Real-time simultaneous and proportional myoelectric control using intramuscular EMG

Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscu...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 11; no. 6; pp. 66013 - 13
Main Authors Smith, Lauren H, Kuiken, Todd A, Hargrove, Levi J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion extension, and hand open close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.
AbstractList Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.
Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG.OBJECTIVEMyoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG.We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs.APPROACHWe evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs.Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency.MAIN RESULTSOver the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency.These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.SIGNIFICANCEThese results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.
Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion extension, and hand open close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.
Author Smith, Lauren H
Hargrove, Levi J
Kuiken, Todd A
AuthorAffiliation 3 Department of Physical Medicine and Rehabilitation at Northwestern University, Chicago, IL
2 Department of Biomedical Engineering at Northwestern University, Evanston, IL
1 Center for Bionic Medicine at the Rehabilitation Institute of Chicago, Chicago, IL
AuthorAffiliation_xml – name: 3 Department of Physical Medicine and Rehabilitation at Northwestern University, Chicago, IL
– name: 1 Center for Bionic Medicine at the Rehabilitation Institute of Chicago, Chicago, IL
– name: 2 Department of Biomedical Engineering at Northwestern University, Evanston, IL
Author_xml – sequence: 1
  givenname: Lauren H
  surname: Smith
  fullname: Smith, Lauren H
  email: lauren-smith@northwestern.edu
  organization: Northwestern University Department of Biomedical Engineering at , Evanston, IL, USA
– sequence: 2
  givenname: Todd A
  surname: Kuiken
  fullname: Kuiken, Todd A
  email: tkuiken@northwestern.edu
  organization: Northwestern University Department of Physical Medicine and Rehabilitation at , Chicago, IL, USA
– sequence: 3
  givenname: Levi J
  surname: Hargrove
  fullname: Hargrove, Levi J
  email: l-hargrove@northwestern.edu
  organization: Northwestern University Department of Physical Medicine and Rehabilitation at , Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25394366$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVIaR7tT0jxrt24c680kmUChRCmaUuaQB9roZE1iYJsOZJdyL-vjKdDWgqz0us7h6N7TshhFzpLyBnCewQpF1gtsaRcwAJxIRYgBCA7IMfbe04Pd3sBR-QkpQcAhlUNL8kR5axeMiGOyfdvVvtycK0tkmtHP-jOhjEVumuKPoY-xMGFTvuifQrWWzNEZwoTuiEGX4zJdXeFywfdjsmMXsdi9fXqFXmx0T7Z19v1lPz8uPpx-am8vr36fHlxXRqOciglQ4kCGqSGUgvUaGk4NcC0tUbWouFrvQGjQVOmqwzKtVgzgMY2KE0D7JR8mH37cd3axtgpiFd9dK2OTypop_5-6dy9ugu_1JIKWUmaDd5tDWJ4HG0aVOuSsd7PQ1B5WozKulrCflTQbFgzzjP65nmsXZ4_Q88AnwETQ0rRbnYIgprKVVNxaipOISqh5nKz7vwfnXGDnvrJv3N-rxpntQu9eghjzK2mvZq3_9F8uVk9p1TfbNhvFEnGYA
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1088_1741_2560_12_6_066022
crossref_primary_10_1055_s_0044_1779028
crossref_primary_10_1109_TNSRE_2017_2766360
crossref_primary_10_1007_s00221_018_5441_x
crossref_primary_10_1088_1741_2552_ab2d47
crossref_primary_10_5370_KIEE_2016_65_1_194
crossref_primary_10_1186_s12984_017_0256_8
crossref_primary_10_1007_s10439_020_02557_2
crossref_primary_10_1142_S0129065717500253
crossref_primary_10_1002_aisy_202200189
crossref_primary_10_3389_fnins_2021_777329
crossref_primary_10_1109_TNSRE_2022_3226229
crossref_primary_10_1038_s41597_019_0335_8
crossref_primary_10_1146_annurev_control_071020_104336
crossref_primary_10_3390_s21082576
crossref_primary_10_1109_TNSRE_2020_2992885
crossref_primary_10_3389_fnhum_2018_00352
crossref_primary_10_1038_s41598_020_62773_7
crossref_primary_10_1007_s13534_019_00127_7
crossref_primary_10_1186_s12984_024_01529_0
crossref_primary_10_1038_s41598_020_72574_7
crossref_primary_10_3390_bios10080085
crossref_primary_10_1109_TCYB_2024_3489438
crossref_primary_10_3389_fnins_2016_00114
crossref_primary_10_1109_TNSRE_2018_2844807
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1109_JTEHM_2018_2811458
crossref_primary_10_1109_JTEHM_2023_3320715
crossref_primary_10_1109_TNSRE_2015_2417775
crossref_primary_10_1109_JSEN_2017_2666784
crossref_primary_10_1109_TBME_2015_2469741
crossref_primary_10_1109_TNSRE_2022_3166800
crossref_primary_10_1016_j_compbiomed_2023_107139
crossref_primary_10_1109_TNSRE_2019_2908817
crossref_primary_10_1038_s41598_020_63092_7
crossref_primary_10_1038_s41598_024_73855_1
crossref_primary_10_1109_JSEN_2022_3169492
crossref_primary_10_3389_fbioe_2024_1463377
crossref_primary_10_1186_s12984_021_00839_x
crossref_primary_10_1080_02564602_2023_2265897
crossref_primary_10_1088_1741_2552_aaf4c3
crossref_primary_10_1088_1741_2552_ad94a7
crossref_primary_10_1109_TNSRE_2015_2410755
crossref_primary_10_1016_j_conengprac_2023_105774
crossref_primary_10_1109_TMECH_2022_3207359
crossref_primary_10_1007_s11045_020_00710_7
crossref_primary_10_1088_2516_1091_acc625
crossref_primary_10_1016_j_procs_2018_04_092
crossref_primary_10_1088_1741_2552_abf186
crossref_primary_10_1186_s12984_019_0607_8
crossref_primary_10_1109_TOH_2016_2564965
crossref_primary_10_1109_TNSRE_2018_2859833
crossref_primary_10_1007_s10439_020_02596_9
crossref_primary_10_3389_fnsys_2015_00162
crossref_primary_10_1109_JBHI_2019_2926307
crossref_primary_10_1186_s12984_021_00832_4
crossref_primary_10_3390_robotics8010016
crossref_primary_10_1088_1741_2552_ad4915
crossref_primary_10_1088_1741_2560_13_4_046012
crossref_primary_10_1088_1741_2552_aae9d4
crossref_primary_10_1088_1741_2552_abef3a
crossref_primary_10_1038_s41598_020_65167_x
crossref_primary_10_1088_1741_2552_aacbfe
crossref_primary_10_3389_fnins_2019_00891
crossref_primary_10_1097_PRS_0000000000002768
crossref_primary_10_3390_s22062236
crossref_primary_10_1109_TBME_2019_2901882
crossref_primary_10_1109_TNSRE_2022_3157710
crossref_primary_10_1088_1741_2560_12_6_066030
crossref_primary_10_1080_10255842_2016_1255943
crossref_primary_10_1109_TMRB_2024_3503920
crossref_primary_10_3390_app14083190
crossref_primary_10_1088_2516_1091_acac57
crossref_primary_10_1109_TNSRE_2018_2873839
crossref_primary_10_1002_mus_28029
crossref_primary_10_1049_el_2016_2986
crossref_primary_10_1080_03772063_2017_1381047
crossref_primary_10_1080_23311916_2016_1245541
crossref_primary_10_1088_1741_2560_13_4_046007
crossref_primary_10_1044_2023_JSLHR_23_00377
Cites_doi 10.1109/TNSRE.2013.2248750
10.1097/00007611-200295080-00019
10.1109/TBME.2006.889192
10.1186/1743-0003-9-42
10.1109/TBME.2010.2068298
10.1109/TNSRE.2013.2247421
10.1037/h0055392
10.1109/TNSRE.2008.2006216
10.1080/03093640600994581
10.1109/TBME.2012.2197210
10.1109/TBME.2011.2155063
10.1109/TNSRE.2011.2182525
10.1001/jama.2009.116
10.1109/TBME.2008.2005942
10.1109/TBME.2005.856295
10.1109/TNSRE.2012.2226189
10.1109/TBME.2008.2007967
10.1111/j.1525-1594.2011.01219.x
10.1109/TNSRE.2012.2196711
10.1207/s15327051hci0701_3
10.1109/TBME.2003.813539
10.1109/TBME.2012.2232293
10.1109/10.204774
10.1109/TNSRE.2013.2278411
10.1109/CEEJ.1977.6593107
10.1109/tnsre.2013.2279737
10.1152/jn.00086.2013
10.1682/JRRD.2010.07.0137
10.1016/j.ijhcs.2004.09.001
10.1109/TNSRE.2010.2100828
10.1080/17483100701714733
10.1016/j.apmr.2007.11.005
10.1109/TNSRE.2011.2178039
ContentType Journal Article
Copyright 2014 IOP Publishing Ltd
Copyright_xml – notice: 2014 IOP Publishing Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
DOI 10.1088/1741-2560/11/6/066013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
MEDLINE - Academic

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Real-time simultaneous and proportional myoelectric control using intramuscular EMG
EISSN 1741-2552
EndPage 13
ExternalDocumentID PMC4268782
25394366
10_1088_1741_2560_11_6_066013
jne504031
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  grantid: 1F31NS083166
  funderid: 10.13039 100000065
– fundername: Defense Advanced Research Projects Agency
  grantid: N66001-12-1-4029
  funderid: 10.13039 100000185
– fundername: Howard Hughes Medical Institute
  grantid: Medical Research Fellows Program
  funderid: 10.13039 100000011
– fundername: NINDS NIH HHS
  grantid: 1F31NS083166
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: F31 NS083166
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AERVB
CITATION
02O
1WK
AHSEE
ARNYC
BBWZM
CGR
CUY
CVF
ECM
EIF
FEDTE
HVGLF
NPM
Q02
RNS
S3P
7X8
AEINN
7SC
8FD
JQ2
L7M
L~C
L~D
5PM
ID FETCH-LOGICAL-c518t-8318160d12c22e02ca8c52c03aeec896d5baf0ca0a23a760d8b6b300ded18cd03
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Thu Aug 21 14:11:26 EDT 2025
Fri Jul 11 06:16:35 EDT 2025
Sun Aug 24 04:12:40 EDT 2025
Wed Feb 19 01:53:03 EST 2025
Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 01:58:36 EDT 2025
Fri Jan 08 09:41:23 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-8318160d12c22e02ca8c52c03aeec896d5baf0ca0a23a760d8b6b300ded18cd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1088/1741-2560/11/6/066013
PMID 25394366
PQID 1628239355
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1793289740
crossref_citationtrail_10_1088_1741_2560_11_6_066013
crossref_primary_10_1088_1741_2560_11_6_066013
proquest_miscellaneous_1628239355
iop_journals_10_1088_1741_2560_11_6_066013
pubmed_primary_25394366
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
45
25
Stein R B (39) 1980; 17
47
26
Young D J (46) 2009
Mcdonnall D (27) 2012
28
29
Birdwell J A (5) 2012
Fischer H (10) 2013
Bercich R A (2) 2012
Smith L H (36) 2013
30
31
Wurth S M (44) 2013
11
33
12
34
Basmajian J (1) 1985
13
35
15
37
16
38
Choi C (7) 2010
17
18
19
Williams T W ed Meier R H (43) 2004
Harris A (14) 2011
Kuiken T A (24) 2014
3
4
6
8
9
40
41
20
Resnik L (32) 2011
42
21
19263565 - Disabil Rehabil Assist Technol. 2007 Nov;2(6):346-57
21097033 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3511-4
22742707 - J Neuroeng Rehabil. 2012;9:42
17979010 - Prosthet Orthot Int. 2007 Sep;31(3):236-57
7236946 - Bull Prosthet Res. 1980 Spring;10-33:51-62
23366149 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1350-3
21938649 - J Rehabil Res Dev. 2011;48(6):609-17
12190225 - South Med J. 2002 Aug;95(8):875-83
20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8
23515790 - J Neurophysiol. 2013 Jun;109(11):2658-65
17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53
18295618 - Arch Phys Med Rehabil. 2008 Mar;89(3):422-9
23481867 - IEEE Trans Neural Syst Rehabil Eng. 2013 Nov;21(6):992-8
22562724 - IEEE Trans Biomed Eng. 2012 Jul;59(7):1804-7
22665514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77
22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063
12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54
19224729 - IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71
22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46
13174710 - J Exp Psychol. 1954 Jun;47(6):381-91
19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
23996582 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10
23193252 - IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):616-23
24110664 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4223-6
19964060 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3221-4
23247839 - IEEE Trans Biomed Eng. 2013 May;60(5):1250-8
18990652 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):485-96
21371058 - Artif Organs. 2011 Mar;35(3):249-52
24122566 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):522-32
8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
19211469 - JAMA. 2009 Feb 11;301(6):619-28
16285383 - IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11
21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
23475378 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57
References_xml – year: 2012
  ident: 5
– ident: 21
  doi: 10.1109/TNSRE.2013.2248750
– ident: 8
  doi: 10.1097/00007611-200295080-00019
– ident: 13
  doi: 10.1109/TBME.2006.889192
– ident: 19
  doi: 10.1186/1743-0003-9-42
– ident: 30
  doi: 10.1109/TBME.2010.2068298
– ident: 34
  doi: 10.1109/TNSRE.2013.2247421
– start-page: 3511
  year: 2010
  ident: 7
  publication-title: The 32th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– ident: 11
  doi: 10.1037/h0055392
– ident: 42
  doi: 10.1109/TNSRE.2008.2006216
– ident: 4
  doi: 10.1080/03093640600994581
– ident: 20
  doi: 10.1109/TBME.2012.2197210
– start-page: 1350
  year: 2012
  ident: 27
  publication-title: 34th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– ident: 35
  doi: 10.1109/TBME.2011.2155063
– ident: 6
  doi: 10.1109/TNSRE.2011.2182525
– ident: 23
  doi: 10.1001/jama.2009.116
– ident: 41
  doi: 10.1109/TBME.2008.2005942
– start-page: 2877
  year: 2011
  ident: 14
  publication-title: IEEE Int. Conf. on Systems, Man, and Cybernetics
– ident: 15
  doi: 10.1109/TBME.2005.856295
– ident: 33
  doi: 10.1109/TNSRE.2012.2226189
– year: 2012
  ident: 2
  publication-title: 34th Annual Int. Conf. of the IEEE EMBS
– start-page: 3221
  year: 2009
  ident: 46
  publication-title: Conf. proc.: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– ident: 17
  doi: 10.1109/TBME.2008.2007967
– ident: 28
  doi: 10.1111/j.1525-1594.2011.01219.x
– year: 2004
  ident: 43
  publication-title: Functional Restoration of Adults and Children with Upper Extremity Amputation
– year: 2011
  ident: 32
  publication-title: Myoelectric Symp.
– ident: 12
  doi: 10.1109/TNSRE.2012.2196711
– ident: 26
  doi: 10.1207/s15327051hci0701_3
– volume: 17
  start-page: 51
  issn: 0007-506X
  year: 1980
  ident: 39
  publication-title: Bull. Prosthet. Res.
– year: 2013
  ident: 10
– ident: 9
  doi: 10.1109/TBME.2003.813539
– ident: 45
  doi: 10.1109/TBME.2012.2232293
– ident: 16
  doi: 10.1109/10.204774
– ident: 18
  doi: 10.1109/TNSRE.2013.2278411
– ident: 40
  doi: 10.1109/CEEJ.1977.6593107
– year: 2014
  ident: 24
  publication-title: Myoelectric Controls Symposium
– ident: 31
  doi: 10.1109/tnsre.2013.2279737
– ident: 22
  doi: 10.1152/jn.00086.2013
– ident: 25
  doi: 10.1682/JRRD.2010.07.0137
– ident: 38
  doi: 10.1016/j.ijhcs.2004.09.001
– year: 1985
  ident: 1
  publication-title: Muscles Alive, Their Functions Revealed by Electromyography
– year: 2013
  ident: 36
  publication-title: 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
– ident: 37
  doi: 10.1109/TNSRE.2010.2100828
– ident: 3
  doi: 10.1080/17483100701714733
– year: 2013
  ident: 44
  publication-title: 6th Int. IEEE EMBS Neural Engineering Conf.
– ident: 47
  doi: 10.1016/j.apmr.2007.11.005
– ident: 29
  doi: 10.1109/TNSRE.2011.2178039
– reference: 16285383 - IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11
– reference: 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46
– reference: 19263565 - Disabil Rehabil Assist Technol. 2007 Nov;2(6):346-57
– reference: 23193252 - IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):616-23
– reference: 7236946 - Bull Prosthet Res. 1980 Spring;10-33:51-62
– reference: 21938649 - J Rehabil Res Dev. 2011;48(6):609-17
– reference: 22665514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77
– reference: 21097033 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3511-4
– reference: 21371058 - Artif Organs. 2011 Mar;35(3):249-52
– reference: 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8
– reference: 18990652 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):485-96
– reference: 19964060 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3221-4
– reference: 22562724 - IEEE Trans Biomed Eng. 2012 Jul;59(7):1804-7
– reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28
– reference: 17979010 - Prosthet Orthot Int. 2007 Sep;31(3):236-57
– reference: 23475378 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57
– reference: 13174710 - J Exp Psychol. 1954 Jun;47(6):381-91
– reference: 24122566 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):522-32
– reference: 23996582 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10
– reference: 23366149 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1350-3
– reference: 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53
– reference: 23247839 - IEEE Trans Biomed Eng. 2013 May;60(5):1250-8
– reference: 12190225 - South Med J. 2002 Aug;95(8):875-83
– reference: 23481867 - IEEE Trans Neural Syst Rehabil Eng. 2013 Nov;21(6):992-8
– reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94
– reference: 18295618 - Arch Phys Med Rehabil. 2008 Mar;89(3):422-9
– reference: 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54
– reference: 19224729 - IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71
– reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8
– reference: 24110664 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4223-6
– reference: 22742707 - J Neuroeng Rehabil. 2012;9:42
– reference: 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80
– reference: 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063
– reference: 23515790 - J Neurophysiol. 2013 Jun;109(11):2658-65
– reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92
SSID ssj0031790
Score 2.418198
Snippet Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control...
Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66013
SubjectTerms Computer Systems
Electromyography - instrumentation
Electromyography - methods
Female
Hand - physiology
Humans
intramuscular electromyography
Male
Movement - physiology
Muscle, Skeletal - physiology
Myoelectric Complex, Migrating - physiology
Myoelectric control
myoelectric prosthesis control
Pattern recognition
Prosthetics
Real time
Sequential control
Strategy
Tasks
upper limb prosthesis
Wrist
Wrist - physiology
Title Real-time simultaneous and proportional myoelectric control using intramuscular EMG
URI https://iopscience.iop.org/article/10.1088/1741-2560/11/6/066013
https://www.ncbi.nlm.nih.gov/pubmed/25394366
https://www.proquest.com/docview/1628239355
https://www.proquest.com/docview/1793289740
https://pubmed.ncbi.nlm.nih.gov/PMC4268782
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaeumlD-gjfcmVKg6VsmvHiWOOqFoKSFBEi8TN8is0aje7YncP9Nd3Jk5Wu4iCUG-RMo4y49c39jczhHwyuWReBp5yp_DopoI5ZzIBroqpSlawIARGIx8dy_2z_PC8OF-J4q8n027pH8BjTBQcTdgR4tQQMDRPcacecj6UQ9gzGZatfSSUlFjD4ODbSb8WC8w_FUMiY5M-hudfn1nbnR7CH9wEPK_zJ1c2pL2nxPSqRB7Kr8Fibgfuz7Usj_-j6zPypEOrdDfKPycPQrNJtnYb8NTHV3SbtvzR9mB-i3w_BcyZYq16OquRp2iaMFnMqGk8nWIthst47EjHV5NYfKd2tGPKU6TfX9AaFR0vIjeWjo6-viBne6MfX_bTrmRD6gqu5qmCJYJD7_PMZVlgmTPKFZljwoTg1I70hTUVc4bBeDAlCCorrWDMB8-V80y8JBvNpAmvCRV5mVkp0CHieSW9NRazqgPgsN5bZxKS912lXZfPHMtq_NbtvbpSGo2n0Xjg5mipo_ESMlg2m8aEHnc1-Ay9o7upPbtLmK4JHx6PVl_rqa8S8rEfURqmMt7PxP7QXIL_i6HSxS0ysJ6Cj1zmLCGv4ihcqpEVYicXUiakXBufSwFMJb7-pql_tinFAacpwIpv7qPrW_IY0GMeuT3vyMb8chHeA0Kb2w_tJPwL3v8suQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tQ0K88DUY4dNIiAekNHacON7jxFq2wcoETNqb5a9ABU2rtX0Yfz3nOK3WCZgQb5FyjnL22f6dffc7gFe6ENQJz1JmZTi6qXHO6Zyjq6LripbUcx6ykY-H4uC0ODorzzZgf5ULM5l2S38PHyNRcOzCLiBOZoihWRp26oyxTGS4ZyKMyaau3oQbJRc8MOgffjxZrsc8cFDFtMjYbJnH86dPre1Qm_gXvwOfV2MoL21Kgzvgl-rEWJTvvcXc9OzPK0yP_6vvXbjdoVayF9vcgw3f3IftvQY99vEFeU3aONL2gH4bPn9C7JmGmvVkNgrxirrxk8WM6MaRaajJcB6PH8n4YhKL8Iws6SLmSQjD_0pGQdnxIsbIkv7xuwdwOuh_eXuQdqUbUlsyOU8lLhUMrYDlNs89za2Wtswt5dp7K3eFK42uqdUU7UJXKCiNMJxS5x2T1lH-ELaaSeMfAeFFlRvBg2PEilo4o01gV0fgYZwzVidQLIdL2Y7XPJTX-KHa-3UpVehAFToQ3R0lVOzABHqrZtNI7HFdgzc4Qqqb4rPrhMma8NGwf_m1wtFL4OXSqhRO6XBPE8dDMYF-cEiZLv8ig-sq-spVQRPYiZa4UiMv-W7BhUigWrPRlUCgFF9_04y-tdTiiNckYsbH_6LrC7h5sj9QHw6H75_ALQSURQz3eQpb8_OFf4agbW6et3PyF9FjMh0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+simultaneous+and+proportional+myoelectric+control+using+intramuscular+EMG&rft.jtitle=Journal+of+neural+engineering&rft.au=Smith%2C+Lauren+H&rft.au=Kuiken%2C+Todd+A&rft.au=Hargrove%2C+Levi+J&rft.date=2014-12-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=11&rft.issue=6&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1088%2F1741-2560%2F11%2F6%2F066013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon