Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction

Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectr...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5289 - 11
Main Authors Chen, Xing, Wang, Xiao-Ting, Le, Jia-Bo, Li, Shu-Min, Wang, Xue, Zhang, Yu-Jin, Radjenovic, Petar, Zhao, Yu, Wang, Yao-Hui, Lin, Xiu-Mei, Dong, Jin-Chao, Li, Jian-Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-41030-1

Cover

Loading…
Abstract Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na + ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement.
AbstractList Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na + ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na + ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts. Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement.
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
Abstract Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.Here, the authors simultaneously capture dynamic Raman spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates, and the interactions between them, demonstrating the regulation of Ru valence state on interfacial water and intermediates for catalytic activity improvement.
ArticleNumber 5289
Author Radjenovic, Petar
Wang, Xue
Wang, Xiao-Ting
Li, Shu-Min
Zhao, Yu
Zhang, Yu-Jin
Le, Jia-Bo
Chen, Xing
Li, Jian-Feng
Lin, Xiu-Mei
Wang, Yao-Hui
Dong, Jin-Chao
Author_xml – sequence: 1
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 2
  givenname: Xiao-Ting
  surname: Wang
  fullname: Wang, Xiao-Ting
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 3
  givenname: Jia-Bo
  surname: Le
  fullname: Le, Jia-Bo
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 4
  givenname: Shu-Min
  surname: Li
  fullname: Li, Shu-Min
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 5
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 6
  givenname: Yu-Jin
  surname: Zhang
  fullname: Zhang, Yu-Jin
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 7
  givenname: Petar
  surname: Radjenovic
  fullname: Radjenovic, Petar
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 8
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 9
  givenname: Yao-Hui
  surname: Wang
  fullname: Wang, Yao-Hui
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University
– sequence: 10
  givenname: Xiu-Mei
  orcidid: 0000-0001-9692-8855
  surname: Lin
  fullname: Lin, Xiu-Mei
  email: xiu-mei.lin@xmu.edu.cn
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University
– sequence: 11
  givenname: Jin-Chao
  orcidid: 0000-0001-7776-6360
  surname: Dong
  fullname: Dong, Jin-Chao
  email: jcdong@xmu.edu.cn
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 12
  givenname: Jian-Feng
  orcidid: 0000-0003-1598-6856
  surname: Li
  fullname: Li, Jian-Feng
  email: Li@xmu.edu.cn
  organization: College of Energy, College of Chemistry and Chemical Engineering, College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
BookMark eNp9kk1vFDEMhkeoiJalf4BTJC5cBpJJZiY5IVTxUakSEoJz5M04u9lmk5LMbNUTf53MTgW0h-YSy_b72LL9sjoJMWBVvWb0HaNcvs-Cia6vacNrURy0Zs-qs4YKVrO-4Sf_2afVec47Wh5XTArxojrlfSdkT-lZ9fs7HhC8CxsybpGk6JFES1wYMVkwDjy5hWITCAO5xrslssfBFW8mMJI0FWFw057kaZYUrwtHGPjrmYxkezekuMFA8BD9NLoYSEIws_Gqem7BZzy__1fVz8-fflx8ra--fbm8-HhVm5bJsVYGcWj6ruustH0HStpBKdW0ljMGhpsWB9ZTa7miLQWpWkDoBWssEwoU56vqcuEOEXb6Jrk9pDsdwemjI6aNhjQ641G3XeFYJcxaNmKupewaxCDWveW26VRhfVhYN9O6TMJgGBP4B9CHkeC2ehMPmlHRyZayQnh7T0jx14R51HuXDXoPAeOUdSNb1dFWlu2uqjePUndxSqHMas6SknZN35esZskyKeac0P7thlE934te7kUXoj7ei567kI9Exo0wb6V07fzTUr5Ic6kTNpj-dfWE6g_v0ddI
CitedBy_id crossref_primary_10_1002_adma_202411942
crossref_primary_10_1002_adma_202405386
crossref_primary_10_1002_anie_202502227
crossref_primary_10_1021_acsanm_4c05845
crossref_primary_10_1016_j_nanoen_2025_110873
crossref_primary_10_1002_smll_202311076
crossref_primary_10_1016_j_fuel_2024_133743
crossref_primary_10_1021_acs_est_4c03949
crossref_primary_10_1016_j_cej_2025_161070
crossref_primary_10_1016_j_nanoen_2024_109481
crossref_primary_10_1021_acsaem_4c00076
crossref_primary_10_1002_ange_202400069
crossref_primary_10_1016_j_cej_2025_159795
crossref_primary_10_1039_D4CC02382J
crossref_primary_10_3390_catal14080491
crossref_primary_10_1016_j_jpowsour_2024_235743
crossref_primary_10_1002_ange_202317220
crossref_primary_10_1016_j_jechem_2024_02_006
crossref_primary_10_1016_j_seppur_2024_128948
crossref_primary_10_1016_j_apcatb_2024_124325
crossref_primary_10_1002_smll_202411883
crossref_primary_10_1016_j_electacta_2024_144685
crossref_primary_10_1002_advs_202403206
crossref_primary_10_1016_j_actamat_2024_120630
crossref_primary_10_1002_anie_202421821
crossref_primary_10_1016_j_jcis_2025_02_066
crossref_primary_10_1021_acsami_4c19204
crossref_primary_10_1002_advs_202411845
crossref_primary_10_1002_anie_202319618
crossref_primary_10_1002_anie_202402171
crossref_primary_10_1016_j_jwpe_2024_106062
crossref_primary_10_1002_smsc_202400610
crossref_primary_10_1002_ange_202422091
crossref_primary_10_1016_j_apcatb_2023_123644
crossref_primary_10_1021_acs_jpcc_4c04324
crossref_primary_10_1039_D4TA07387H
crossref_primary_10_1002_adma_202417374
crossref_primary_10_1021_acs_analchem_4c01985
crossref_primary_10_1002_ange_202414518
crossref_primary_10_1002_aenm_202404714
crossref_primary_10_1002_chem_202401373
crossref_primary_10_1021_jacs_4c10613
crossref_primary_10_1016_j_esci_2024_100352
crossref_primary_10_1016_j_jcis_2025_02_103
crossref_primary_10_1016_j_apcatb_2025_125268
crossref_primary_10_1021_jacs_4c11788
crossref_primary_10_1002_ange_202421821
crossref_primary_10_1002_adfm_202424597
crossref_primary_10_1002_anie_202411396
crossref_primary_10_1002_anie_202413334
crossref_primary_10_1002_adma_202410039
crossref_primary_10_1016_j_nanoen_2024_110216
crossref_primary_10_1016_j_apsusc_2025_162854
crossref_primary_10_1039_D4TA06305H
crossref_primary_10_1039_D4EY00252K
crossref_primary_10_1557_s43579_024_00666_w
crossref_primary_10_1021_acscatal_4c03031
crossref_primary_10_1016_j_cej_2024_153433
crossref_primary_10_1002_adfm_202408872
crossref_primary_10_1021_jacs_4c05042
crossref_primary_10_1021_jacs_4c00948
crossref_primary_10_1002_adfm_202314899
crossref_primary_10_1038_s41467_024_44727_z
crossref_primary_10_1021_acsnano_5c00318
crossref_primary_10_1016_j_apcata_2025_120148
crossref_primary_10_1016_j_apcatb_2024_124465
crossref_primary_10_1016_j_fuel_2024_131472
crossref_primary_10_1002_adma_202412108
crossref_primary_10_1039_D4QI00854E
crossref_primary_10_1016_j_jallcom_2024_178180
crossref_primary_10_1038_s41467_024_55230_w
crossref_primary_10_1038_s41467_024_50117_2
crossref_primary_10_1007_s40820_024_01420_6
crossref_primary_10_1002_advs_202406453
crossref_primary_10_1039_D4RA07061E
crossref_primary_10_1002_anie_202423301
crossref_primary_10_1039_D4QI00959B
crossref_primary_10_1002_smtd_202401701
crossref_primary_10_1002_celc_202400076
crossref_primary_10_1007_s12274_024_6726_y
crossref_primary_10_1002_adma_202502127
crossref_primary_10_1016_j_cej_2024_151251
crossref_primary_10_1021_jacs_4c13863
crossref_primary_10_1002_adfm_202420728
crossref_primary_10_1002_smll_202408887
crossref_primary_10_1002_anie_202317220
crossref_primary_10_1002_aenm_202402558
crossref_primary_10_1002_aenm_202403009
crossref_primary_10_1039_D4QI00053F
crossref_primary_10_1016_j_scib_2024_03_044
crossref_primary_10_1016_j_cej_2025_161348
crossref_primary_10_1016_j_jallcom_2024_177417
crossref_primary_10_1021_acsnano_4c06192
crossref_primary_10_1039_D4EE01139B
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1002_adsu_202500159
crossref_primary_10_1002_smll_202405838
crossref_primary_10_1002_smll_202400662
crossref_primary_10_1002_ange_202423301
crossref_primary_10_1016_j_electacta_2024_145348
crossref_primary_10_1039_D4EE02746A
crossref_primary_10_1038_s44160_025_00769_9
crossref_primary_10_1039_D4QI01723D
crossref_primary_10_1021_acs_inorgchem_4c05582
crossref_primary_10_1002_ange_202402171
crossref_primary_10_1016_j_cej_2024_156764
crossref_primary_10_1039_D4EE00950A
crossref_primary_10_1039_D4NA00167B
crossref_primary_10_1016_j_ijhydene_2024_03_230
crossref_primary_10_1016_j_ijhydene_2025_01_340
crossref_primary_10_1039_D4RA02063D
crossref_primary_10_1021_acscatal_4c05712
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1002_ange_202413334
crossref_primary_10_1007_s41918_024_00219_8
crossref_primary_10_1016_j_jechem_2025_01_073
crossref_primary_10_1002_ange_202411396
crossref_primary_10_1002_solr_202400523
crossref_primary_10_1016_j_seppur_2024_127538
crossref_primary_10_1002_adma_202410422
crossref_primary_10_1038_s41467_024_51370_1
crossref_primary_10_1016_j_fuel_2024_131250
crossref_primary_10_1039_D4TA08359H
crossref_primary_10_1002_ange_202502227
crossref_primary_10_1007_s12598_024_02903_6
crossref_primary_10_1016_j_apcatb_2024_124074
crossref_primary_10_1038_s41467_024_54601_7
crossref_primary_10_1002_smll_202311667
crossref_primary_10_1016_j_ensm_2025_104110
crossref_primary_10_1038_s41467_024_53905_y
crossref_primary_10_1002_smtd_202401449
crossref_primary_10_1021_acs_iecr_3c04667
crossref_primary_10_1038_s41467_025_56966_9
crossref_primary_10_1038_s41467_024_50942_5
crossref_primary_10_1021_acsenergylett_4c01488
crossref_primary_10_1002_anie_202400069
crossref_primary_10_1002_smll_202412123
crossref_primary_10_1016_j_jphotochem_2024_116226
crossref_primary_10_1002_adfm_202315675
crossref_primary_10_1016_j_apcatb_2024_124512
crossref_primary_10_3389_fenrg_2024_1433103
crossref_primary_10_1002_adfm_202414758
crossref_primary_10_1016_j_cej_2025_161683
crossref_primary_10_1016_j_jallcom_2025_179115
crossref_primary_10_1039_D4QI00518J
crossref_primary_10_3390_catal13121497
crossref_primary_10_1016_j_apcatb_2025_125110
crossref_primary_10_3390_catal14100689
crossref_primary_10_1002_ange_202319618
crossref_primary_10_1002_ange_202400888
crossref_primary_10_1002_smll_202411061
crossref_primary_10_1016_j_jece_2025_116232
crossref_primary_10_1002_smll_202411181
crossref_primary_10_1021_acs_chemrev_3c00806
crossref_primary_10_1007_s12598_024_03168_9
crossref_primary_10_1002_smll_202407881
crossref_primary_10_1021_jacs_4c03622
crossref_primary_10_1063_5_0232980
crossref_primary_10_1002_aenm_202401716
crossref_primary_10_1016_j_nexres_2024_100094
crossref_primary_10_1021_acs_jpcc_4c03568
crossref_primary_10_1002_anie_202422091
crossref_primary_10_1016_j_checat_2024_101152
crossref_primary_10_1016_j_surfin_2024_104390
crossref_primary_10_1021_jacs_4c14529
crossref_primary_10_1002_anie_202501040
crossref_primary_10_1021_acsnano_4c14866
crossref_primary_10_1039_D4GC03761H
crossref_primary_10_1002_ange_202413033
crossref_primary_10_1016_j_apcatb_2024_124388
crossref_primary_10_1039_D4EY00205A
crossref_primary_10_1021_acsnano_4c15336
crossref_primary_10_1016_j_apsusc_2024_160209
crossref_primary_10_1016_j_jcis_2025_03_004
crossref_primary_10_1016_j_jmst_2024_06_013
crossref_primary_10_1021_acs_inorgchem_4c02353
crossref_primary_10_1002_anie_202414518
crossref_primary_10_1039_D4GC01788A
crossref_primary_10_1002_aenm_202400065
crossref_primary_10_1016_j_cej_2024_155880
crossref_primary_10_1002_adsu_202400387
crossref_primary_10_1002_adfm_202418617
crossref_primary_10_1021_acsami_3c18427
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1007_s10562_024_04857_x
crossref_primary_10_1016_j_jcis_2025_02_168
crossref_primary_10_1038_s41467_024_54513_6
crossref_primary_10_1039_D4TA03969F
crossref_primary_10_1002_anie_202400888
crossref_primary_10_1002_ange_202501040
crossref_primary_10_1002_anie_202413033
Cites_doi 10.1038/nchem.330
10.1021/jacs.0c01104
10.1016/j.cattod.2015.08.016
10.1021/jacsau.1c00281
10.1002/anie.201710556
10.1021/acsenergylett.1c00246
10.1021/acs.accounts.9b00545
10.1021/jacs.6b11291
10.1038/s41929-022-00851-x
10.1039/b919266b
10.1002/adma.201800676
10.1016/j.nanoen.2016.04.017
10.1038/nmat4030
10.1002/anie.202102803
10.1063/1.3382344
10.1038/nmat3313
10.1021/acs.nanolett.2c01744
10.1039/D1EE02380B
10.1039/c3ee00045a
10.1021/acsaem.1c00308
10.1021/jacs.8b13228
10.1016/0022-2860(93)87044-A
10.1038/nchem.1574
10.1007/s40820-019-0337-2
10.1002/anie.202006722
10.1038/249724a0
10.1039/D0TA12424A
10.1021/acs.chemrev.1c00331
10.1038/ncomms6848
10.1038/nnano.2016.304
10.1039/b711218a
10.1021/acsami.7b14399
10.1038/s41467-020-20314-w
10.1126/sciadv.1501602
10.1126/science.180.4093.1325
10.1038/s41586-021-04068-z
10.1038/nenergy.2017.31
10.1021/acscatal.8b03053
10.1038/s41929-022-00846-8
10.1039/C9SC03831K
10.1038/physci241020a0
10.1021/acs.chemrev.9b00248
10.1021/jacsau.1c00108
10.1038/s41929-021-00663-5
10.1002/aenm.201900624
10.1021/jp047349j
10.1038/s41467-020-15069-3
10.1016/j.jelechem.2021.115150
10.1002/anie.202207197
10.1038/s41560-020-00710-8
10.1039/C9NH00485H
10.1038/s41893-020-0509-6
10.1039/D0EE01754J
10.1103/PhysRevLett.55.2471
10.1039/C8CP00615F
10.1002/adma.201806326
10.1016/j.joule.2021.07.007
10.1021/acscatal.9b02457
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41030-1
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269
PMC10468501
10_1038_s41467_023_41030_1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-9ceed27666f8f76a98fd99925f311ac3c5ed170ff39050a895aea7412f149a933
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:18:00 EDT 2025
Thu Aug 21 18:36:02 EDT 2025
Thu Sep 04 19:48:30 EDT 2025
Wed Aug 13 06:11:43 EDT 2025
Tue Jul 01 02:10:33 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-9ceed27666f8f76a98fd99925f311ac3c5ed170ff39050a895aea7412f149a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1598-6856
0000-0001-9692-8855
0000-0001-7776-6360
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41030-1
PMID 37648700
PQID 2858806277
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468501
proquest_miscellaneous_2859605802
proquest_journals_2858806277
crossref_primary_10_1038_s41467_023_41030_1
crossref_citationtrail_10_1038_s41467_023_41030_1
springer_journals_10_1038_s41467_023_41030_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR29) 2022; 5
Zhang, Duan, Radjenovic, Tian, Li (CR32) 2020; 53
Ledezma-Yanez (CR25) 2017; 2
Sheng (CR16) 2015; 6
Bae, Mahmood, Jeon, Baek (CR22) 2020; 5
Shah (CR54) 2022; 8
Mahmood (CR21) 2017; 12
Liu (CR41) 2019; 14
Grimme, Antony, Ehrlich, Krieg (CR60) 2010; 132
Li (CR12) 2018; 30
Subbaraman (CR40) 2012; 11
Jiang (CR48) 2007; 44
Zhu, Qin, Yao, Shao (CR34) 2020; 142
Tiwari (CR46) 2020; 3
Dawson (CR1) 1974; 249
Strmcnik, Lopes, Genorio, Stamenkovic, Markovic (CR20) 2016; 29
Li (CR49) 2010; 12
Le (CR52) 2021; 1
Rossmeisl, Chan, Skúlason, Björketun, Tripkovic (CR17) 2016; 262
Yang (CR23) 2021; 13
Frens (CR58) 1973; 241
Le, Fan, Perez-Martinez, Cuesta, Cheng (CR51) 2018; 20
Li (CR50) 2014; 13
Anantharaj (CR9) 2021; 9
Zhu (CR27) 2021; 4
Lin (CR37) 2022; 22
Huang, Attard (CR26) 2021; 896
Huang (CR28) 2021; 1
Creus (CR55) 2018; 8
Wang (CR47) 2021; 600
Rizo (CR30) 2022; 13
McCrum, Koper (CR44) 2020; 5
Zhu, Hu, Zhao, Lee, Wong (CR4) 2020; 120
Dubouis, Grimaud (CR19) 2019; 10
Zheng, Jiao, Vasileff, Qiao (CR8) 2018; 57
Nørskov (CR61) 2004; 108
Mao (CR43) 2020; 59
Kweon (CR24) 2020; 11
Shi (CR57) 2021; 12
Majumdar, Deutch, Prasher, Griffin (CR3) 2021; 5
Goyal, Koper (CR35) 2021; 60
Zheng (CR11) 2016; 138
Winsche, Hoffman, Salzano (CR2) 1973; 180
Strmcnik (CR39) 2009; 1
Pearson (CR36) 1993; 300
Shao (CR10) 2021; 4
Sheng, Myint, Chen, Yan (CR15) 2013; 6
Sultan (CR45) 2019; 9
Sun (CR7) 2020; 32
Zhao (CR53) 2022; 61
Hansen (CR6) 2021; 6
Li (CR5) 2020; 12
Yang (CR14) 2022; 122
Zheng, Sheng, Zhuang, Xu, Yan (CR13) 2016; 2
Dang (CR38) 2021; 14
Cho, Yu, Lee, Kim, Lee (CR56) 2018; 10
Liu (CR42) 2020; 13
Huang, Kooyman, Koper (CR31) 2016; 7
Yu (CR33) 2019; 9
Car, Parrinello (CR59) 1985; 55
Strmcnik (CR18) 2013; 5
RY Shao (41030_CR10) 2021; 4
YF Huang (41030_CR31) 2016; 7
K Zhao (41030_CR53) 2022; 61
J Mahmood (41030_CR21) 2017; 12
A Majumdar (41030_CR3) 2021; 5
WD Li (41030_CR12) 2018; 30
H Zhang (41030_CR32) 2020; 53
GQ Li (41030_CR50) 2014; 13
JK Dawson (41030_CR1) 1974; 249
S Grimme (41030_CR60) 2010; 132
JN Tiwari (41030_CR46) 2020; 3
Y Zheng (41030_CR8) 2018; 57
R Rizo (41030_CR30) 2022; 13
Y Shi (41030_CR57) 2021; 12
D Strmcnik (41030_CR20) 2016; 29
S Anantharaj (41030_CR9) 2021; 9
J Zheng (41030_CR13) 2016; 2
ES Liu (41030_CR42) 2020; 13
AH Shah (41030_CR54) 2022; 8
JB Le (41030_CR51) 2018; 20
Y Yang (41030_CR14) 2022; 122
YX Jiang (41030_CR48) 2007; 44
YB Cho (41030_CR56) 2018; 10
A Goyal (41030_CR35) 2021; 60
ES Liu (41030_CR41) 2019; 14
X Li (41030_CR5) 2020; 12
D Strmcnik (41030_CR39) 2009; 1
JB Le (41030_CR52) 2021; 1
RG Pearson (41030_CR36) 1993; 300
X-M Lin (41030_CR37) 2022; 22
JK Nørskov (41030_CR61) 2004; 108
SQ Zhu (41030_CR27) 2021; 4
JN Hansen (41030_CR6) 2021; 6
YJ Yang (41030_CR23) 2021; 13
J Creus (41030_CR55) 2018; 8
WC Sheng (41030_CR15) 2013; 6
J Rossmeisl (41030_CR17) 2016; 262
JF Li (41030_CR49) 2010; 12
D Strmcnik (41030_CR18) 2013; 5
R Subbaraman (41030_CR40) 2012; 11
G Frens (41030_CR58) 1973; 241
N Dubouis (41030_CR19) 2019; 10
J Yu (41030_CR33) 2019; 9
S Sultan (41030_CR45) 2019; 9
WE Winsche (41030_CR2) 1973; 180
IT McCrum (41030_CR44) 2020; 5
HM Sun (41030_CR7) 2020; 32
BT Huang (41030_CR28) 2021; 1
I Ledezma-Yanez (41030_CR25) 2017; 2
BG Mao (41030_CR43) 2020; 59
WC Sheng (41030_CR16) 2015; 6
SY Bae (41030_CR22) 2020; 5
SQ Zhu (41030_CR34) 2020; 142
R Car (41030_CR59) 1985; 55
Y Zheng (41030_CR11) 2016; 138
DH Kweon (41030_CR24) 2020; 11
YH Wang (41030_CR47) 2021; 600
J Huang (41030_CR26) 2021; 896
P Li (41030_CR29) 2022; 5
J Zhu (41030_CR4) 2020; 120
YL Dang (41030_CR38) 2021; 14
References_xml – volume: 22
  start-page: 5544
  year: 2022
  end-page: 5552
  ident: CR37
  article-title: In situ probe of the hydrogen oxidation reaction intermediates on PtRu a bimetallic catalyst surface by core-shell nanoparticle-enhanced Raman spectroscopy
  publication-title: Nano Lett.
– volume: 13
  year: 2021
  ident: CR23
  article-title: Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction
  publication-title: Nano-Micro Lett.
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: CR4
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem. Rev.
– volume: 55
  start-page: 2471
  year: 1985
  end-page: 2474
  ident: CR59
  article-title: Unified approach for molecular dynamics and density-functional theory
  publication-title: Phys. Rev. Lett.
– volume: 249
  start-page: 724
  year: 1974
  end-page: 726
  ident: CR1
  article-title: Prospects for hydrogen as an energy resource
  publication-title: Nature
– volume: 61
  start-page: e202207197
  year: 2022
  ident: CR53
  article-title: Enhancing Hydrogen oxidation and evolution kinetics by tuning the interfacial hydrogen-bonding environment on functionalized platinum surfaces
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 3232
  year: 2019
  end-page: 3239
  ident: CR41
  article-title: Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts
  publication-title: J. Am. Chem. Soc.
– volume: 262
  start-page: 36
  year: 2016
  end-page: 40
  ident: CR17
  article-title: On the pH dependence of electrochemical proton transfer barriers
  publication-title: Catal. Today
– volume: 5
  start-page: 900
  year: 2022
  end-page: 911
  ident: CR29
  article-title: Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt
  publication-title: Nat. Catal.
– volume: 29
  start-page: 29
  year: 2016
  end-page: 36
  ident: CR20
  article-title: Design principles for hydrogen evolution reaction catalyst materials
  publication-title: Nano Energy
– volume: 44
  start-page: 4608
  year: 2007
  end-page: 4610
  ident: CR48
  article-title: Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy
  publication-title: Chem. Comm.
– volume: 13
  start-page: 3064
  year: 2020
  end-page: 3074
  ident: CR42
  article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media
  publication-title: Energy Environ. Sci.
– volume: 241
  start-page: 20
  year: 1973
  end-page: 22
  ident: CR58
  article-title: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions
  publication-title: Nat. Phys. Sci.
– volume: 6
  start-page: 1175
  year: 2021
  end-page: 1180
  ident: CR6
  article-title: Is there anything better than Pt for HER?
  publication-title: ACS Energy Lett.
– volume: 142
  start-page: 8748
  year: 2020
  end-page: 8754
  ident: CR34
  article-title: pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 891
  year: 2020
  end-page: 899
  ident: CR44
  article-title: The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum
  publication-title: Nat. Energy
– volume: 6
  start-page: 1509
  year: 2013
  end-page: 1512
  ident: CR15
  article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 7
  ident: CR30
  article-title: Investigating the presence of adsorbed species on Pt steps at low potentials
  publication-title: Nat. Commun.
– volume: 10
  start-page: 541
  year: 2018
  end-page: 549
  ident: CR56
  article-title: Fundamental study of facile and stable hydrogen evolution reaction at electrospun Ir and Ru mixed oxide nanofibers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR61
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  ident: CR8
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 9165
  year: 2019
  end-page: 9181
  ident: CR19
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors
  publication-title: Chem. Sci.
– volume: 5
  start-page: 43
  year: 2020
  end-page: 56
  ident: CR22
  article-title: Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction
  publication-title: Nanoscale Horiz.
– volume: 122
  start-page: 6117
  year: 2022
  end-page: 6321
  ident: CR14
  article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies
  publication-title: Chem. Rev.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR25
  article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
  publication-title: Nat. Energy
– volume: 300
  start-page: 519
  year: 1993
  end-page: 525
  ident: CR36
  article-title: Bond energies, force constants and electro-negativities
  publication-title: J. Mol. Struct.
– volume: 1
  start-page: 569
  year: 2021
  end-page: 577
  ident: CR52
  article-title: Modeling electrified Pt(111)-H /water interfaces from ab initio molecular dynamics
  publication-title: JACS Au
– volume: 12
  start-page: 441
  year: 2017
  end-page: 446
  ident: CR21
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 15232
  year: 2020
  end-page: 15237
  ident: CR43
  article-title: Identifying the adsorbed hydroxyl transfer kinetics as a descriptor of alkaline hydrogen evolution reaction
  publication-title: Angew. Chem., Int. Ed.
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR60
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 711
  year: 2021
  end-page: 718
  ident: CR27
  article-title: The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum
  publication-title: Nat. Catal.
– volume: 1
  start-page: 1674
  year: 2021
  end-page: 1687
  ident: CR28
  article-title: Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics
  publication-title: JACS Au
– volume: 14
  start-page: 5433
  year: 2021
  end-page: 5443
  ident: CR38
  article-title: Partially reduced Ru/RuO composites as efficient and pH-universal electro-catalysts for hydrogen evolution
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  ident: CR40
  article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR31
  article-title: Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2493
  year: 2010
  end-page: 2502
  ident: CR49
  article-title: SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR57
  article-title: Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction
  publication-title: Nat. Commun.
– volume: 9
  start-page: 6710
  year: 2021
  end-page: 6731
  ident: CR9
  article-title: Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electro-catalytic water splitting
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 1
  year: 2020
  end-page: 29
  ident: CR5
  article-title: Water splitting: from electrode to green energy system
  publication-title: Nano-Micro Lett.
– volume: 2
  start-page: e1501602
  year: 2016
  ident: CR13
  article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy
  publication-title: Sci. Adv.
– volume: 1
  start-page: 466
  year: 2009
  end-page: 472
  ident: CR39
  article-title: The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
  publication-title: Nat. Chem.
– volume: 600
  start-page: 81
  year: 2021
  end-page: 85
  ident: CR47
  article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water
  publication-title: Nature
– volume: 30
  start-page: 1800676
  year: 2018
  ident: CR12
  article-title: Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media
  publication-title: Adv. Mater.
– volume: 13
  start-page: 802
  year: 2014
  end-page: 806
  ident: CR50
  article-title: Hydrogen storage in Pd nanocrystals covered with a metal–organic framework
  publication-title: Nat. Mater.
– volume: 9
  start-page: 9973
  year: 2019
  end-page: 10011
  ident: CR33
  article-title: Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
  publication-title: ACS Catal.
– volume: 8
  start-page: 923
  year: 2022
  end-page: 933
  ident: CR54
  article-title: The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction
  publication-title: Nat. Catal.
– volume: 9
  start-page: 1900624
  year: 2019
  ident: CR45
  article-title: Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 16174
  year: 2016
  end-page: 16181
  ident: CR11
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2015
  ident: CR16
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat. Commun.
– volume: 20
  start-page: 11554
  year: 2018
  end-page: 11558
  ident: CR51
  article-title: Theoretical insight into the vibrational spectra of metal–water interfaces from density functional theory based molecular dynamics
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 11094
  year: 2018
  end-page: 11102
  ident: CR55
  article-title: Ligand-capped Ru nanoparticles as efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: ACS Catal.
– volume: 5
  start-page: 300
  year: 2013
  end-page: 306
  ident: CR18
  article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
  publication-title: Nat. Chem.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR24
  article-title: Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency
  publication-title: Nat. Commun.
– volume: 180
  start-page: 1325
  year: 1973
  end-page: 1332
  ident: CR2
  article-title: Hydrogen: its future role in the nation’s energy economy
  publication-title: Science
– volume: 4
  start-page: 4284
  year: 2021
  end-page: 4289
  ident: CR10
  article-title: Is Pt/C more electrocatalytic than Ru/C for hydrogen evolution in alkaline electrolytes?
  publication-title: ACS Appl. Energy Mater.
– volume: 32
  start-page: 1806326
  year: 2020
  ident: CR7
  article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution
  publication-title: Adv. Mater.
– volume: 3
  start-page: 556
  year: 2020
  end-page: 563
  ident: CR46
  article-title: Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting
  publication-title: Nat. Sustain.
– volume: 5
  start-page: 1905
  year: 2021
  end-page: 1908
  ident: CR3
  article-title: A framework for a hydrogen economy
  publication-title: Joule
– volume: 53
  start-page: 729
  year: 2020
  end-page: 739
  ident: CR32
  article-title: Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis
  publication-title: Acc. Chem. Res.
– volume: 896
  start-page: 115150
  year: 2021
  ident: CR26
  article-title: Can hydrogen anion be a possible intermediate of the hydrogen electrode reaction?
  publication-title: J. Electroanal. Chem.
– volume: 60
  start-page: 13452
  year: 2021
  end-page: 13462
  ident: CR35
  article-title: The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 466
  year: 2009
  ident: 41030_CR39
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.330
– volume: 142
  start-page: 8748
  year: 2020
  ident: 41030_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01104
– volume: 262
  start-page: 36
  year: 2016
  ident: 41030_CR17
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.08.016
– volume: 1
  start-page: 1674
  year: 2021
  ident: 41030_CR28
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00281
– volume: 57
  start-page: 7568
  year: 2018
  ident: 41030_CR8
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 6
  start-page: 1175
  year: 2021
  ident: 41030_CR6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00246
– volume: 53
  start-page: 729
  year: 2020
  ident: 41030_CR32
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00545
– volume: 138
  start-page: 16174
  year: 2016
  ident: 41030_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11291
– volume: 8
  start-page: 923
  year: 2022
  ident: 41030_CR54
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00851-x
– volume: 12
  start-page: 2493
  year: 2010
  ident: 41030_CR49
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b919266b
– volume: 30
  start-page: 1800676
  year: 2018
  ident: 41030_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800676
– volume: 29
  start-page: 29
  year: 2016
  ident: 41030_CR20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.017
– volume: 13
  start-page: 802
  year: 2014
  ident: 41030_CR50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4030
– volume: 60
  start-page: 13452
  year: 2021
  ident: 41030_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102803
– volume: 132
  start-page: 154104
  year: 2010
  ident: 41030_CR60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 11
  start-page: 550
  year: 2012
  ident: 41030_CR40
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 22
  start-page: 5544
  year: 2022
  ident: 41030_CR37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01744
– volume: 14
  start-page: 5433
  year: 2021
  ident: 41030_CR38
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02380B
– volume: 6
  start-page: 1509
  year: 2013
  ident: 41030_CR15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 4
  start-page: 4284
  year: 2021
  ident: 41030_CR10
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c00308
– volume: 13
  start-page: 1
  year: 2022
  ident: 41030_CR30
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3232
  year: 2019
  ident: 41030_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
– volume: 300
  start-page: 519
  year: 1993
  ident: 41030_CR36
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(93)87044-A
– volume: 5
  start-page: 300
  year: 2013
  ident: 41030_CR18
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1574
– volume: 12
  start-page: 1
  year: 2020
  ident: 41030_CR5
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0337-2
– volume: 59
  start-page: 15232
  year: 2020
  ident: 41030_CR43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006722
– volume: 249
  start-page: 724
  year: 1974
  ident: 41030_CR1
  publication-title: Nature
  doi: 10.1038/249724a0
– volume: 9
  start-page: 6710
  year: 2021
  ident: 41030_CR9
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA12424A
– volume: 122
  start-page: 6117
  year: 2022
  ident: 41030_CR14
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00331
– volume: 6
  year: 2015
  ident: 41030_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 12
  start-page: 441
  year: 2017
  ident: 41030_CR21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 44
  start-page: 4608
  year: 2007
  ident: 41030_CR48
  publication-title: Chem. Comm.
  doi: 10.1039/b711218a
– volume: 13
  year: 2021
  ident: 41030_CR23
  publication-title: Nano-Micro Lett.
– volume: 10
  start-page: 541
  year: 2018
  ident: 41030_CR56
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14399
– volume: 12
  start-page: 1
  year: 2021
  ident: 41030_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 2
  start-page: e1501602
  year: 2016
  ident: 41030_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 180
  start-page: 1325
  year: 1973
  ident: 41030_CR2
  publication-title: Science
  doi: 10.1126/science.180.4093.1325
– volume: 600
  start-page: 81
  year: 2021
  ident: 41030_CR47
  publication-title: Nature
  doi: 10.1038/s41586-021-04068-z
– volume: 2
  start-page: 1
  year: 2017
  ident: 41030_CR25
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 8
  start-page: 11094
  year: 2018
  ident: 41030_CR55
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03053
– volume: 5
  start-page: 900
  year: 2022
  ident: 41030_CR29
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 10
  start-page: 9165
  year: 2019
  ident: 41030_CR19
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03831K
– volume: 241
  start-page: 20
  year: 1973
  ident: 41030_CR58
  publication-title: Nat. Phys. Sci.
  doi: 10.1038/physci241020a0
– volume: 120
  start-page: 851
  year: 2020
  ident: 41030_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 1
  start-page: 569
  year: 2021
  ident: 41030_CR52
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00108
– volume: 4
  start-page: 711
  year: 2021
  ident: 41030_CR27
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00663-5
– volume: 9
  start-page: 1900624
  year: 2019
  ident: 41030_CR45
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900624
– volume: 108
  start-page: 17886
  year: 2004
  ident: 41030_CR61
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 11
  start-page: 1
  year: 2020
  ident: 41030_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15069-3
– volume: 896
  start-page: 115150
  year: 2021
  ident: 41030_CR26
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115150
– volume: 61
  start-page: e202207197
  year: 2022
  ident: 41030_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207197
– volume: 5
  start-page: 891
  year: 2020
  ident: 41030_CR44
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00710-8
– volume: 5
  start-page: 43
  year: 2020
  ident: 41030_CR22
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00485H
– volume: 7
  start-page: 1
  year: 2016
  ident: 41030_CR31
  publication-title: Nat. Commun.
– volume: 3
  start-page: 556
  year: 2020
  ident: 41030_CR46
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0509-6
– volume: 13
  start-page: 3064
  year: 2020
  ident: 41030_CR42
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01754J
– volume: 55
  start-page: 2471
  year: 1985
  ident: 41030_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2471
– volume: 20
  start-page: 11554
  year: 2018
  ident: 41030_CR51
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00615F
– volume: 32
  start-page: 1806326
  year: 2020
  ident: 41030_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806326
– volume: 5
  start-page: 1905
  year: 2021
  ident: 41030_CR3
  publication-title: Joule
  doi: 10.1016/j.joule.2021.07.007
– volume: 9
  start-page: 9973
  year: 2019
  ident: 41030_CR33
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02457
SSID ssj0000391844
Score 2.7213187
Snippet Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be...
Abstract Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5289
SubjectTerms 140/133
639/638/161
639/638/161/886
639/638/542/969
Adsorption
Catalysis
Catalysts
Catalytic activity
Chemistry
Electrolytes
Electrons
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Intermediates
Laboratories
multidisciplinary
Nanoparticles
Raman spectroscopy
Ruthenium
Science
Science (multidisciplinary)
Valence
Work functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIFGQkbhA1fiX2sSCqCgkOiEq9WU7sUVeUbJXdLeqJv94ZJ7s0lYAL19hO4nl4Pns8M4y9SbYKJgUoQxR1qVMLZQtBlKJNFq1NVBIodvjzl_r4RH86Nac3Sn3RnbAxPfBIuAO0yADgdNdaqZs6OAdt0FG3DSiQdQ7dQ5t3YzOV12DlcOuipyiZStmDlc5rApqoUlNprVLMLFFO2D9DmbfvSN5ylGb7c_SA3Z-AIz8cf_ghu5P6R-zuWEry6jH79TVdIubDoRwhHadLg3wJnLJBDBDoXJz_RFg58NBHjoo7tuS4EQSbPKz5QHfd-8XmB19taAg-XfT5ZeH8O7058bOrOCxR4ni6nCSWI-bMkRFP2MnRx28fjsupuELZGWHXpSPrKBvcvYAFoquFiGBRGlBChE51JkXRIO2Vq0wVrDMhBYQfEnBPFZxST9lev-zTM8ZDBUmlGFwTo46E2RXSHhxI3VHliYKJLaF9N2UepwIY5z57wJX1I3M8Msdn5nhRsLe7MRdj3o2_9n5P_Nv1pJzZ-QFKkp8kyf9Lkgq2v-W-nxR55aU1uMLVsmkK9nrXjCpIfpXQp-Um93HkXa5kwexMamY_NG_pF2c5mTf52K2pcArvtgL2--t_nvHz_zHjF-yeJIWgI_Jqn-2th016iRhr3b7K6nQNvgImPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_gJgQvCAaIwkBB4g2qtUnaJk-ITZsmJCY0MWlvVdrE7MRoR-9uaE_869hp7qZOYq_5alI78S-2YzP23uvMFt5Cal1epso3kDZg8zRvvEZp46QAejv89bg8OlVfzoqzqHBbRLfK9ZkYDmrXt6Qj3xW6QFYrRVV9uvydUtYosq7GFBr32RYewbqYsa29g-NvJxstC8U_10rF1zKZ1LsLFc4GFFWpohRbaT6RSCFw_wRt3vaVvGUwDXLo8Al7HAEk_zxS_Cm757tt9mBMKXm9zR7urzO4PWN_T_wV4kAchiPM4-RIyHvgFCFiAEu6cv4HoebAbec4buaxJrwlQQDK7ZIP5P_ezVe_-GJFXbB03oXB7MVPGtnz82s39MiF3F9FLuaIQ8Nriefs9PDg-_5RGhMupG2R62VqSGKKCm80oKEqrdHgEECKAmSe21a2hXd5lQFIkxWZ1aaw3iIkEYD3LGukfMFmXd_5l4zbDLz0zprKOeUIx0ukAxgQqqVsFAnL1z-9bmM0ckqKcVEHq7jU9UioGglVB0LVecI-bPpcjrE47my9R7TctKQ42qGgH37UcVvWiPcAwKi20ULRig00VjnVVCBBlCZhO2tOqOPmXtQ3rJiwd5tqpC3ZWmzn-1VoY8jinImE6QkHTSY0renm5yHAN9nddZHhEj6ume3m6_9f8au7J_uaPRLE9qQQz3bYbDms_BtEVMvmbdw2_wAQqyJf
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA7LiuBF_InVVSJ402CbpG1y1IfLIuhBXNhbSJuM-3Btpe-9lT35rzuTtk-6qOC1SdqmM9P5ksl8w9iLaHJfRg_Ch6ISOjYgGvCFKJpo0NsEJYFyhz98rE5O9fuz8uyAyTkXJh3aT5SW6Tc9nw57vdHJpNHDCE2VsQSueG4QdTvx5a-q1X5fhRjPjdZTfkyuzB-GLnxQoupf4MvrpyOvhUiT5zm-w25PkJG_GV_yLjuI3T12cywieXWf_fwULxHt4VCOYI7TcUHeAyceiAE87YjzHwgoB-67wNFkx5aUMYIwk_stH-iUe7fefeObHQ3Bq-su3cxffKU7R35-FYYedY3Hy0lXOaLNlBPxgJ0ev_u8OhFTWQXRloXZCkt-Uda4bgEDdeWtgYAwUZagisK3qi1jKOocQNm8zL2xpY8egYcEXE15q9RDdtj1XXzEuM8hqhi8rUPQgdC6wm8PFqRuqeZExor5Q7t24hyn0hcXLsW-lXGjcBwKxyXhuCJjL_djvo-MG__s_Zbkt-9JbNnpQj98cZP2OER1AGB12xipacYWGq-DbmpQICubsaNZ-m4y4Y2TpsR_WyXrOmPP981ofBRR8V3sd6mPpbhyLjNmFlqzeKFlS7c-TzTeFF03ZY5TeDUr2O-n_33Gj_-v-xN2S5Lq0zZ4fsQOt8MuPkUctW2eJcP5BeeQGrs
  priority: 102
  providerName: Springer Nature
Title Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction
URI https://link.springer.com/article/10.1038/s41467-023-41030-1
https://www.proquest.com/docview/2858806277
https://www.proquest.com/docview/2859605802
https://pubmed.ncbi.nlm.nih.gov/PMC10468501
https://doaj.org/article/560fff94cb82476a99fba4d4b7f3f269
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfGJiReEJ8iMCoj8QaBxM6H_YBQV61MlTahQaW-RU7s2ypKCmk76BP_OndOWtRp8MRLK_kjrX13ud_5fHeMvXQqMqkzEBobZ2HiSghLMHEYl06htrFSAMUOn55lJ-NkNEkne2xT7qjbwMWNph3Vkxo3szc_v6_fo8C_a0PG1dtF4sUdtU-YUNWsEK2hA9RMGXH5aQf3_ZtZajRoki525uapO_rJp_HfwZ7Xb05ec596rTS8x-52cJL3W_rfZ3uufsButwUm1w_Zr3N3hUgQp3IEepyuEvI5cMoR0YCh03L-A8Fmw01tOYpz2-OjSRCCcrPkDd2Ar6err3yxoinYOq39w8zsCz3Z8cu1bebIh9xddXzMEYn6eIlHbDw8_jw4CbuSC2GVxmoZatKZIkebBhTkmdEKLEJIkYKMY1PJKnU2ziMAqaM0MkqnxhkEJQLQ0jJaysdsv57X7gnjJgInnTU6tzaxhOQl7j1oEElF9SgCFm82uqi6fORUFmNWeL-4VEVLnAKJU3jiFHHAXm3nfGuzcfxz9BHRbzuSMmn7hnlzUXSCWSDiAwCdVKUSCa1YQ2kSm5Q5SBCZDtjhhvrFhjsLoVJ872UizwP2YtuNgkneFlO7-cqP0eRzjkTA1A7X7Pyh3Z56eulTfJPnXaURLuH1hsH-_PrfV_z0f6z4GbsjSCDo4Dw6ZPvLZuWeI_Jalj12K5_k-KmGH3rsoN8ffRrh99Hx2cdzbB1kg54_0-h5sfsN3SU0Ug
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQuCAqIhQJGghNETRxnYx8QgsLS0scBtVJvxok9dEVJSna31Z74R_xGZpxkq61Eb73Gj8SZ8cznGc8MY6-8im3mLUTWJcNI-gKiAmwSJYVXqG1cKoBih_cPhttH8utxdrzC_vaxMHStspeJQVC7uiQb-aZQGbLaUOT5-7PfEVWNIu9qX0KjZYtdP7_AI9vk3c4npO9rIUafD7e2o66qQFRmiZpGmtSCyBG2g4J8aLUChyhJZJAmiS3TMvMuyWOAVMdZbJXOrLeodwXgYcJqMoCiyL8l01RTrn41-rKw6VC2dSVlF5sTp2pzIoMkQsUYSSroFSVL-i-UCVjCtldvZl5xzwatN7rH7nZwlX9o-es-W_HVOrvdFrCcr7O1rb5e3AP255s_R9SJ03AElZyuLfIaOOWjaMCSZZ5fILBtuK0cR9HRtoTIFYS73E55Q7ftq_HsF5_MaAg-HVdhMnv6k2b2_GTumhp5nvvzbs9wRL0hNuMhO7oRQjxiq1Vd-ceM2xh86p3VuXPS0akhRTqABiFLqn0xYEn_003Z5T6nEhynJvjgU2VaQhkklAmEMsmAvVmMOWszf1zb-yPRctGTsnaHB3Xzw3RCwCC6BAAty0IJSSvWUFjpZJFDCmKoB2yj5wTTiZKJuWT8AXu5aEbakmfHVr6ehT6a_NuxGDC1xEFLH7TcUo1PQjpx8vKrLMYlvO2Z7fLt_1_xk-s_9gVb2z7c3zN7Owe7T9kdQVuATPHxBludNjP_DLHctHgeNhBn3296x_4DKpZdkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTXy8IBigFQYYCZ4gauI4jfOAEPuoNgbVNDFpb8aJfaxiJCNtN_WJ_4u_jjsn6dRJ7G2vsePGva-f7853jL1xKjSJMxAYGw0C6XIIcjBREOVOobWxsQC6O_x1NNg7lp9PkpMV9re7C0NplZ1O9IraVgX5yPtCJchqA5GmfWjTIg53hh_PfwfUQYoirV07jYZFDtz8Eo9vkw_7O0jrt0IMd79t7wVth4GgSCI1DTIyESJFCA8K0oHJFFhETCKBOIpMEReJs1EaAsRZmIRGZYlxBm2wADxYmIycoaj-11K0imqVrW3tjg6PFh4eqr2upGxv6oSx6k-k10toJgNJ7b2CaMka-qYBS0j3ep7mtWCtt4HDh-xBC175p4bbHrEVV66zO007y_k6u7fddY97zP4cuQvEoLgMR4jJKYmRV8CpOkUNhvz0_BJhbs1NaTkqkmbE32NB8MvNlNeUe1-OZ7_4ZEav4NNx6RczZz9pZcdP57auUAK4u2gliCMG9jc1nrDjWyHFU7ZaVqXbYNyE4GJnTZZaKy2dIWKkA2QgZEGdMHos6v50XbSV0Kkhx5n2EflY6YZQGgmlPaF01GPvFu-cN3VAbpy9RbRczKQa3v5BVf_QrUrQiDUBIJNFroSkHWeQG2llnkIMYpD12GbHCbpVLBN9JQY99noxjLSlOI8pXTXzczKKdoeix9QSBy190PJIOT71xcUp5q-SELfwvmO2q1___46f3fyxr9hdlFb9ZX908JzdFyQB5JcPN9nqtJ65FwjspvnLVoI4-37bQvsPXqBjLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+role+of+interfacial+water+and+key+intermediates+at+ruthenium+surfaces+in+the+alkaline+hydrogen+evolution+reaction&rft.jtitle=Nature+communications&rft.au=Xing+Chen&rft.au=Xiao-Ting+Wang&rft.au=Jia-Bo+Le&rft.au=Shu-Min+Li&rft.date=2023-08-30&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-023-41030-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_560fff94cb82476a99fba4d4b7f3f269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon