140_epjp_s13360_021_01271_9
crossref_primary_10_1142_S0217732321500826
crossref_primary_10_1142_S021827182350102X
crossref_primary_10_1088_1674_1137_ad1feb
crossref_primary_10_1140_epjp_s13360_022_03632_4
crossref_primary_10_1142_S0219887824502001
crossref_primary_10_1103_PhysRevD_104_104044
crossref_primary_10_1016_j_cjph_2024_01_005
crossref_primary_10_1016_j_newast_2022_101976
crossref_primary_10_1140_epjp_s13360_021_02291_1
crossref_primary_10_1088_1361_6382_ad8d9d
crossref_primary_10_1155_2020_8039183
crossref_primary_10_1142_S0219887821500420
crossref_primary_10_1142_S0219887819501329
crossref_primary_10_1088_1674_1137_43_8_083106
crossref_primary_10_1088_1674_1137_ad6551
crossref_primary_10_3389_fspas_2023_1320081
crossref_primary_10_1016_j_cjph_2023_10_004
crossref_primary_10_1103_PhysRevD_101_064067
crossref_primary_10_1103_PhysRevD_104_084033
crossref_primary_10_1007_s10509_020_03859_6
crossref_primary_10_1142_S0217751X22501330
crossref_primary_10_1007_s10714_019_2652_9
crossref_primary_10_1142_S0217751X23500355
crossref_primary_10_1142_S0217751X23500872
crossref_primary_10_1088_1361_6382_acd97b
crossref_primary_10_1142_S021988782350007X
crossref_primary_10_1088_1402_4896_ad3e36
crossref_primary_10_1007_s10773_024_05810_9
crossref_primary_10_1088_1402_4896_ad87c8
Cites_doi 10.1063/1.1704350
10.1140/epjp/i2016-16275-3
10.1140/epjc/s10052-016-4122-9
10.1140/epjc/s10052-017-4811-z
10.1016/0003-4916(77)90263-9
10.1016/j.physletb.2013.03.025
10.1088/0031-8949/34/3/001
10.1103/PhysRevD.73.084009
10.1088/0264-9381/22/9/002
10.1007/978-0-387-47109-9
10.1140/epjc/s10052-014-3016-y
10.1103/PhysRevD.95.064015
10.1007/s10714-016-2152-0
10.1103/PhysRevD.92.044020
10.1142/S0218271816500760
10.1140/epjc/s10052-016-4051-7
10.1016/j.nuclphysb.2015.11.019
10.1103/PhysRevLett.11.237
10.1007/s10509-016-2850-9
10.1016/j.physletb.2016.03.072
10.1103/PhysRevD.9.1635
10.1063/1.3022513
10.1007/BF01645742
10.1093/mnrasl/slx035
10.1086/151796
10.1007/BF02345020
10.1016/j.physletb.2017.05.064
10.1088/0264-9381/20/6/310
10.1007/BF02113090
10.1140/epjc/s10052-017-5217-7
10.1140/epjc/s10052-014-3145-3
10.1140/epjc/s10052-013-2357-2
10.1142/S0217732314500576
10.1140/epjc/s10052-014-3222-7
10.1016/j.physletb.2018.05.028
10.1103/PhysRevD.15.2738
10.1103/PhysRevD.90.064041
10.1017/CBO9780511606601
10.1103/PhysRevD.93.124020
10.1140/epjc/s10052-015-3740-y
10.1063/1.1704351
10.1016/j.physletb.2014.05.026
10.1139/p76-008
10.1103/PhysRevD.6.3357
10.1103/PhysRevD.77.124011
10.1103/PhysRevD.7.2333
10.1103/PhysRevD.85.084008
10.1103/PhysRevD.12.376
10.1142/S0217732311036929
10.1016/j.physletb.2012.04.020
10.1139/cjp-2017-0040
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Springer
The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Springer
– notice: The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1140/epjc/s10052-018-6206-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 13
ExternalDocumentID oai_doaj_org_article_9cc4cd65ebb2464fa9f1acc674bfdb56
A554823905
10_1140_epjc_s10052_018_6206_1
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PMFND
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c518t-9f65206fcf03c1a477cf7b08dd196e2a2f35ada8b2479490220f60870717a2db3
IEDL.DBID BENPR
ISSN 1434-6044
IngestDate Wed Aug 27 01:27:27 EDT 2025
Fri Jul 25 03:14:24 EDT 2025
Tue Jun 10 20:25:25 EDT 2025
Fri Jun 27 04:34:50 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 01:39:01 EDT 2025
Fri Feb 21 02:35:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-9f65206fcf03c1a477cf7b08dd196e2a2f35ada8b2479490220f60870717a2db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2108744721?pq-origsite=%requestingapplication%
PQID 2108744721
PQPubID 2034659
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_9cc4cd65ebb2464fa9f1acc674bfdb56
proquest_journals_2108744721
gale_infotracacademiconefile_A554823905
gale_incontextgauss_ISR_A554823905
crossref_primary_10_1140_epjc_s10052_018_6206_1
crossref_citationtrail_10_1140_epjc_s10052_018_6206_1
springer_journals_10_1140_epjc_s10052_018_6206_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References PoissonEA Relativistic Toolkit2004CambridgeCambridge University Press10.1017/CBO9780511606601
ChandraseckarSMathematical Theory of Black Holes1980OxfordOxford University Press
NathanailAMostERRezzollaLMon. Not. R. Astron. Soc.2017469L312017MNRAS.469L..31N10.1093/mnrasl/slx035
V. Majernik, L. Richterek. arXiv:0610070 [gr-qc]
Z. Xu, J. Wang. arXiv:1711.04542 [gr-qc]
OliveiraAMVeltenHESFabrisJCPhys. Rev. D2016931240202016PhRvD..93l4020O362546510.1103/PhysRevD.93.124020
GhoshSGMaharajSDEur. Phys. J. C20157572015EPJC...75....7G10.1140/epjc/s10052-014-3222-7
CarmeliMKayeMAnn. Phys.1977103971977AnPhy.103...97C10.1016/0003-4916(77)90263-9
GhaderiKMalakolkalamiBNucl. Phys. B2016903102016NuPhB.903...10G10.1016/j.nuclphysb.2015.11.019
KerrRPPhys. Rev. Lett.1963112371963PhRvL..11..237K15667410.1103/PhysRevLett.11.237
MoradpourHHeydarzadeYDarabiFSalakoIGEur. Phys. J. C2017772592017EPJC...77..259M10.1140/epjc/s10052-017-4811-z
OliveiraAMVeltenHESFabrisJCCasariniLPhys. Rev. D2015920440202015PhRvD..92d4020O10.1103/PhysRevD.92.044020
Azreg-AïnouMPhys. Rev. D20149060640412014PhRvD..90f4041A10.1103/PhysRevD.90.064041
XuZWangJPhys. Rev. D2017950640152017PhRvD..95f4015X378837810.1103/PhysRevD.95.064015
RastallPPhys. Rev. D1972633571972PhRvD...6.3357R37353310.1103/PhysRevD.6.3357
I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako. arXiv:1710.04612 [gr-qc]
CaramêsTRPDaoudaMHFabrisJCOliveiraAMPiattellaOFStrokovVEur. Phys. J. C20147431452014EPJC...74.3145C10.1140/epjc/s10052-014-3145-3
GhoshSGPapnoiUEur. Phys. J. C201474830162014EPJC...74.3016G10.1140/epjc/s10052-014-3016-y
BambiCMod. Phys. Lett. A20112624532011MPLA...26.2453B285443110.1142/S0217732311036929
WolfCPhys. Scr.1986341931986PhyS...34..193W10.1088/0031-8949/34/3/001
BekensteinJDPhys. Rev. D1973723331973PhRvD...7.2333B36634310.1103/PhysRevD.7.2333
Al-RawafASTahaMOGen. Relativ. Gravit.1996289351996GReGr..28..935A10.1007/BF02113090
KiselevVVClass. Quantum. Gravit.20032011872003CQGra..20.1187K10.1088/0264-9381/20/6/310
SmalleyLLPhys. Rev. D1975123761975PhRvD..12..376S10.1103/PhysRevD.12.376
MoradpourHPhys. Lett. B20167571872016PhLB..757..187M10.1016/j.physletb.2016.03.072
HeydarzadeYDarabiFPhys. Lett. B20177713652017PhLB..771..365H10.1016/j.physletb.2017.05.064
VisserMPhys. Lett. B2018782832018PhLB..782...83V10.1016/j.physletb.2018.05.028
SalakoIGHoundjoMJSJawadAInt. J. Mod. Phys. D20162516500762016IJMPD..2550076S10.1142/S0218271816500760
OteevTAbdujabbarovAStuchlíkZAhmedovBAstrophys. Space Sci.20163612692016Ap&SS.361..269O10.1007/s10509-016-2850-9
TharanathRVargheseNKuriakoseVCMod. Phys. Lett. A20142914500572014MPLA...2950057T10.1142/S0217732314500576
AtamurotovFGhoshSGAhmedovBEur. Phys. J. C20167652732016EPJC...76..273A10.1140/epjc/s10052-016-4122-9
NevesJCSSaaAPhys. Lett. B2014734442014PhLB..734...44N321928110.1016/j.physletb.2014.05.026
C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: W.H. Freeman 1973)
GhoshSGEur. Phys. J. C201575115322015EPJC...75..532G10.1140/epjc/s10052-015-3740-y
MoradpourHSadeghnezhadNCan. J. Phys.20179512572017CaJPh..95.1257M10.1139/cjp-2017-0040
NewmanETCouchRChinnaparedKExtonAPrakashATorrenceRJ. Math. Phys.196569181965JMP.....6..918N10.1063/1.1704351
E. Spallucci, A. Smailagic. arXiv:1709.05795 [gr-qc]
SmalleyLLPhys. Rev. D1974916351974PhRvD...9.1635S10.1103/PhysRevD.9.1635
MaMSZhaoREur. Phys. J. C2017776292017EPJC...77..629M10.1140/epjc/s10052-017-5217-7
HussainIAliSEur. Phys. J. Plus201613127510.1140/epjp/i2016-16275-3
BatistaCEMDaoudaMHFabrisJCPiattellaOFRodriguesDCPhys. Rev. D2012850840082012PhRvD..85h4008B10.1103/PhysRevD.85.084008
BronnikovKAFabrisJCPiattellaOFSantosECGen. Relativ. Gravit.2016481622016GReGr..48..162B10.1007/s10714-016-2152-0
GibbonsGWPerryMJPopeCNClass. Quantum Gravit.20052215032005CQGra..22.1503G10.1088/0264-9381/22/9/002
FabrisJCDaoudaMHPiattellaOFPhys. Lett. B20127112322012PhLB..711..232F10.1016/j.physletb.2012.04.020
CamposJPFabrisJCPerezRPiattellaOFVeltenHEur. Phys. J. C20137323572013EPJC...73.2357C10.1140/epjc/s10052-013-2357-2
RuffiniRWheelerJAPhys. Today197124301971PhT....24A..30R10.1063/1.3022513
BardeenJMPressWHTeukolskySAAstrophys. J.19721783471972ApJ...178..347B10.1086/151796
MoradpourHSalakoIGAdv. High Energy Phys.201620163492796
SekiwaYPhys. Rev. D2006730840092006PhRvD..73h4009S222137910.1103/PhysRevD.73.084009
GhoshSGEur. Phys. J. C2016762222016EPJC...76..222G10.1140/epjc/s10052-016-4051-7
GibbonsGWHawkingSWPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738
RastallPCan. J. Phys.197654661976CaJPh..54...66R10.1139/p76-008
BambiCModestoLPhys. Lett. B20137213292013PhLB..721..329B304248610.1016/j.physletb.2013.03.025
BardeenJMCarterBHawkingSWCommun. Math. Phys.1973311611973CMaPh..31..161B10.1007/BF01645742
ChenSWangBSuRPhys. Rev. D2008771240112008PhRvD..77l4011C243478810.1103/PhysRevD.77.124011
PenroseRRiv. Nuovo Cim.196912521969NCimR...1..252P
NewmanETJanisAIJ. Math. Phys.196569151965JMP.....6..915N10.1063/1.1704350
GlendenningNKSpecial and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes2007New YorkSpringer10.1007/978-0-387-47109-9
HawkingSWCommun. Math. Phys.1975431991975CMaPh..43..199H10.1007/BF02345020
AM Oliveira (6206_CR17) 2015; 92
Z Xu (6206_CR43) 2017; 95
F Atamurotov (6206_CR29) 2016; 76
LL Smalley (6206_CR13) 1974; 9
H Moradpour (6206_CR19) 2016; 2016
T Oteev (6206_CR55) 2016; 361
JM Bardeen (6206_CR41) 1972; 178
P Rastall (6206_CR2) 1976; 54
M Carmeli (6206_CR39) 1977; 103
JD Bekenstein (6206_CR48) 1973; 7
M Visser (6206_CR40) 2018; 782
6206_CR45
MS Ma (6206_CR23) 2017; 77
CEM Batista (6206_CR10) 2012; 85
JP Campos (6206_CR6) 2013; 73
6206_CR3
6206_CR59
KA Bronnikov (6206_CR21) 2016; 48
RP Kerr (6206_CR37) 1963; 11
E Poisson (6206_CR4) 2004
H Moradpour (6206_CR8) 2016; 757
SG Ghosh (6206_CR30) 2015; 75
JM Bardeen (6206_CR49) 1973; 31
Y Sekiwa (6206_CR52) 2006; 73
ET Newman (6206_CR33) 1965; 6
JCS Neves (6206_CR42) 2014; 734
SG Ghosh (6206_CR26) 2016; 76
C Wolf (6206_CR15) 1986; 34
K Ghaderi (6206_CR54) 2016; 903
H Moradpour (6206_CR16) 2017; 77
R Ruffini (6206_CR44) 1971; 24
SG Ghosh (6206_CR31) 2014; 74
H Moradpour (6206_CR18) 2017; 95
C Bambi (6206_CR32) 2011; 26
SG Ghosh (6206_CR38) 2015; 75
C Bambi (6206_CR34) 2013; 721
GW Gibbons (6206_CR46) 1977; 15
6206_CR25
6206_CR24
AS Al-Rawaf (6206_CR9) 1996; 28
TRP Caramês (6206_CR11) 2014; 74
M Azreg-Aïnou (6206_CR35) 2014; 90
S Chen (6206_CR51) 2008; 77
Y Heydarzade (6206_CR22) 2017; 771
S Chandraseckar (6206_CR57) 1980
SW Hawking (6206_CR47) 1975; 43
VV Kiselev (6206_CR27) 2003; 20
GW Gibbons (6206_CR53) 2005; 22
IG Salako (6206_CR12) 2016; 25
NK Glendenning (6206_CR5) 2007
ET Newman (6206_CR36) 1965; 6
R Penrose (6206_CR58) 1969; 1
AM Oliveira (6206_CR20) 2016; 93
JC Fabris (6206_CR7) 2012; 711
LL Smalley (6206_CR14) 1975; 12
I Hussain (6206_CR56) 2016; 131
P Rastall (6206_CR1) 1972; 6
A Nathanail (6206_CR28) 2017; 469
R Tharanath (6206_CR50) 2014; 29
References_xml – reference: V. Majernik, L. Richterek. arXiv:0610070 [gr-qc]
– reference: OliveiraAMVeltenHESFabrisJCPhys. Rev. D2016931240202016PhRvD..93l4020O362546510.1103/PhysRevD.93.124020
– reference: C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: W.H. Freeman 1973)
– reference: MoradpourHHeydarzadeYDarabiFSalakoIGEur. Phys. J. C2017772592017EPJC...77..259M10.1140/epjc/s10052-017-4811-z
– reference: CarmeliMKayeMAnn. Phys.1977103971977AnPhy.103...97C10.1016/0003-4916(77)90263-9
– reference: Z. Xu, J. Wang. arXiv:1711.04542 [gr-qc]
– reference: VisserMPhys. Lett. B2018782832018PhLB..782...83V10.1016/j.physletb.2018.05.028
– reference: BambiCMod. Phys. Lett. A20112624532011MPLA...26.2453B285443110.1142/S0217732311036929
– reference: HussainIAliSEur. Phys. J. Plus201613127510.1140/epjp/i2016-16275-3
– reference: BardeenJMPressWHTeukolskySAAstrophys. J.19721783471972ApJ...178..347B10.1086/151796
– reference: GhoshSGEur. Phys. J. C2016762222016EPJC...76..222G10.1140/epjc/s10052-016-4051-7
– reference: KiselevVVClass. Quantum. Gravit.20032011872003CQGra..20.1187K10.1088/0264-9381/20/6/310
– reference: GibbonsGWHawkingSWPhys. Rev. D19771527381977PhRvD..15.2738G45947910.1103/PhysRevD.15.2738
– reference: ChandraseckarSMathematical Theory of Black Holes1980OxfordOxford University Press
– reference: HeydarzadeYDarabiFPhys. Lett. B20177713652017PhLB..771..365H10.1016/j.physletb.2017.05.064
– reference: ChenSWangBSuRPhys. Rev. D2008771240112008PhRvD..77l4011C243478810.1103/PhysRevD.77.124011
– reference: BardeenJMCarterBHawkingSWCommun. Math. Phys.1973311611973CMaPh..31..161B10.1007/BF01645742
– reference: BronnikovKAFabrisJCPiattellaOFSantosECGen. Relativ. Gravit.2016481622016GReGr..48..162B10.1007/s10714-016-2152-0
– reference: BambiCModestoLPhys. Lett. B20137213292013PhLB..721..329B304248610.1016/j.physletb.2013.03.025
– reference: SekiwaYPhys. Rev. D2006730840092006PhRvD..73h4009S222137910.1103/PhysRevD.73.084009
– reference: GhoshSGPapnoiUEur. Phys. J. C201474830162014EPJC...74.3016G10.1140/epjc/s10052-014-3016-y
– reference: WolfCPhys. Scr.1986341931986PhyS...34..193W10.1088/0031-8949/34/3/001
– reference: SmalleyLLPhys. Rev. D1975123761975PhRvD..12..376S10.1103/PhysRevD.12.376
– reference: MoradpourHSalakoIGAdv. High Energy Phys.201620163492796
– reference: I.P. Lobo, H. Moradpour, J.P. Morais Graça, I.G. Salako. arXiv:1710.04612 [gr-qc]
– reference: OteevTAbdujabbarovAStuchlíkZAhmedovBAstrophys. Space Sci.20163612692016Ap&SS.361..269O10.1007/s10509-016-2850-9
– reference: SmalleyLLPhys. Rev. D1974916351974PhRvD...9.1635S10.1103/PhysRevD.9.1635
– reference: PoissonEA Relativistic Toolkit2004CambridgeCambridge University Press10.1017/CBO9780511606601
– reference: NevesJCSSaaAPhys. Lett. B2014734442014PhLB..734...44N321928110.1016/j.physletb.2014.05.026
– reference: FabrisJCDaoudaMHPiattellaOFPhys. Lett. B20127112322012PhLB..711..232F10.1016/j.physletb.2012.04.020
– reference: Azreg-AïnouMPhys. Rev. D20149060640412014PhRvD..90f4041A10.1103/PhysRevD.90.064041
– reference: BekensteinJDPhys. Rev. D1973723331973PhRvD...7.2333B36634310.1103/PhysRevD.7.2333
– reference: MoradpourHPhys. Lett. B20167571872016PhLB..757..187M10.1016/j.physletb.2016.03.072
– reference: E. Spallucci, A. Smailagic. arXiv:1709.05795 [gr-qc]
– reference: TharanathRVargheseNKuriakoseVCMod. Phys. Lett. A20142914500572014MPLA...2950057T10.1142/S0217732314500576
– reference: GlendenningNKSpecial and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes2007New YorkSpringer10.1007/978-0-387-47109-9
– reference: CaramêsTRPDaoudaMHFabrisJCOliveiraAMPiattellaOFStrokovVEur. Phys. J. C20147431452014EPJC...74.3145C10.1140/epjc/s10052-014-3145-3
– reference: GhoshSGEur. Phys. J. C201575115322015EPJC...75..532G10.1140/epjc/s10052-015-3740-y
– reference: GibbonsGWPerryMJPopeCNClass. Quantum Gravit.20052215032005CQGra..22.1503G10.1088/0264-9381/22/9/002
– reference: RastallPCan. J. Phys.197654661976CaJPh..54...66R10.1139/p76-008
– reference: Al-RawafASTahaMOGen. Relativ. Gravit.1996289351996GReGr..28..935A10.1007/BF02113090
– reference: RastallPPhys. Rev. D1972633571972PhRvD...6.3357R37353310.1103/PhysRevD.6.3357
– reference: AtamurotovFGhoshSGAhmedovBEur. Phys. J. C20167652732016EPJC...76..273A10.1140/epjc/s10052-016-4122-9
– reference: SalakoIGHoundjoMJSJawadAInt. J. Mod. Phys. D20162516500762016IJMPD..2550076S10.1142/S0218271816500760
– reference: OliveiraAMVeltenHESFabrisJCCasariniLPhys. Rev. D2015920440202015PhRvD..92d4020O10.1103/PhysRevD.92.044020
– reference: KerrRPPhys. Rev. Lett.1963112371963PhRvL..11..237K15667410.1103/PhysRevLett.11.237
– reference: BatistaCEMDaoudaMHFabrisJCPiattellaOFRodriguesDCPhys. Rev. D2012850840082012PhRvD..85h4008B10.1103/PhysRevD.85.084008
– reference: RuffiniRWheelerJAPhys. Today197124301971PhT....24A..30R10.1063/1.3022513
– reference: HawkingSWCommun. Math. Phys.1975431991975CMaPh..43..199H10.1007/BF02345020
– reference: MoradpourHSadeghnezhadNCan. J. Phys.20179512572017CaJPh..95.1257M10.1139/cjp-2017-0040
– reference: NewmanETJanisAIJ. Math. Phys.196569151965JMP.....6..915N10.1063/1.1704350
– reference: GhoshSGMaharajSDEur. Phys. J. C20157572015EPJC...75....7G10.1140/epjc/s10052-014-3222-7
– reference: XuZWangJPhys. Rev. D2017950640152017PhRvD..95f4015X378837810.1103/PhysRevD.95.064015
– reference: PenroseRRiv. Nuovo Cim.196912521969NCimR...1..252P
– reference: CamposJPFabrisJCPerezRPiattellaOFVeltenHEur. Phys. J. C20137323572013EPJC...73.2357C10.1140/epjc/s10052-013-2357-2
– reference: NathanailAMostERRezzollaLMon. Not. R. Astron. Soc.2017469L312017MNRAS.469L..31N10.1093/mnrasl/slx035
– reference: GhaderiKMalakolkalamiBNucl. Phys. B2016903102016NuPhB.903...10G10.1016/j.nuclphysb.2015.11.019
– reference: NewmanETCouchRChinnaparedKExtonAPrakashATorrenceRJ. Math. Phys.196569181965JMP.....6..918N10.1063/1.1704351
– reference: MaMSZhaoREur. Phys. J. C2017776292017EPJC...77..629M10.1140/epjc/s10052-017-5217-7
– volume: 6
  start-page: 915
  year: 1965
  ident: 6206_CR33
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704350
– volume: 131
  start-page: 275
  year: 2016
  ident: 6206_CR56
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2016-16275-3
– volume: 76
  start-page: 273
  issue: 5
  year: 2016
  ident: 6206_CR29
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4122-9
– volume: 77
  start-page: 259
  year: 2017
  ident: 6206_CR16
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4811-z
– volume: 103
  start-page: 97
  year: 1977
  ident: 6206_CR39
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(77)90263-9
– ident: 6206_CR24
– volume: 721
  start-page: 329
  year: 2013
  ident: 6206_CR34
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.03.025
– volume: 34
  start-page: 193
  year: 1986
  ident: 6206_CR15
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/34/3/001
– volume: 73
  start-page: 084009
  year: 2006
  ident: 6206_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.084009
– volume: 22
  start-page: 1503
  year: 2005
  ident: 6206_CR53
  publication-title: Class. Quantum Gravit.
  doi: 10.1088/0264-9381/22/9/002
– volume-title: Special and General Relativity: With Applications to White Dwarfs, Neutron Stars and Black Holes
  year: 2007
  ident: 6206_CR5
  doi: 10.1007/978-0-387-47109-9
– volume: 74
  start-page: 3016
  issue: 8
  year: 2014
  ident: 6206_CR31
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-3016-y
– volume: 95
  start-page: 064015
  year: 2017
  ident: 6206_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.064015
– volume: 48
  start-page: 162
  year: 2016
  ident: 6206_CR21
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-016-2152-0
– volume: 92
  start-page: 044020
  year: 2015
  ident: 6206_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.044020
– volume-title: Mathematical Theory of Black Holes
  year: 1980
  ident: 6206_CR57
– volume: 25
  start-page: 1650076
  year: 2016
  ident: 6206_CR12
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271816500760
– volume: 76
  start-page: 222
  year: 2016
  ident: 6206_CR26
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4051-7
– ident: 6206_CR3
– ident: 6206_CR25
– volume: 903
  start-page: 10
  year: 2016
  ident: 6206_CR54
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2015.11.019
– volume: 11
  start-page: 237
  year: 1963
  ident: 6206_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.11.237
– volume: 361
  start-page: 269
  year: 2016
  ident: 6206_CR55
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-016-2850-9
– volume: 757
  start-page: 187
  year: 2016
  ident: 6206_CR8
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.03.072
– volume: 9
  start-page: 1635
  year: 1974
  ident: 6206_CR13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.9.1635
– volume: 24
  start-page: 30
  year: 1971
  ident: 6206_CR44
  publication-title: Phys. Today
  doi: 10.1063/1.3022513
– volume: 31
  start-page: 161
  year: 1973
  ident: 6206_CR49
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01645742
– volume: 469
  start-page: L31
  year: 2017
  ident: 6206_CR28
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnrasl/slx035
– volume: 178
  start-page: 347
  year: 1972
  ident: 6206_CR41
  publication-title: Astrophys. J.
  doi: 10.1086/151796
– volume: 43
  start-page: 199
  year: 1975
  ident: 6206_CR47
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02345020
– volume: 771
  start-page: 365
  year: 2017
  ident: 6206_CR22
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.05.064
– volume: 20
  start-page: 1187
  year: 2003
  ident: 6206_CR27
  publication-title: Class. Quantum. Gravit.
  doi: 10.1088/0264-9381/20/6/310
– volume: 28
  start-page: 935
  year: 1996
  ident: 6206_CR9
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/BF02113090
– volume: 77
  start-page: 629
  year: 2017
  ident: 6206_CR23
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5217-7
– volume: 74
  start-page: 3145
  year: 2014
  ident: 6206_CR11
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-3145-3
– volume: 73
  start-page: 2357
  year: 2013
  ident: 6206_CR6
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2357-2
– volume: 29
  start-page: 1450057
  year: 2014
  ident: 6206_CR50
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732314500576
– volume: 75
  start-page: 7
  year: 2015
  ident: 6206_CR38
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-3222-7
– ident: 6206_CR45
– volume: 2016
  start-page: 3492796
  year: 2016
  ident: 6206_CR19
  publication-title: Adv. High Energy Phys.
– volume: 782
  start-page: 83
  year: 2018
  ident: 6206_CR40
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.05.028
– volume: 15
  start-page: 2738
  year: 1977
  ident: 6206_CR46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2738
– volume: 90
  start-page: 064041
  issue: 6
  year: 2014
  ident: 6206_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.064041
– volume-title: A Relativistic Toolkit
  year: 2004
  ident: 6206_CR4
  doi: 10.1017/CBO9780511606601
– ident: 6206_CR59
– volume: 93
  start-page: 124020
  year: 2016
  ident: 6206_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.124020
– volume: 75
  start-page: 532
  issue: 11
  year: 2015
  ident: 6206_CR30
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3740-y
– volume: 6
  start-page: 918
  year: 1965
  ident: 6206_CR36
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704351
– volume: 734
  start-page: 44
  year: 2014
  ident: 6206_CR42
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.05.026
– volume: 54
  start-page: 66
  year: 1976
  ident: 6206_CR2
  publication-title: Can. J. Phys.
  doi: 10.1139/p76-008
– volume: 6
  start-page: 3357
  year: 1972
  ident: 6206_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.6.3357
– volume: 77
  start-page: 124011
  year: 2008
  ident: 6206_CR51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.124011
– volume: 7
  start-page: 2333
  year: 1973
  ident: 6206_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2333
– volume: 85
  start-page: 084008
  year: 2012
  ident: 6206_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.084008
– volume: 12
  start-page: 376
  year: 1975
  ident: 6206_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.376
– volume: 26
  start-page: 2453
  year: 2011
  ident: 6206_CR32
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732311036929
– volume: 1
  start-page: 252
  year: 1969
  ident: 6206_CR58
  publication-title: Riv. Nuovo Cim.
– volume: 711
  start-page: 232
  year: 2012
  ident: 6206_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.04.020
– volume: 95
  start-page: 1257
  year: 2017
  ident: 6206_CR18
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2017-0040
SSID ssj0002408
Score 2.5919573
Snippet Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation....
Abstract Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Astronomy
Astrophysics and Cosmology
Black holes
Elementary Particles
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Parameters
Particle motion
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Rotation
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA5SELyIP3G1yiKKp-Vls0ne5ljFUj14eFroLWQmSVEe-4rv9eB_70w2r1oK9uJ1k0DyTSaZ2cx8I8QbBJV6A9hFwyXMggsdZIRuTGhTTxa6g8L2-cWenOrPZ-bsr1JfHBM20wPPwC0cosZoTQJQ2uocXO4Dol1qyBFMIdumO2_vTNUzmIm7Sl7RoDsrta65weRNLNLFD-TMOWk4JmHsrOJKNNeupcLef_OMvvFYWu6g4wfifjUe26N50g_FnTQ9EndLECduH4u3qw0_rE_nLfBvuZZL37bfp3YVyARcr9uStPjriTg9_vjtw0lXyyB0aPpx17lsDc0xY5YD9kEvmUkI5BgjaU9SQeXBhBhGwoeUy3HqbLaS9JA8taAiDE_FwbSZ0jPRxhhsb7HPgRAKcoSsDISMToJbwjI1wuxR8Fg5wrlUxdrP-cvSM3p-Rs8Tep7R830jFlfjLmaWjFtHvGeQr3ozy3X5QLL3Vfb-Ntk34jWLyDOPxcSBMufhcrv1n76u_BGZSaManDSNeFc75Q2tBUPNOyBEmPrqWs_Dvah91eStJ5eYKwSQo9wIuRf_n-Z_r_L5_1jlC3FP8UYtgW2H4mD38zK9JEtoB6_Kpv8NmKMCJQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVKKyQuqJQiQguKEKinqLYTO_GxrFoVDhy2VOrN8oztCrTKVt3tgb_H4_UuVBWgXhM7it94nHE87w1jHxBkEAqw8YpKmDnjGogIzRBQB5EidANZ7fOrPr_svlypq7JRJC7Mn-f3KfY_Djc_kHhuXFEGwdBoSXVjnrAdJdqeSjVM9GSz8pJcV2YTtV2jedcVRvDfn3PvY5Q1-x-uzA-OSPOX52yXPS8hY32ysvELthXGPfY0p27i4iX7OJ3Tcfp4XQP9jKup4G39faynLgV-s1mdqYo_99nl2em3yXlTih80qMSwbEzUKr1jxMhbFK7rST8I-OB98pkgnYytct4NIEkj3hBhNmqevC_tz5z00L5i2-N8DK9Z7b3TQqOILiHk-ABRKnARDQfTQx8qptYoWCzK4FSgYmZXrGVuCT27Qs8m9CyhZ0XFjjf9blbaGP_t8YlA3rQmbet8IZncFlexBrFDr1WANDbdRWeicIi67yB6ULpi78lEltQrRkqPuXZ3i4X9fDG1Jyk4GmRruKrYUWkU52ks6ArbICFCglf3Wh6uTW2L_y5s2ghTXYC0Pa4YX5v_9-1_j_LN47scsGeSpmVOXjtk28vbu_A2RTtLeJen-C8rA_O5
  priority: 102
  providerName: Springer Nature
Title Rotating black hole in Rastall theory
URI https://link.springer.com/article/10.1140/epjc/s10052-018-6206-1
https://www.proquest.com/docview/2108744721
https://doaj.org/article/9cc4cd65ebb2464fa9f1acc674bfdb56
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED7WlMFexn6ybF0wY2NPJrZsKfLTSEOzbg9lZAv0TUgnKXQEO6vTh_330ylKSil0LwbbkrE-Sac76e47gI9omCu5wdxySmGmG50bjyaXDoUrg4bemMj2eSHOl_X3S36ZNtz65Fa5l4lRUNsOaY98HEwTYmoPBsuXzZ-cskbR6WpKoXEEx0EESzmA49Ozix-LgywmAq8YX1TVuSjqOsUIB6ti7Da_kSLoCk6-CTIXjDLS3FmeIov_fVl979A0rkXzZ_A0KZHZdNfrz-GRa1_A4-jMif1L-LTo6IC9XWWGtucySoGbXbXZQgdVcL3OYvDi31ewnJ_9mp3nKR1CjryU27zxgod_9OiLCktdT4hRyBTS2jCLHNPMV1xbLQ0j1viGQmi9CKCRxaaZNdVrGLRd695AZq0WpcDS64CQLqTxjBvtsSlMMzETNwS-R0Fh4gqnlBVrtYtjLhShp3boqYCeIvRUOYTxod5mx5bx3xqnBPKhNLFdxwfd9UqlyaMaxBqt4M6Etona68aXGlFMauOt4WIIH6iLFPFZtOQws9I3fa--_VyoaVCXJKuagg_hcyrku9AW1Cn-ICBCFFh3Sp7su1qlGd2r2_E3hGLf_bevH27l24e_-A6eMBqC0XXtBAbb6xv3Pug6WzOCIzn_OkrDOtzNWE1XMRvF3YNwXbLpP-23_Vs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgSXik81tJQIUXGK1nFib3JAqFCWXVp6WFqpN-PPFWiVbJutqv4pfiMeJ9mqqlROvSZOIj9P7Bl73huA91pRmzKlE8OwhJksZaKcVklhNbep99BLFdQ-j_j4JP9-yk7X4G_PhcG0yn5ODBO1qTXukQ98aIJK7T5g-bQ4S7BqFJ6u9iU0WrM4sFeXPmRrPk72_fjuUjr6evxlnHRVBRLN0mKZlI4zSrjTjmQ6lfkQhXkUKYzxxmippC5j0shCURRfL5GJ6rj_NgY-khqV-fc-gId55ldyZKaPvq1mfpQLC2ymLE84yfOOkexjmIFd_NHI1yMMMyGKhFOsf3NjMQw1A26vDLeOaMPKN3oKG53LGu-1NvYM1mz1HB6F1FHdvIDdaY3H-dUsVrgZGGPB3fh3FU-ldzzn8zhQJa9ewsm9wPQK1qu6spsQGyN5ynXqpEdIkkI5ypR0uiSqHKqhjYD1KAjdKZNjgYy5aFnTRCB6okVPePQEoifSCAar5xatNsd_n_iMIK9ao7Z2uFCfz0T3q4pS61wbzqzyfeO5k6VLpdZ8mCtnFOMRvMMhEqieUWF6zkxeNI2Y_JyKPe-cFTQrCYvgQ9fI1b4vWnZsB48ICm7daLndD7Xo5o9GXFt7BKQf_uvbd_fy9d1vfAuPx8c_DsXh5OhgC55QNMeQNLcN68vzC_vGe1lLtRNMO4Zf9_0v_QMgJTN9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDS29lD6Jm7Q1paEns7LWku1DKUmTJduUJWwbyE3Vc2lZ7E28oeSv9ddVY8sbQiA95WpLxvpmJM1IM98AfNCK2pQpnRiGJcxkKRPltEoKq7lNvYVeqpbtc8qPTrOvZ-xsA_72uTAYVtmvie1CbWqNZ-RD75ogU7t3WIYuhEWcHIw_L88TrCCFN619OY1ORY7t1R_vvjWfJgde1ruUjg9_fDlKQoWBRLO0WCWl44wS7rQjI53KLEeSHkUKY7xiWiqpGzFpZKEoErGXmJXquP8PdIIkNWrkv_sANnP0igawuX84PZmt9wEkD2tzm0ZZwkmWhfxk79EM7fK3xuw9wjAuokg4xWo4N7bGtoLA7X3i1oVtuw-On8KTYMDGe53GPYMNWz2Hh20gqW5ewO6sxsv9ah4rPBqMsfxu_KuKZ9KboYtF3CZOXr2E03sB6hUMqrqyWxAbI3nKdeqkR0iSQjnKlHS6JKrMVW4jYD0KQgeeciyXsRBdDjURiJ7o0BMePYHoiTSC4brfsmPq-G-PfQR53RqZttsH9cVchIkrSq0zbTizyo-NZ06WLpVa8zxTzijGI3iPIhLIpVGhVs7lZdOIyfeZ2POmWkFHJWERfAyNXO3HomXIffCIIP3WjZY7vahFWE0aca37EZBe_Nev7x7l67u_-A4e-Xkkvk2mx9vwmKI2thF0OzBYXVzaN97kWqm3Qbdj-Hnf0-kf7qI5Dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotating+black+hole+in+Rastall+theory&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Kumar%2C+Rahul&rft.au=Ghosh%2C+Sushant+G&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=78&rft.issue=9&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-018-6206-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon