Real-time simultaneous and proportional myoelectric control using intramuscular EMG
Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscu...
Saved in:
Published in | Journal of neural engineering Vol. 11; no. 6; pp. 66013 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion extension, and hand open close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. |
---|---|
AbstractList | Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG.
We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs.
Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency.
These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG.OBJECTIVEMyoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG.We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs.APPROACHWe evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs.Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency.MAIN RESULTSOver the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency.These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.SIGNIFICANCEThese results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion extension, and hand open close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. |
Author | Smith, Lauren H Hargrove, Levi J Kuiken, Todd A |
AuthorAffiliation | 3 Department of Physical Medicine and Rehabilitation at Northwestern University, Chicago, IL 2 Department of Biomedical Engineering at Northwestern University, Evanston, IL 1 Center for Bionic Medicine at the Rehabilitation Institute of Chicago, Chicago, IL |
AuthorAffiliation_xml | – name: 3 Department of Physical Medicine and Rehabilitation at Northwestern University, Chicago, IL – name: 1 Center for Bionic Medicine at the Rehabilitation Institute of Chicago, Chicago, IL – name: 2 Department of Biomedical Engineering at Northwestern University, Evanston, IL |
Author_xml | – sequence: 1 givenname: Lauren H surname: Smith fullname: Smith, Lauren H email: lauren-smith@northwestern.edu organization: Northwestern University Department of Biomedical Engineering at , Evanston, IL, USA – sequence: 2 givenname: Todd A surname: Kuiken fullname: Kuiken, Todd A email: tkuiken@northwestern.edu organization: Northwestern University Department of Physical Medicine and Rehabilitation at , Chicago, IL, USA – sequence: 3 givenname: Levi J surname: Hargrove fullname: Hargrove, Levi J email: l-hargrove@northwestern.edu organization: Northwestern University Department of Physical Medicine and Rehabilitation at , Chicago, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25394366$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVIaR7tT0jxrt24c680kmUChRCmaUuaQB9roZE1iYJsOZJdyL-vjKdDWgqz0us7h6N7TshhFzpLyBnCewQpF1gtsaRcwAJxIRYgBCA7IMfbe04Pd3sBR-QkpQcAhlUNL8kR5axeMiGOyfdvVvtycK0tkmtHP-jOhjEVumuKPoY-xMGFTvuifQrWWzNEZwoTuiEGX4zJdXeFywfdjsmMXsdi9fXqFXmx0T7Z19v1lPz8uPpx-am8vr36fHlxXRqOciglQ4kCGqSGUgvUaGk4NcC0tUbWouFrvQGjQVOmqwzKtVgzgMY2KE0D7JR8mH37cd3axtgpiFd9dK2OTypop_5-6dy9ugu_1JIKWUmaDd5tDWJ4HG0aVOuSsd7PQ1B5WozKulrCflTQbFgzzjP65nmsXZ4_Q88AnwETQ0rRbnYIgprKVVNxaipOISqh5nKz7vwfnXGDnvrJv3N-rxpntQu9eghjzK2mvZq3_9F8uVk9p1TfbNhvFEnGYA |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1088_1741_2560_12_6_066022 crossref_primary_10_1055_s_0044_1779028 crossref_primary_10_1109_TNSRE_2017_2766360 crossref_primary_10_1007_s00221_018_5441_x crossref_primary_10_1088_1741_2552_ab2d47 crossref_primary_10_5370_KIEE_2016_65_1_194 crossref_primary_10_1186_s12984_017_0256_8 crossref_primary_10_1007_s10439_020_02557_2 crossref_primary_10_1142_S0129065717500253 crossref_primary_10_1002_aisy_202200189 crossref_primary_10_3389_fnins_2021_777329 crossref_primary_10_1109_TNSRE_2022_3226229 crossref_primary_10_1038_s41597_019_0335_8 crossref_primary_10_1146_annurev_control_071020_104336 crossref_primary_10_3390_s21082576 crossref_primary_10_1109_TNSRE_2020_2992885 crossref_primary_10_3389_fnhum_2018_00352 crossref_primary_10_1038_s41598_020_62773_7 crossref_primary_10_1007_s13534_019_00127_7 crossref_primary_10_1186_s12984_024_01529_0 crossref_primary_10_1038_s41598_020_72574_7 crossref_primary_10_3390_bios10080085 crossref_primary_10_1109_TCYB_2024_3489438 crossref_primary_10_3389_fnins_2016_00114 crossref_primary_10_1109_TNSRE_2018_2844807 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1109_JTEHM_2018_2811458 crossref_primary_10_1109_JTEHM_2023_3320715 crossref_primary_10_1109_TNSRE_2015_2417775 crossref_primary_10_1109_JSEN_2017_2666784 crossref_primary_10_1109_TBME_2015_2469741 crossref_primary_10_1109_TNSRE_2022_3166800 crossref_primary_10_1016_j_compbiomed_2023_107139 crossref_primary_10_1109_TNSRE_2019_2908817 crossref_primary_10_1038_s41598_020_63092_7 crossref_primary_10_1038_s41598_024_73855_1 crossref_primary_10_1109_JSEN_2022_3169492 crossref_primary_10_3389_fbioe_2024_1463377 crossref_primary_10_1186_s12984_021_00839_x crossref_primary_10_1080_02564602_2023_2265897 crossref_primary_10_1088_1741_2552_aaf4c3 crossref_primary_10_1088_1741_2552_ad94a7 crossref_primary_10_1109_TNSRE_2015_2410755 crossref_primary_10_1016_j_conengprac_2023_105774 crossref_primary_10_1109_TMECH_2022_3207359 crossref_primary_10_1007_s11045_020_00710_7 crossref_primary_10_1088_2516_1091_acc625 crossref_primary_10_1016_j_procs_2018_04_092 crossref_primary_10_1088_1741_2552_abf186 crossref_primary_10_1186_s12984_019_0607_8 crossref_primary_10_1109_TOH_2016_2564965 crossref_primary_10_1109_TNSRE_2018_2859833 crossref_primary_10_1007_s10439_020_02596_9 crossref_primary_10_3389_fnsys_2015_00162 crossref_primary_10_1109_JBHI_2019_2926307 crossref_primary_10_1186_s12984_021_00832_4 crossref_primary_10_3390_robotics8010016 crossref_primary_10_1088_1741_2552_ad4915 crossref_primary_10_1088_1741_2560_13_4_046012 crossref_primary_10_1088_1741_2552_aae9d4 crossref_primary_10_1088_1741_2552_abef3a crossref_primary_10_1038_s41598_020_65167_x crossref_primary_10_1088_1741_2552_aacbfe crossref_primary_10_3389_fnins_2019_00891 crossref_primary_10_1097_PRS_0000000000002768 crossref_primary_10_3390_s22062236 crossref_primary_10_1109_TBME_2019_2901882 crossref_primary_10_1109_TNSRE_2022_3157710 crossref_primary_10_1088_1741_2560_12_6_066030 crossref_primary_10_1080_10255842_2016_1255943 crossref_primary_10_1109_TMRB_2024_3503920 crossref_primary_10_3390_app14083190 crossref_primary_10_1088_2516_1091_acac57 crossref_primary_10_1109_TNSRE_2018_2873839 crossref_primary_10_1002_mus_28029 crossref_primary_10_1049_el_2016_2986 crossref_primary_10_1080_03772063_2017_1381047 crossref_primary_10_1080_23311916_2016_1245541 crossref_primary_10_1088_1741_2560_13_4_046007 crossref_primary_10_1044_2023_JSLHR_23_00377 |
Cites_doi | 10.1109/TNSRE.2013.2248750 10.1097/00007611-200295080-00019 10.1109/TBME.2006.889192 10.1186/1743-0003-9-42 10.1109/TBME.2010.2068298 10.1109/TNSRE.2013.2247421 10.1037/h0055392 10.1109/TNSRE.2008.2006216 10.1080/03093640600994581 10.1109/TBME.2012.2197210 10.1109/TBME.2011.2155063 10.1109/TNSRE.2011.2182525 10.1001/jama.2009.116 10.1109/TBME.2008.2005942 10.1109/TBME.2005.856295 10.1109/TNSRE.2012.2226189 10.1109/TBME.2008.2007967 10.1111/j.1525-1594.2011.01219.x 10.1109/TNSRE.2012.2196711 10.1207/s15327051hci0701_3 10.1109/TBME.2003.813539 10.1109/TBME.2012.2232293 10.1109/10.204774 10.1109/TNSRE.2013.2278411 10.1109/CEEJ.1977.6593107 10.1109/tnsre.2013.2279737 10.1152/jn.00086.2013 10.1682/JRRD.2010.07.0137 10.1016/j.ijhcs.2004.09.001 10.1109/TNSRE.2010.2100828 10.1080/17483100701714733 10.1016/j.apmr.2007.11.005 10.1109/TNSRE.2011.2178039 |
ContentType | Journal Article |
Copyright | 2014 IOP Publishing Ltd |
Copyright_xml | – notice: 2014 IOP Publishing Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD JQ2 L7M L~C L~D 5PM |
DOI | 10.1088/1741-2560/11/6/066013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE MEDLINE - Academic Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Real-time simultaneous and proportional myoelectric control using intramuscular EMG |
EISSN | 1741-2552 |
EndPage | 13 |
ExternalDocumentID | PMC4268782 25394366 10_1088_1741_2560_11_6_066013 jne504031 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke grantid: 1F31NS083166 funderid: 10.13039 100000065 – fundername: Defense Advanced Research Projects Agency grantid: N66001-12-1-4029 funderid: 10.13039 100000185 – fundername: Howard Hughes Medical Institute grantid: Medical Research Fellows Program funderid: 10.13039 100000011 – fundername: NINDS NIH HHS grantid: 1F31NS083166 – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: F31 NS083166 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX AERVB CITATION 02O 1WK AHSEE ARNYC BBWZM CGR CUY CVF ECM EIF FEDTE HVGLF NPM Q02 RNS S3P 7X8 AEINN 7SC 8FD JQ2 L7M L~C L~D 5PM |
ID | FETCH-LOGICAL-c518t-8318160d12c22e02ca8c52c03aeec896d5baf0ca0a23a760d8b6b300ded18cd03 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Aug 21 14:11:26 EDT 2025 Fri Jul 11 06:16:35 EDT 2025 Sun Aug 24 04:12:40 EDT 2025 Wed Feb 19 01:53:03 EST 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 01:58:36 EDT 2025 Fri Jan 08 09:41:23 EST 2021 Wed Aug 21 03:33:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-8318160d12c22e02ca8c52c03aeec896d5baf0ca0a23a760d8b6b300ded18cd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://doi.org/10.1088/1741-2560/11/6/066013 |
PMID | 25394366 |
PQID | 1628239355 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1793289740 crossref_citationtrail_10_1088_1741_2560_11_6_066013 crossref_primary_10_1088_1741_2560_11_6_066013 proquest_miscellaneous_1628239355 iop_journals_10_1088_1741_2560_11_6_066013 pubmed_primary_25394366 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4268782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2014 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 45 25 Stein R B (39) 1980; 17 47 26 Young D J (46) 2009 Mcdonnall D (27) 2012 28 29 Birdwell J A (5) 2012 Fischer H (10) 2013 Bercich R A (2) 2012 Smith L H (36) 2013 30 31 Wurth S M (44) 2013 11 33 12 34 Basmajian J (1) 1985 13 35 15 37 16 38 Choi C (7) 2010 17 18 19 Williams T W ed Meier R H (43) 2004 Harris A (14) 2011 Kuiken T A (24) 2014 3 4 6 8 9 40 41 20 Resnik L (32) 2011 42 21 19263565 - Disabil Rehabil Assist Technol. 2007 Nov;2(6):346-57 21097033 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3511-4 22742707 - J Neuroeng Rehabil. 2012;9:42 17979010 - Prosthet Orthot Int. 2007 Sep;31(3):236-57 7236946 - Bull Prosthet Res. 1980 Spring;10-33:51-62 23366149 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1350-3 21938649 - J Rehabil Res Dev. 2011;48(6):609-17 12190225 - South Med J. 2002 Aug;95(8):875-83 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8 23515790 - J Neurophysiol. 2013 Jun;109(11):2658-65 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53 18295618 - Arch Phys Med Rehabil. 2008 Mar;89(3):422-9 23481867 - IEEE Trans Neural Syst Rehabil Eng. 2013 Nov;21(6):992-8 22562724 - IEEE Trans Biomed Eng. 2012 Jul;59(7):1804-7 22665514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54 19224729 - IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46 13174710 - J Exp Psychol. 1954 Jun;47(6):381-91 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80 23996582 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10 23193252 - IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):616-23 24110664 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4223-6 19964060 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3221-4 23247839 - IEEE Trans Biomed Eng. 2013 May;60(5):1250-8 18990652 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):485-96 21371058 - Artif Organs. 2011 Mar;35(3):249-52 24122566 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):522-32 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 19211469 - JAMA. 2009 Feb 11;301(6):619-28 16285383 - IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 23475378 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57 |
References_xml | – year: 2012 ident: 5 – ident: 21 doi: 10.1109/TNSRE.2013.2248750 – ident: 8 doi: 10.1097/00007611-200295080-00019 – ident: 13 doi: 10.1109/TBME.2006.889192 – ident: 19 doi: 10.1186/1743-0003-9-42 – ident: 30 doi: 10.1109/TBME.2010.2068298 – ident: 34 doi: 10.1109/TNSRE.2013.2247421 – start-page: 3511 year: 2010 ident: 7 publication-title: The 32th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society – ident: 11 doi: 10.1037/h0055392 – ident: 42 doi: 10.1109/TNSRE.2008.2006216 – ident: 4 doi: 10.1080/03093640600994581 – ident: 20 doi: 10.1109/TBME.2012.2197210 – start-page: 1350 year: 2012 ident: 27 publication-title: 34th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society – ident: 35 doi: 10.1109/TBME.2011.2155063 – ident: 6 doi: 10.1109/TNSRE.2011.2182525 – ident: 23 doi: 10.1001/jama.2009.116 – ident: 41 doi: 10.1109/TBME.2008.2005942 – start-page: 2877 year: 2011 ident: 14 publication-title: IEEE Int. Conf. on Systems, Man, and Cybernetics – ident: 15 doi: 10.1109/TBME.2005.856295 – ident: 33 doi: 10.1109/TNSRE.2012.2226189 – year: 2012 ident: 2 publication-title: 34th Annual Int. Conf. of the IEEE EMBS – start-page: 3221 year: 2009 ident: 46 publication-title: Conf. proc.: Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society – ident: 17 doi: 10.1109/TBME.2008.2007967 – ident: 28 doi: 10.1111/j.1525-1594.2011.01219.x – year: 2004 ident: 43 publication-title: Functional Restoration of Adults and Children with Upper Extremity Amputation – year: 2011 ident: 32 publication-title: Myoelectric Symp. – ident: 12 doi: 10.1109/TNSRE.2012.2196711 – ident: 26 doi: 10.1207/s15327051hci0701_3 – volume: 17 start-page: 51 issn: 0007-506X year: 1980 ident: 39 publication-title: Bull. Prosthet. Res. – year: 2013 ident: 10 – ident: 9 doi: 10.1109/TBME.2003.813539 – ident: 45 doi: 10.1109/TBME.2012.2232293 – ident: 16 doi: 10.1109/10.204774 – ident: 18 doi: 10.1109/TNSRE.2013.2278411 – ident: 40 doi: 10.1109/CEEJ.1977.6593107 – year: 2014 ident: 24 publication-title: Myoelectric Controls Symposium – ident: 31 doi: 10.1109/tnsre.2013.2279737 – ident: 22 doi: 10.1152/jn.00086.2013 – ident: 25 doi: 10.1682/JRRD.2010.07.0137 – ident: 38 doi: 10.1016/j.ijhcs.2004.09.001 – year: 1985 ident: 1 publication-title: Muscles Alive, Their Functions Revealed by Electromyography – year: 2013 ident: 36 publication-title: 35th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society – ident: 37 doi: 10.1109/TNSRE.2010.2100828 – ident: 3 doi: 10.1080/17483100701714733 – year: 2013 ident: 44 publication-title: 6th Int. IEEE EMBS Neural Engineering Conf. – ident: 47 doi: 10.1016/j.apmr.2007.11.005 – ident: 29 doi: 10.1109/TNSRE.2011.2178039 – reference: 16285383 - IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11 – reference: 22262686 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46 – reference: 19263565 - Disabil Rehabil Assist Technol. 2007 Nov;2(6):346-57 – reference: 23193252 - IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):616-23 – reference: 7236946 - Bull Prosthet Res. 1980 Spring;10-33:51-62 – reference: 21938649 - J Rehabil Res Dev. 2011;48(6):609-17 – reference: 22665514 - IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77 – reference: 21097033 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3511-4 – reference: 21371058 - Artif Organs. 2011 Mar;35(3):249-52 – reference: 20729161 - IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8 – reference: 18990652 - IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):485-96 – reference: 19964060 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3221-4 – reference: 22562724 - IEEE Trans Biomed Eng. 2012 Jul;59(7):1804-7 – reference: 19211469 - JAMA. 2009 Feb 11;301(6):619-28 – reference: 17979010 - Prosthet Orthot Int. 2007 Sep;31(3):236-57 – reference: 23475378 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57 – reference: 13174710 - J Exp Psychol. 1954 Jun;47(6):381-91 – reference: 24122566 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):522-32 – reference: 23996582 - IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10 – reference: 23366149 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1350-3 – reference: 17518281 - IEEE Trans Biomed Eng. 2007 May;54(5):847-53 – reference: 23247839 - IEEE Trans Biomed Eng. 2013 May;60(5):1250-8 – reference: 12190225 - South Med J. 2002 Aug;95(8):875-83 – reference: 23481867 - IEEE Trans Neural Syst Rehabil Eng. 2013 Nov;21(6):992-8 – reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 – reference: 18295618 - Arch Phys Med Rehabil. 2008 Mar;89(3):422-9 – reference: 12848352 - IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54 – reference: 19224729 - IEEE Trans Biomed Eng. 2009 Jan;56(1):159-71 – reference: 22180516 - IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):371-8 – reference: 24110664 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4223-6 – reference: 22742707 - J Neuroeng Rehabil. 2012;9:42 – reference: 19272889 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80 – reference: 21592916 - IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2011.2155063 – reference: 23515790 - J Neurophysiol. 2013 Jun;109(11):2658-65 – reference: 21193383 - IEEE Trans Neural Syst Rehabil Eng. 2011 Apr;19(2):186-92 |
SSID | ssj0031790 |
Score | 2.418198 |
Snippet | Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control... Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not... |
SourceID | pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66013 |
SubjectTerms | Computer Systems Electromyography - instrumentation Electromyography - methods Female Hand - physiology Humans intramuscular electromyography Male Movement - physiology Muscle, Skeletal - physiology Myoelectric Complex, Migrating - physiology Myoelectric control myoelectric prosthesis control Pattern recognition Prosthetics Real time Sequential control Strategy Tasks upper limb prosthesis Wrist Wrist - physiology |
Title | Real-time simultaneous and proportional myoelectric control using intramuscular EMG |
URI | https://iopscience.iop.org/article/10.1088/1741-2560/11/6/066013 https://www.ncbi.nlm.nih.gov/pubmed/25394366 https://www.proquest.com/docview/1628239355 https://www.proquest.com/docview/1793289740 https://pubmed.ncbi.nlm.nih.gov/PMC4268782 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaeumlD-gjfcmVKg6VsmvHiWOOqFoKSFBEi8TN8is0aje7YncP9Nd3Jk5Wu4iCUG-RMo4y49c39jczhHwyuWReBp5yp_DopoI5ZzIBroqpSlawIARGIx8dy_2z_PC8OF-J4q8n027pH8BjTBQcTdgR4tQQMDRPcacecj6UQ9gzGZatfSSUlFjD4ODbSb8WC8w_FUMiY5M-hudfn1nbnR7CH9wEPK_zJ1c2pL2nxPSqRB7Kr8Fibgfuz7Usj_-j6zPypEOrdDfKPycPQrNJtnYb8NTHV3SbtvzR9mB-i3w_BcyZYq16OquRp2iaMFnMqGk8nWIthst47EjHV5NYfKd2tGPKU6TfX9AaFR0vIjeWjo6-viBne6MfX_bTrmRD6gqu5qmCJYJD7_PMZVlgmTPKFZljwoTg1I70hTUVc4bBeDAlCCorrWDMB8-V80y8JBvNpAmvCRV5mVkp0CHieSW9NRazqgPgsN5bZxKS912lXZfPHMtq_NbtvbpSGo2n0Xjg5mipo_ESMlg2m8aEHnc1-Ay9o7upPbtLmK4JHx6PVl_rqa8S8rEfURqmMt7PxP7QXIL_i6HSxS0ysJ6Cj1zmLCGv4ihcqpEVYicXUiakXBufSwFMJb7-pql_tinFAacpwIpv7qPrW_IY0GMeuT3vyMb8chHeA0Kb2w_tJPwL3v8suQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tQ0K88DUY4dNIiAekNHacON7jxFq2wcoETNqb5a9ABU2rtX0Yfz3nOK3WCZgQb5FyjnL22f6dffc7gFe6ENQJz1JmZTi6qXHO6Zyjq6LripbUcx6ykY-H4uC0ODorzzZgf5ULM5l2S38PHyNRcOzCLiBOZoihWRp26oyxTGS4ZyKMyaau3oQbJRc8MOgffjxZrsc8cFDFtMjYbJnH86dPre1Qm_gXvwOfV2MoL21Kgzvgl-rEWJTvvcXc9OzPK0yP_6vvXbjdoVayF9vcgw3f3IftvQY99vEFeU3aONL2gH4bPn9C7JmGmvVkNgrxirrxk8WM6MaRaajJcB6PH8n4YhKL8Iws6SLmSQjD_0pGQdnxIsbIkv7xuwdwOuh_eXuQdqUbUlsyOU8lLhUMrYDlNs89za2Wtswt5dp7K3eFK42uqdUU7UJXKCiNMJxS5x2T1lH-ELaaSeMfAeFFlRvBg2PEilo4o01gV0fgYZwzVidQLIdL2Y7XPJTX-KHa-3UpVehAFToQ3R0lVOzABHqrZtNI7HFdgzc4Qqqb4rPrhMma8NGwf_m1wtFL4OXSqhRO6XBPE8dDMYF-cEiZLv8ig-sq-spVQRPYiZa4UiMv-W7BhUigWrPRlUCgFF9_04y-tdTiiNckYsbH_6LrC7h5sj9QHw6H75_ALQSURQz3eQpb8_OFf4agbW6et3PyF9FjMh0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+simultaneous+and+proportional+myoelectric+control+using+intramuscular+EMG&rft.jtitle=Journal+of+neural+engineering&rft.au=Smith%2C+Lauren+H&rft.au=Kuiken%2C+Todd+A&rft.au=Hargrove%2C+Levi+J&rft.date=2014-12-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=11&rft.issue=6&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1088%2F1741-2560%2F11%2F6%2F066013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |