Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity

Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male)...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 15187 - 10
Main Authors Baek, Yong-Soo, Jo, Yoonsu, Lee, Sang-Chul, Choi, Wonik, Kim, Dae-Hyeok
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p  = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
AbstractList Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p  = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662-0.807) and 0.734 (95% CI: 0.688-0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830-0.835), precision of 0.764 (95% CI: 0.757-0.771), recall of 0.747 (95% CI: 0.741-0.753), and F1 score of 0.747 (95% CI: 0.741-0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156-3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662-0.807) and 0.734 (95% CI: 0.688-0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830-0.835), precision of 0.764 (95% CI: 0.757-0.771), recall of 0.747 (95% CI: 0.741-0.753), and F1 score of 0.747 (95% CI: 0.741-0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156-3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p  = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.
ArticleNumber 15187
Author Jo, Yoonsu
Lee, Sang-Chul
Choi, Wonik
Baek, Yong-Soo
Kim, Dae-Hyeok
Author_xml – sequence: 1
  givenname: Yong-Soo
  surname: Baek
  fullname: Baek, Yong-Soo
  email: existsoo@inha.ac.kr
  organization: Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Inha University Hospital, School of Computer Science, University of Birmingham, DeepCardio Inc
– sequence: 2
  givenname: Yoonsu
  surname: Jo
  fullname: Jo, Yoonsu
  organization: DeepCardio Inc
– sequence: 3
  givenname: Sang-Chul
  surname: Lee
  fullname: Lee, Sang-Chul
  organization: DeepCardio Inc., Department of Computer Engineering, Inha University
– sequence: 4
  givenname: Wonik
  surname: Choi
  fullname: Choi, Wonik
  email: wichoi@inha.ac.kr
  organization: DeepCardio Inc., Department of Information and Communication Engineering, Inha University
– sequence: 5
  givenname: Dae-Hyeok
  surname: Kim
  fullname: Kim, Dae-Hyeok
  organization: Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Inha University Hospital, DeepCardio Inc
BookMark eNp9kk9v1DAQxS1UREvpF-BkiQuXgP8m8QlVVYFKlbj0bk2cSdarrL3YyUr77fFuKqAc8GUs-83P46f3llyEGJCQ95x94ky2n7Pi2rQVE7JSQmhR6VfkSjClKyGFuPhrf0luct6ysrQwips35FI2DVO1EVck3KbZD955mKgPM06THzE4rDBsoNSe4oRuTtFB6n0cE-w3RzrERBHSdKSQM-a8wzDTOFAXUwxw8GnJtPcZISMVjBua8YDJz8d35PUAU8ab53pNnr7eP919rx5_fHu4u32snObtXDVD20lgnDMnjUJ3GraRUnClBTgpiwO94APvayNrXQ-dYsaoUoF1Gnt5TR5WbB9ha_fJ7yAdbQRvzwcxjRbKv92EFobGtKoRonFOaUDTKVNAxR8ptFassL6srP3S7bB35asJphfQlzfBb-wYD5YzZUzLeCF8fCak-HPBPNudz65YDQHjkq1oa9UaI5rTYx_-kW7jkkKx6qxSjBcPikqsKpdizgmH39NwZk_psGs6bEmHPafD6tIk16ZcxGHE9Af9n65f22m9QQ
CitedBy_id crossref_primary_10_3390_app14020817
crossref_primary_10_36011_cpp_2024_6_e7
Cites_doi 10.1038/s41579-020-00459-7
10.1161/CIRCRESAHA.121.317997
10.1093/qjmed/94.10.521
10.1136/heartjnl-2021-320412
10.1111/pace.14232
10.1007/s13755-021-00169-1
10.1017/dmp.2020.324
10.1136/bmj.o378
10.1016/j.jacc.2020.08.069
10.1016/j.ajem.2020.10.005
10.3389/fmed.2020.567296
10.1016/j.ajem.2020.12.060
10.1136/heartjnl-2020-317007
10.1016/j.jelectrocard.2020.08.007
10.1016/j.medin.2020.12.001
10.1093/ehjdh/ztaa015
10.1016/S0140-6736(20)30566-3
10.1038/s41598-021-92172-5
10.1016/j.resuscitation.2020.10.039
10.1016/S0140-6736(21)00634-6
10.1038/s41569-021-00631-3
10.4103/ijmr.IJMR_2450_20
10.1007/s15010-021-01656-z
10.1136/heartjnl-2022-321492
10.1161/01.HYP.0000125230.46080.c6
10.1016/j.jacep.2021.05.017
10.1186/s12911-021-01521-x
10.3390/jcm9113647
10.1016/j.mayocp.2021.05.027
10.1016/j.cjca.2020.03.028
10.1093/bja/aem097
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-42252-5
DatabaseName Springer_OA刊
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_af79847227cc45ae9b496fb704325540
10_1038_s41598_023_42252_5
GrantInformation_xml – fundername: Inha University Hospital Research Grant
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c518t-7f8b3a0110c394ec046973321452ac33103d21f1d693656fb409946fba0b5ed3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:11:45 EDT 2024
Tue Sep 17 21:29:35 EDT 2024
Sat Oct 26 04:10:24 EDT 2024
Sat Nov 09 11:23:19 EST 2024
Fri Aug 23 03:38:36 EDT 2024
Fri Oct 11 20:48:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-7f8b3a0110c394ec046973321452ac33103d21f1d693656fb409946fba0b5ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499801/
PMID 37704692
PQID 2864401214
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_af79847227cc45ae9b496fb704325540
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499801
proquest_miscellaneous_2864899270
proquest_journals_2864401214
crossref_primary_10_1038_s41598_023_42252_5
springer_journals_10_1038_s41598_023_42252_5
PublicationCentury 2000
PublicationDate 2023-09-13
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wei (CR8) 2020; 106
Oikarinen (CR28) 2004; 43
Rahman (CR30) 2022; 10
Subbe, Kruger, Rutherford, Gemmel (CR18) 2001; 94
Baek, Lee, Choi, Kim (CR14) 2021; 11
Attia (CR2) 2021; 96
McIntosh, Hirsch, Bloom (CR12) 2020; 5
Long (CR27) 2021; 41
CR17
CR15
CR13
Chung (CR4) 2021; 128
Fishbein (CR22) 2022; 108
Akhtar, Kontogiannis, Sharma, Gallagher (CR26) 2021; 7
Hu, Guo, Zhou, Shi (CR5) 2021; 19
Akhtar (CR24) 2021; 44
Kwon (CR29) 2021; 2
Hu, Yao, Qiu (CR31) 2022; 16
Jakob (CR21) 2022; 50
Barman (CR1) 2021; 46
Zhou (CR9) 2020; 395
De Vita (CR23) 2020; 9
Satterfield, Bhatt, Gersh (CR32) 2022; 19
Tanne (CR34) 2022; 376
Ozdemir, Ozdemir, Guren (CR3) 2021; 21
Kostakis (CR16) 2021; 159
CR25
Raisi-Estabragh (CR33) 2023; 109
Giustino (CR7) 2020; 76
Huespe (CR11) 2022; 46
Chen (CR19) 2020; 7
Haseeb (CR10) 2020; 62
Mathur (CR20) 2021; 397
Sharma, Agstam, Yadav, Gupta, Gupta (CR6) 2021; 153
R Mathur (42252_CR20) 2021; 397
S Haseeb (42252_CR10) 2020; 62
JH Tanne (42252_CR34) 2022; 376
I Kostakis (42252_CR16) 2021; 159
G Giustino (42252_CR7) 2020; 76
YS Baek (42252_CR14) 2021; 11
Z Raisi-Estabragh (42252_CR33) 2023; 109
Z Akhtar (42252_CR26) 2021; 7
L Oikarinen (42252_CR28) 2004; 43
MK Chung (42252_CR4) 2021; 128
CEM Jakob (42252_CR21) 2022; 50
BA Satterfield (42252_CR32) 2022; 19
Z Akhtar (42252_CR24) 2021; 44
B Long (42252_CR27) 2021; 41
42252_CR17
42252_CR15
J Fishbein (42252_CR22) 2022; 108
T Rahman (42252_CR30) 2022; 10
ZI Attia (42252_CR2) 2021; 96
J-M Kwon (42252_CR29) 2021; 2
B Hu (42252_CR5) 2021; 19
42252_CR13
A De Vita (42252_CR23) 2020; 9
MA Ozdemir (42252_CR3) 2021; 21
YP Sharma (42252_CR6) 2021; 153
S-L Chen (42252_CR19) 2020; 7
K McIntosh (42252_CR12) 2020; 5
H Hu (42252_CR31) 2022; 16
CP Subbe (42252_CR18) 2001; 94
I Huespe (42252_CR11) 2022; 46
F Zhou (42252_CR9) 2020; 395
HA Barman (42252_CR1) 2021; 46
42252_CR25
J-F Wei (42252_CR8) 2020; 106
References_xml – volume: 19
  start-page: 141
  year: 2021
  end-page: 154
  ident: CR5
  article-title: Characteristics of SARS-CoV-2 and COVID-19
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00459-7
  contributor:
    fullname: Shi
– volume: 128
  start-page: 1214
  year: 2021
  end-page: 1236
  ident: CR4
  article-title: COVID-19 and cardiovascular disease: from bench to bedside
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.121.317997
  contributor:
    fullname: Chung
– volume: 94
  start-page: 521
  year: 2001
  end-page: 526
  ident: CR18
  article-title: Validation of a modified Early Warning Score in medical admissions
  publication-title: QJM
  doi: 10.1093/qjmed/94.10.521
  contributor:
    fullname: Gemmel
– volume: 108
  start-page: 1539
  year: 2022
  end-page: 1546
  ident: CR22
  article-title: Delayed cardiac repolarisation as a predictor of in-hospital mortality in patients with COVID-19
  publication-title: Heart
  doi: 10.1136/heartjnl-2021-320412
  contributor:
    fullname: Fishbein
– volume: 44
  start-page: 875
  year: 2021
  end-page: 882
  ident: CR24
  article-title: Prolonged QT predicts prognosis in COVID-19
  publication-title: Pacing Clin. Electrophysiol.
  doi: 10.1111/pace.14232
  contributor:
    fullname: Akhtar
– volume: 10
  start-page: 1
  year: 2022
  ident: CR30
  article-title: COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-021-00169-1
  contributor:
    fullname: Rahman
– volume: 16
  start-page: 232
  year: 2022
  end-page: 239
  ident: CR31
  article-title: Predictive value of 5 early warning scores for critical COVID-19 patients
  publication-title: Disaster Med. Public Health Prep.
  doi: 10.1017/dmp.2020.324
  contributor:
    fullname: Qiu
– volume: 376
  year: 2022
  ident: CR34
  article-title: Covid-19: Even mild infections can cause long term heart problems, large study finds
  publication-title: BMJ
  doi: 10.1136/bmj.o378
  contributor:
    fullname: Tanne
– volume: 76
  start-page: 2043
  year: 2020
  end-page: 2055
  ident: CR7
  article-title: Characterization of myocardial injury in patients with COVID-19
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.08.069
  contributor:
    fullname: Giustino
– volume: 46
  start-page: 317
  year: 2021
  end-page: 322
  ident: CR1
  article-title: The effect of the severity COVID-19 infection on electrocardiography
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2020.10.005
  contributor:
    fullname: Barman
– volume: 7
  year: 2020
  ident: CR19
  article-title: Patterns of deterioration in moderate patients with COVID-19 from Jan 2020 to Mar 2020: a multi-center, retrospective cohort study in China
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.567296
  contributor:
    fullname: Chen
– volume: 41
  start-page: 96
  year: 2021
  end-page: 103
  ident: CR27
  article-title: Electrocardiographic manifestations of COVID-19
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2020.12.060
  contributor:
    fullname: Long
– volume: 106
  start-page: 1154
  year: 2020
  end-page: 1159
  ident: CR8
  article-title: Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis
  publication-title: Heart
  doi: 10.1136/heartjnl-2020-317007
  contributor:
    fullname: Wei
– volume: 62
  start-page: 39
  year: 2020
  end-page: 45
  ident: CR10
  article-title: Value of electrocardiography in coronavirus disease 2019 (COVID-19)
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2020.08.007
  contributor:
    fullname: Haseeb
– volume: 46
  start-page: 98
  year: 2022
  end-page: 101
  ident: CR11
  article-title: COVID-19 Severity Index: A predictive score for hospitalized patients
  publication-title: Med. Intensiva. (Engl Ed)
  doi: 10.1016/j.medin.2020.12.001
  contributor:
    fullname: Huespe
– ident: CR25
– volume: 2
  start-page: 106
  year: 2021
  end-page: 116
  ident: CR29
  article-title: Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features
  publication-title: Eur. Heart J. Digit. Health
  doi: 10.1093/ehjdh/ztaa015
  contributor:
    fullname: Kwon
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: CR9
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
  contributor:
    fullname: Zhou
– volume: 11
  start-page: 12818
  year: 2021
  ident: CR14
  article-title: A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92172-5
  contributor:
    fullname: Kim
– volume: 159
  start-page: 150
  year: 2021
  end-page: 157
  ident: CR16
  article-title: The performance of the National Early Warning Score and National Early Warning Score 2 in hospitalised patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2020.10.039
  contributor:
    fullname: Kostakis
– volume: 397
  start-page: 1711
  year: 2021
  end-page: 1724
  ident: CR20
  article-title: Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: An observational cohort study using the OpenSAFELY platform
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00634-6
  contributor:
    fullname: Mathur
– ident: CR15
– volume: 19
  start-page: 332
  year: 2022
  end-page: 341
  ident: CR32
  article-title: Cardiac involvement in the long-term implications of COVID-19
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00631-3
  contributor:
    fullname: Gersh
– ident: CR17
– volume: 153
  start-page: 7
  year: 2021
  end-page: 16
  ident: CR6
  article-title: Cardiovascular manifestations of COVID-19: An evidence-based narrative review
  publication-title: Indian J. Med. Res.
  doi: 10.4103/ijmr.IJMR_2450_20
  contributor:
    fullname: Gupta
– ident: CR13
– volume: 50
  start-page: 359
  year: 2022
  end-page: 370
  ident: CR21
  article-title: Prediction of COVID-19 deterioration in high-risk patients at diagnosis: An early warning score for advanced COVID-19 developed by machine learning
  publication-title: Infection
  doi: 10.1007/s15010-021-01656-z
  contributor:
    fullname: Jakob
– volume: 109
  start-page: 119
  year: 2023
  end-page: 126
  ident: CR33
  article-title: Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank
  publication-title: Heart
  doi: 10.1136/heartjnl-2022-321492
  contributor:
    fullname: Raisi-Estabragh
– volume: 43
  start-page: 1029
  year: 2004
  end-page: 1034
  ident: CR28
  article-title: QRS duration and QT interval predict mortality in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention for Endpoint Reduction in Hypertension Study
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000125230.46080.c6
  contributor:
    fullname: Oikarinen
– volume: 7
  start-page: 1072
  year: 2021
  end-page: 1073
  ident: CR26
  article-title: The 12-Lead ECG in COVID-19: QT prolongation predicts outcome
  publication-title: JACC Clin. Electrophysiol.
  doi: 10.1016/j.jacep.2021.05.017
  contributor:
    fullname: Gallagher
– volume: 21
  start-page: 1
  year: 2021
  end-page: 20
  ident: CR3
  article-title: Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01521-x
  contributor:
    fullname: Guren
– volume: 5
  start-page: 23
  year: 2020
  end-page: 27
  ident: CR12
  article-title: Coronavirus disease 2019 (COVID-19)
  publication-title: UpToDate Hirsch MS Bloom
  contributor:
    fullname: Bloom
– volume: 9
  start-page: 3647
  year: 2020
  ident: CR23
  article-title: Electrocardiographic findings and clinical outcome in patients with COVID-19 or other acute infectious respiratory diseases
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9113647
  contributor:
    fullname: De Vita
– volume: 96
  start-page: 2081
  year: 2021
  end-page: 2094
  ident: CR2
  article-title: Rapid exclusion of COVID infection with the artificial intelligence electrocardiogram
  publication-title: Mayo. Clin. Proc.
  doi: 10.1016/j.mayocp.2021.05.027
  contributor:
    fullname: Attia
– volume: 395
  start-page: 1054
  year: 2020
  ident: 42252_CR9
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
  contributor:
    fullname: F Zhou
– volume: 41
  start-page: 96
  year: 2021
  ident: 42252_CR27
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2020.12.060
  contributor:
    fullname: B Long
– volume: 10
  start-page: 1
  year: 2022
  ident: 42252_CR30
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-021-00169-1
  contributor:
    fullname: T Rahman
– volume: 76
  start-page: 2043
  year: 2020
  ident: 42252_CR7
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.08.069
  contributor:
    fullname: G Giustino
– volume: 376
  year: 2022
  ident: 42252_CR34
  publication-title: BMJ
  doi: 10.1136/bmj.o378
  contributor:
    fullname: JH Tanne
– volume: 106
  start-page: 1154
  year: 2020
  ident: 42252_CR8
  publication-title: Heart
  doi: 10.1136/heartjnl-2020-317007
  contributor:
    fullname: J-F Wei
– volume: 19
  start-page: 141
  year: 2021
  ident: 42252_CR5
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00459-7
  contributor:
    fullname: B Hu
– volume: 19
  start-page: 332
  year: 2022
  ident: 42252_CR32
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00631-3
  contributor:
    fullname: BA Satterfield
– volume: 11
  start-page: 12818
  year: 2021
  ident: 42252_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92172-5
  contributor:
    fullname: YS Baek
– volume: 109
  start-page: 119
  year: 2023
  ident: 42252_CR33
  publication-title: Heart
  doi: 10.1136/heartjnl-2022-321492
  contributor:
    fullname: Z Raisi-Estabragh
– volume: 7
  year: 2020
  ident: 42252_CR19
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.567296
  contributor:
    fullname: S-L Chen
– volume: 159
  start-page: 150
  year: 2021
  ident: 42252_CR16
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2020.10.039
  contributor:
    fullname: I Kostakis
– volume: 94
  start-page: 521
  year: 2001
  ident: 42252_CR18
  publication-title: QJM
  doi: 10.1093/qjmed/94.10.521
  contributor:
    fullname: CP Subbe
– ident: 42252_CR25
  doi: 10.1016/j.cjca.2020.03.028
– volume: 43
  start-page: 1029
  year: 2004
  ident: 42252_CR28
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000125230.46080.c6
  contributor:
    fullname: L Oikarinen
– volume: 9
  start-page: 3647
  year: 2020
  ident: 42252_CR23
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9113647
  contributor:
    fullname: A De Vita
– volume: 16
  start-page: 232
  year: 2022
  ident: 42252_CR31
  publication-title: Disaster Med. Public Health Prep.
  doi: 10.1017/dmp.2020.324
  contributor:
    fullname: H Hu
– volume: 153
  start-page: 7
  year: 2021
  ident: 42252_CR6
  publication-title: Indian J. Med. Res.
  doi: 10.4103/ijmr.IJMR_2450_20
  contributor:
    fullname: YP Sharma
– volume: 21
  start-page: 1
  year: 2021
  ident: 42252_CR3
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01521-x
  contributor:
    fullname: MA Ozdemir
– volume: 397
  start-page: 1711
  year: 2021
  ident: 42252_CR20
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00634-6
  contributor:
    fullname: R Mathur
– volume: 7
  start-page: 1072
  year: 2021
  ident: 42252_CR26
  publication-title: JACC Clin. Electrophysiol.
  doi: 10.1016/j.jacep.2021.05.017
  contributor:
    fullname: Z Akhtar
– volume: 128
  start-page: 1214
  year: 2021
  ident: 42252_CR4
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.121.317997
  contributor:
    fullname: MK Chung
– volume: 62
  start-page: 39
  year: 2020
  ident: 42252_CR10
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2020.08.007
  contributor:
    fullname: S Haseeb
– volume: 2
  start-page: 106
  year: 2021
  ident: 42252_CR29
  publication-title: Eur. Heart J. Digit. Health
  doi: 10.1093/ehjdh/ztaa015
  contributor:
    fullname: J-M Kwon
– volume: 46
  start-page: 317
  year: 2021
  ident: 42252_CR1
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2020.10.005
  contributor:
    fullname: HA Barman
– volume: 96
  start-page: 2081
  year: 2021
  ident: 42252_CR2
  publication-title: Mayo. Clin. Proc.
  doi: 10.1016/j.mayocp.2021.05.027
  contributor:
    fullname: ZI Attia
– ident: 42252_CR17
  doi: 10.1093/bja/aem097
– volume: 108
  start-page: 1539
  year: 2022
  ident: 42252_CR22
  publication-title: Heart
  doi: 10.1136/heartjnl-2021-320412
  contributor:
    fullname: J Fishbein
– volume: 46
  start-page: 98
  year: 2022
  ident: 42252_CR11
  publication-title: Med. Intensiva. (Engl Ed)
  doi: 10.1016/j.medin.2020.12.001
  contributor:
    fullname: I Huespe
– ident: 42252_CR15
– volume: 44
  start-page: 875
  year: 2021
  ident: 42252_CR24
  publication-title: Pacing Clin. Electrophysiol.
  doi: 10.1111/pace.14232
  contributor:
    fullname: Z Akhtar
– ident: 42252_CR13
– volume: 50
  start-page: 359
  year: 2022
  ident: 42252_CR21
  publication-title: Infection
  doi: 10.1007/s15010-021-01656-z
  contributor:
    fullname: CEM Jakob
– volume: 5
  start-page: 23
  year: 2020
  ident: 42252_CR12
  publication-title: UpToDate Hirsch MS Bloom
  contributor:
    fullname: K McIntosh
SSID ssj0000529419
Score 2.4549828
Snippet Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019...
Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus...
Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 15187
SubjectTerms 692/308
692/4019
692/699
Algorithms
Artificial intelligence
Coronaviruses
COVID-19
EKG
Electrocardiography
Emergency medical care
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9EndpkWF3loRWw9LOrYlyxJITinkJmRZYvfiLfsI5N9nRvJu14HSS04GS9iSZoZvhhl9Q8jXxL0ObZ1YbELPZAiR-agCA-zuFdLFmIi3ka-u2_lveXmrbo9afWFNWKEHLgd37pO2BhkNdQhS-Wg7advUaaSSAygs0Xptj4KpwurNrWzseEumFuZ8A0iFt8m4YBJ0GCKwCRJlwv6Jl_m4RvJRojTjz-wleTE6jvRHWfAr8iwOr8lpaSV5_4YMOFDYIOjyiGaTxWGRk_x0bHgTcgFq4amm4LHSiBTH1B8YOukq0YC8Bv5uud5t6JjCoYDhlgKORmx395bczC5ufs3Z2EuBBdWYLdPJdMIj2AdhZQwYFmuBXYoU90Fgt7GeN6npWyvAxUsdxH1WwtPXnYq9eEdOhtUQ3xOqNNi4EL5LWsgEAVuSqe616A0PvOW8It_2x-r-FMYMlzPdwrgiBAdCcFkITlXkJ578YSayXecXoANu1AH3Px2oyNlebm40wY3jBlw9ZKyTFflyGAbjwYyIH-JqV-ZAwMk1fMJM5D1Z0HRkWC4yDXeD0SIAfEW-71Xj79__veMPT7Hjj-Q59r3HwpVGnJGT7XoXP4F3tO0-Z0N4ALPGC1o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7oHYIvolOxOiUD3zSsTdKb9EmcbIzBhsiEvYU0Tdx9aef9Ifjfe06ae2cH-lRoQpvmJP3OyUm-D-B9FE77eRl5qHzHlfeBu1B7jtjd1UQXYwKdRr64nJ99V-fX9XVecFvlbZXbf2L6UXeDpzXyI2EQuYmATH26_clJNYqyq1lC4yHsYUFZzmDv-OTy67fdKgvlsVTV5NMypTRHK0QsOlUmJFc4ljESmyBSIu6feJv390reS5gmHDp9Ck-yA8k-jxZ_Bg9Cvw-PRknJ38-hp4KRFYIt_qLb5KG_Scl-loVvfNqIOvJVM_RcWSCqY-Z2TJ1siMwTv4H7tVhuViynchhiecMQTwPJ3r2Aq9OTqy9nPGsqcF9XZs11NK10BPpeNip4Co-1JLWiWjgvSXWsE1Wsunkj0dWLLcZ_jcKrK9s6dPIlzPqhD6-A1RrnupSujVqqiIFbVLHstOyM8GIuRAEftt1qb0fmDJsy3tLY0QgWjWCTEWxdwDH1_K4msV6nG8Pyh82TyLqoG0Psltp7VbvQtKrBpmmiFUS3qCzgYGs3m6fiyt4NnAIOd8U4iSgz4vowbMY6GHgKjY8wE3tPGjQt6Rc3iY67oqgRgb6Aj9uhcff2f3_x6_839g08JmV72ppSyQOYrZeb8Bb9n3X7Lg_yP-SwBQ4
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEB7WFcGXxStWV4ngm0ZPczlJH0RUXBZBn3Zh30KaJu4B6dFzWdx_70zSHu2y-lRo0jbNJMw3TOb7AF4k4U2YzxKPdei4CiFyH3Xg6Ls7TXQxNlI18pev8-NT9flMn-3BKHc0TOD62tCO9KROV99f__p5-Q43_NtSMm7frNEJUaGYkFzh8sTg6gbcFAojdTrKN8D9wvUtGlU3Q-3M9Y9O_FOm8Z9gz6snJ6-kT7NXOroDBwOcZO-L_e_CXuzvwa0iMHl5H3pqKBwRbPEX-SaP_XlO_bNBBifkY6mFvZohjmWRiI-Z3_F2smVigdgO_MVitV2zIbHD0LM3DL1rJBG8B3By9Onk4zEfFBZ40LXdcJNsKz1BgCAbFQMFy0aSdpEWPkjSIOtEnepu3kgEfqnFaLBRePWzVsdOPoT9ftnHR8C0wZ0vpW-TkSphGJdUmnVGdlYEMReigpfjtLofhUfD5fy3tK4YwaERXDaC0xV8oJnf9SQO7Hxjufrmhi3lfDKNJa5LE4LSPjatanBohkgGESTNKjgc7ebGdeWERQBIPHaqgue7ZtxSlCfxfVxuSx8MQ4XBV9iJvScDmrb0i_NMzl1TDIluv4JX49L48_V___Hj_w_2CdwmnXs6qFLLQ9jfrLbxKaKhTfssL_HfzVsG6g
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer_OA刊
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VrSpxQX2KAK1ciRu1uvEjdo7tqggh0ROVuFmOY4u9ZBG7i8S_Z8bJLgTBoadIsZM4GY--mczMNwDHSXgTqmnisQwtVyFE7qMOHLG71UQXYyNVI1_8rc7-qfMrfTXQ5FAtzCh-L-3PJQIMFYEJyRVuPXScduAtYrCl9K1ZNdv-T6GIlSrroS7m5UtH2JMp-kd25fOsyGeh0Yw4p-9hbzAV2a9eth_gTew-wru-eeT9J-hooOd_YPMnxJo8dtc5rM-GFjchp5z2zNQMbVQWidSY-S0nJ1skFojJwN_Nb9dLNgRtGKJ2zRA5IzW4-wyXp38uZ2d86J7Agy7tiptkG-kJ3oOsVQzkCBtJfYm08EFSf7FWlKlsq1qiUZca9PRqhUc_bXRs5ReYdIsu7gPTBrVaSt8kI1VCFy2pNG2NbK0IohKigJPNZ3U3PUeGy7FtaV0vBIdCcFkIThfwm778dibxW-cTKHY3qIvzydSWeCxNCEr7WDeqxqUZIhBEA2hawNFGbm5QuqUTFo074qhTBXzfDqO6UAzEd3Gx7uegiykM3sKO5D1a0Hikm19n4u2S_EOE9AJ-bLbG49Nff-OD_5t-CLvU056SUkp5BJPV7Tp-Rctn1XzLW_4BrlP8ow
  priority: 102
  providerName: Springer Nature
Title Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
URI https://link.springer.com/article/10.1038/s41598-023-42252-5
https://www.proquest.com/docview/2864401214
https://www.proquest.com/docview/2864899270
https://pubmed.ncbi.nlm.nih.gov/PMC10499801
https://doaj.org/article/af79847227cc45ae9b496fb704325540
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDBdtx0Zfxj5Zuu7wYG9behfbiZ3H9WgpgytldHBvxnHs9WDNlfsY7L-v5CS3prCXvSQkNrFjSZEUyT8BfArcKldMQuozV6fSOZ9an7sUdXedE1yM9rQbeXZZXPyQ3-b5fA-Kfi9MTNp31eKk-XV70ixuYm7l3a0b93li46vZNCM7HT-t433YRw594KO3iN68lFnZ7ZCZCD1eo5ainWRcpBL5F72vQ3gmlCLfkA8UUsTtHxibj1MlH8VLoxo6fwHPO_uRfW3n-RL2fPMKnrYVJf-8hoYaWlAItniAtpn65ibG-llX98bFPNQWrpqh4co8IR0zuwPqZMvAHMEb2N-L1XbNukgOQ1VeMlSnnqrevYHr87Pr6UXalVRIXZ7pTaqCroQlne9EKb2jFVCCihXl3DpBRcdqnoWsLkqBll6o0P0rJZ7tpMp9Ld7CQbNs_DtguUJRF8JWQQkZ0G8LMkxqJWrNHS84T-Bzv6zmrgXOMDHgLbRp6WGQHibSw-QJnNLK73oS6HW8sVz9NB3pjQ2q1ARuqZyTufVlJUucmiJUQbSKJgkc93QznSSuDddo8RFwnUzg464ZZYgCI7bxy23bB_1OrvARekDvwYSGLcicEY27Z8YEvvSs8Xf0f7_x0f-P9B4Oqeg9Za1k4hgONqut_4Cm0aYaoTzM1QienJ5dXn3Hq2kxHcXfDHicST2KknIP9FoSUA
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4ikCBYzEDawmfqydE6Ko1QLtCqFF6s1yHLvdS1L2gcS_Z8bxbkklOEWKrcTx2PlmPPb3EfI2cqf9pIwsVL5l0vvAXFCeAXa3CuliTMDTyGezyfSH_HKuzvOC2ypvq9z-E9OPuu09rpEfcgPIjQRk8sPVT4aqUZhdzRIat8k-UlVB8LV_dDz79n23yoJ5LFnV-bRMKczhChALT5VxwSSMZYjERoiUiPtH3ubNvZI3EqYJh04ekPvZgaQfB4s_JLdC94jcGSQlfz8mHRYMrBB08RfdJgvdZUr20yx849NG1IGvmoLnSgNSHVO3Y-qkfaQe-Q3cr8Vys6I5lUMBy2sKeBpQ9u4JmZ8czz9NWdZUYF5VZs10NI1wCPpe1DJ4DI-1QLUixZ0XqDrW8ipW7aQW4OrFBuK_WsLVlY0KrXhK9rq-C88IVRrmuhCuiVrICIFblLFstWgN93zCeUHebbvVXg3MGTZlvIWxgxEsGMEmI1hVkCPs-V1NZL1ON_rlhc2TyLqoa4Psltp7qVyoG1lD0zTSCoJbVBbkYGs3m6fiyl4PnIK82RXDJMLMiOtCvxnqQODJNTzCjOw9atC4pFtcJjruCqNGAPqCvN8Ojeu3__uLn_-_sa_J3en87NSefp59fUHuoco9blOpxAHZWy834SX4QuvmVR7wfwBwOAgI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiKcIFDASN7A2sZ04OSEKXZXXqkJF6s1yHLvdS1L2Uan_npnEuyWV4BQpthLHM87MeMbfB_A2CKtdkQbuM9dw5Zzn1ueOo-1ucoKLKT2dRv4xL45-qa-n-Wmsf1rFssrtP7H_UTedoz3yqSjRchMAmZqGWBZx_Hn24eI3JwYpyrRGOo3bsKdVIdMJ7B0czo9_7nZcKKelsiqenEllOV2h9aITZkJyhXqNUdnIOvUg_iPP82bd5I3kaW-TZg_gfnQm2cdB-g_hlm8fwZ2BXvLqMbTUMCBEsMVf0Jvct-d94p9FEhzXF6UO2NUMvVjmCfaY2R1qJ-sCc4R1YC8Xy82KxbQOQ7teMbStnijwnsDJ7PDk0xGP_Arc5Vm55jqUtbTkADhZKe8oVNaSmItyYZ0kBrJGZCFrikqi2xdqjAUrhVeb1rlv5FOYtF3rnwHLNa57KW0dtFQBg7igQtpo2ZTCiUKIBN5tp9VcDCgaps9-y9IMQjAoBNMLweQJHNDM73oSAnZ_o1uembigjA26KgnpUjuncuurWlU4NE0Qg-gipQnsb-Vm4rJcmWslSuDNrhkXFGVJbOu7zdAHg1Ch8RHlSN6jAY1b2sV5D82dUQSJRj-B91vVuH77v7_4-f8H-xruoq6b71_m317APSK8p4qVTO7DZL3c-JfoFq3rV1Hf_wDJJAw2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enhanced+electrocardiography+for+early+assessment+of+coronavirus+disease+2019+severity&rft.jtitle=Scientific+reports&rft.au=Baek%2C+Yong-Soo&rft.au=Jo%2C+Yoonsu&rft.au=Lee%2C+Sang-Chul&rft.au=Choi%2C+Wonik&rft.date=2023-09-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=15187&rft_id=info:doi/10.1038%2Fs41598-023-42252-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon