Logomaker: beautiful sequence logos in Python
Abstract Summary Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creati...
Saved in:
Published in | Bioinformatics Vol. 36; no. 7; pp. 2272 - 2274 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Summary
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.
Availability and implementation
Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker. |
---|---|
AbstractList | Abstract
Summary
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.
Availability and implementation
Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker. Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.SUMMARYSequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.AVAILABILITY AND IMPLEMENTATIONLogomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker. Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures. Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker. |
Author | Kinney, Justin B Tareen, Ammar |
AuthorAffiliation | Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory , Cold Spring Harbor, NY 11724, USA |
AuthorAffiliation_xml | – name: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory , Cold Spring Harbor, NY 11724, USA |
Author_xml | – sequence: 1 givenname: Ammar surname: Tareen fullname: Tareen, Ammar organization: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA – sequence: 2 givenname: Justin B surname: Kinney fullname: Kinney, Justin B email: jkinney@cshl.edu organization: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31821414$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUclKBDEQDTLiuH2C0kcvrdl6iYIg4gYDetBzSGfRaHcyJt3C-PVGekbUi56qoN5CvbcFJs47DcAegocIMnLUWG-d8aETvZXxqOnfGUZrYBPREuYYFmySdlJWOa0hmYKtGJ8hLBCldANMCaoxoohugnzmH30nXnQ4zhotht6aoc2ifh20kzpr0zVm1mV3i_7Jux2wbkQb9e5yboOHy4v78-t8dnt1c342y2WB6j5nQjEjC1MZXCsMK9VQRmRpkFQlQooqWiLWUCxqpXVFqNFYatxACUuFGKnINjgddedD02klteuDaPk82E6EBffC8p8XZ5_4o3_jVfqqLmASOFgKBJ9eiT3vbJS6bYXTfogcE0xZiqosE3T_u9eXySqjBDgZATL4GIM2XNo-pe4_rW3LEeSfjfCfjfCxkcQufrFXBn_x4Mjzw_yflA_f1Kn_ |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_111211 crossref_primary_10_1016_j_jaci_2023_08_035 crossref_primary_10_1038_s41467_024_50812_0 crossref_primary_10_1021_acsmeasuresciau_1c00008 crossref_primary_10_1186_s13073_025_01450_8 crossref_primary_10_1038_s41467_022_35257_7 crossref_primary_10_1186_s12859_022_05017_x crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1038_s41586_024_07575_x crossref_primary_10_1016_j_mcpro_2022_100243 crossref_primary_10_1021_acschembio_3c00048 crossref_primary_10_1016_j_cels_2024_12_004 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_1093_gpbjnl_qzae013 crossref_primary_10_1038_s41467_024_48322_0 crossref_primary_10_1093_nar_gkac950 crossref_primary_10_1038_s41586_021_03455_w crossref_primary_10_1038_s41467_024_53322_1 crossref_primary_10_1080_19420862_2024_2435476 crossref_primary_10_7554_eLife_84006 crossref_primary_10_1038_s42003_020_0982_5 crossref_primary_10_1038_s41467_024_45969_7 crossref_primary_10_1038_s41467_022_34904_3 crossref_primary_10_1038_s41467_023_38099_z crossref_primary_10_3390_cells11152441 crossref_primary_10_1038_s41467_020_18964_x crossref_primary_10_1093_jjco_hyac175 crossref_primary_10_1016_j_heliyon_2024_e32951 crossref_primary_10_1038_s41467_022_30376_7 crossref_primary_10_1016_j_heliyon_2024_e36041 crossref_primary_10_3389_fmedt_2021_722392 crossref_primary_10_7554_eLife_84831_3 crossref_primary_10_1038_s42256_024_00851_5 crossref_primary_10_1126_science_adq3977 crossref_primary_10_1186_s13059_022_02661_7 crossref_primary_10_1021_acs_jproteome_4c00864 crossref_primary_10_1038_s41467_023_38315_w crossref_primary_10_1038_s41551_023_01120_3 crossref_primary_10_1016_j_mcpro_2024_100829 crossref_primary_10_1016_j_str_2024_12_020 crossref_primary_10_1093_nar_gkac1014 crossref_primary_10_1038_s41467_021_21879_w crossref_primary_10_1038_s41467_021_25565_9 crossref_primary_10_3390_v14071352 crossref_primary_10_1038_s42256_023_00691_9 crossref_primary_10_1016_j_mcpro_2021_100178 crossref_primary_10_1038_s41467_024_46203_0 crossref_primary_10_1371_journal_pgen_1010652 crossref_primary_10_1016_j_cell_2023_02_008 crossref_primary_10_1126_sciadv_ade8839 crossref_primary_10_1093_nar_gkae1244 crossref_primary_10_1016_j_resmic_2022_103936 crossref_primary_10_1021_acssynbio_3c00084 crossref_primary_10_1093_molbev_msad274 crossref_primary_10_1002_pro_70004 crossref_primary_10_1038_s41559_022_01688_0 crossref_primary_10_1016_j_cels_2023_05_007 crossref_primary_10_3389_fmicb_2023_1175925 crossref_primary_10_1038_s41587_024_02505_8 crossref_primary_10_7554_eLife_84831 crossref_primary_10_1093_bib_bbac541 crossref_primary_10_1126_science_abo5672 crossref_primary_10_1016_j_celrep_2025_115450 crossref_primary_10_1093_nar_gkad1053 crossref_primary_10_3389_fimmu_2024_1407470 crossref_primary_10_1038_s41598_021_91494_8 crossref_primary_10_3389_fgene_2022_853612 crossref_primary_10_1021_acssynbio_1c00017 crossref_primary_10_1016_j_biopha_2024_117740 crossref_primary_10_1038_s41586_024_08533_3 crossref_primary_10_3389_fbinf_2021_747428 crossref_primary_10_1016_j_eswa_2024_123525 crossref_primary_10_1093_nargab_lqac075 crossref_primary_10_1016_j_jmb_2024_168921 crossref_primary_10_3389_fpls_2022_983693 crossref_primary_10_1093_bib_bbae030 crossref_primary_10_7554_eLife_67403 crossref_primary_10_1093_molbev_msae261 crossref_primary_10_1002_pro_5094 crossref_primary_10_1186_s13059_021_02427_7 crossref_primary_10_3390_cancers13225663 crossref_primary_10_1016_j_immuni_2024_07_022 crossref_primary_10_1038_s41467_023_43216_z crossref_primary_10_1016_j_molcel_2022_08_015 crossref_primary_10_1007_s13399_023_05038_3 crossref_primary_10_1002_ange_202314961 crossref_primary_10_1126_science_adj0116 crossref_primary_10_1371_journal_pcbi_1012380 crossref_primary_10_1073_pnas_2021291118 crossref_primary_10_1093_bib_bbab591 crossref_primary_10_1261_rna_079721_123 crossref_primary_10_1038_s41586_022_05174_2 crossref_primary_10_1038_s41586_022_04403_y crossref_primary_10_1002_pro_4429 crossref_primary_10_1186_s12896_022_00765_3 crossref_primary_10_1038_s42256_024_00913_8 crossref_primary_10_1371_journal_pcbi_1012818 crossref_primary_10_1016_j_immuni_2022_03_019 crossref_primary_10_1073_pnas_2106388118 crossref_primary_10_1093_nar_gkad702 crossref_primary_10_1093_nar_gkae238 crossref_primary_10_1186_s12864_023_09677_8 crossref_primary_10_1016_j_molcel_2021_07_027 crossref_primary_10_1093_gigascience_giab054 crossref_primary_10_1186_s13059_023_02956_3 crossref_primary_10_1038_s41586_023_05946_4 crossref_primary_10_1371_journal_pcbi_1011953 crossref_primary_10_1021_acssynbio_3c00325 crossref_primary_10_1038_s41594_023_01171_9 crossref_primary_10_1038_s41598_024_57330_5 crossref_primary_10_1016_j_mcpro_2022_100432 crossref_primary_10_3390_ijms242015447 crossref_primary_10_1080_15476286_2021_1952759 crossref_primary_10_1016_j_xgen_2022_100164 crossref_primary_10_1038_s41557_024_01600_2 crossref_primary_10_1093_molbev_msae067 crossref_primary_10_1021_acs_jproteome_2c00505 crossref_primary_10_1038_s41467_024_54887_7 crossref_primary_10_1016_j_jmb_2024_168558 crossref_primary_10_1038_s41467_024_46090_5 crossref_primary_10_1093_bioinformatics_btab687 crossref_primary_10_1371_journal_pcbi_1010016 crossref_primary_10_3389_fimmu_2022_960920 crossref_primary_10_1038_s42256_022_00570_9 crossref_primary_10_1016_j_cels_2022_02_006 crossref_primary_10_1186_s12859_020_03739_4 crossref_primary_10_1101_gr_276715_122 crossref_primary_10_1016_j_crmeth_2022_100318 crossref_primary_10_1002_anie_202314961 crossref_primary_10_1038_s41551_021_00699_9 crossref_primary_10_1126_science_abe4747 crossref_primary_10_1093_bioadv_vbae020 crossref_primary_10_1093_nar_gkae942 crossref_primary_10_1080_19420862_2024_2408344 crossref_primary_10_1099_mgen_0_000637 crossref_primary_10_1038_s41467_020_18676_2 crossref_primary_10_7554_eLife_87147_4 crossref_primary_10_1089_crispr_2022_0090 crossref_primary_10_1016_j_molcel_2021_01_028 crossref_primary_10_1093_nar_gkad1152 crossref_primary_10_3390_biom13050801 crossref_primary_10_1186_s43141_022_00443_z crossref_primary_10_1073_pnas_2201301119 crossref_primary_10_3389_fimmu_2022_847756 crossref_primary_10_3390_ijms22063012 crossref_primary_10_34133_research_0258 crossref_primary_10_1038_s41467_020_17408_w crossref_primary_10_1016_j_cub_2020_10_016 crossref_primary_10_1016_j_mex_2022_101803 crossref_primary_10_1093_nar_gkae718 crossref_primary_10_7554_eLife_62816 crossref_primary_10_1038_s41467_022_35642_2 crossref_primary_10_1038_s41564_022_01144_6 crossref_primary_10_1089_crispr_2020_0043 crossref_primary_10_1038_s42256_023_00634_4 crossref_primary_10_1038_s41598_020_77379_2 crossref_primary_10_1093_nar_gkad193 crossref_primary_10_1126_sciadv_adl0164 crossref_primary_10_7554_eLife_70146 crossref_primary_10_1038_s41467_022_34213_9 crossref_primary_10_1128_mBio_00836_21 crossref_primary_10_1101_gr_276917_122 crossref_primary_10_1093_bioinformatics_btab800 crossref_primary_10_1073_pnas_2312455121 crossref_primary_10_1002_pro_5027 crossref_primary_10_1016_j_celrep_2024_114241 crossref_primary_10_7554_eLife_87147 crossref_primary_10_1038_s44320_023_00001_w crossref_primary_10_1093_nar_gkae1251 crossref_primary_10_1038_s41598_025_92886_w crossref_primary_10_1073_pnas_2021171118 crossref_primary_10_1093_nar_gkaa294 crossref_primary_10_1371_journal_pcbi_1008925 crossref_primary_10_1126_science_add7450 crossref_primary_10_1038_s41598_024_74826_2 crossref_primary_10_1093_nargab_lqae099 crossref_primary_10_1016_j_molcel_2024_01_019 crossref_primary_10_1073_pnas_2213264120 crossref_primary_10_1016_j_cell_2024_04_031 crossref_primary_10_1038_s41587_022_01527_4 crossref_primary_10_1016_j_cels_2022_01_002 crossref_primary_10_1002_pro_4958 crossref_primary_10_1016_j_bbrc_2024_149945 crossref_primary_10_1109_ACCESS_2023_3284464 crossref_primary_10_1093_nar_gkab395 crossref_primary_10_1016_j_cels_2023_10_011 crossref_primary_10_3389_fgene_2024_1500684 crossref_primary_10_1038_s41596_020_00465_2 crossref_primary_10_1089_crispr_2023_0015 crossref_primary_10_1016_j_immuni_2023_02_005 crossref_primary_10_1186_s13059_023_02941_w crossref_primary_10_1093_bioinformatics_btad323 crossref_primary_10_1016_j_compbiomed_2023_106974 crossref_primary_10_1038_s41467_023_42998_6 crossref_primary_10_1038_s41467_024_47800_9 crossref_primary_10_1093_gbe_evae142 crossref_primary_10_1016_j_celrep_2023_113410 crossref_primary_10_1016_j_celrep_2022_111951 crossref_primary_10_1038_s41564_024_01654_5 crossref_primary_10_1371_journal_pcbi_1010238 crossref_primary_10_1126_scisignal_abm4484 crossref_primary_10_1128_mSystems_00439_20 crossref_primary_10_1038_s41467_024_55274_y crossref_primary_10_1103_PhysRevE_110_044408 crossref_primary_10_1128_mbio_02137_22 crossref_primary_10_1038_s41589_023_01343_0 crossref_primary_10_1093_bib_bbaa096 crossref_primary_10_7554_eLife_66815 crossref_primary_10_1016_j_imu_2024_101578 crossref_primary_10_1038_s41467_024_51071_9 crossref_primary_10_1083_jcb_202401169 crossref_primary_10_1016_j_celrep_2022_111845 crossref_primary_10_1093_plcell_koad208 crossref_primary_10_3389_fimmu_2021_671944 crossref_primary_10_1016_j_bpj_2023_03_032 crossref_primary_10_1016_j_mcpro_2025_100937 crossref_primary_10_1093_nar_gkae641 crossref_primary_10_3389_fmolb_2023_1237621 crossref_primary_10_1093_bioinformatics_btaf080 |
Cites_doi | 10.1093/nar/gky955 10.1186/1471-2105-5-7 10.1093/nar/gks469 10.7554/eLife.40499 10.1093/nar/gki439 10.1038/nmeth.4555 10.1006/jmbi.1996.0409 10.1016/j.jim.2013.08.014 10.1186/1471-2105-15-7 10.1073/pnas.1722055115 10.1016/j.cell.2018.12.015 10.1093/bioinformatics/btx469 10.1101/gr.849004 10.1093/bioinformatics/btl223 10.1146/annurev-genom-083118-014845 10.1186/s12859-015-0767-x 10.1038/nmeth1109-786 10.1093/nar/gkx323 10.1093/nar/gkp335 10.1186/s12859-017-1680-2 10.1093/bioinformatics/bts295 10.1093/bioinformatics/btu634 10.1038/nmeth.2646 10.1002/0471142735.im1817s88 10.1093/bioinformatics/btw525 10.1371/journal.pcbi.1006226 10.7554/eLife.40618 10.1073/pnas.1004290107 10.1093/bioinformatics/bts461 10.1016/j.molcel.2018.07.033 10.1101/gr.144659.112 10.1093/nar/gkv385 10.1093/nar/gkt1223 10.1073/pnas.92.6.2224 10.1093/nar/18.20.6097 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. 2020 The Author(s) 2019. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. 2020 – notice: The Author(s) 2019. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btz921 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford University Press Open Access url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 2274 |
ExternalDocumentID | PMC7141850 31821414 10_1093_bioinformatics_btz921 10.1093/bioinformatics/btz921 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM133777 – fundername: ; – fundername: ; grantid: 1R35GM133777; 5P30CA045508 |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 KOP Q5Y RD5 ROX TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c518t-9ad9fc5f7f28d207db493c6f1cd611d4d4619b42a8dee734fe2ce2b0c06d19373 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 14:10:59 EDT 2025 Fri Jul 11 13:21:45 EDT 2025 Thu Apr 03 06:58:12 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Tue Jul 01 02:33:51 EDT 2025 Wed Aug 28 03:18:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-9ad9fc5f7f28d207db493c6f1cd611d4d4619b42a8dee734fe2ce2b0c06d19373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btz921 |
PMID | 31821414 |
PQID | 2324914666 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7141850 proquest_miscellaneous_2324914666 pubmed_primary_31821414 crossref_citationtrail_10_1093_bioinformatics_btz921 crossref_primary_10_1093_bioinformatics_btz921 oup_primary_10_1093_bioinformatics_btz921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Colaert (2023062300072736800_btz921-B4) 2009; 6 Wong (2023062300072736800_btz921-B34) 2018; 71 Crooks (2023062300072736800_btz921-B5) 2004; 14 Nettling (2023062300072736800_btz921-B18) 2015; 16 Kinney (2023062300072736800_btz921-B13) 2010; 107 Mason (2023062300072736800_btz921-B16) 2019 Olsen (2023062300072736800_btz921-B20) 2013; 400–401 Wagih (2023062300072736800_btz921-B32) 2017; 33 Foat (2023062300072736800_btz921-B7) 2006; 22 Maddelein (2023062300072736800_btz921-B15) 2015; 43 Forcier (2023062300072736800_btz921-B8) 2018; 7 Liachko (2023062300072736800_btz921-B14) 2013; 23 Rapin (2023062300072736800_btz921-B25) 2010 Shrikumar (2023062300072736800_btz921-B29) 2017 Ye (2023062300072736800_btz921-B37) 2017; 18 Nguyen (2023062300072736800_btz921-B19) 2019; 8 Schuster-Böckler (2023062300072736800_btz921-B27) 2004; 5 Wu (2023062300072736800_btz921-B36) 2017; 45 Frankish (2023062300072736800_btz921-B9) 2019; 47 Schneider (2023062300072736800_btz921-B26) 1990; 18 Ou (2023062300072736800_btz921-B22) 2018; 15 Barnes (2023062300072736800_btz921-B2) 2019; 15 Parkinson (2023062300072736800_btz921-B23) 1996; 260 Sharma (2023062300072736800_btz921-B28) 2012; 28 Kinney (2023062300072736800_btz921-B12) 2019; 20 Jaganathan (2023062300072736800_btz921-B11) 2019; 176 Rao (2023062300072736800_btz921-B24) 1995; 92 O’Shea (2023062300072736800_btz921-B21) 2013; 10 Workman (2023062300072736800_btz921-B35) 2005; 33 Gorodkin (2023062300072736800_btz921-B10) 1997; 13 Bailey (2023062300072736800_btz921-B1) 2009; 37 Yu (2023062300072736800_btz921-B38) 2015; 31 Belliveau (2023062300072736800_btz921-B3) 2018; 115 Menzel (2023062300072736800_btz921-B17) 2012; 28 Wheeler (2023062300072736800_btz921-B33) 2014; 15 Thomsen (2023062300072736800_btz921-B30) 2012; 40 Finn (2023062300072736800_btz921-B6) 2014; 42 Waese (2023062300072736800_btz921-B31) 2016; 32 |
References_xml | – volume: 47 start-page: D766 year: 2019 ident: 2023062300072736800_btz921-B9 article-title: GENCODE reference annotation for the human and mouse genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gky955 – volume: 5 start-page: 7 year: 2004 ident: 2023062300072736800_btz921-B27 article-title: HMM logos for visualization of protein families publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-7 – volume: 40 start-page: W281 year: 2012 ident: 2023062300072736800_btz921-B30 article-title: Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion publication-title: Nucleic Acids Res doi: 10.1093/nar/gks469 – volume: 8 start-page: e40499 year: 2019 ident: 2023062300072736800_btz921-B19 article-title: Quantitative mapping of protein-peptide affinity landscapes using spectrally encoded beads publication-title: eLife doi: 10.7554/eLife.40499 – volume: 33 start-page: W389 year: 2005 ident: 2023062300072736800_btz921-B35 article-title: enoLOGOS: a versatile web tool for energy normalized sequence logos publication-title: Nucleic Acids Res doi: 10.1093/nar/gki439 – volume: 15 start-page: 8 year: 2018 ident: 2023062300072736800_btz921-B22 article-title: motifStack for the analysis of transcription factor binding site evolution publication-title: Nat. Methods doi: 10.1038/nmeth.4555 – volume: 260 start-page: 395 year: 1996 ident: 2023062300072736800_btz921-B23 article-title: Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein–DNA interface publication-title: J. Mol. Biol doi: 10.1006/jmbi.1996.0409 – volume: 400–401 start-page: 37 year: 2013 ident: 2023062300072736800_btz921-B20 article-title: BlockLogo: visualization of peptide and sequence motif conservation publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2013.08.014 – volume: 15 start-page: 7 year: 2014 ident: 2023062300072736800_btz921-B33 article-title: Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-7 – volume: 115 start-page: E4796 year: 2018 ident: 2023062300072736800_btz921-B3 article-title: Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1722055115 – volume: 176 start-page: 535 year: 2019 ident: 2023062300072736800_btz921-B11 article-title: Predicting Splicing from Primary Sequence with Deep Learning publication-title: Cell doi: 10.1016/j.cell.2018.12.015 – volume: 33 start-page: 3645 year: 2017 ident: 2023062300072736800_btz921-B32 article-title: ggseqlogo: a versatile R package for drawing sequence logos publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx469 – volume: 14 start-page: 1188 year: 2004 ident: 2023062300072736800_btz921-B5 article-title: WebLogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 22 start-page: e141 year: 2006 ident: 2023062300072736800_btz921-B7 article-title: Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl223 – volume: 20 start-page: 99 year: 2019 ident: 2023062300072736800_btz921-B12 article-title: Massively parallel assays and quantitative sequence-function relationships publication-title: Annu. Rev. Genom. Hum. Genet doi: 10.1146/annurev-genom-083118-014845 – start-page: 1 year: 2019 ident: 2023062300072736800_btz921-B16 article-title: Deep learning enables therapeutic antibody optimization in mammalian cells by deciphering high-dimensional protein sequence space publication-title: bioRxiv – volume: 16 start-page: 387 year: 2015 ident: 2023062300072736800_btz921-B18 article-title: DiffLogo: a comparative visualization of sequence motifs publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0767-x – volume: 6 start-page: 786 year: 2009 ident: 2023062300072736800_btz921-B4 article-title: Improved visualization of protein consensus sequences by iceLogo publication-title: Nat. Methods doi: 10.1038/nmeth1109-786 – volume: 45 start-page: W534 year: 2017 ident: 2023062300072736800_btz921-B36 article-title: kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx323 – volume: 37 start-page: W202 year: 2009 ident: 2023062300072736800_btz921-B1 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – year: 2017 ident: 2023062300072736800_btz921-B29 – volume: 18 start-page: 269 year: 2017 ident: 2023062300072736800_btz921-B37 article-title: CircularLogo: a lightweight web application to visualize intra-motif dependencies publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1680-2 – volume: 28 start-page: 1935 year: 2012 ident: 2023062300072736800_btz921-B28 article-title: CodonLogo: a sequence logo-based viewer for codon patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts295 – volume: 31 start-page: 324 year: 2015 ident: 2023062300072736800_btz921-B38 article-title: Log-odds sequence logos publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu634 – volume: 10 start-page: 1211 year: 2013 ident: 2023062300072736800_btz921-B21 article-title: pLogo: a probabilistic approach to visualizing sequence motifs publication-title: Nat. Methods doi: 10.1038/nmeth.2646 – year: 2010 ident: 2023062300072736800_btz921-B25 article-title: The MHC motif viewer: a visualization tool for MHC binding motifs publication-title: Curr. Protoc. Immunol doi: 10.1002/0471142735.im1817s88 – volume: 32 start-page: 3670 year: 2016 ident: 2023062300072736800_btz921-B31 article-title: Gene Slider: sequence logo interactive data-visualization for education and research publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw525 – volume: 15 start-page: e1006226 year: 2019 ident: 2023062300072736800_btz921-B2 article-title: Mapping DNA sequence to transcription factor binding energy in vivo publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1006226 – volume: 7 start-page: e40618 year: 2018 ident: 2023062300072736800_btz921-B8 article-title: Measuring cis-regulatory energetics in living cells using allelic manifolds publication-title: eLife doi: 10.7554/eLife.40618 – volume: 107 start-page: 9158 year: 2010 ident: 2023062300072736800_btz921-B13 article-title: Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004290107 – volume: 28 start-page: 2523 year: 2012 ident: 2023062300072736800_btz921-B17 article-title: RILogo: visualizing RNA-RNA interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts461 – volume: 71 start-page: 1012 year: 2018 ident: 2023062300072736800_btz921-B34 article-title: Quantitative activity profile and context dependence of all human 5’ splice sites publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.07.033 – volume: 23 start-page: 698 year: 2013 ident: 2023062300072736800_btz921-B14 article-title: High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast publication-title: Genome Res doi: 10.1101/gr.144659.112 – volume: 13 start-page: 583 year: 1997 ident: 2023062300072736800_btz921-B10 article-title: Displaying the information contents of structural RNA alignments: the structure logos publication-title: Comput. Appl. Biosci – volume: 43 start-page: W543 year: 2015 ident: 2023062300072736800_btz921-B15 article-title: The iceLogo web server and SOAP service for determining protein consensus sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv385 – volume: 42 start-page: D222 year: 2014 ident: 2023062300072736800_btz921-B6 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1223 – volume: 92 start-page: 2224 year: 1995 ident: 2023062300072736800_btz921-B24 article-title: The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.6.2224 – volume: 18 start-page: 6097 year: 1990 ident: 2023062300072736800_btz921-B26 article-title: Sequence logos: a new way to display consensus sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/18.20.6097 |
SSID | ssj0051444 ssj0005056 |
Score | 2.667864 |
Snippet | Abstract
Summary
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently... Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2272 |
SubjectTerms | Applications Notes |
Title | Logomaker: beautiful sequence logos in Python |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31821414 https://www.proquest.com/docview/2324914666 https://pubmed.ncbi.nlm.nih.gov/PMC7141850 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vInjxEJt9JVlvIpYivg4t9BayLy3WRNr0UH-9u3nUpiDqMWR2WWZ2d2bYme8D4BxDwi0hkmd8l_aIor7HOKSeICxCUkpOme1GfngMegNyN6TDFvDrXpjVJ3yGO3yUVSCiFri4w_NPVnSOG0dswfL7T8Pvmg7fIsOUHyYSICWlrUX2jnxc9-_8NGXDMzW63ZaCztXaySVn1N0EG1UU6V6XZt8CLZVug7WSV3K-A7z77CV7T97U5MrlKjF7S8_Gbl017RqhbOqOUvd5bpEDdsGge9u_6XkVL4InKIxyjyWSaUF1qFEkkR9KThgWgYZCBhBKIonJijhBSSSVCjHRCgmFuC_8QJp4LcR7oJ1mqToArjFOZBKQBEc8IMysyBIvaaUoDEXAOHUAqXUSiwo03HJXjOPy8RrHTVXGpSodcLkY9lGiZvw24MIo_K-yZ7VZYnMW7ANHkqpsNo1tdMjM1R8EDtgvzbSY0txdCBJIHBA2DLgQsDjbzT_p6LXA2w6hRfjxD_-xxiOwjmxiXpT4HIN2PpmpExO95Py02LFf0B7ysg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logomaker%3A+beautiful+sequence+logos+in+Python&rft.jtitle=Bioinformatics&rft.au=Tareen%2C+Ammar&rft.au=Kinney%2C+Justin+B&rft.date=2020-04-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=36&rft.issue=7&rft.spage=2272&rft.epage=2274&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz921&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtz921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |