Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male)...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 15187 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525,
p
= 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. |
---|---|
AbstractList | Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525,
p
= 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662-0.807) and 0.734 (95% CI: 0.688-0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830-0.835), precision of 0.764 (95% CI: 0.757-0.771), recall of 0.747 (95% CI: 0.741-0.753), and F1 score of 0.747 (95% CI: 0.741-0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156-3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662-0.807) and 0.734 (95% CI: 0.688-0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830-0.835), precision of 0.764 (95% CI: 0.757-0.771), recall of 0.747 (95% CI: 0.741-0.753), and F1 score of 0.747 (95% CI: 0.741-0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156-3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662–0.807) and 0.734 (95% CI: 0.688–0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830–0.835), precision of 0.764 (95% CI: 0.757–0.771), recall of 0.747 (95% CI: 0.741–0.753), and F1 score of 0.747 (95% CI: 0.741–0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156–3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management. |
ArticleNumber | 15187 |
Author | Jo, Yoonsu Lee, Sang-Chul Choi, Wonik Baek, Yong-Soo Kim, Dae-Hyeok |
Author_xml | – sequence: 1 givenname: Yong-Soo surname: Baek fullname: Baek, Yong-Soo email: existsoo@inha.ac.kr organization: Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Inha University Hospital, School of Computer Science, University of Birmingham, DeepCardio Inc – sequence: 2 givenname: Yoonsu surname: Jo fullname: Jo, Yoonsu organization: DeepCardio Inc – sequence: 3 givenname: Sang-Chul surname: Lee fullname: Lee, Sang-Chul organization: DeepCardio Inc., Department of Computer Engineering, Inha University – sequence: 4 givenname: Wonik surname: Choi fullname: Choi, Wonik email: wichoi@inha.ac.kr organization: DeepCardio Inc., Department of Information and Communication Engineering, Inha University – sequence: 5 givenname: Dae-Hyeok surname: Kim fullname: Kim, Dae-Hyeok organization: Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Inha University Hospital, DeepCardio Inc |
BookMark | eNp9kk9v1DAQxS1UREvpF-BkiQuXgP8m8QlVVYFKlbj0bk2cSdarrL3YyUr77fFuKqAc8GUs-83P46f3llyEGJCQ95x94ky2n7Pi2rQVE7JSQmhR6VfkSjClKyGFuPhrf0luct6ysrQwips35FI2DVO1EVck3KbZD955mKgPM06THzE4rDBsoNSe4oRuTtFB6n0cE-w3RzrERBHSdKSQM-a8wzDTOFAXUwxw8GnJtPcZISMVjBua8YDJz8d35PUAU8ab53pNnr7eP919rx5_fHu4u32snObtXDVD20lgnDMnjUJ3GraRUnClBTgpiwO94APvayNrXQ-dYsaoUoF1Gnt5TR5WbB9ha_fJ7yAdbQRvzwcxjRbKv92EFobGtKoRonFOaUDTKVNAxR8ptFassL6srP3S7bB35asJphfQlzfBb-wYD5YzZUzLeCF8fCak-HPBPNudz65YDQHjkq1oa9UaI5rTYx_-kW7jkkKx6qxSjBcPikqsKpdizgmH39NwZk_psGs6bEmHPafD6tIk16ZcxGHE9Af9n65f22m9QQ |
CitedBy_id | crossref_primary_10_3390_app14020817 crossref_primary_10_36011_cpp_2024_6_e7 |
Cites_doi | 10.1038/s41579-020-00459-7 10.1161/CIRCRESAHA.121.317997 10.1093/qjmed/94.10.521 10.1136/heartjnl-2021-320412 10.1111/pace.14232 10.1007/s13755-021-00169-1 10.1017/dmp.2020.324 10.1136/bmj.o378 10.1016/j.jacc.2020.08.069 10.1016/j.ajem.2020.10.005 10.3389/fmed.2020.567296 10.1016/j.ajem.2020.12.060 10.1136/heartjnl-2020-317007 10.1016/j.jelectrocard.2020.08.007 10.1016/j.medin.2020.12.001 10.1093/ehjdh/ztaa015 10.1016/S0140-6736(20)30566-3 10.1038/s41598-021-92172-5 10.1016/j.resuscitation.2020.10.039 10.1016/S0140-6736(21)00634-6 10.1038/s41569-021-00631-3 10.4103/ijmr.IJMR_2450_20 10.1007/s15010-021-01656-z 10.1136/heartjnl-2022-321492 10.1161/01.HYP.0000125230.46080.c6 10.1016/j.jacep.2021.05.017 10.1186/s12911-021-01521-x 10.3390/jcm9113647 10.1016/j.mayocp.2021.05.027 10.1016/j.cjca.2020.03.028 10.1093/bja/aem097 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-42252-5 |
DatabaseName | Springer_OA刊 CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_af79847227cc45ae9b496fb704325540 10_1038_s41598_023_42252_5 |
GrantInformation_xml | – fundername: Inha University Hospital Research Grant – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c518t-7f8b3a0110c394ec046973321452ac33103d21f1d693656fb409946fba0b5ed3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:11:45 EDT 2024 Tue Sep 17 21:29:35 EDT 2024 Sat Oct 26 04:10:24 EDT 2024 Sat Nov 09 11:23:19 EST 2024 Fri Aug 23 03:38:36 EDT 2024 Fri Oct 11 20:48:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-7f8b3a0110c394ec046973321452ac33103d21f1d693656fb409946fba0b5ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499801/ |
PMID | 37704692 |
PQID | 2864401214 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af79847227cc45ae9b496fb704325540 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499801 proquest_miscellaneous_2864899270 proquest_journals_2864401214 crossref_primary_10_1038_s41598_023_42252_5 springer_journals_10_1038_s41598_023_42252_5 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-13 |
PublicationDateYYYYMMDD | 2023-09-13 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wei (CR8) 2020; 106 Oikarinen (CR28) 2004; 43 Rahman (CR30) 2022; 10 Subbe, Kruger, Rutherford, Gemmel (CR18) 2001; 94 Baek, Lee, Choi, Kim (CR14) 2021; 11 Attia (CR2) 2021; 96 McIntosh, Hirsch, Bloom (CR12) 2020; 5 Long (CR27) 2021; 41 CR17 CR15 CR13 Chung (CR4) 2021; 128 Fishbein (CR22) 2022; 108 Akhtar, Kontogiannis, Sharma, Gallagher (CR26) 2021; 7 Hu, Guo, Zhou, Shi (CR5) 2021; 19 Akhtar (CR24) 2021; 44 Kwon (CR29) 2021; 2 Hu, Yao, Qiu (CR31) 2022; 16 Jakob (CR21) 2022; 50 Barman (CR1) 2021; 46 Zhou (CR9) 2020; 395 De Vita (CR23) 2020; 9 Satterfield, Bhatt, Gersh (CR32) 2022; 19 Tanne (CR34) 2022; 376 Ozdemir, Ozdemir, Guren (CR3) 2021; 21 Kostakis (CR16) 2021; 159 CR25 Raisi-Estabragh (CR33) 2023; 109 Giustino (CR7) 2020; 76 Huespe (CR11) 2022; 46 Chen (CR19) 2020; 7 Haseeb (CR10) 2020; 62 Mathur (CR20) 2021; 397 Sharma, Agstam, Yadav, Gupta, Gupta (CR6) 2021; 153 R Mathur (42252_CR20) 2021; 397 S Haseeb (42252_CR10) 2020; 62 JH Tanne (42252_CR34) 2022; 376 I Kostakis (42252_CR16) 2021; 159 G Giustino (42252_CR7) 2020; 76 YS Baek (42252_CR14) 2021; 11 Z Raisi-Estabragh (42252_CR33) 2023; 109 Z Akhtar (42252_CR26) 2021; 7 L Oikarinen (42252_CR28) 2004; 43 MK Chung (42252_CR4) 2021; 128 CEM Jakob (42252_CR21) 2022; 50 BA Satterfield (42252_CR32) 2022; 19 Z Akhtar (42252_CR24) 2021; 44 B Long (42252_CR27) 2021; 41 42252_CR17 42252_CR15 J Fishbein (42252_CR22) 2022; 108 T Rahman (42252_CR30) 2022; 10 ZI Attia (42252_CR2) 2021; 96 J-M Kwon (42252_CR29) 2021; 2 B Hu (42252_CR5) 2021; 19 42252_CR13 A De Vita (42252_CR23) 2020; 9 MA Ozdemir (42252_CR3) 2021; 21 YP Sharma (42252_CR6) 2021; 153 S-L Chen (42252_CR19) 2020; 7 K McIntosh (42252_CR12) 2020; 5 H Hu (42252_CR31) 2022; 16 CP Subbe (42252_CR18) 2001; 94 I Huespe (42252_CR11) 2022; 46 F Zhou (42252_CR9) 2020; 395 HA Barman (42252_CR1) 2021; 46 42252_CR25 J-F Wei (42252_CR8) 2020; 106 |
References_xml | – volume: 19 start-page: 141 year: 2021 end-page: 154 ident: CR5 article-title: Characteristics of SARS-CoV-2 and COVID-19 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00459-7 contributor: fullname: Shi – volume: 128 start-page: 1214 year: 2021 end-page: 1236 ident: CR4 article-title: COVID-19 and cardiovascular disease: from bench to bedside publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.317997 contributor: fullname: Chung – volume: 94 start-page: 521 year: 2001 end-page: 526 ident: CR18 article-title: Validation of a modified Early Warning Score in medical admissions publication-title: QJM doi: 10.1093/qjmed/94.10.521 contributor: fullname: Gemmel – volume: 108 start-page: 1539 year: 2022 end-page: 1546 ident: CR22 article-title: Delayed cardiac repolarisation as a predictor of in-hospital mortality in patients with COVID-19 publication-title: Heart doi: 10.1136/heartjnl-2021-320412 contributor: fullname: Fishbein – volume: 44 start-page: 875 year: 2021 end-page: 882 ident: CR24 article-title: Prolonged QT predicts prognosis in COVID-19 publication-title: Pacing Clin. Electrophysiol. doi: 10.1111/pace.14232 contributor: fullname: Akhtar – volume: 10 start-page: 1 year: 2022 ident: CR30 article-title: COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-021-00169-1 contributor: fullname: Rahman – volume: 16 start-page: 232 year: 2022 end-page: 239 ident: CR31 article-title: Predictive value of 5 early warning scores for critical COVID-19 patients publication-title: Disaster Med. Public Health Prep. doi: 10.1017/dmp.2020.324 contributor: fullname: Qiu – volume: 376 year: 2022 ident: CR34 article-title: Covid-19: Even mild infections can cause long term heart problems, large study finds publication-title: BMJ doi: 10.1136/bmj.o378 contributor: fullname: Tanne – volume: 76 start-page: 2043 year: 2020 end-page: 2055 ident: CR7 article-title: Characterization of myocardial injury in patients with COVID-19 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.08.069 contributor: fullname: Giustino – volume: 46 start-page: 317 year: 2021 end-page: 322 ident: CR1 article-title: The effect of the severity COVID-19 infection on electrocardiography publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2020.10.005 contributor: fullname: Barman – volume: 7 year: 2020 ident: CR19 article-title: Patterns of deterioration in moderate patients with COVID-19 from Jan 2020 to Mar 2020: a multi-center, retrospective cohort study in China publication-title: Front. Med. doi: 10.3389/fmed.2020.567296 contributor: fullname: Chen – volume: 41 start-page: 96 year: 2021 end-page: 103 ident: CR27 article-title: Electrocardiographic manifestations of COVID-19 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2020.12.060 contributor: fullname: Long – volume: 106 start-page: 1154 year: 2020 end-page: 1159 ident: CR8 article-title: Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis publication-title: Heart doi: 10.1136/heartjnl-2020-317007 contributor: fullname: Wei – volume: 62 start-page: 39 year: 2020 end-page: 45 ident: CR10 article-title: Value of electrocardiography in coronavirus disease 2019 (COVID-19) publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2020.08.007 contributor: fullname: Haseeb – volume: 46 start-page: 98 year: 2022 end-page: 101 ident: CR11 article-title: COVID-19 Severity Index: A predictive score for hospitalized patients publication-title: Med. Intensiva. (Engl Ed) doi: 10.1016/j.medin.2020.12.001 contributor: fullname: Huespe – ident: CR25 – volume: 2 start-page: 106 year: 2021 end-page: 116 ident: CR29 article-title: Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features publication-title: Eur. Heart J. Digit. Health doi: 10.1093/ehjdh/ztaa015 contributor: fullname: Kwon – volume: 395 start-page: 1054 year: 2020 end-page: 1062 ident: CR9 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 contributor: fullname: Zhou – volume: 11 start-page: 12818 year: 2021 ident: CR14 article-title: A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm publication-title: Sci. Rep. doi: 10.1038/s41598-021-92172-5 contributor: fullname: Kim – volume: 159 start-page: 150 year: 2021 end-page: 157 ident: CR16 article-title: The performance of the National Early Warning Score and National Early Warning Score 2 in hospitalised patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) publication-title: Resuscitation doi: 10.1016/j.resuscitation.2020.10.039 contributor: fullname: Kostakis – volume: 397 start-page: 1711 year: 2021 end-page: 1724 ident: CR20 article-title: Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: An observational cohort study using the OpenSAFELY platform publication-title: Lancet doi: 10.1016/S0140-6736(21)00634-6 contributor: fullname: Mathur – ident: CR15 – volume: 19 start-page: 332 year: 2022 end-page: 341 ident: CR32 article-title: Cardiac involvement in the long-term implications of COVID-19 publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00631-3 contributor: fullname: Gersh – ident: CR17 – volume: 153 start-page: 7 year: 2021 end-page: 16 ident: CR6 article-title: Cardiovascular manifestations of COVID-19: An evidence-based narrative review publication-title: Indian J. Med. Res. doi: 10.4103/ijmr.IJMR_2450_20 contributor: fullname: Gupta – ident: CR13 – volume: 50 start-page: 359 year: 2022 end-page: 370 ident: CR21 article-title: Prediction of COVID-19 deterioration in high-risk patients at diagnosis: An early warning score for advanced COVID-19 developed by machine learning publication-title: Infection doi: 10.1007/s15010-021-01656-z contributor: fullname: Jakob – volume: 109 start-page: 119 year: 2023 end-page: 126 ident: CR33 article-title: Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank publication-title: Heart doi: 10.1136/heartjnl-2022-321492 contributor: fullname: Raisi-Estabragh – volume: 43 start-page: 1029 year: 2004 end-page: 1034 ident: CR28 article-title: QRS duration and QT interval predict mortality in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention for Endpoint Reduction in Hypertension Study publication-title: Hypertension doi: 10.1161/01.HYP.0000125230.46080.c6 contributor: fullname: Oikarinen – volume: 7 start-page: 1072 year: 2021 end-page: 1073 ident: CR26 article-title: The 12-Lead ECG in COVID-19: QT prolongation predicts outcome publication-title: JACC Clin. Electrophysiol. doi: 10.1016/j.jacep.2021.05.017 contributor: fullname: Gallagher – volume: 21 start-page: 1 year: 2021 end-page: 20 ident: CR3 article-title: Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-021-01521-x contributor: fullname: Guren – volume: 5 start-page: 23 year: 2020 end-page: 27 ident: CR12 article-title: Coronavirus disease 2019 (COVID-19) publication-title: UpToDate Hirsch MS Bloom contributor: fullname: Bloom – volume: 9 start-page: 3647 year: 2020 ident: CR23 article-title: Electrocardiographic findings and clinical outcome in patients with COVID-19 or other acute infectious respiratory diseases publication-title: J. Clin. Med. doi: 10.3390/jcm9113647 contributor: fullname: De Vita – volume: 96 start-page: 2081 year: 2021 end-page: 2094 ident: CR2 article-title: Rapid exclusion of COVID infection with the artificial intelligence electrocardiogram publication-title: Mayo. Clin. Proc. doi: 10.1016/j.mayocp.2021.05.027 contributor: fullname: Attia – volume: 395 start-page: 1054 year: 2020 ident: 42252_CR9 publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 contributor: fullname: F Zhou – volume: 41 start-page: 96 year: 2021 ident: 42252_CR27 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2020.12.060 contributor: fullname: B Long – volume: 10 start-page: 1 year: 2022 ident: 42252_CR30 publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-021-00169-1 contributor: fullname: T Rahman – volume: 76 start-page: 2043 year: 2020 ident: 42252_CR7 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.08.069 contributor: fullname: G Giustino – volume: 376 year: 2022 ident: 42252_CR34 publication-title: BMJ doi: 10.1136/bmj.o378 contributor: fullname: JH Tanne – volume: 106 start-page: 1154 year: 2020 ident: 42252_CR8 publication-title: Heart doi: 10.1136/heartjnl-2020-317007 contributor: fullname: J-F Wei – volume: 19 start-page: 141 year: 2021 ident: 42252_CR5 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00459-7 contributor: fullname: B Hu – volume: 19 start-page: 332 year: 2022 ident: 42252_CR32 publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00631-3 contributor: fullname: BA Satterfield – volume: 11 start-page: 12818 year: 2021 ident: 42252_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-021-92172-5 contributor: fullname: YS Baek – volume: 109 start-page: 119 year: 2023 ident: 42252_CR33 publication-title: Heart doi: 10.1136/heartjnl-2022-321492 contributor: fullname: Z Raisi-Estabragh – volume: 7 year: 2020 ident: 42252_CR19 publication-title: Front. Med. doi: 10.3389/fmed.2020.567296 contributor: fullname: S-L Chen – volume: 159 start-page: 150 year: 2021 ident: 42252_CR16 publication-title: Resuscitation doi: 10.1016/j.resuscitation.2020.10.039 contributor: fullname: I Kostakis – volume: 94 start-page: 521 year: 2001 ident: 42252_CR18 publication-title: QJM doi: 10.1093/qjmed/94.10.521 contributor: fullname: CP Subbe – ident: 42252_CR25 doi: 10.1016/j.cjca.2020.03.028 – volume: 43 start-page: 1029 year: 2004 ident: 42252_CR28 publication-title: Hypertension doi: 10.1161/01.HYP.0000125230.46080.c6 contributor: fullname: L Oikarinen – volume: 9 start-page: 3647 year: 2020 ident: 42252_CR23 publication-title: J. Clin. Med. doi: 10.3390/jcm9113647 contributor: fullname: A De Vita – volume: 16 start-page: 232 year: 2022 ident: 42252_CR31 publication-title: Disaster Med. Public Health Prep. doi: 10.1017/dmp.2020.324 contributor: fullname: H Hu – volume: 153 start-page: 7 year: 2021 ident: 42252_CR6 publication-title: Indian J. Med. Res. doi: 10.4103/ijmr.IJMR_2450_20 contributor: fullname: YP Sharma – volume: 21 start-page: 1 year: 2021 ident: 42252_CR3 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-021-01521-x contributor: fullname: MA Ozdemir – volume: 397 start-page: 1711 year: 2021 ident: 42252_CR20 publication-title: Lancet doi: 10.1016/S0140-6736(21)00634-6 contributor: fullname: R Mathur – volume: 7 start-page: 1072 year: 2021 ident: 42252_CR26 publication-title: JACC Clin. Electrophysiol. doi: 10.1016/j.jacep.2021.05.017 contributor: fullname: Z Akhtar – volume: 128 start-page: 1214 year: 2021 ident: 42252_CR4 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.317997 contributor: fullname: MK Chung – volume: 62 start-page: 39 year: 2020 ident: 42252_CR10 publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2020.08.007 contributor: fullname: S Haseeb – volume: 2 start-page: 106 year: 2021 ident: 42252_CR29 publication-title: Eur. Heart J. Digit. Health doi: 10.1093/ehjdh/ztaa015 contributor: fullname: J-M Kwon – volume: 46 start-page: 317 year: 2021 ident: 42252_CR1 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2020.10.005 contributor: fullname: HA Barman – volume: 96 start-page: 2081 year: 2021 ident: 42252_CR2 publication-title: Mayo. Clin. Proc. doi: 10.1016/j.mayocp.2021.05.027 contributor: fullname: ZI Attia – ident: 42252_CR17 doi: 10.1093/bja/aem097 – volume: 108 start-page: 1539 year: 2022 ident: 42252_CR22 publication-title: Heart doi: 10.1136/heartjnl-2021-320412 contributor: fullname: J Fishbein – volume: 46 start-page: 98 year: 2022 ident: 42252_CR11 publication-title: Med. Intensiva. (Engl Ed) doi: 10.1016/j.medin.2020.12.001 contributor: fullname: I Huespe – ident: 42252_CR15 – volume: 44 start-page: 875 year: 2021 ident: 42252_CR24 publication-title: Pacing Clin. Electrophysiol. doi: 10.1111/pace.14232 contributor: fullname: Z Akhtar – ident: 42252_CR13 – volume: 50 start-page: 359 year: 2022 ident: 42252_CR21 publication-title: Infection doi: 10.1007/s15010-021-01656-z contributor: fullname: CEM Jakob – volume: 5 start-page: 23 year: 2020 ident: 42252_CR12 publication-title: UpToDate Hirsch MS Bloom contributor: fullname: K McIntosh |
SSID | ssj0000529419 |
Score | 2.4549828 |
Snippet | Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019... Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus... Abstract Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 15187 |
SubjectTerms | 692/308 692/4019 692/699 Algorithms Artificial intelligence Coronaviruses COVID-19 EKG Electrocardiography Emergency medical care Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9EndpkWF3loRWw9LOrYlyxJITinkJmRZYvfiLfsI5N9nRvJu14HSS04GS9iSZoZvhhl9Q8jXxL0ObZ1YbELPZAiR-agCA-zuFdLFmIi3ka-u2_lveXmrbo9afWFNWKEHLgd37pO2BhkNdQhS-Wg7advUaaSSAygs0Xptj4KpwurNrWzseEumFuZ8A0iFt8m4YBJ0GCKwCRJlwv6Jl_m4RvJRojTjz-wleTE6jvRHWfAr8iwOr8lpaSV5_4YMOFDYIOjyiGaTxWGRk_x0bHgTcgFq4amm4LHSiBTH1B8YOukq0YC8Bv5uud5t6JjCoYDhlgKORmx395bczC5ufs3Z2EuBBdWYLdPJdMIj2AdhZQwYFmuBXYoU90Fgt7GeN6npWyvAxUsdxH1WwtPXnYq9eEdOhtUQ3xOqNNi4EL5LWsgEAVuSqe616A0PvOW8It_2x-r-FMYMlzPdwrgiBAdCcFkITlXkJ578YSayXecXoANu1AH3Px2oyNlebm40wY3jBlw9ZKyTFflyGAbjwYyIH-JqV-ZAwMk1fMJM5D1Z0HRkWC4yDXeD0SIAfEW-71Xj79__veMPT7Hjj-Q59r3HwpVGnJGT7XoXP4F3tO0-Z0N4ALPGC1o priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7oHYIvolOxOiUD3zSsTdKb9EmcbIzBhsiEvYU0Tdx9aef9Ifjfe06ae2cH-lRoQpvmJP3OyUm-D-B9FE77eRl5qHzHlfeBu1B7jtjd1UQXYwKdRr64nJ99V-fX9XVecFvlbZXbf2L6UXeDpzXyI2EQuYmATH26_clJNYqyq1lC4yHsYUFZzmDv-OTy67fdKgvlsVTV5NMypTRHK0QsOlUmJFc4ljESmyBSIu6feJv390reS5gmHDp9Ck-yA8k-jxZ_Bg9Cvw-PRknJ38-hp4KRFYIt_qLb5KG_Scl-loVvfNqIOvJVM_RcWSCqY-Z2TJ1siMwTv4H7tVhuViynchhiecMQTwPJ3r2Aq9OTqy9nPGsqcF9XZs11NK10BPpeNip4Co-1JLWiWjgvSXWsE1Wsunkj0dWLLcZ_jcKrK9s6dPIlzPqhD6-A1RrnupSujVqqiIFbVLHstOyM8GIuRAEftt1qb0fmDJsy3tLY0QgWjWCTEWxdwDH1_K4msV6nG8Pyh82TyLqoG0Psltp7VbvQtKrBpmmiFUS3qCzgYGs3m6fiyt4NnAIOd8U4iSgz4vowbMY6GHgKjY8wE3tPGjQt6Rc3iY67oqgRgb6Aj9uhcff2f3_x6_839g08JmV72ppSyQOYrZeb8Bb9n3X7Lg_yP-SwBQ4 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEB7WFcGXxStWV4ngm0ZPczlJH0RUXBZBn3Zh30KaJu4B6dFzWdx_70zSHu2y-lRo0jbNJMw3TOb7AF4k4U2YzxKPdei4CiFyH3Xg6Ls7TXQxNlI18pev8-NT9flMn-3BKHc0TOD62tCO9KROV99f__p5-Q43_NtSMm7frNEJUaGYkFzh8sTg6gbcFAojdTrKN8D9wvUtGlU3Q-3M9Y9O_FOm8Z9gz6snJ6-kT7NXOroDBwOcZO-L_e_CXuzvwa0iMHl5H3pqKBwRbPEX-SaP_XlO_bNBBifkY6mFvZohjmWRiI-Z3_F2smVigdgO_MVitV2zIbHD0LM3DL1rJBG8B3By9Onk4zEfFBZ40LXdcJNsKz1BgCAbFQMFy0aSdpEWPkjSIOtEnepu3kgEfqnFaLBRePWzVsdOPoT9ftnHR8C0wZ0vpW-TkSphGJdUmnVGdlYEMReigpfjtLofhUfD5fy3tK4YwaERXDaC0xV8oJnf9SQO7Hxjufrmhi3lfDKNJa5LE4LSPjatanBohkgGESTNKjgc7ebGdeWERQBIPHaqgue7ZtxSlCfxfVxuSx8MQ4XBV9iJvScDmrb0i_NMzl1TDIluv4JX49L48_V___Hj_w_2CdwmnXs6qFLLQ9jfrLbxKaKhTfssL_HfzVsG6g priority: 102 providerName: Scholars Portal – databaseName: Springer_OA刊 dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VrSpxQX2KAK1ciRu1uvEjdo7tqggh0ROVuFmOY4u9ZBG7i8S_Z8bJLgTBoadIsZM4GY--mczMNwDHSXgTqmnisQwtVyFE7qMOHLG71UQXYyNVI1_8rc7-qfMrfTXQ5FAtzCh-L-3PJQIMFYEJyRVuPXScduAtYrCl9K1ZNdv-T6GIlSrroS7m5UtH2JMp-kd25fOsyGeh0Yw4p-9hbzAV2a9eth_gTew-wru-eeT9J-hooOd_YPMnxJo8dtc5rM-GFjchp5z2zNQMbVQWidSY-S0nJ1skFojJwN_Nb9dLNgRtGKJ2zRA5IzW4-wyXp38uZ2d86J7Agy7tiptkG-kJ3oOsVQzkCBtJfYm08EFSf7FWlKlsq1qiUZca9PRqhUc_bXRs5ReYdIsu7gPTBrVaSt8kI1VCFy2pNG2NbK0IohKigJPNZ3U3PUeGy7FtaV0vBIdCcFkIThfwm778dibxW-cTKHY3qIvzydSWeCxNCEr7WDeqxqUZIhBEA2hawNFGbm5QuqUTFo074qhTBXzfDqO6UAzEd3Gx7uegiykM3sKO5D1a0Hikm19n4u2S_EOE9AJ-bLbG49Nff-OD_5t-CLvU056SUkp5BJPV7Tp-Rctn1XzLW_4BrlP8ow priority: 102 providerName: Springer Nature |
Title | Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity |
URI | https://link.springer.com/article/10.1038/s41598-023-42252-5 https://www.proquest.com/docview/2864401214 https://www.proquest.com/docview/2864899270 https://pubmed.ncbi.nlm.nih.gov/PMC10499801 https://doaj.org/article/af79847227cc45ae9b496fb704325540 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDBdtx0Zfxj5Zuu7wYG9behfbiZ3H9WgpgytldHBvxnHs9WDNlfsY7L-v5CS3prCXvSQkNrFjSZEUyT8BfArcKldMQuozV6fSOZ9an7sUdXedE1yM9rQbeXZZXPyQ3-b5fA-Kfi9MTNp31eKk-XV70ixuYm7l3a0b93li46vZNCM7HT-t433YRw594KO3iN68lFnZ7ZCZCD1eo5ainWRcpBL5F72vQ3gmlCLfkA8UUsTtHxibj1MlH8VLoxo6fwHPO_uRfW3n-RL2fPMKnrYVJf-8hoYaWlAItniAtpn65ibG-llX98bFPNQWrpqh4co8IR0zuwPqZMvAHMEb2N-L1XbNukgOQ1VeMlSnnqrevYHr87Pr6UXalVRIXZ7pTaqCroQlne9EKb2jFVCCihXl3DpBRcdqnoWsLkqBll6o0P0rJZ7tpMp9Ld7CQbNs_DtguUJRF8JWQQkZ0G8LMkxqJWrNHS84T-Bzv6zmrgXOMDHgLbRp6WGQHibSw-QJnNLK73oS6HW8sVz9NB3pjQ2q1ARuqZyTufVlJUucmiJUQbSKJgkc93QznSSuDddo8RFwnUzg464ZZYgCI7bxy23bB_1OrvARekDvwYSGLcicEY27Z8YEvvSs8Xf0f7_x0f-P9B4Oqeg9Za1k4hgONqut_4Cm0aYaoTzM1QienJ5dXn3Hq2kxHcXfDHicST2KknIP9FoSUA |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4ikCBYzEDawmfqydE6Ko1QLtCqFF6s1yHLvdS1L2gcS_Z8bxbkklOEWKrcTx2PlmPPb3EfI2cqf9pIwsVL5l0vvAXFCeAXa3CuliTMDTyGezyfSH_HKuzvOC2ypvq9z-E9OPuu09rpEfcgPIjQRk8sPVT4aqUZhdzRIat8k-UlVB8LV_dDz79n23yoJ5LFnV-bRMKczhChALT5VxwSSMZYjERoiUiPtH3ubNvZI3EqYJh04ekPvZgaQfB4s_JLdC94jcGSQlfz8mHRYMrBB08RfdJgvdZUr20yx849NG1IGvmoLnSgNSHVO3Y-qkfaQe-Q3cr8Vys6I5lUMBy2sKeBpQ9u4JmZ8czz9NWdZUYF5VZs10NI1wCPpe1DJ4DI-1QLUixZ0XqDrW8ipW7aQW4OrFBuK_WsLVlY0KrXhK9rq-C88IVRrmuhCuiVrICIFblLFstWgN93zCeUHebbvVXg3MGTZlvIWxgxEsGMEmI1hVkCPs-V1NZL1ON_rlhc2TyLqoa4Psltp7qVyoG1lD0zTSCoJbVBbkYGs3m6fiyl4PnIK82RXDJMLMiOtCvxnqQODJNTzCjOw9atC4pFtcJjruCqNGAPqCvN8Ojeu3__uLn_-_sa_J3en87NSefp59fUHuoco9blOpxAHZWy834SX4QuvmVR7wfwBwOAgI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiKcIFDASN7A2sZ04OSEKXZXXqkJF6s1yHLvdS1L2Uan_npnEuyWV4BQpthLHM87MeMbfB_A2CKtdkQbuM9dw5Zzn1ueOo-1ucoKLKT2dRv4xL45-qa-n-Wmsf1rFssrtP7H_UTedoz3yqSjRchMAmZqGWBZx_Hn24eI3JwYpyrRGOo3bsKdVIdMJ7B0czo9_7nZcKKelsiqenEllOV2h9aITZkJyhXqNUdnIOvUg_iPP82bd5I3kaW-TZg_gfnQm2cdB-g_hlm8fwZ2BXvLqMbTUMCBEsMVf0Jvct-d94p9FEhzXF6UO2NUMvVjmCfaY2R1qJ-sCc4R1YC8Xy82KxbQOQ7teMbStnijwnsDJ7PDk0xGP_Arc5Vm55jqUtbTkADhZKe8oVNaSmItyYZ0kBrJGZCFrikqi2xdqjAUrhVeb1rlv5FOYtF3rnwHLNa57KW0dtFQBg7igQtpo2ZTCiUKIBN5tp9VcDCgaps9-y9IMQjAoBNMLweQJHNDM73oSAnZ_o1uembigjA26KgnpUjuncuurWlU4NE0Qg-gipQnsb-Vm4rJcmWslSuDNrhkXFGVJbOu7zdAHg1Ch8RHlSN6jAY1b2sV5D82dUQSJRj-B91vVuH77v7_4-f8H-xruoq6b71_m317APSK8p4qVTO7DZL3c-JfoFq3rV1Hf_wDJJAw2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enhanced+electrocardiography+for+early+assessment+of+coronavirus+disease+2019+severity&rft.jtitle=Scientific+reports&rft.au=Baek%2C+Yong-Soo&rft.au=Jo%2C+Yoonsu&rft.au=Lee%2C+Sang-Chul&rft.au=Choi%2C+Wonik&rft.date=2023-09-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=15187&rft_id=info:doi/10.1038%2Fs41598-023-42252-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |