Logomaker: beautiful sequence logos in Python

Abstract Summary Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creati...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 7; pp. 2272 - 2274
Main Authors Tareen, Ammar, Kinney, Justin B
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Summary Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures. Availability and implementation Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.
AbstractList Abstract Summary Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures. Availability and implementation Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.SUMMARYSequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures.Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.AVAILABILITY AND IMPLEMENTATIONLogomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to generate and customize such logos within the Python programming environment. Here we introduce Logomaker, a Python API for creating publication-quality sequence logos. Logomaker can produce both standard and highly customized logos from either a matrix-like array of numbers or a multiple-sequence alignment. Logos are rendered as native matplotlib objects that are easy to stylize and incorporate into multi-panel figures. Logomaker can be installed using the pip package manager and is compatible with both Python 2.7 and Python 3.6. Documentation is provided at http://logomaker.readthedocs.io; source code is available at http://github.com/jbkinney/logomaker.
Author Kinney, Justin B
Tareen, Ammar
AuthorAffiliation Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory , Cold Spring Harbor, NY 11724, USA
AuthorAffiliation_xml – name: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory , Cold Spring Harbor, NY 11724, USA
Author_xml – sequence: 1
  givenname: Ammar
  surname: Tareen
  fullname: Tareen, Ammar
  organization: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
– sequence: 2
  givenname: Justin B
  surname: Kinney
  fullname: Kinney, Justin B
  email: jkinney@cshl.edu
  organization: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31821414$$D View this record in MEDLINE/PubMed
BookMark eNqNUclKBDEQDTLiuH2C0kcvrdl6iYIg4gYDetBzSGfRaHcyJt3C-PVGekbUi56qoN5CvbcFJs47DcAegocIMnLUWG-d8aETvZXxqOnfGUZrYBPREuYYFmySdlJWOa0hmYKtGJ8hLBCldANMCaoxoohugnzmH30nXnQ4zhotht6aoc2ifh20kzpr0zVm1mV3i_7Jux2wbkQb9e5yboOHy4v78-t8dnt1c342y2WB6j5nQjEjC1MZXCsMK9VQRmRpkFQlQooqWiLWUCxqpXVFqNFYatxACUuFGKnINjgddedD02klteuDaPk82E6EBffC8p8XZ5_4o3_jVfqqLmASOFgKBJ9eiT3vbJS6bYXTfogcE0xZiqosE3T_u9eXySqjBDgZATL4GIM2XNo-pe4_rW3LEeSfjfCfjfCxkcQufrFXBn_x4Mjzw_yflA_f1Kn_
CitedBy_id crossref_primary_10_1016_j_celrep_2022_111211
crossref_primary_10_1016_j_jaci_2023_08_035
crossref_primary_10_1038_s41467_024_50812_0
crossref_primary_10_1021_acsmeasuresciau_1c00008
crossref_primary_10_1186_s13073_025_01450_8
crossref_primary_10_1038_s41467_022_35257_7
crossref_primary_10_1186_s12859_022_05017_x
crossref_primary_10_1016_j_cell_2020_08_012
crossref_primary_10_1038_s41586_024_07575_x
crossref_primary_10_1016_j_mcpro_2022_100243
crossref_primary_10_1021_acschembio_3c00048
crossref_primary_10_1016_j_cels_2024_12_004
crossref_primary_10_1371_journal_pcbi_1009675
crossref_primary_10_1093_gpbjnl_qzae013
crossref_primary_10_1038_s41467_024_48322_0
crossref_primary_10_1093_nar_gkac950
crossref_primary_10_1038_s41586_021_03455_w
crossref_primary_10_1038_s41467_024_53322_1
crossref_primary_10_1080_19420862_2024_2435476
crossref_primary_10_7554_eLife_84006
crossref_primary_10_1038_s42003_020_0982_5
crossref_primary_10_1038_s41467_024_45969_7
crossref_primary_10_1038_s41467_022_34904_3
crossref_primary_10_1038_s41467_023_38099_z
crossref_primary_10_3390_cells11152441
crossref_primary_10_1038_s41467_020_18964_x
crossref_primary_10_1093_jjco_hyac175
crossref_primary_10_1016_j_heliyon_2024_e32951
crossref_primary_10_1038_s41467_022_30376_7
crossref_primary_10_1016_j_heliyon_2024_e36041
crossref_primary_10_3389_fmedt_2021_722392
crossref_primary_10_7554_eLife_84831_3
crossref_primary_10_1038_s42256_024_00851_5
crossref_primary_10_1126_science_adq3977
crossref_primary_10_1186_s13059_022_02661_7
crossref_primary_10_1021_acs_jproteome_4c00864
crossref_primary_10_1038_s41467_023_38315_w
crossref_primary_10_1038_s41551_023_01120_3
crossref_primary_10_1016_j_mcpro_2024_100829
crossref_primary_10_1016_j_str_2024_12_020
crossref_primary_10_1093_nar_gkac1014
crossref_primary_10_1038_s41467_021_21879_w
crossref_primary_10_1038_s41467_021_25565_9
crossref_primary_10_3390_v14071352
crossref_primary_10_1038_s42256_023_00691_9
crossref_primary_10_1016_j_mcpro_2021_100178
crossref_primary_10_1038_s41467_024_46203_0
crossref_primary_10_1371_journal_pgen_1010652
crossref_primary_10_1016_j_cell_2023_02_008
crossref_primary_10_1126_sciadv_ade8839
crossref_primary_10_1093_nar_gkae1244
crossref_primary_10_1016_j_resmic_2022_103936
crossref_primary_10_1021_acssynbio_3c00084
crossref_primary_10_1093_molbev_msad274
crossref_primary_10_1002_pro_70004
crossref_primary_10_1038_s41559_022_01688_0
crossref_primary_10_1016_j_cels_2023_05_007
crossref_primary_10_3389_fmicb_2023_1175925
crossref_primary_10_1038_s41587_024_02505_8
crossref_primary_10_7554_eLife_84831
crossref_primary_10_1093_bib_bbac541
crossref_primary_10_1126_science_abo5672
crossref_primary_10_1016_j_celrep_2025_115450
crossref_primary_10_1093_nar_gkad1053
crossref_primary_10_3389_fimmu_2024_1407470
crossref_primary_10_1038_s41598_021_91494_8
crossref_primary_10_3389_fgene_2022_853612
crossref_primary_10_1021_acssynbio_1c00017
crossref_primary_10_1016_j_biopha_2024_117740
crossref_primary_10_1038_s41586_024_08533_3
crossref_primary_10_3389_fbinf_2021_747428
crossref_primary_10_1016_j_eswa_2024_123525
crossref_primary_10_1093_nargab_lqac075
crossref_primary_10_1016_j_jmb_2024_168921
crossref_primary_10_3389_fpls_2022_983693
crossref_primary_10_1093_bib_bbae030
crossref_primary_10_7554_eLife_67403
crossref_primary_10_1093_molbev_msae261
crossref_primary_10_1002_pro_5094
crossref_primary_10_1186_s13059_021_02427_7
crossref_primary_10_3390_cancers13225663
crossref_primary_10_1016_j_immuni_2024_07_022
crossref_primary_10_1038_s41467_023_43216_z
crossref_primary_10_1016_j_molcel_2022_08_015
crossref_primary_10_1007_s13399_023_05038_3
crossref_primary_10_1002_ange_202314961
crossref_primary_10_1126_science_adj0116
crossref_primary_10_1371_journal_pcbi_1012380
crossref_primary_10_1073_pnas_2021291118
crossref_primary_10_1093_bib_bbab591
crossref_primary_10_1261_rna_079721_123
crossref_primary_10_1038_s41586_022_05174_2
crossref_primary_10_1038_s41586_022_04403_y
crossref_primary_10_1002_pro_4429
crossref_primary_10_1186_s12896_022_00765_3
crossref_primary_10_1038_s42256_024_00913_8
crossref_primary_10_1371_journal_pcbi_1012818
crossref_primary_10_1016_j_immuni_2022_03_019
crossref_primary_10_1073_pnas_2106388118
crossref_primary_10_1093_nar_gkad702
crossref_primary_10_1093_nar_gkae238
crossref_primary_10_1186_s12864_023_09677_8
crossref_primary_10_1016_j_molcel_2021_07_027
crossref_primary_10_1093_gigascience_giab054
crossref_primary_10_1186_s13059_023_02956_3
crossref_primary_10_1038_s41586_023_05946_4
crossref_primary_10_1371_journal_pcbi_1011953
crossref_primary_10_1021_acssynbio_3c00325
crossref_primary_10_1038_s41594_023_01171_9
crossref_primary_10_1038_s41598_024_57330_5
crossref_primary_10_1016_j_mcpro_2022_100432
crossref_primary_10_3390_ijms242015447
crossref_primary_10_1080_15476286_2021_1952759
crossref_primary_10_1016_j_xgen_2022_100164
crossref_primary_10_1038_s41557_024_01600_2
crossref_primary_10_1093_molbev_msae067
crossref_primary_10_1021_acs_jproteome_2c00505
crossref_primary_10_1038_s41467_024_54887_7
crossref_primary_10_1016_j_jmb_2024_168558
crossref_primary_10_1038_s41467_024_46090_5
crossref_primary_10_1093_bioinformatics_btab687
crossref_primary_10_1371_journal_pcbi_1010016
crossref_primary_10_3389_fimmu_2022_960920
crossref_primary_10_1038_s42256_022_00570_9
crossref_primary_10_1016_j_cels_2022_02_006
crossref_primary_10_1186_s12859_020_03739_4
crossref_primary_10_1101_gr_276715_122
crossref_primary_10_1016_j_crmeth_2022_100318
crossref_primary_10_1002_anie_202314961
crossref_primary_10_1038_s41551_021_00699_9
crossref_primary_10_1126_science_abe4747
crossref_primary_10_1093_bioadv_vbae020
crossref_primary_10_1093_nar_gkae942
crossref_primary_10_1080_19420862_2024_2408344
crossref_primary_10_1099_mgen_0_000637
crossref_primary_10_1038_s41467_020_18676_2
crossref_primary_10_7554_eLife_87147_4
crossref_primary_10_1089_crispr_2022_0090
crossref_primary_10_1016_j_molcel_2021_01_028
crossref_primary_10_1093_nar_gkad1152
crossref_primary_10_3390_biom13050801
crossref_primary_10_1186_s43141_022_00443_z
crossref_primary_10_1073_pnas_2201301119
crossref_primary_10_3389_fimmu_2022_847756
crossref_primary_10_3390_ijms22063012
crossref_primary_10_34133_research_0258
crossref_primary_10_1038_s41467_020_17408_w
crossref_primary_10_1016_j_cub_2020_10_016
crossref_primary_10_1016_j_mex_2022_101803
crossref_primary_10_1093_nar_gkae718
crossref_primary_10_7554_eLife_62816
crossref_primary_10_1038_s41467_022_35642_2
crossref_primary_10_1038_s41564_022_01144_6
crossref_primary_10_1089_crispr_2020_0043
crossref_primary_10_1038_s42256_023_00634_4
crossref_primary_10_1038_s41598_020_77379_2
crossref_primary_10_1093_nar_gkad193
crossref_primary_10_1126_sciadv_adl0164
crossref_primary_10_7554_eLife_70146
crossref_primary_10_1038_s41467_022_34213_9
crossref_primary_10_1128_mBio_00836_21
crossref_primary_10_1101_gr_276917_122
crossref_primary_10_1093_bioinformatics_btab800
crossref_primary_10_1073_pnas_2312455121
crossref_primary_10_1002_pro_5027
crossref_primary_10_1016_j_celrep_2024_114241
crossref_primary_10_7554_eLife_87147
crossref_primary_10_1038_s44320_023_00001_w
crossref_primary_10_1093_nar_gkae1251
crossref_primary_10_1038_s41598_025_92886_w
crossref_primary_10_1073_pnas_2021171118
crossref_primary_10_1093_nar_gkaa294
crossref_primary_10_1371_journal_pcbi_1008925
crossref_primary_10_1126_science_add7450
crossref_primary_10_1038_s41598_024_74826_2
crossref_primary_10_1093_nargab_lqae099
crossref_primary_10_1016_j_molcel_2024_01_019
crossref_primary_10_1073_pnas_2213264120
crossref_primary_10_1016_j_cell_2024_04_031
crossref_primary_10_1038_s41587_022_01527_4
crossref_primary_10_1016_j_cels_2022_01_002
crossref_primary_10_1002_pro_4958
crossref_primary_10_1016_j_bbrc_2024_149945
crossref_primary_10_1109_ACCESS_2023_3284464
crossref_primary_10_1093_nar_gkab395
crossref_primary_10_1016_j_cels_2023_10_011
crossref_primary_10_3389_fgene_2024_1500684
crossref_primary_10_1038_s41596_020_00465_2
crossref_primary_10_1089_crispr_2023_0015
crossref_primary_10_1016_j_immuni_2023_02_005
crossref_primary_10_1186_s13059_023_02941_w
crossref_primary_10_1093_bioinformatics_btad323
crossref_primary_10_1016_j_compbiomed_2023_106974
crossref_primary_10_1038_s41467_023_42998_6
crossref_primary_10_1038_s41467_024_47800_9
crossref_primary_10_1093_gbe_evae142
crossref_primary_10_1016_j_celrep_2023_113410
crossref_primary_10_1016_j_celrep_2022_111951
crossref_primary_10_1038_s41564_024_01654_5
crossref_primary_10_1371_journal_pcbi_1010238
crossref_primary_10_1126_scisignal_abm4484
crossref_primary_10_1128_mSystems_00439_20
crossref_primary_10_1038_s41467_024_55274_y
crossref_primary_10_1103_PhysRevE_110_044408
crossref_primary_10_1128_mbio_02137_22
crossref_primary_10_1038_s41589_023_01343_0
crossref_primary_10_1093_bib_bbaa096
crossref_primary_10_7554_eLife_66815
crossref_primary_10_1016_j_imu_2024_101578
crossref_primary_10_1038_s41467_024_51071_9
crossref_primary_10_1083_jcb_202401169
crossref_primary_10_1016_j_celrep_2022_111845
crossref_primary_10_1093_plcell_koad208
crossref_primary_10_3389_fimmu_2021_671944
crossref_primary_10_1016_j_bpj_2023_03_032
crossref_primary_10_1016_j_mcpro_2025_100937
crossref_primary_10_1093_nar_gkae641
crossref_primary_10_3389_fmolb_2023_1237621
crossref_primary_10_1093_bioinformatics_btaf080
Cites_doi 10.1093/nar/gky955
10.1186/1471-2105-5-7
10.1093/nar/gks469
10.7554/eLife.40499
10.1093/nar/gki439
10.1038/nmeth.4555
10.1006/jmbi.1996.0409
10.1016/j.jim.2013.08.014
10.1186/1471-2105-15-7
10.1073/pnas.1722055115
10.1016/j.cell.2018.12.015
10.1093/bioinformatics/btx469
10.1101/gr.849004
10.1093/bioinformatics/btl223
10.1146/annurev-genom-083118-014845
10.1186/s12859-015-0767-x
10.1038/nmeth1109-786
10.1093/nar/gkx323
10.1093/nar/gkp335
10.1186/s12859-017-1680-2
10.1093/bioinformatics/bts295
10.1093/bioinformatics/btu634
10.1038/nmeth.2646
10.1002/0471142735.im1817s88
10.1093/bioinformatics/btw525
10.1371/journal.pcbi.1006226
10.7554/eLife.40618
10.1073/pnas.1004290107
10.1093/bioinformatics/bts461
10.1016/j.molcel.2018.07.033
10.1101/gr.144659.112
10.1093/nar/gkv385
10.1093/nar/gkt1223
10.1073/pnas.92.6.2224
10.1093/nar/18.20.6097
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. 2020
The Author(s) 2019. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. 2020
– notice: The Author(s) 2019. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz921
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford University Press Open Access
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2274
ExternalDocumentID PMC7141850
31821414
10_1093_bioinformatics_btz921
10.1093/bioinformatics/btz921
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM133777
– fundername: ;
– fundername: ;
  grantid: 1R35GM133777; 5P30CA045508
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c518t-9ad9fc5f7f28d207db493c6f1cd611d4d4619b42a8dee734fe2ce2b0c06d19373
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:10:59 EDT 2025
Fri Jul 11 13:21:45 EDT 2025
Thu Apr 03 06:58:12 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 02:33:51 EDT 2025
Wed Aug 28 03:18:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-9ad9fc5f7f28d207db493c6f1cd611d4d4619b42a8dee734fe2ce2b0c06d19373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btz921
PMID 31821414
PQID 2324914666
PQPubID 23479
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7141850
proquest_miscellaneous_2324914666
pubmed_primary_31821414
crossref_citationtrail_10_1093_bioinformatics_btz921
crossref_primary_10_1093_bioinformatics_btz921
oup_primary_10_1093_bioinformatics_btz921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Colaert (2023062300072736800_btz921-B4) 2009; 6
Wong (2023062300072736800_btz921-B34) 2018; 71
Crooks (2023062300072736800_btz921-B5) 2004; 14
Nettling (2023062300072736800_btz921-B18) 2015; 16
Kinney (2023062300072736800_btz921-B13) 2010; 107
Mason (2023062300072736800_btz921-B16) 2019
Olsen (2023062300072736800_btz921-B20) 2013; 400–401
Wagih (2023062300072736800_btz921-B32) 2017; 33
Foat (2023062300072736800_btz921-B7) 2006; 22
Maddelein (2023062300072736800_btz921-B15) 2015; 43
Forcier (2023062300072736800_btz921-B8) 2018; 7
Liachko (2023062300072736800_btz921-B14) 2013; 23
Rapin (2023062300072736800_btz921-B25) 2010
Shrikumar (2023062300072736800_btz921-B29) 2017
Ye (2023062300072736800_btz921-B37) 2017; 18
Nguyen (2023062300072736800_btz921-B19) 2019; 8
Schuster-Böckler (2023062300072736800_btz921-B27) 2004; 5
Wu (2023062300072736800_btz921-B36) 2017; 45
Frankish (2023062300072736800_btz921-B9) 2019; 47
Schneider (2023062300072736800_btz921-B26) 1990; 18
Ou (2023062300072736800_btz921-B22) 2018; 15
Barnes (2023062300072736800_btz921-B2) 2019; 15
Parkinson (2023062300072736800_btz921-B23) 1996; 260
Sharma (2023062300072736800_btz921-B28) 2012; 28
Kinney (2023062300072736800_btz921-B12) 2019; 20
Jaganathan (2023062300072736800_btz921-B11) 2019; 176
Rao (2023062300072736800_btz921-B24) 1995; 92
O’Shea (2023062300072736800_btz921-B21) 2013; 10
Workman (2023062300072736800_btz921-B35) 2005; 33
Gorodkin (2023062300072736800_btz921-B10) 1997; 13
Bailey (2023062300072736800_btz921-B1) 2009; 37
Yu (2023062300072736800_btz921-B38) 2015; 31
Belliveau (2023062300072736800_btz921-B3) 2018; 115
Menzel (2023062300072736800_btz921-B17) 2012; 28
Wheeler (2023062300072736800_btz921-B33) 2014; 15
Thomsen (2023062300072736800_btz921-B30) 2012; 40
Finn (2023062300072736800_btz921-B6) 2014; 42
Waese (2023062300072736800_btz921-B31) 2016; 32
References_xml – volume: 47
  start-page: D766
  year: 2019
  ident: 2023062300072736800_btz921-B9
  article-title: GENCODE reference annotation for the human and mouse genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky955
– volume: 5
  start-page: 7
  year: 2004
  ident: 2023062300072736800_btz921-B27
  article-title: HMM logos for visualization of protein families
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-7
– volume: 40
  start-page: W281
  year: 2012
  ident: 2023062300072736800_btz921-B30
  article-title: Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks469
– volume: 8
  start-page: e40499
  year: 2019
  ident: 2023062300072736800_btz921-B19
  article-title: Quantitative mapping of protein-peptide affinity landscapes using spectrally encoded beads
  publication-title: eLife
  doi: 10.7554/eLife.40499
– volume: 33
  start-page: W389
  year: 2005
  ident: 2023062300072736800_btz921-B35
  article-title: enoLOGOS: a versatile web tool for energy normalized sequence logos
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki439
– volume: 15
  start-page: 8
  year: 2018
  ident: 2023062300072736800_btz921-B22
  article-title: motifStack for the analysis of transcription factor binding site evolution
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4555
– volume: 260
  start-page: 395
  year: 1996
  ident: 2023062300072736800_btz921-B23
  article-title: Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein–DNA interface
  publication-title: J. Mol. Biol
  doi: 10.1006/jmbi.1996.0409
– volume: 400–401
  start-page: 37
  year: 2013
  ident: 2023062300072736800_btz921-B20
  article-title: BlockLogo: visualization of peptide and sequence motif conservation
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2013.08.014
– volume: 15
  start-page: 7
  year: 2014
  ident: 2023062300072736800_btz921-B33
  article-title: Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-7
– volume: 115
  start-page: E4796
  year: 2018
  ident: 2023062300072736800_btz921-B3
  article-title: Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1722055115
– volume: 176
  start-page: 535
  year: 2019
  ident: 2023062300072736800_btz921-B11
  article-title: Predicting Splicing from Primary Sequence with Deep Learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.015
– volume: 33
  start-page: 3645
  year: 2017
  ident: 2023062300072736800_btz921-B32
  article-title: ggseqlogo: a versatile R package for drawing sequence logos
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx469
– volume: 14
  start-page: 1188
  year: 2004
  ident: 2023062300072736800_btz921-B5
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 22
  start-page: e141
  year: 2006
  ident: 2023062300072736800_btz921-B7
  article-title: Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl223
– volume: 20
  start-page: 99
  year: 2019
  ident: 2023062300072736800_btz921-B12
  article-title: Massively parallel assays and quantitative sequence-function relationships
  publication-title: Annu. Rev. Genom. Hum. Genet
  doi: 10.1146/annurev-genom-083118-014845
– start-page: 1
  year: 2019
  ident: 2023062300072736800_btz921-B16
  article-title: Deep learning enables therapeutic antibody optimization in mammalian cells by deciphering high-dimensional protein sequence space
  publication-title: bioRxiv
– volume: 16
  start-page: 387
  year: 2015
  ident: 2023062300072736800_btz921-B18
  article-title: DiffLogo: a comparative visualization of sequence motifs
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0767-x
– volume: 6
  start-page: 786
  year: 2009
  ident: 2023062300072736800_btz921-B4
  article-title: Improved visualization of protein consensus sequences by iceLogo
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1109-786
– volume: 45
  start-page: W534
  year: 2017
  ident: 2023062300072736800_btz921-B36
  article-title: kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx323
– volume: 37
  start-page: W202
  year: 2009
  ident: 2023062300072736800_btz921-B1
  article-title: MEME SUITE: tools for motif discovery and searching
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp335
– year: 2017
  ident: 2023062300072736800_btz921-B29
– volume: 18
  start-page: 269
  year: 2017
  ident: 2023062300072736800_btz921-B37
  article-title: CircularLogo: a lightweight web application to visualize intra-motif dependencies
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1680-2
– volume: 28
  start-page: 1935
  year: 2012
  ident: 2023062300072736800_btz921-B28
  article-title: CodonLogo: a sequence logo-based viewer for codon patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts295
– volume: 31
  start-page: 324
  year: 2015
  ident: 2023062300072736800_btz921-B38
  article-title: Log-odds sequence logos
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu634
– volume: 10
  start-page: 1211
  year: 2013
  ident: 2023062300072736800_btz921-B21
  article-title: pLogo: a probabilistic approach to visualizing sequence motifs
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2646
– year: 2010
  ident: 2023062300072736800_btz921-B25
  article-title: The MHC motif viewer: a visualization tool for MHC binding motifs
  publication-title: Curr. Protoc. Immunol
  doi: 10.1002/0471142735.im1817s88
– volume: 32
  start-page: 3670
  year: 2016
  ident: 2023062300072736800_btz921-B31
  article-title: Gene Slider: sequence logo interactive data-visualization for education and research
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw525
– volume: 15
  start-page: e1006226
  year: 2019
  ident: 2023062300072736800_btz921-B2
  article-title: Mapping DNA sequence to transcription factor binding energy in vivo
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1006226
– volume: 7
  start-page: e40618
  year: 2018
  ident: 2023062300072736800_btz921-B8
  article-title: Measuring cis-regulatory energetics in living cells using allelic manifolds
  publication-title: eLife
  doi: 10.7554/eLife.40618
– volume: 107
  start-page: 9158
  year: 2010
  ident: 2023062300072736800_btz921-B13
  article-title: Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1004290107
– volume: 28
  start-page: 2523
  year: 2012
  ident: 2023062300072736800_btz921-B17
  article-title: RILogo: visualizing RNA-RNA interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts461
– volume: 71
  start-page: 1012
  year: 2018
  ident: 2023062300072736800_btz921-B34
  article-title: Quantitative activity profile and context dependence of all human 5’ splice sites
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.07.033
– volume: 23
  start-page: 698
  year: 2013
  ident: 2023062300072736800_btz921-B14
  article-title: High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast
  publication-title: Genome Res
  doi: 10.1101/gr.144659.112
– volume: 13
  start-page: 583
  year: 1997
  ident: 2023062300072736800_btz921-B10
  article-title: Displaying the information contents of structural RNA alignments: the structure logos
  publication-title: Comput. Appl. Biosci
– volume: 43
  start-page: W543
  year: 2015
  ident: 2023062300072736800_btz921-B15
  article-title: The iceLogo web server and SOAP service for determining protein consensus sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv385
– volume: 42
  start-page: D222
  year: 2014
  ident: 2023062300072736800_btz921-B6
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1223
– volume: 92
  start-page: 2224
  year: 1995
  ident: 2023062300072736800_btz921-B24
  article-title: The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.6.2224
– volume: 18
  start-page: 6097
  year: 1990
  ident: 2023062300072736800_btz921-B26
  article-title: Sequence logos: a new way to display consensus sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/18.20.6097
SSID ssj0051444
ssj0005056
Score 2.667864
Snippet Abstract Summary Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently...
Sequence logos are visually compelling ways of illustrating the biological properties of DNA, RNA and protein sequences, yet it is currently difficult to...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2272
SubjectTerms Applications Notes
Title Logomaker: beautiful sequence logos in Python
URI https://www.ncbi.nlm.nih.gov/pubmed/31821414
https://www.proquest.com/docview/2324914666
https://pubmed.ncbi.nlm.nih.gov/PMC7141850
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KQfAivo0vInjxEJt9JVlvIpYivg4t9BayLy3WRNr0UH-9u3nUpiDqMWR2WWZ2d2bYme8D4BxDwi0hkmd8l_aIor7HOKSeICxCUkpOme1GfngMegNyN6TDFvDrXpjVJ3yGO3yUVSCiFri4w_NPVnSOG0dswfL7T8Pvmg7fIsOUHyYSICWlrUX2jnxc9-_8NGXDMzW63ZaCztXaySVn1N0EG1UU6V6XZt8CLZVug7WSV3K-A7z77CV7T97U5MrlKjF7S8_Gbl017RqhbOqOUvd5bpEDdsGge9u_6XkVL4InKIxyjyWSaUF1qFEkkR9KThgWgYZCBhBKIonJijhBSSSVCjHRCgmFuC_8QJp4LcR7oJ1mqToArjFOZBKQBEc8IMysyBIvaaUoDEXAOHUAqXUSiwo03HJXjOPy8RrHTVXGpSodcLkY9lGiZvw24MIo_K-yZ7VZYnMW7ANHkqpsNo1tdMjM1R8EDtgvzbSY0txdCBJIHBA2DLgQsDjbzT_p6LXA2w6hRfjxD_-xxiOwjmxiXpT4HIN2PpmpExO95Py02LFf0B7ysg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logomaker%3A+beautiful+sequence+logos+in+Python&rft.jtitle=Bioinformatics&rft.au=Tareen%2C+Ammar&rft.au=Kinney%2C+Justin+B&rft.date=2020-04-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=36&rft.issue=7&rft.spage=2272&rft.epage=2274&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz921&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtz921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon