Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectr...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5289 - 11 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-41030-1 |
Cover
Loading…
Abstract | Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na
+
ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement. |
---|---|
AbstractList | Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na
+
ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na + ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement. Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Abstract Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement. |
ArticleNumber | 5289 |
Author | Radjenovic, Petar Wang, Xue Wang, Xiao-Ting Li, Shu-Min Zhao, Yu Zhang, Yu-Jin Le, Jia-Bo Chen, Xing Li, Jian-Feng Lin, Xiu-Mei Wang, Yao-Hui Dong, Jin-Chao |
Author_xml | – sequence: 1 givenname: Xing surname: Chen fullname: Chen, Xing organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 2 givenname: Xiao-Ting surname: Wang fullname: Wang, Xiao-Ting organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 3 givenname: Jia-Bo surname: Le fullname: Le, Jia-Bo organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 4 givenname: Shu-Min surname: Li fullname: Li, Shu-Min organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 5 givenname: Xue surname: Wang fullname: Wang, Xue organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 6 givenname: Yu-Jin surname: Zhang fullname: Zhang, Yu-Jin organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 7 givenname: Petar surname: Radjenovic fullname: Radjenovic, Petar organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 8 givenname: Yu surname: Zhao fullname: Zhao, Yu organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 9 givenname: Yao-Hui surname: Wang fullname: Wang, Yao-Hui organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University – sequence: 10 givenname: Xiu-Mei orcidid: 0000-0001-9692-8855 surname: Lin fullname: Lin, Xiu-Mei email: xiu-mei.lin@xmu.edu.cn organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University – sequence: 11 givenname: Jin-Chao orcidid: 0000-0001-7776-6360 surname: Dong fullname: Dong, Jin-Chao email: jcdong@xmu.edu.cn organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 12 givenname: Jian-Feng orcidid: 0000-0003-1598-6856 surname: Li fullname: Li, Jian-Feng email: Li@xmu.edu.cn organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) |
BookMark | eNp9kk1vFDEMhkeoiJalf4BTJC5cBpJJZiY5IVTxUakSEoJz5M04u9lmk5LMbNUTf53MTgW0h-YSy_b72LL9sjoJMWBVvWb0HaNcvs-Cia6vacNrURy0Zs-qs4YKVrO-4Sf_2afVec47Wh5XTArxojrlfSdkT-lZ9fs7HhC8CxsybpGk6JFES1wYMVkwDjy5hWITCAO5xrslssfBFW8mMJI0FWFw057kaZYUrwtHGPjrmYxkezekuMFA8BD9NLoYSEIws_Gqem7BZzy__1fVz8-fflx8ra--fbm8-HhVm5bJsVYGcWj6ruustH0HStpBKdW0ljMGhpsWB9ZTa7miLQWpWkDoBWssEwoU56vqcuEOEXb6Jrk9pDsdwemjI6aNhjQ641G3XeFYJcxaNmKupewaxCDWveW26VRhfVhYN9O6TMJgGBP4B9CHkeC2ehMPmlHRyZayQnh7T0jx14R51HuXDXoPAeOUdSNb1dFWlu2uqjePUndxSqHMas6SknZN35esZskyKeac0P7thlE934te7kUXoj7ei567kI9Exo0wb6V07fzTUr5Ic6kTNpj-dfWE6g_v0ddI |
CitedBy_id | crossref_primary_10_1002_adma_202411942 crossref_primary_10_1002_adma_202405386 crossref_primary_10_1002_anie_202502227 crossref_primary_10_1021_acsanm_4c05845 crossref_primary_10_1016_j_nanoen_2025_110873 crossref_primary_10_1002_smll_202311076 crossref_primary_10_1016_j_fuel_2024_133743 crossref_primary_10_1021_acs_est_4c03949 crossref_primary_10_1016_j_cej_2025_161070 crossref_primary_10_1016_j_nanoen_2024_109481 crossref_primary_10_1021_acsaem_4c00076 crossref_primary_10_1002_ange_202400069 crossref_primary_10_1016_j_cej_2025_159795 crossref_primary_10_1039_D4CC02382J crossref_primary_10_3390_catal14080491 crossref_primary_10_1016_j_jpowsour_2024_235743 crossref_primary_10_1002_ange_202317220 crossref_primary_10_1016_j_jechem_2024_02_006 crossref_primary_10_1016_j_seppur_2024_128948 crossref_primary_10_1016_j_apcatb_2024_124325 crossref_primary_10_1002_smll_202411883 crossref_primary_10_1016_j_electacta_2024_144685 crossref_primary_10_1002_advs_202403206 crossref_primary_10_1016_j_actamat_2024_120630 crossref_primary_10_1002_anie_202421821 crossref_primary_10_1016_j_jcis_2025_02_066 crossref_primary_10_1021_acsami_4c19204 crossref_primary_10_1002_advs_202411845 crossref_primary_10_1002_anie_202319618 crossref_primary_10_1002_anie_202402171 crossref_primary_10_1016_j_jwpe_2024_106062 crossref_primary_10_1002_smsc_202400610 crossref_primary_10_1002_ange_202422091 crossref_primary_10_1016_j_apcatb_2023_123644 crossref_primary_10_1021_acs_jpcc_4c04324 crossref_primary_10_1039_D4TA07387H crossref_primary_10_1002_adma_202417374 crossref_primary_10_1021_acs_analchem_4c01985 crossref_primary_10_1002_ange_202414518 crossref_primary_10_1002_aenm_202404714 crossref_primary_10_1002_chem_202401373 crossref_primary_10_1021_jacs_4c10613 crossref_primary_10_1016_j_esci_2024_100352 crossref_primary_10_1016_j_jcis_2025_02_103 crossref_primary_10_1016_j_apcatb_2025_125268 crossref_primary_10_1021_jacs_4c11788 crossref_primary_10_1002_ange_202421821 crossref_primary_10_1002_adfm_202424597 crossref_primary_10_1002_anie_202411396 crossref_primary_10_1002_anie_202413334 crossref_primary_10_1002_adma_202410039 crossref_primary_10_1016_j_nanoen_2024_110216 crossref_primary_10_1016_j_apsusc_2025_162854 crossref_primary_10_1039_D4TA06305H crossref_primary_10_1039_D4EY00252K crossref_primary_10_1557_s43579_024_00666_w crossref_primary_10_1021_acscatal_4c03031 crossref_primary_10_1016_j_cej_2024_153433 crossref_primary_10_1002_adfm_202408872 crossref_primary_10_1021_jacs_4c05042 crossref_primary_10_1021_jacs_4c00948 crossref_primary_10_1002_adfm_202314899 crossref_primary_10_1038_s41467_024_44727_z crossref_primary_10_1021_acsnano_5c00318 crossref_primary_10_1016_j_apcata_2025_120148 crossref_primary_10_1016_j_apcatb_2024_124465 crossref_primary_10_1016_j_fuel_2024_131472 crossref_primary_10_1002_adma_202412108 crossref_primary_10_1039_D4QI00854E crossref_primary_10_1016_j_jallcom_2024_178180 crossref_primary_10_1038_s41467_024_55230_w crossref_primary_10_1038_s41467_024_50117_2 crossref_primary_10_1007_s40820_024_01420_6 crossref_primary_10_1002_advs_202406453 crossref_primary_10_1039_D4RA07061E crossref_primary_10_1002_anie_202423301 crossref_primary_10_1039_D4QI00959B crossref_primary_10_1002_smtd_202401701 crossref_primary_10_1002_celc_202400076 crossref_primary_10_1007_s12274_024_6726_y crossref_primary_10_1002_adma_202502127 crossref_primary_10_1016_j_cej_2024_151251 crossref_primary_10_1021_jacs_4c13863 crossref_primary_10_1002_adfm_202420728 crossref_primary_10_1002_smll_202408887 crossref_primary_10_1002_anie_202317220 crossref_primary_10_1002_aenm_202402558 crossref_primary_10_1002_aenm_202403009 crossref_primary_10_1039_D4QI00053F crossref_primary_10_1016_j_scib_2024_03_044 crossref_primary_10_1016_j_cej_2025_161348 crossref_primary_10_1016_j_jallcom_2024_177417 crossref_primary_10_1021_acsnano_4c06192 crossref_primary_10_1039_D4EE01139B crossref_primary_10_1039_D4SC02853H crossref_primary_10_1002_adsu_202500159 crossref_primary_10_1002_smll_202405838 crossref_primary_10_1002_smll_202400662 crossref_primary_10_1002_ange_202423301 crossref_primary_10_1016_j_electacta_2024_145348 crossref_primary_10_1039_D4EE02746A crossref_primary_10_1038_s44160_025_00769_9 crossref_primary_10_1039_D4QI01723D crossref_primary_10_1021_acs_inorgchem_4c05582 crossref_primary_10_1002_ange_202402171 crossref_primary_10_1016_j_cej_2024_156764 crossref_primary_10_1039_D4EE00950A crossref_primary_10_1039_D4NA00167B crossref_primary_10_1016_j_ijhydene_2024_03_230 crossref_primary_10_1016_j_ijhydene_2025_01_340 crossref_primary_10_1039_D4RA02063D crossref_primary_10_1021_acscatal_4c05712 crossref_primary_10_1002_adma_202412031 crossref_primary_10_1002_ange_202413334 crossref_primary_10_1007_s41918_024_00219_8 crossref_primary_10_1016_j_jechem_2025_01_073 crossref_primary_10_1002_ange_202411396 crossref_primary_10_1002_solr_202400523 crossref_primary_10_1016_j_seppur_2024_127538 crossref_primary_10_1002_adma_202410422 crossref_primary_10_1038_s41467_024_51370_1 crossref_primary_10_1016_j_fuel_2024_131250 crossref_primary_10_1039_D4TA08359H crossref_primary_10_1002_ange_202502227 crossref_primary_10_1007_s12598_024_02903_6 crossref_primary_10_1016_j_apcatb_2024_124074 crossref_primary_10_1038_s41467_024_54601_7 crossref_primary_10_1002_smll_202311667 crossref_primary_10_1016_j_ensm_2025_104110 crossref_primary_10_1038_s41467_024_53905_y crossref_primary_10_1002_smtd_202401449 crossref_primary_10_1021_acs_iecr_3c04667 crossref_primary_10_1038_s41467_025_56966_9 crossref_primary_10_1038_s41467_024_50942_5 crossref_primary_10_1021_acsenergylett_4c01488 crossref_primary_10_1002_anie_202400069 crossref_primary_10_1002_smll_202412123 crossref_primary_10_1016_j_jphotochem_2024_116226 crossref_primary_10_1002_adfm_202315675 crossref_primary_10_1016_j_apcatb_2024_124512 crossref_primary_10_3389_fenrg_2024_1433103 crossref_primary_10_1002_adfm_202414758 crossref_primary_10_1016_j_cej_2025_161683 crossref_primary_10_1016_j_jallcom_2025_179115 crossref_primary_10_1039_D4QI00518J crossref_primary_10_3390_catal13121497 crossref_primary_10_1016_j_apcatb_2025_125110 crossref_primary_10_3390_catal14100689 crossref_primary_10_1002_ange_202319618 crossref_primary_10_1002_ange_202400888 crossref_primary_10_1002_smll_202411061 crossref_primary_10_1016_j_jece_2025_116232 crossref_primary_10_1002_smll_202411181 crossref_primary_10_1021_acs_chemrev_3c00806 crossref_primary_10_1007_s12598_024_03168_9 crossref_primary_10_1002_smll_202407881 crossref_primary_10_1021_jacs_4c03622 crossref_primary_10_1063_5_0232980 crossref_primary_10_1002_aenm_202401716 crossref_primary_10_1016_j_nexres_2024_100094 crossref_primary_10_1021_acs_jpcc_4c03568 crossref_primary_10_1002_anie_202422091 crossref_primary_10_1016_j_checat_2024_101152 crossref_primary_10_1016_j_surfin_2024_104390 crossref_primary_10_1021_jacs_4c14529 crossref_primary_10_1002_anie_202501040 crossref_primary_10_1021_acsnano_4c14866 crossref_primary_10_1039_D4GC03761H crossref_primary_10_1002_ange_202413033 crossref_primary_10_1016_j_apcatb_2024_124388 crossref_primary_10_1039_D4EY00205A crossref_primary_10_1021_acsnano_4c15336 crossref_primary_10_1016_j_apsusc_2024_160209 crossref_primary_10_1016_j_jcis_2025_03_004 crossref_primary_10_1016_j_jmst_2024_06_013 crossref_primary_10_1021_acs_inorgchem_4c02353 crossref_primary_10_1002_anie_202414518 crossref_primary_10_1039_D4GC01788A crossref_primary_10_1002_aenm_202400065 crossref_primary_10_1016_j_cej_2024_155880 crossref_primary_10_1002_adsu_202400387 crossref_primary_10_1002_adfm_202418617 crossref_primary_10_1021_acsami_3c18427 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1007_s10562_024_04857_x crossref_primary_10_1016_j_jcis_2025_02_168 crossref_primary_10_1038_s41467_024_54513_6 crossref_primary_10_1039_D4TA03969F crossref_primary_10_1002_anie_202400888 crossref_primary_10_1002_ange_202501040 crossref_primary_10_1002_anie_202413033 |
Cites_doi | 10.1038/nchem.330 10.1021/jacs.0c01104 10.1016/j.cattod.2015.08.016 10.1021/jacsau.1c00281 10.1002/anie.201710556 10.1021/acsenergylett.1c00246 10.1021/acs.accounts.9b00545 10.1021/jacs.6b11291 10.1038/s41929-022-00851-x 10.1039/b919266b 10.1002/adma.201800676 10.1016/j.nanoen.2016.04.017 10.1038/nmat4030 10.1002/anie.202102803 10.1063/1.3382344 10.1038/nmat3313 10.1021/acs.nanolett.2c01744 10.1039/D1EE02380B 10.1039/c3ee00045a 10.1021/acsaem.1c00308 10.1021/jacs.8b13228 10.1016/0022-2860(93)87044-A 10.1038/nchem.1574 10.1007/s40820-019-0337-2 10.1002/anie.202006722 10.1038/249724a0 10.1039/D0TA12424A 10.1021/acs.chemrev.1c00331 10.1038/ncomms6848 10.1038/nnano.2016.304 10.1039/b711218a 10.1021/acsami.7b14399 10.1038/s41467-020-20314-w 10.1126/sciadv.1501602 10.1126/science.180.4093.1325 10.1038/s41586-021-04068-z 10.1038/nenergy.2017.31 10.1021/acscatal.8b03053 10.1038/s41929-022-00846-8 10.1039/C9SC03831K 10.1038/physci241020a0 10.1021/acs.chemrev.9b00248 10.1021/jacsau.1c00108 10.1038/s41929-021-00663-5 10.1002/aenm.201900624 10.1021/jp047349j 10.1038/s41467-020-15069-3 10.1016/j.jelechem.2021.115150 10.1002/anie.202207197 10.1038/s41560-020-00710-8 10.1039/C9NH00485H 10.1038/s41893-020-0509-6 10.1039/D0EE01754J 10.1103/PhysRevLett.55.2471 10.1039/C8CP00615F 10.1002/adma.201806326 10.1016/j.joule.2021.07.007 10.1021/acscatal.9b02457 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-41030-1 |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269 PMC10468501 10_1038_s41467_023_41030_1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-9ceed27666f8f76a98fd99925f311ac3c5ed170ff39050a895aea7412f149a933 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:18:00 EDT 2025 Thu Aug 21 18:36:02 EDT 2025 Thu Sep 04 19:48:30 EDT 2025 Wed Aug 13 06:11:43 EDT 2025 Tue Jul 01 02:10:33 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-9ceed27666f8f76a98fd99925f311ac3c5ed170ff39050a895aea7412f149a933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1598-6856 0000-0001-9692-8855 0000-0001-7776-6360 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41030-1 |
PMID | 37648700 |
PQID | 2858806277 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468501 proquest_miscellaneous_2859605802 proquest_journals_2858806277 crossref_primary_10_1038_s41467_023_41030_1 crossref_citationtrail_10_1038_s41467_023_41030_1 springer_journals_10_1038_s41467_023_41030_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-30 |
PublicationDateYYYYMMDD | 2023-08-30 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR29) 2022; 5 Zhang, Duan, Radjenovic, Tian, Li (CR32) 2020; 53 Ledezma-Yanez (CR25) 2017; 2 Sheng (CR16) 2015; 6 Bae, Mahmood, Jeon, Baek (CR22) 2020; 5 Shah (CR54) 2022; 8 Mahmood (CR21) 2017; 12 Liu (CR41) 2019; 14 Grimme, Antony, Ehrlich, Krieg (CR60) 2010; 132 Li (CR12) 2018; 30 Subbaraman (CR40) 2012; 11 Jiang (CR48) 2007; 44 Zhu, Qin, Yao, Shao (CR34) 2020; 142 Tiwari (CR46) 2020; 3 Dawson (CR1) 1974; 249 Strmcnik, Lopes, Genorio, Stamenkovic, Markovic (CR20) 2016; 29 Li (CR49) 2010; 12 Le (CR52) 2021; 1 Rossmeisl, Chan, Skúlason, Björketun, Tripkovic (CR17) 2016; 262 Yang (CR23) 2021; 13 Frens (CR58) 1973; 241 Le, Fan, Perez-Martinez, Cuesta, Cheng (CR51) 2018; 20 Li (CR50) 2014; 13 Anantharaj (CR9) 2021; 9 Zhu (CR27) 2021; 4 Lin (CR37) 2022; 22 Huang, Attard (CR26) 2021; 896 Huang (CR28) 2021; 1 Creus (CR55) 2018; 8 Wang (CR47) 2021; 600 Rizo (CR30) 2022; 13 McCrum, Koper (CR44) 2020; 5 Zhu, Hu, Zhao, Lee, Wong (CR4) 2020; 120 Dubouis, Grimaud (CR19) 2019; 10 Zheng, Jiao, Vasileff, Qiao (CR8) 2018; 57 Nørskov (CR61) 2004; 108 Mao (CR43) 2020; 59 Kweon (CR24) 2020; 11 Shi (CR57) 2021; 12 Majumdar, Deutch, Prasher, Griffin (CR3) 2021; 5 Goyal, Koper (CR35) 2021; 60 Zheng (CR11) 2016; 138 Winsche, Hoffman, Salzano (CR2) 1973; 180 Strmcnik (CR39) 2009; 1 Pearson (CR36) 1993; 300 Shao (CR10) 2021; 4 Sheng, Myint, Chen, Yan (CR15) 2013; 6 Sultan (CR45) 2019; 9 Sun (CR7) 2020; 32 Zhao (CR53) 2022; 61 Hansen (CR6) 2021; 6 Li (CR5) 2020; 12 Yang (CR14) 2022; 122 Zheng, Sheng, Zhuang, Xu, Yan (CR13) 2016; 2 Dang (CR38) 2021; 14 Cho, Yu, Lee, Kim, Lee (CR56) 2018; 10 Liu (CR42) 2020; 13 Huang, Kooyman, Koper (CR31) 2016; 7 Yu (CR33) 2019; 9 Car, Parrinello (CR59) 1985; 55 Strmcnik (CR18) 2013; 5 RY Shao (41030_CR10) 2021; 4 YF Huang (41030_CR31) 2016; 7 K Zhao (41030_CR53) 2022; 61 J Mahmood (41030_CR21) 2017; 12 A Majumdar (41030_CR3) 2021; 5 WD Li (41030_CR12) 2018; 30 H Zhang (41030_CR32) 2020; 53 GQ Li (41030_CR50) 2014; 13 JK Dawson (41030_CR1) 1974; 249 S Grimme (41030_CR60) 2010; 132 JN Tiwari (41030_CR46) 2020; 3 Y Zheng (41030_CR8) 2018; 57 R Rizo (41030_CR30) 2022; 13 Y Shi (41030_CR57) 2021; 12 D Strmcnik (41030_CR20) 2016; 29 S Anantharaj (41030_CR9) 2021; 9 J Zheng (41030_CR13) 2016; 2 ES Liu (41030_CR42) 2020; 13 AH Shah (41030_CR54) 2022; 8 JB Le (41030_CR51) 2018; 20 Y Yang (41030_CR14) 2022; 122 YX Jiang (41030_CR48) 2007; 44 YB Cho (41030_CR56) 2018; 10 A Goyal (41030_CR35) 2021; 60 ES Liu (41030_CR41) 2019; 14 X Li (41030_CR5) 2020; 12 D Strmcnik (41030_CR39) 2009; 1 JB Le (41030_CR52) 2021; 1 RG Pearson (41030_CR36) 1993; 300 X-M Lin (41030_CR37) 2022; 22 JK Nørskov (41030_CR61) 2004; 108 SQ Zhu (41030_CR27) 2021; 4 JN Hansen (41030_CR6) 2021; 6 YJ Yang (41030_CR23) 2021; 13 J Creus (41030_CR55) 2018; 8 WC Sheng (41030_CR15) 2013; 6 J Rossmeisl (41030_CR17) 2016; 262 JF Li (41030_CR49) 2010; 12 D Strmcnik (41030_CR18) 2013; 5 R Subbaraman (41030_CR40) 2012; 11 G Frens (41030_CR58) 1973; 241 N Dubouis (41030_CR19) 2019; 10 J Yu (41030_CR33) 2019; 9 S Sultan (41030_CR45) 2019; 9 WE Winsche (41030_CR2) 1973; 180 IT McCrum (41030_CR44) 2020; 5 HM Sun (41030_CR7) 2020; 32 BT Huang (41030_CR28) 2021; 1 I Ledezma-Yanez (41030_CR25) 2017; 2 BG Mao (41030_CR43) 2020; 59 WC Sheng (41030_CR16) 2015; 6 SY Bae (41030_CR22) 2020; 5 SQ Zhu (41030_CR34) 2020; 142 R Car (41030_CR59) 1985; 55 Y Zheng (41030_CR11) 2016; 138 DH Kweon (41030_CR24) 2020; 11 YH Wang (41030_CR47) 2021; 600 J Huang (41030_CR26) 2021; 896 P Li (41030_CR29) 2022; 5 J Zhu (41030_CR4) 2020; 120 YL Dang (41030_CR38) 2021; 14 |
References_xml | – volume: 22 start-page: 5544 year: 2022 end-page: 5552 ident: CR37 article-title: In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core-shell nanoparticle-enhanced Raman spectroscopy publication-title: Nano Lett. – volume: 13 year: 2021 ident: CR23 article-title: Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction publication-title: Nano-Micro Lett. – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: CR4 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. – volume: 55 start-page: 2471 year: 1985 end-page: 2474 ident: CR59 article-title: Unified approach for molecular dynamics and density-functional theory publication-title: Phys. Rev. Lett. – volume: 249 start-page: 724 year: 1974 end-page: 726 ident: CR1 article-title: Prospects for hydrogen as an energy resource publication-title: Nature – volume: 61 start-page: e202207197 year: 2022 ident: CR53 article-title: Enhancing Hydrogen oxidation and evolution kinetics by tuning the interfacial hydrogen-bonding environment on functionalized platinum surfaces publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 3232 year: 2019 end-page: 3239 ident: CR41 article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts publication-title: J. Am. Chem. Soc. – volume: 262 start-page: 36 year: 2016 end-page: 40 ident: CR17 article-title: On the pH dependence of electrochemical proton transfer barriers publication-title: Catal. Today – volume: 5 start-page: 900 year: 2022 end-page: 911 ident: CR29 article-title: Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt publication-title: Nat. Catal. – volume: 29 start-page: 29 year: 2016 end-page: 36 ident: CR20 article-title: Design principles for hydrogen evolution reaction catalyst materials publication-title: Nano Energy – volume: 44 start-page: 4608 year: 2007 end-page: 4610 ident: CR48 article-title: Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy publication-title: Chem. Comm. – volume: 13 start-page: 3064 year: 2020 end-page: 3074 ident: CR42 article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media publication-title: Energy Environ. Sci. – volume: 241 start-page: 20 year: 1973 end-page: 22 ident: CR58 article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions publication-title: Nat. Phys. Sci. – volume: 6 start-page: 1175 year: 2021 end-page: 1180 ident: CR6 article-title: Is there anything better than Pt for HER? publication-title: ACS Energy Lett. – volume: 142 start-page: 8748 year: 2020 end-page: 8754 ident: CR34 article-title: pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 891 year: 2020 end-page: 899 ident: CR44 article-title: The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum publication-title: Nat. Energy – volume: 6 start-page: 1509 year: 2013 end-page: 1512 ident: CR15 article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces publication-title: Energy Environ. Sci. – volume: 13 start-page: 1 year: 2022 end-page: 7 ident: CR30 article-title: Investigating the presence of adsorbed species on Pt steps at low potentials publication-title: Nat. Commun. – volume: 10 start-page: 541 year: 2018 end-page: 549 ident: CR56 article-title: Fundamental study of facile and stable hydrogen evolution reaction at electrospun Ir and Ru mixed oxide nanofibers publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR61 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B – volume: 57 start-page: 7568 year: 2018 end-page: 7579 ident: CR8 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 9165 year: 2019 end-page: 9181 ident: CR19 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. – volume: 5 start-page: 43 year: 2020 end-page: 56 ident: CR22 article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction publication-title: Nanoscale Horiz. – volume: 122 start-page: 6117 year: 2022 end-page: 6321 ident: CR14 article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies publication-title: Chem. Rev. – volume: 2 start-page: 1 year: 2017 end-page: 7 ident: CR25 article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat. Energy – volume: 300 start-page: 519 year: 1993 end-page: 525 ident: CR36 article-title: Bond energies, force constants and electro-negativities publication-title: J. Mol. Struct. – volume: 1 start-page: 569 year: 2021 end-page: 577 ident: CR52 article-title: Modeling electrified Pt(111)-H /water interfaces from ab initio molecular dynamics publication-title: JACS Au – volume: 12 start-page: 441 year: 2017 end-page: 446 ident: CR21 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. – volume: 59 start-page: 15232 year: 2020 end-page: 15237 ident: CR43 article-title: Identifying the adsorbed hydroxyl transfer kinetics as a descriptor of alkaline hydrogen evolution reaction publication-title: Angew. Chem., Int. Ed. – volume: 132 start-page: 154104 year: 2010 ident: CR60 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – volume: 4 start-page: 711 year: 2021 end-page: 718 ident: CR27 article-title: The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum publication-title: Nat. Catal. – volume: 1 start-page: 1674 year: 2021 end-page: 1687 ident: CR28 article-title: Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics publication-title: JACS Au – volume: 14 start-page: 5433 year: 2021 end-page: 5443 ident: CR38 article-title: Partially reduced Ru/RuO composites as efficient and pH-universal electro-catalysts for hydrogen evolution publication-title: Energy Environ. Sci. – volume: 11 start-page: 550 year: 2012 end-page: 557 ident: CR40 article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts publication-title: Nat. Mater. – volume: 7 start-page: 1 year: 2016 end-page: 7 ident: CR31 article-title: Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy publication-title: Nat. Commun. – volume: 12 start-page: 2493 year: 2010 end-page: 2502 ident: CR49 article-title: SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1 year: 2021 end-page: 11 ident: CR57 article-title: Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction publication-title: Nat. Commun. – volume: 9 start-page: 6710 year: 2021 end-page: 6731 ident: CR9 article-title: Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electro-catalytic water splitting publication-title: J. Mater. Chem. A – volume: 12 start-page: 1 year: 2020 end-page: 29 ident: CR5 article-title: Water splitting: from electrode to green energy system publication-title: Nano-Micro Lett. – volume: 2 start-page: e1501602 year: 2016 ident: CR13 article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy publication-title: Sci. Adv. – volume: 1 start-page: 466 year: 2009 end-page: 472 ident: CR39 article-title: The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum publication-title: Nat. Chem. – volume: 600 start-page: 81 year: 2021 end-page: 85 ident: CR47 article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water publication-title: Nature – volume: 30 start-page: 1800676 year: 2018 ident: CR12 article-title: Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media publication-title: Adv. Mater. – volume: 13 start-page: 802 year: 2014 end-page: 806 ident: CR50 article-title: Hydrogen storage in Pd nanocrystals covered with a metal–organic framework publication-title: Nat. Mater. – volume: 9 start-page: 9973 year: 2019 end-page: 10011 ident: CR33 article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting publication-title: ACS Catal. – volume: 8 start-page: 923 year: 2022 end-page: 933 ident: CR54 article-title: The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction publication-title: Nat. Catal. – volume: 9 start-page: 1900624 year: 2019 ident: CR45 article-title: Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting publication-title: Adv. Energy Mater. – volume: 138 start-page: 16174 year: 2016 end-page: 16181 ident: CR11 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. – volume: 6 year: 2015 ident: CR16 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat. Commun. – volume: 20 start-page: 11554 year: 2018 end-page: 11558 ident: CR51 article-title: Theoretical insight into the vibrational spectra of metal–water interfaces from density functional theory based molecular dynamics publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 11094 year: 2018 end-page: 11102 ident: CR55 article-title: Ligand-capped Ru nanoparticles as efficient electrocatalyst for the hydrogen evolution reaction publication-title: ACS Catal. – volume: 5 start-page: 300 year: 2013 end-page: 306 ident: CR18 article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption publication-title: Nat. Chem. – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR24 article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency publication-title: Nat. Commun. – volume: 180 start-page: 1325 year: 1973 end-page: 1332 ident: CR2 article-title: Hydrogen: its future role in the nation’s energy economy publication-title: Science – volume: 4 start-page: 4284 year: 2021 end-page: 4289 ident: CR10 article-title: Is Pt/C more electrocatalytic than Ru/C for hydrogen evolution in alkaline electrolytes? publication-title: ACS Appl. Energy Mater. – volume: 32 start-page: 1806326 year: 2020 ident: CR7 article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution publication-title: Adv. Mater. – volume: 3 start-page: 556 year: 2020 end-page: 563 ident: CR46 article-title: Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting publication-title: Nat. Sustain. – volume: 5 start-page: 1905 year: 2021 end-page: 1908 ident: CR3 article-title: A framework for a hydrogen economy publication-title: Joule – volume: 53 start-page: 729 year: 2020 end-page: 739 ident: CR32 article-title: Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis publication-title: Acc. Chem. Res. – volume: 896 start-page: 115150 year: 2021 ident: CR26 article-title: Can hydrogen anion be a possible intermediate of the hydrogen electrode reaction? publication-title: J. Electroanal. Chem. – volume: 60 start-page: 13452 year: 2021 end-page: 13462 ident: CR35 article-title: The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 466 year: 2009 ident: 41030_CR39 publication-title: Nat. Chem. doi: 10.1038/nchem.330 – volume: 142 start-page: 8748 year: 2020 ident: 41030_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01104 – volume: 262 start-page: 36 year: 2016 ident: 41030_CR17 publication-title: Catal. Today doi: 10.1016/j.cattod.2015.08.016 – volume: 1 start-page: 1674 year: 2021 ident: 41030_CR28 publication-title: JACS Au doi: 10.1021/jacsau.1c00281 – volume: 57 start-page: 7568 year: 2018 ident: 41030_CR8 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710556 – volume: 6 start-page: 1175 year: 2021 ident: 41030_CR6 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00246 – volume: 53 start-page: 729 year: 2020 ident: 41030_CR32 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00545 – volume: 138 start-page: 16174 year: 2016 ident: 41030_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11291 – volume: 8 start-page: 923 year: 2022 ident: 41030_CR54 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00851-x – volume: 12 start-page: 2493 year: 2010 ident: 41030_CR49 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b919266b – volume: 30 start-page: 1800676 year: 2018 ident: 41030_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201800676 – volume: 29 start-page: 29 year: 2016 ident: 41030_CR20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.017 – volume: 13 start-page: 802 year: 2014 ident: 41030_CR50 publication-title: Nat. Mater. doi: 10.1038/nmat4030 – volume: 60 start-page: 13452 year: 2021 ident: 41030_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102803 – volume: 132 start-page: 154104 year: 2010 ident: 41030_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 11 start-page: 550 year: 2012 ident: 41030_CR40 publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 22 start-page: 5544 year: 2022 ident: 41030_CR37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01744 – volume: 14 start-page: 5433 year: 2021 ident: 41030_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02380B – volume: 6 start-page: 1509 year: 2013 ident: 41030_CR15 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 4 start-page: 4284 year: 2021 ident: 41030_CR10 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00308 – volume: 13 start-page: 1 year: 2022 ident: 41030_CR30 publication-title: Nat. Commun. – volume: 14 start-page: 3232 year: 2019 ident: 41030_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 – volume: 300 start-page: 519 year: 1993 ident: 41030_CR36 publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(93)87044-A – volume: 5 start-page: 300 year: 2013 ident: 41030_CR18 publication-title: Nat. Chem. doi: 10.1038/nchem.1574 – volume: 12 start-page: 1 year: 2020 ident: 41030_CR5 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0337-2 – volume: 59 start-page: 15232 year: 2020 ident: 41030_CR43 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006722 – volume: 249 start-page: 724 year: 1974 ident: 41030_CR1 publication-title: Nature doi: 10.1038/249724a0 – volume: 9 start-page: 6710 year: 2021 ident: 41030_CR9 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA12424A – volume: 122 start-page: 6117 year: 2022 ident: 41030_CR14 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00331 – volume: 6 year: 2015 ident: 41030_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 12 start-page: 441 year: 2017 ident: 41030_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 44 start-page: 4608 year: 2007 ident: 41030_CR48 publication-title: Chem. Comm. doi: 10.1039/b711218a – volume: 13 year: 2021 ident: 41030_CR23 publication-title: Nano-Micro Lett. – volume: 10 start-page: 541 year: 2018 ident: 41030_CR56 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14399 – volume: 12 start-page: 1 year: 2021 ident: 41030_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 2 start-page: e1501602 year: 2016 ident: 41030_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 180 start-page: 1325 year: 1973 ident: 41030_CR2 publication-title: Science doi: 10.1126/science.180.4093.1325 – volume: 600 start-page: 81 year: 2021 ident: 41030_CR47 publication-title: Nature doi: 10.1038/s41586-021-04068-z – volume: 2 start-page: 1 year: 2017 ident: 41030_CR25 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 8 start-page: 11094 year: 2018 ident: 41030_CR55 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03053 – volume: 5 start-page: 900 year: 2022 ident: 41030_CR29 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 10 start-page: 9165 year: 2019 ident: 41030_CR19 publication-title: Chem. Sci. doi: 10.1039/C9SC03831K – volume: 241 start-page: 20 year: 1973 ident: 41030_CR58 publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 – volume: 120 start-page: 851 year: 2020 ident: 41030_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 1 start-page: 569 year: 2021 ident: 41030_CR52 publication-title: JACS Au doi: 10.1021/jacsau.1c00108 – volume: 4 start-page: 711 year: 2021 ident: 41030_CR27 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 9 start-page: 1900624 year: 2019 ident: 41030_CR45 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900624 – volume: 108 start-page: 17886 year: 2004 ident: 41030_CR61 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 11 start-page: 1 year: 2020 ident: 41030_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15069-3 – volume: 896 start-page: 115150 year: 2021 ident: 41030_CR26 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115150 – volume: 61 start-page: e202207197 year: 2022 ident: 41030_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207197 – volume: 5 start-page: 891 year: 2020 ident: 41030_CR44 publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 5 start-page: 43 year: 2020 ident: 41030_CR22 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00485H – volume: 7 start-page: 1 year: 2016 ident: 41030_CR31 publication-title: Nat. Commun. – volume: 3 start-page: 556 year: 2020 ident: 41030_CR46 publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0509-6 – volume: 13 start-page: 3064 year: 2020 ident: 41030_CR42 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01754J – volume: 55 start-page: 2471 year: 1985 ident: 41030_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2471 – volume: 20 start-page: 11554 year: 2018 ident: 41030_CR51 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00615F – volume: 32 start-page: 1806326 year: 2020 ident: 41030_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201806326 – volume: 5 start-page: 1905 year: 2021 ident: 41030_CR3 publication-title: Joule doi: 10.1016/j.joule.2021.07.007 – volume: 9 start-page: 9973 year: 2019 ident: 41030_CR33 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02457 |
SSID | ssj0000391844 |
Score | 2.7213187 |
Snippet | Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be... Abstract Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5289 |
SubjectTerms | 140/133 639/638/161 639/638/161/886 639/638/542/969 Adsorption Catalysis Catalysts Catalytic activity Chemistry Electrolytes Electrons Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Intermediates Laboratories multidisciplinary Nanoparticles Raman spectroscopy Ruthenium Science Science (multidisciplinary) Valence Work functions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIFGQkbhA1fiX2sSCqCgkOiEq9WU7sUVeUbJXdLeqJv94ZJ7s0lYAL19hO4nl4Pns8M4y9SbYKJgUoQxR1qVMLZQtBlKJNFq1NVBIodvjzl_r4RH86Nac3Sn3RnbAxPfBIuAO0yADgdNdaqZs6OAdt0FG3DSiQdQ7dQ5t3YzOV12DlcOuipyiZStmDlc5rApqoUlNprVLMLFFO2D9DmbfvSN5ylGb7c_SA3Z-AIz8cf_ghu5P6R-zuWEry6jH79TVdIubDoRwhHadLg3wJnLJBDBDoXJz_RFg58NBHjoo7tuS4EQSbPKz5QHfd-8XmB19taAg-XfT5ZeH8O7058bOrOCxR4ni6nCSWI-bMkRFP2MnRx28fjsupuELZGWHXpSPrKBvcvYAFoquFiGBRGlBChE51JkXRIO2Vq0wVrDMhBYQfEnBPFZxST9lev-zTM8ZDBUmlGFwTo46E2RXSHhxI3VHliYKJLaF9N2UepwIY5z57wJX1I3M8Msdn5nhRsLe7MRdj3o2_9n5P_Nv1pJzZ-QFKkp8kyf9Lkgq2v-W-nxR55aU1uMLVsmkK9nrXjCpIfpXQp-Um93HkXa5kwexMamY_NG_pF2c5mTf52K2pcArvtgL2--t_nvHz_zHjF-yeJIWgI_Jqn-2th016iRhr3b7K6nQNvgImPA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_gJgQvCAaIwkBB4g2qtUnaJk-ITZsmJCY0MWlvVdrE7MRoR-9uaE_869hp7qZOYq_5alI78S-2YzP23uvMFt5Cal1epso3kDZg8zRvvEZp46QAejv89bg8OlVfzoqzqHBbRLfK9ZkYDmrXt6Qj3xW6QFYrRVV9uvydUtYosq7GFBr32RYewbqYsa29g-NvJxstC8U_10rF1zKZ1LsLFc4GFFWpohRbaT6RSCFw_wRt3vaVvGUwDXLo8Al7HAEk_zxS_Cm757tt9mBMKXm9zR7urzO4PWN_T_wV4kAchiPM4-RIyHvgFCFiAEu6cv4HoebAbec4buaxJrwlQQDK7ZIP5P_ezVe_-GJFXbB03oXB7MVPGtnz82s39MiF3F9FLuaIQ8Nriefs9PDg-_5RGhMupG2R62VqSGKKCm80oKEqrdHgEECKAmSe21a2hXd5lQFIkxWZ1aaw3iIkEYD3LGukfMFmXd_5l4zbDLz0zprKOeUIx0ukAxgQqqVsFAnL1z-9bmM0ckqKcVEHq7jU9UioGglVB0LVecI-bPpcjrE47my9R7TctKQ42qGgH37UcVvWiPcAwKi20ULRig00VjnVVCBBlCZhO2tOqOPmXtQ3rJiwd5tqpC3ZWmzn-1VoY8jinImE6QkHTSY0renm5yHAN9nddZHhEj6ume3m6_9f8au7J_uaPRLE9qQQz3bYbDms_BtEVMvmbdw2_wAQqyJf priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA7LiuBF_InVVSJ402CbpG1y1IfLIuhBXNhbSJuM-3Btpe-9lT35rzuTtk-6qOC1SdqmM9P5ksl8w9iLaHJfRg_Ch6ISOjYgGvCFKJpo0NsEJYFyhz98rE5O9fuz8uyAyTkXJh3aT5SW6Tc9nw57vdHJpNHDCE2VsQSueG4QdTvx5a-q1X5fhRjPjdZTfkyuzB-GLnxQoupf4MvrpyOvhUiT5zm-w25PkJG_GV_yLjuI3T12cywieXWf_fwULxHt4VCOYI7TcUHeAyceiAE87YjzHwgoB-67wNFkx5aUMYIwk_stH-iUe7fefeObHQ3Bq-su3cxffKU7R35-FYYedY3Hy0lXOaLNlBPxgJ0ev_u8OhFTWQXRloXZCkt-Uda4bgEDdeWtgYAwUZagisK3qi1jKOocQNm8zL2xpY8egYcEXE15q9RDdtj1XXzEuM8hqhi8rUPQgdC6wm8PFqRuqeZExor5Q7t24hyn0hcXLsW-lXGjcBwKxyXhuCJjL_djvo-MG__s_Zbkt-9JbNnpQj98cZP2OER1AGB12xipacYWGq-DbmpQICubsaNZ-m4y4Y2TpsR_WyXrOmPP981ofBRR8V3sd6mPpbhyLjNmFlqzeKFlS7c-TzTeFF03ZY5TeDUr2O-n_33Gj_-v-xN2S5Lq0zZ4fsQOt8MuPkUctW2eJcP5BeeQGrs priority: 102 providerName: Springer Nature |
Title | Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction |
URI | https://link.springer.com/article/10.1038/s41467-023-41030-1 https://www.proquest.com/docview/2858806277 https://www.proquest.com/docview/2859605802 https://pubmed.ncbi.nlm.nih.gov/PMC10468501 https://doaj.org/article/560fff94cb82476a99fba4d4b7f3f269 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfGJiReEJ8iMCoj8QaBxM6H_YBQV61MlTahQaW-RU7s2ypKCmk76BP_OndOWtRp8MRLK_kjrX13ud_5fHeMvXQqMqkzEBobZ2HiSghLMHEYl06htrFSAMUOn55lJ-NkNEkne2xT7qjbwMWNph3Vkxo3szc_v6_fo8C_a0PG1dtF4sUdtU-YUNWsEK2hA9RMGXH5aQf3_ZtZajRoki525uapO_rJp_HfwZ7Xb05ec596rTS8x-52cJL3W_rfZ3uufsButwUm1w_Zr3N3hUgQp3IEepyuEvI5cMoR0YCh03L-A8Fmw01tOYpz2-OjSRCCcrPkDd2Ar6err3yxoinYOq39w8zsCz3Z8cu1bebIh9xddXzMEYn6eIlHbDw8_jw4CbuSC2GVxmoZatKZIkebBhTkmdEKLEJIkYKMY1PJKnU2ziMAqaM0MkqnxhkEJQLQ0jJaysdsv57X7gnjJgInnTU6tzaxhOQl7j1oEElF9SgCFm82uqi6fORUFmNWeL-4VEVLnAKJU3jiFHHAXm3nfGuzcfxz9BHRbzuSMmn7hnlzUXSCWSDiAwCdVKUSCa1YQ2kSm5Q5SBCZDtjhhvrFhjsLoVJ872UizwP2YtuNgkneFlO7-cqP0eRzjkTA1A7X7Pyh3Z56eulTfJPnXaURLuH1hsH-_PrfV_z0f6z4GbsjSCDo4Dw6ZPvLZuWeI_Jalj12K5_k-KmGH3rsoN8ffRrh99Hx2cdzbB1kg54_0-h5sfsN3SU0Ug |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuCAqIhQJGghNETRxnYx8QgsLS0scBtVJvxok9dEVJSna31Z74R_xGZpxkq61Eb73Gj8SZ8cznGc8MY6-8im3mLUTWJcNI-gKiAmwSJYVXqG1cKoBih_cPhttH8utxdrzC_vaxMHStspeJQVC7uiQb-aZQGbLaUOT5-7PfEVWNIu9qX0KjZYtdP7_AI9vk3c4npO9rIUafD7e2o66qQFRmiZpGmtSCyBG2g4J8aLUChyhJZJAmiS3TMvMuyWOAVMdZbJXOrLeodwXgYcJqMoCiyL8l01RTrn41-rKw6VC2dSVlF5sTp2pzIoMkQsUYSSroFSVL-i-UCVjCtldvZl5xzwatN7rH7nZwlX9o-es-W_HVOrvdFrCcr7O1rb5e3AP255s_R9SJ03AElZyuLfIaOOWjaMCSZZ5fILBtuK0cR9HRtoTIFYS73E55Q7ftq_HsF5_MaAg-HVdhMnv6k2b2_GTumhp5nvvzbs9wRL0hNuMhO7oRQjxiq1Vd-ceM2xh86p3VuXPS0akhRTqABiFLqn0xYEn_003Z5T6nEhynJvjgU2VaQhkklAmEMsmAvVmMOWszf1zb-yPRctGTsnaHB3Xzw3RCwCC6BAAty0IJSSvWUFjpZJFDCmKoB2yj5wTTiZKJuWT8AXu5aEbakmfHVr6ehT6a_NuxGDC1xEFLH7TcUo1PQjpx8vKrLMYlvO2Z7fLt_1_xk-s_9gVb2z7c3zN7Owe7T9kdQVuATPHxBludNjP_DLHctHgeNhBn3296x_4DKpZdkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTXy8IBigFQYYCZ4gauI4jfOAEPuoNgbVNDFpb8aJfaxiJCNtN_WJ_4u_jjsn6dRJ7G2vsePGva-f7853jL1xKjSJMxAYGw0C6XIIcjBREOVOobWxsQC6O_x1NNg7lp9PkpMV9re7C0NplZ1O9IraVgX5yPtCJchqA5GmfWjTIg53hh_PfwfUQYoirV07jYZFDtz8Eo9vkw_7O0jrt0IMd79t7wVth4GgSCI1DTIyESJFCA8K0oHJFFhETCKBOIpMEReJs1EaAsRZmIRGZYlxBm2wADxYmIycoaj-11K0imqVrW3tjg6PFh4eqr2upGxv6oSx6k-k10toJgNJ7b2CaMka-qYBS0j3ep7mtWCtt4HDh-xBC175p4bbHrEVV66zO007y_k6u7fddY97zP4cuQvEoLgMR4jJKYmRV8CpOkUNhvz0_BJhbs1NaTkqkmbE32NB8MvNlNeUe1-OZ7_4ZEav4NNx6RczZz9pZcdP57auUAK4u2gliCMG9jc1nrDjWyHFU7ZaVqXbYNyE4GJnTZZaKy2dIWKkA2QgZEGdMHos6v50XbSV0Kkhx5n2EflY6YZQGgmlPaF01GPvFu-cN3VAbpy9RbRczKQa3v5BVf_QrUrQiDUBIJNFroSkHWeQG2llnkIMYpD12GbHCbpVLBN9JQY99noxjLSlOI8pXTXzczKKdoeix9QSBy190PJIOT71xcUp5q-SELfwvmO2q1___46f3fyxr9hdlFb9ZX908JzdFyQB5JcPN9nqtJ65FwjspvnLVoI4-37bQvsPXqBjLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+role+of+interfacial+water+and+key+intermediates+at+ruthenium+surfaces+in+the+alkaline+hydrogen+evolution+reaction&rft.jtitle=Nature+communications&rft.au=Xing+Chen&rft.au=Xiao-Ting+Wang&rft.au=Jia-Bo+Le&rft.au=Shu-Min+Li&rft.date=2023-08-30&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-023-41030-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |