Contact-electro-catalytic CO2 reduction from ambient air
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achi...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5913 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO
2
into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO
2
reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO
2
adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO
2
on quaternized CNF allows efficient CO
2
capture at low concentrations, thus enabling the CO
2
reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO
2
reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g
−1
h
−1
. This technique provides a solution for reducing airborne CO
2
emissions while advancing chemical sustainability strategy.
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO
2
into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO
2
reduction reaction, achieving CO Faradaic efficiency of 96.24%. |
---|---|
AbstractList | Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO
2
into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO
2
reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO
2
adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO
2
on quaternized CNF allows efficient CO
2
capture at low concentrations, thus enabling the CO
2
reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO
2
reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g
−1
h
−1
. This technique provides a solution for reducing airborne CO
2
emissions while advancing chemical sustainability strategy.
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO
2
into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO
2
reduction reaction, achieving CO Faradaic efficiency of 96.24%. Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO 2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO 2 on quaternized CNF allows efficient CO 2 capture at low concentrations, thus enabling the CO 2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO 2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g −1 h −1 . This technique provides a solution for reducing airborne CO 2 emissions while advancing chemical sustainability strategy. Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy. Abstract Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g−1 h−1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy. Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g−1 h−1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving CO Faradaic efficiency of 96.24%. |
ArticleNumber | 5913 |
Author | Wang, Daoai Zhang, Yong-Wei Wang, Nannan Ye, Enyi Wang, Sheng Feng, Haisong Li, Zibiao Zheng, Youbin Jiang, Wenbin Yang, Jing Li, Bofan Ong, Wai Chung Heng, Jerry Zhi Xiong TAN, Hui Ru |
Author_xml | – sequence: 1 givenname: Nannan surname: Wang fullname: Wang, Nannan organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR) – sequence: 2 givenname: Wenbin orcidid: 0000-0001-8288-9808 surname: Jiang fullname: Jiang, Wenbin organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) – sequence: 3 givenname: Jing surname: Yang fullname: Yang, Jing organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) – sequence: 4 givenname: Haisong surname: Feng fullname: Feng, Haisong organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) – sequence: 5 givenname: Youbin orcidid: 0000-0003-3905-8552 surname: Zheng fullname: Zheng, Youbin organization: Department of Electrical Engineering & Electronics, University of Liverpool, Brownlow Hill – sequence: 6 givenname: Sheng orcidid: 0000-0001-7622-4842 surname: Wang fullname: Wang, Sheng organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR) – sequence: 7 givenname: Bofan orcidid: 0000-0002-8659-5134 surname: Li fullname: Li, Bofan organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR) – sequence: 8 givenname: Jerry Zhi Xiong surname: Heng fullname: Heng, Jerry Zhi Xiong organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR) – sequence: 9 givenname: Wai Chung surname: Ong fullname: Ong, Wai Chung organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR) – sequence: 10 givenname: Hui Ru orcidid: 0000-0003-4839-4515 surname: TAN fullname: TAN, Hui Ru organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) – sequence: 11 givenname: Yong-Wei orcidid: 0000-0001-7255-1678 surname: Zhang fullname: Zhang, Yong-Wei organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) – sequence: 12 givenname: Daoai orcidid: 0000-0002-3019-282X surname: Wang fullname: Wang, Daoai email: wangda@licp.cas.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing – sequence: 13 givenname: Enyi orcidid: 0000-0002-2398-0676 surname: Ye fullname: Ye, Enyi email: yeey@imre.a-star.efu.sg organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) – sequence: 14 givenname: Zibiao orcidid: 0000-0002-0591-5328 surname: Li fullname: Li, Zibiao email: lizb@imre.a-star.edu.sg organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR), Department of Materials Science and Engineering, National University of Singapore |
BookMark | eNp9kU1PHSEYhSfGJlrrH3A1STfdTMsLzACrprmprYmJm3ZNXj7mlpuZwQLTxH9fdIytLmQDgXMeDpy3zfESF980F0A-AmHyU-bAB9ERyrueAMgOjppTSjh0ICg7_m990pznfCB1MAWS89NG7uJS0JbOT96WFDuLBae7Emy7u6Ft8m61JcSlHVOcW5xN8EtpMaR3zZsRp-zPH-ez5ufl1x-77931zber3ZfrzvYgSyfkQJwDQ6UyA3dqHFlPqJc1sqEOB84QwTPFJDJiWG8FEc4qKjwaTpGys-Zq47qIB32bwozpTkcM-mEjpr3GVONOXg_GjOCE5YiMc6MkcGVHbxTh0lLhKuvzxrpdzeydrU9JOD2DPj9Zwi-9j380AOUDp6wSPjwSUvy9-lz0HLL104SLj2vWjAil-kESUaXvX0gPcU1L_atNRYSEvqroprIp5pz8-JQGiL5vV2_t6tqufmhXQzXJFyYbCt7XVFOH6XUr26y53rPsffqX6hXXX0SBuhQ |
CitedBy_id | crossref_primary_10_3390_nano15050386 crossref_primary_10_1002_anie_202500222 crossref_primary_10_1016_j_nanoen_2025_110702 crossref_primary_10_1002_ange_202500222 crossref_primary_10_1016_j_susmat_2024_e01096 crossref_primary_10_1002_cssc_202402031 crossref_primary_10_1002_adfm_202413156 crossref_primary_10_1002_aenm_202500177 crossref_primary_10_1021_acsami_4c12952 crossref_primary_10_1021_acsnano_5c01268 crossref_primary_10_1002_smll_202411815 crossref_primary_10_1016_j_cej_2025_161443 crossref_primary_10_1016_j_cej_2025_161042 |
Cites_doi | 10.1016/j.nanoen.2022.107346 10.1021/acs.nanolett.1c03249 10.1002/adma.202206706 10.1002/adfm.202009172 10.1038/s41467-021-21152-0 10.1002/adma.202008276 10.1002/adma.202003082 10.1016/j.nanoen.2022.107515 10.1021/acssuschemeng.8b06203 10.1016/j.chempr.2019.04.006 10.1002/anie.201811422 10.1021/jacs.8b12928 10.1038/s41467-019-14278-9 10.1002/anie.202213423 10.1002/adfm.202107143 10.1021/acsnano.1c02790 10.1038/s41467-022-29102-0 10.1016/j.seppur.2022.123030 10.1016/j.nanoen.2022.107748 10.1038/s41467-019-14237-4 10.1002/advs.202001545 10.1002/advs.202201633 10.1021/jacs.7b01956 10.1021/jacs.9b02318 10.1016/0022-3093(95)00355-X 10.1016/j.nanoen.2020.105088 10.1021/acsami.9b15537 10.1038/s41929-018-0108-3 10.1038/s41467-023-39544-9 10.1016/j.nanoen.2021.106300 10.1016/j.chempr.2017.08.002 10.1021/jacs.0c04981 10.1016/j.carbon.2016.12.056 10.1021/acscatal.9b04687 10.1039/D1CS00535A 10.1002/adma.202001307 10.1002/anie.201912845 10.1016/j.matt.2021.01.006 10.1038/s41586-020-1985-6 10.1038/s41467-021-25046-z 10.1002/ange.201700286 10.1002/smll.202103852 10.1002/eem2.12306 10.1016/j.nanoen.2021.105743 10.1021/acsnano.2c05993 10.1002/aenm.202101170 10.1021/jacs.2c00725 10.1038/s41467-021-27789-1 10.1002/adma.202101262 10.1038/s41467-019-12510-0 10.1016/j.cej.2023.141947 10.1002/anie.202300604 10.1016/j.nanoen.2022.107916 10.1002/adma.202004178 10.1002/ange.202002762 10.1002/adma.201905696 10.1021/acscatal.1c05503 10.1002/adma.202205262 10.1103/PhysRevB.50.17953 10.1002/ange.202113918 10.1103/PhysRevB.48.13115 10.1103/PhysRevLett.77.3865 10.1021/jacs.6b12103 10.1002/adma.202305257 10.1002/aenm.202101958 10.1002/anie.202306964 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50118-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_6bbf1d7c4aa344b98149cfeb9048c27d PMC11246423 10_1038_s41467_024_50118_1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-7860dd1b289b64d9ff3502e8414b2da643aa1e3938a30b35c707dc927eab42a23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:11:50 EDT 2025 Thu Aug 21 18:32:51 EDT 2025 Mon Jul 21 10:24:33 EDT 2025 Wed Aug 13 03:27:30 EDT 2025 Tue Jul 01 02:37:21 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-7860dd1b289b64d9ff3502e8414b2da643aa1e3938a30b35c707dc927eab42a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8288-9808 0000-0003-3905-8552 0000-0001-7255-1678 0000-0002-0591-5328 0000-0002-2398-0676 0000-0001-7622-4842 0000-0003-4839-4515 0000-0002-3019-282X 0000-0002-8659-5134 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50118-1 |
PQID | 3079907815 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6bbf1d7c4aa344b98149cfeb9048c27d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11246423 proquest_miscellaneous_3079956807 proquest_journals_3079907815 crossref_primary_10_1038_s41467_024_50118_1 crossref_citationtrail_10_1038_s41467_024_50118_1 springer_journals_10_1038_s41467_024_50118_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-13 |
PublicationDateYYYYMMDD | 2024-07-13 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhu (CR1) 2020; 11 Yang (CR42) 2019; 10 Xiao (CR43) 2020; 32 Dong (CR23) 2022; 99 Perdew, Burke, Ernzerhof (CR65) 1996; 77 Zhao (CR5) 2023; 35 Sun (CR46) 2021; 12 Dong (CR24) 2022; 100 Khandelwal, Maria Joseph Raj, Kim (CR56) 2021; 11 Wang (CR35) 2022; 103 Hong, Tsukakoshi, Kotani, Ishizuka, Kojima (CR64) 2017; 139 Li (CR49) 2020; 7 Nie (CR28) 2020; 32 Zhang (CR15) 2021; 4 Lin, Xu, Chi Wang, Wang (CR29) 2020; 11 Xu (CR36) 2023; 6 CR30 Wang, Zheng, Feng, Zhou, Wang (CR34) 2020; 77 Ru (CR40) 2022; 18 Ma (CR63) 2022; 13 Kresse (CR67) 1995; 192 Gao (CR8) 2022; 144 Han (CR52) 2017; 3 Zhou, Pan, Deng, Xia, Kim (CR19) 2021; 33 Salauddin (CR33) 2022; 32 Luo, Gao, Wang (CR18) 2021; 33 Liu (CR51) 2023; 14 Wang (CR60) 2021; 21 Xie (CR3) 2022; 61 Zhao (CR50) 2023; 35 Chen (CR2) 2020; 142 Wei (CR31) 2021; 15 Zhuang (CR48) 2020; 59 Su (CR17) 2021; 33 Kresse, Hafner (CR68) 1993; 48 Li (CR13) 2022; 9 Cao (CR6) 2022; 134 Wang (CR44) 2021; 31 Li (CR26) 2020; 32 Wang, Lin, Chen, Lin (CR38) 2021; 83 Hayat, Shaishta, Mane, Khan, Hayat (CR59) 2019; 11 Datye, Guo (CR41) 2021; 12 Mezzavilla, Horch, Stephens, Seger, Chorkendorff (CR11) 2019; 58 Qin (CR25) 2020; 132 Yang, Ou, Fang, Wang (CR58) 2017; 129 Yang (CR4) 2022; 34 CR14 CR12 Kreft (CR61) 2019; 5 Zhao (CR20) 2023; 62 Liu (CR10) 2017; 139 Xu (CR27) 2020; 578 Li (CR47) 2018; 1 Sujan, Pang, Zhu, Jones, Lively (CR53) 2019; 7 Kim (CR39) 2022; 16 Hooe, Dressel, Dickie, Machan (CR9) 2019; 10 Liu, Xu, Del Pozo, Torker, Hoveyda (CR57) 2019; 141 Shen (CR22) 2021; 13 Wang (CR21) 2022; 13 Wu (CR62) 2019; 141 Gong (CR37) 2023; 461 Rana (CR45) 2021; 88 CR69 Ren (CR54) 2017; 114 Blöchl (CR66) 1994; 50 Zhao (CR16) 2021; 12 Ma (CR7) 2021; 50 Wang, Anyanwu, Hu, Yang (CR55) 2023; 309 Wang (CR32) 2022; 104 M-J Kim (50118_CR39) 2022; 16 S Lin (50118_CR29) 2020; 11 J Nie (50118_CR28) 2020; 32 Y Chen (50118_CR2) 2020; 142 X Dong (50118_CR23) 2022; 99 X Li (50118_CR49) 2020; 7 X Cao (50118_CR6) 2022; 134 S Gong (50118_CR37) 2023; 461 J Li (50118_CR47) 2018; 1 Z Zhao (50118_CR16) 2021; 12 S Zhang (50118_CR15) 2021; 4 W Xu (50118_CR27) 2020; 578 S Kreft (50118_CR61) 2019; 5 N Han (50118_CR52) 2017; 3 Z-H Gao (50118_CR8) 2022; 144 Z Wang (50118_CR21) 2022; 13 D Hong (50118_CR64) 2017; 139 S Li (50118_CR13) 2022; 9 X Wei (50118_CR31) 2021; 15 H Yang (50118_CR42) 2019; 10 X-C Sun (50118_CR46) 2021; 12 R Zhao (50118_CR5) 2023; 35 S Shen (50118_CR22) 2021; 13 50118_CR14 P Yang (50118_CR58) 2017; 129 50118_CR12 AR Sujan (50118_CR53) 2019; 7 N Wang (50118_CR34) 2020; 77 Y Wang (50118_CR55) 2023; 309 Y Su (50118_CR17) 2021; 33 G Khandelwal (50118_CR56) 2021; 11 X Xiao (50118_CR43) 2020; 32 HJ Zhu (50118_CR1) 2020; 11 S Zhuang (50118_CR48) 2020; 59 SS Rana (50118_CR45) 2021; 88 S Li (50118_CR26) 2020; 32 SL Hooe (50118_CR9) 2019; 10 X Ren (50118_CR54) 2017; 114 50118_CR69 S Liu (50118_CR10) 2017; 139 J Zhao (50118_CR20) 2023; 62 Y Ma (50118_CR63) 2022; 13 N Wang (50118_CR44) 2021; 31 R Zhao (50118_CR50) 2023; 35 M Liu (50118_CR51) 2023; 14 W Ma (50118_CR7) 2021; 50 M Salauddin (50118_CR33) 2022; 32 R-C Wang (50118_CR38) 2021; 83 Q Zhou (50118_CR19) 2021; 33 X Wu (50118_CR62) 2019; 141 G Kresse (50118_CR68) 1993; 48 YL Yang (50118_CR4) 2022; 34 G Kresse (50118_CR67) 1995; 192 JP Perdew (50118_CR65) 1996; 77 AK Datye (50118_CR41) 2021; 12 J Wang (50118_CR32) 2022; 104 L Wang (50118_CR60) 2021; 21 S Mezzavilla (50118_CR11) 2019; 58 W Ru (50118_CR40) 2022; 18 A Hayat (50118_CR59) 2019; 11 P Blöchl (50118_CR66) 1994; 50 J Luo (50118_CR18) 2021; 33 N Wang (50118_CR35) 2022; 103 Y Qin (50118_CR25) 2020; 132 F Dong (50118_CR24) 2022; 100 50118_CR30 M Xie (50118_CR3) 2022; 61 T Xu (50118_CR36) 2023; 6 Z Liu (50118_CR57) 2019; 141 |
References_xml | – volume: 99 year: 2022 ident: CR23 article-title: Investigations on the contact-electro-catalysis under various ultrasonic conditions and using different electrification particles publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107346 – volume: 21 start-page: 10260 year: 2021 end-page: 10266 ident: CR60 article-title: Bismuth vacancy-induced efficient CO photoreduction in BiOCl directly from natural Air: a progressive step toward photosynthesis in nature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03249 – volume: 34 start-page: 2206706 year: 2022 ident: CR4 article-title: A honeycomb‐like porous crystalline hetero‐electrocatalyst for efficient electrocatalytic CO reduction publication-title: Adv. Mater. doi: 10.1002/adma.202206706 – volume: 31 start-page: 2009172 year: 2021 ident: CR44 article-title: New hydrogen bonding enhanced polyvinyl alcohol based self‐charged medical mask with superior charge retention and moisture resistance performances publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009172 – ident: CR12 – volume: 12 year: 2021 ident: CR41 article-title: Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology publication-title: Nat. Commun. doi: 10.1038/s41467-021-21152-0 – volume: 33 start-page: 2008276 year: 2021 ident: CR19 article-title: Triboelectric nanogenerator‐based sensor systems for chemical or biological detection publication-title: Adv. Mater. doi: 10.1002/adma.202008276 – volume: 32 start-page: 202003082 year: 2020 ident: CR43 article-title: A Promoted charge separation/transfer system from Cu single atoms and C N layers for efficient photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202003082 – volume: 100 year: 2022 ident: CR24 article-title: Triboelectric nanogenerator enhanced radical generation in a photoelectric catalysis system via pulsed direct-current publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107515 – volume: 7 start-page: 5264 year: 2019 end-page: 5273 ident: CR53 article-title: Direct CO capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06203 – volume: 5 start-page: 1818 year: 2019 end-page: 1833 ident: CR61 article-title: Improving selectivity and activity of CO reduction photocatalysts with oxygen publication-title: Chem doi: 10.1016/j.chempr.2019.04.006 – volume: 58 start-page: 3774 year: 2019 end-page: 3778 ident: CR11 article-title: Structure sensitivity in the electrocatalytic reduction of CO with gold catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811422 – volume: 141 start-page: 5267 year: 2019 end-page: 5274 ident: CR62 article-title: Photocatalytic CO conversion of M WO directly from the air with high selectivity:insight into full spectrum-induced reaction mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12928 – volume: 11 year: 2020 ident: CR29 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. commun. doi: 10.1038/s41467-019-14278-9 – volume: 61 start-page: e202213423 year: 2022 ident: CR3 article-title: Fast screening for copper‐based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO to C products on magnesium‐modified copper publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213423 – volume: 32 start-page: 2107143 year: 2022 ident: CR33 article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107143 – volume: 13 start-page: 194 year: 2021 ident: CR22 article-title: High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator publication-title: Nanomicro Lett. – volume: 15 start-page: 13200 year: 2021 end-page: 13208 ident: CR31 article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting publication-title: ACS nano doi: 10.1021/acsnano.1c02790 – volume: 13 year: 2022 ident: CR63 article-title: Selective photocatalytic CO reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO publication-title: Nat. Commun. doi: 10.1038/s41467-022-29102-0 – volume: 309 start-page: 123030 year: 2023 ident: CR55 article-title: Significantly enhancing CO adsorption on Amine-Grafted SBA-15 by boron doping and acid treatment for direct air capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.123030 – volume: 103 year: 2022 ident: CR35 article-title: Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107748 – volume: 11 year: 2020 ident: CR1 article-title: Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/s41467-019-14237-4 – volume: 7 start-page: 2001545 year: 2020 ident: CR49 article-title: Isolated FeN sites for efficient electrocatalytic CO reduction publication-title: Adv. Sci. doi: 10.1002/advs.202001545 – volume: 9 start-page: 2201633 year: 2022 ident: CR13 article-title: Triboelectric plasma CO reduction reaching a mechanical energy conversion efficiency of 2.3% publication-title: Adv. Sci. doi: 10.1002/advs.202201633 – volume: 139 start-page: 6538 year: 2017 end-page: 6541 ident: CR64 article-title: Visible-lightdriven photocatalytic CO reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01956 – volume: 141 start-page: 7137 year: 2019 end-page: 7146 ident: CR57 article-title: Ru-based catechothiolate complexes bearing an unsaturated NHC ligand: effective cross-metathesis catalysts for synthesis of (Z)-α, β-unsaturated esters, carboxylic acids, and primary, secondary, and Weinreb amides publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02318 – volume: 192 start-page: 222 year: 1995 end-page: 229 ident: CR67 article-title: Ab initio molecular dynamics for liquid metals publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 77 start-page: 105088 year: 2020 ident: CR34 article-title: Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105088 – volume: 11 start-page: 46756 year: 2019 end-page: 46766 ident: CR59 article-title: Rational Ionothermal copolymerization of TCNQ with PCN semiconductor for enhanced Photocatalytic full water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15537 – volume: 1 start-page: 592 year: 2018 end-page: 600 ident: CR47 article-title: Efficient electrocatalytic CO reduction on a three-phase interface publication-title: Nat. Catal. doi: 10.1038/s41929-018-0108-3 – volume: 14 year: 2023 ident: CR51 article-title: Post-synthetic modification of covalent organic frameworks for CO electroreduction publication-title: Nat. Commun. doi: 10.1038/s41467-023-39544-9 – volume: 88 year: 2021 ident: CR45 article-title: Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106300 – volume: 3 start-page: 652 year: 2017 end-page: 664 ident: CR52 article-title: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO reduction publication-title: Chem doi: 10.1016/j.chempr.2017.08.002 – volume: 142 start-page: 12760 year: 2020 end-page: 12766 ident: CR2 article-title: Ethylene selectivity in electrocatalytic CO reduction on Cu nanomaterials: a crystal phase-dependent study publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04981 – volume: 114 start-page: 473 year: 2017 end-page: 481 ident: CR54 article-title: N-doped porous carbons with exceptionally high CO selectivity for CO capture publication-title: Carbon doi: 10.1016/j.carbon.2016.12.056 – volume: 10 start-page: 1146 year: 2019 end-page: 1151 ident: CR9 article-title: Highly efficient electrocatalytic reduction of CO to CO by a molecular chromium complex publication-title: ACS Catal. doi: 10.1021/acscatal.9b04687 – ident: CR14 – volume: 50 start-page: 12897 year: 2021 end-page: 12914 ident: CR7 article-title: Electrocatalytic reduction of CO and CO to multi-carbon compounds over Cu-based catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00535A – volume: 32 start-page: 2001307 year: 2020 ident: CR26 article-title: Contributions of different functional groups to contact electrification of polymers publication-title: Adv. Mater. doi: 10.1002/adma.202001307 – ident: CR30 – volume: 59 start-page: 3073 year: 2020 end-page: 3077 ident: CR48 article-title: Hard-sphere random close-packed Au Cd (TBBT) nanoclusters with a faradaic efficiency of up to 96% for electrocatalytic CO reduction to CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912845 – volume: 4 start-page: 845 year: 2021 end-page: 887 ident: CR15 article-title: Leveraging triboelectric nanogenerators for bioengineering publication-title: Matter doi: 10.1016/j.matt.2021.01.006 – volume: 578 start-page: 392 year: 2020 end-page: 396 ident: CR27 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 12 year: 2021 ident: CR16 article-title: Selection rules of triboelectric materials for direct-current triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/s41467-021-25046-z – volume: 129 start-page: 4050 year: 2017 end-page: 4054 ident: CR58 article-title: A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201700286 – volume: 18 year: 2022 ident: CR40 article-title: Control of local electronic structure of Pd single atom catalyst by adsorbate induction publication-title: Small doi: 10.1002/smll.202103852 – volume: 6 start-page: e12306 year: 2023 ident: CR36 article-title: Constructing crystalline g‐C N /g‐C N S isotype heterostructure for efficient photocatalytic and piezocatalytic performances publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12306 – volume: 83 start-page: 105743 year: 2021 ident: CR38 article-title: Energy harvesting from g-C3N4 piezoelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105743 – volume: 16 start-page: 18284 year: 2022 end-page: 18297 ident: CR39 article-title: Laser-shock-driven in situ evolution of atomic defect and piezoelectricity in graphitic carbon nitride for the ionization in mass spectrometry publication-title: ACS Nano doi: 10.1021/acsnano.2c05993 – volume: 11 start-page: 2101170 year: 2021 ident: CR56 article-title: Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101170 – volume: 144 start-page: 5258 year: 2022 end-page: 5262 ident: CR8 article-title: A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO to CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00725 – volume: 13 year: 2022 ident: CR21 article-title: Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders publication-title: Nat. Commun. doi: 10.1038/s41467-021-27789-1 – ident: CR69 – volume: 33 start-page: 2101262 year: 2021 ident: CR17 article-title: Self‐powered respiration monitoring enabled by a triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.202101262 – volume: 10 year: 2019 ident: CR42 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – volume: 461 start-page: 141947 year: 2023 ident: CR37 article-title: Construction of a BaTiO /tubular g-C N dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141947 – volume: 62 start-page: 202300604 year: 2023 ident: CR20 article-title: Contact-electro-catalysis for direct synthesis of H O under ambient conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202300604 – volume: 104 year: 2022 ident: CR32 article-title: Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107916 – volume: 33 start-page: 2004178 year: 2021 ident: CR18 article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports publication-title: Adv. mater. doi: 10.1002/adma.202004178 – volume: 132 start-page: 10706 year: 2020 end-page: 10712 ident: CR25 article-title: Constant electricity generation in nanostructured silicon by evaporation‐driven water flow publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202002762 – volume: 32 start-page: 1905696 year: 2020 ident: CR28 article-title: Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface publication-title: Adv. Mater. doi: 10.1002/adma.201905696 – volume: 12 start-page: 923 year: 2021 end-page: 934 ident: CR46 article-title: Au species-induced interfacial activation enhances metal–support interactions for boosting electrocatalytic CO reduction to CO publication-title: ACS Catal. doi: 10.1021/acscatal.1c05503 – volume: 35 start-page: e2205262 year: 2023 ident: CR50 article-title: Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO reduction to CO at ultralow overpotential publication-title: Adv. Mater. doi: 10.1002/adma.202205262 – volume: 50 start-page: 17953 year: 1994 ident: CR66 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 134 start-page: e202113918 year: 2022 ident: CR6 article-title: Atomic bridging structure of nickel–nitrogen–carbon for highly efficient electrocatalytic reduction of CO publication-title: Angew. Chem. doi: 10.1002/ange.202113918 – volume: 48 start-page: 13115 year: 1993 ident: CR68 article-title: Ab initio molecular dynamics for open-shell transition metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 77 start-page: 3865 year: 1996 ident: CR65 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 35 start-page: 2205262 year: 2023 ident: CR5 article-title: Partially nitrided Ni nanoclusters achieve energy‐efficient electrocatalytic CO reduction to CO at ultralow overpotential publication-title: Adv. Mater. doi: 10.1002/adma.202205262 – volume: 139 start-page: 2160 year: 2017 end-page: 2163 ident: CR10 article-title: Shape-dependent electrocatalytic reduction of CO to CO on triangular silver nanoplates publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12103 – volume: 4 start-page: 845 year: 2021 ident: 50118_CR15 publication-title: Matter doi: 10.1016/j.matt.2021.01.006 – volume: 12 start-page: 923 year: 2021 ident: 50118_CR46 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05503 – volume: 62 start-page: 202300604 year: 2023 ident: 50118_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202300604 – volume: 11 year: 2020 ident: 50118_CR29 publication-title: Nat. commun. doi: 10.1038/s41467-019-14278-9 – volume: 114 start-page: 473 year: 2017 ident: 50118_CR54 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.056 – volume: 309 start-page: 123030 year: 2023 ident: 50118_CR55 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.123030 – volume: 59 start-page: 3073 year: 2020 ident: 50118_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912845 – ident: 50118_CR12 doi: 10.1002/adma.202305257 – volume: 88 year: 2021 ident: 50118_CR45 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106300 – volume: 77 start-page: 105088 year: 2020 ident: 50118_CR34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105088 – volume: 13 start-page: 194 year: 2021 ident: 50118_CR22 publication-title: Nanomicro Lett. – volume: 9 start-page: 2201633 year: 2022 ident: 50118_CR13 publication-title: Adv. Sci. doi: 10.1002/advs.202201633 – volume: 13 year: 2022 ident: 50118_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29102-0 – volume: 103 year: 2022 ident: 50118_CR35 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107748 – volume: 139 start-page: 2160 year: 2017 ident: 50118_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12103 – volume: 104 year: 2022 ident: 50118_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107916 – volume: 141 start-page: 7137 year: 2019 ident: 50118_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02318 – volume: 129 start-page: 4050 year: 2017 ident: 50118_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201700286 – volume: 33 start-page: 2101262 year: 2021 ident: 50118_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.202101262 – volume: 6 start-page: e12306 year: 2023 ident: 50118_CR36 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12306 – volume: 33 start-page: 2008276 year: 2021 ident: 50118_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.202008276 – volume: 12 year: 2021 ident: 50118_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21152-0 – volume: 139 start-page: 6538 year: 2017 ident: 50118_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01956 – volume: 33 start-page: 2004178 year: 2021 ident: 50118_CR18 publication-title: Adv. mater. doi: 10.1002/adma.202004178 – volume: 5 start-page: 1818 year: 2019 ident: 50118_CR61 publication-title: Chem doi: 10.1016/j.chempr.2019.04.006 – volume: 141 start-page: 5267 year: 2019 ident: 50118_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12928 – volume: 77 start-page: 3865 year: 1996 ident: 50118_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 144 start-page: 5258 year: 2022 ident: 50118_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00725 – ident: 50118_CR30 doi: 10.1002/aenm.202101958 – volume: 142 start-page: 12760 year: 2020 ident: 50118_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04981 – volume: 50 start-page: 17953 year: 1994 ident: 50118_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 11 start-page: 46756 year: 2019 ident: 50118_CR59 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15537 – volume: 132 start-page: 10706 year: 2020 ident: 50118_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202002762 – volume: 32 start-page: 2001307 year: 2020 ident: 50118_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.202001307 – volume: 16 start-page: 18284 year: 2022 ident: 50118_CR39 publication-title: ACS Nano doi: 10.1021/acsnano.2c05993 – volume: 10 start-page: 1146 year: 2019 ident: 50118_CR9 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04687 – volume: 99 year: 2022 ident: 50118_CR23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107346 – volume: 35 start-page: e2205262 year: 2023 ident: 50118_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.202205262 – volume: 7 start-page: 5264 year: 2019 ident: 50118_CR53 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06203 – volume: 14 year: 2023 ident: 50118_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39544-9 – volume: 578 start-page: 392 year: 2020 ident: 50118_CR27 publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 34 start-page: 2206706 year: 2022 ident: 50118_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.202206706 – volume: 13 year: 2022 ident: 50118_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27789-1 – volume: 10 year: 2019 ident: 50118_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – volume: 61 start-page: e202213423 year: 2022 ident: 50118_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213423 – volume: 11 year: 2020 ident: 50118_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14237-4 – volume: 12 year: 2021 ident: 50118_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25046-z – volume: 100 year: 2022 ident: 50118_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107515 – volume: 18 year: 2022 ident: 50118_CR40 publication-title: Small doi: 10.1002/smll.202103852 – volume: 134 start-page: e202113918 year: 2022 ident: 50118_CR6 publication-title: Angew. Chem. doi: 10.1002/ange.202113918 – volume: 83 start-page: 105743 year: 2021 ident: 50118_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105743 – volume: 32 start-page: 1905696 year: 2020 ident: 50118_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201905696 – volume: 58 start-page: 3774 year: 2019 ident: 50118_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811422 – volume: 32 start-page: 2107143 year: 2022 ident: 50118_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107143 – volume: 3 start-page: 652 year: 2017 ident: 50118_CR52 publication-title: Chem doi: 10.1016/j.chempr.2017.08.002 – volume: 31 start-page: 2009172 year: 2021 ident: 50118_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009172 – volume: 21 start-page: 10260 year: 2021 ident: 50118_CR60 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03249 – volume: 192 start-page: 222 year: 1995 ident: 50118_CR67 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 7 start-page: 2001545 year: 2020 ident: 50118_CR49 publication-title: Adv. Sci. doi: 10.1002/advs.202001545 – volume: 11 start-page: 2101170 year: 2021 ident: 50118_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101170 – ident: 50118_CR14 doi: 10.1002/anie.202306964 – volume: 1 start-page: 592 year: 2018 ident: 50118_CR47 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0108-3 – volume: 50 start-page: 12897 year: 2021 ident: 50118_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00535A – volume: 461 start-page: 141947 year: 2023 ident: 50118_CR37 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141947 – ident: 50118_CR69 – volume: 35 start-page: 2205262 year: 2023 ident: 50118_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.202205262 – volume: 32 start-page: 202003082 year: 2020 ident: 50118_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.202003082 – volume: 48 start-page: 13115 year: 1993 ident: 50118_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 15 start-page: 13200 year: 2021 ident: 50118_CR31 publication-title: ACS nano doi: 10.1021/acsnano.1c02790 |
SSID | ssj0000391844 |
Score | 2.5798643 |
Snippet | Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO
2
into value-added products because of... Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of... Abstract Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5913 |
SubjectTerms | 147/135 147/143 639/301/299/886 639/4077/4072/4062 639/638/161/886 Air pollution Barriers Carbon dioxide Carbon dioxide emissions Carbon nitride Carbon sequestration Catalysis Catalysts Catalytic converters Cellulose Cellulose fibers Chemical reduction Electron transfer Electrons Energy consumption Humanities and Social Sciences Low concentrations multidisciplinary Nanogenerators Polyvinylidene fluorides Renewable energy Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRS2trSrbas4M0G87XJ5NhKRQT1ouAt5Gup0K7l-Tz433eS3fd0hdaL180sm0wm87GT-Q0hu0wq3dsUKfegqQIVqLUi0mS91YGZPtYq15NTfXShji-7ywetvsqdsBEeeGTcvg6h58lE5b1UKlhAlz72OVgUvShMKtoXbd6DYKrqYGkxdFFTlQyTsH-jqk5Ak0S7Um1J-cwSVcD-mZf5-I7ko0RptT-Hb8jryXFsv40Tfkte5OEdeTm2krzbJFBgpnxc0qmvDa3_Ze6QuD04E-2iILSWPWhLPUnrf4dSB9n6q8V7cnH44_zgiE5dEWjsOCypAc1S4gEjpaBVsn0vOyYy4PqCSB49DO95llaClyzILhpmUrTCZB-U8EJ-IBvD9ZA_kjYzZKpNAdBLUr3JAJ73nQ5gYoCUU0P4ikMuTpDhpXPFL1dT1xLcyFWHXHWVq443ZG_9zp8RMOO_1N8L49eUBey6PkARcJMIuKdEoCHbq21z0wm8cai70NAa4F1DdtbDeHZKQsQP-fp2ouk0MNMQmG33bELzkeHqZ0XhRkdVYfAmG_J1JRn3X__3ij89x4q3yCtRJLkAfMptsrFc3ObP6Bwtw5d6Dv4C7aIKPQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwprR-4WssKvmlosskmkyepxVIE9cXCvYV8rRbsXr27PvS_byaXu7IF-7rJsrMzk8lkJvMbQj4wIdVgYqDcgaISpKfGdIFG44zyTA-hVLl-_6HOzuW3WT-rAbdlvVa5sYnFUMd5wBj5UdbFbDg18P7z1T-KXaMwu1pbaDwmTxC6DK906ZnexlgQ_RykrLUyTMDRUhbLkDcm2mPNJeWT_ajA9k98zfs3Je-lS8sudLpHdqv72B6v5b1PHqXxOXm6bih584IAgk25sKK1uw0t0ZmbPLk9-dm1C8RpRUm0WFXSukuP1ZCtu1i8JOenX3-dnNHaG4GGnsOKalAsRu7zeckrGc0wiJ51CfL_-S667Gc4x5MwApxgXvRBMx2D6XRyXnauE6_Izjgf02vSJuacMNFD9pXkoBOA40OvPOjgIabYEL7hkA0VOBz7V_y1JYEtwK65ajNXbeGq5Q35uH3nag2b8eDsL8j47UyEvC4P5ovftq4gq7wfeNRBZmql9Aby2S4MyZtsg0KnM5kHG7HZug6X9k5rGvJ-O5xXEKZF3Jjm13VOr4DphsBE3BOCpiPjxZ-CxZ3dVZmPcKIhnzaacff1___xm4eJfUuedaijCOApDsjOanGd3mXnZ-UPi4bfAo9PAO4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-lIniR-oVra1mhtxrM1yaToz4sRdBeWugt5Gu1oPvK6-uh_72TvN0nW7TgdTNhJ5NJZibJ_IaQIyaV7m2KlHvQVIEK1FoRabLe6sBMH2uW69dv-vRCfbnsLneImHJh6qP9CmlZt-npddiHG1WXNFoU2pVkSYoRz6MC3V60eqEX23OVgngOSo35MUzCX7rObFCF6p_5l_dfR967Iq2W52SPPB1dxvbjhslnZCcPz8njTRHJuxcECsCUj2s6VrSh9UTmDonbxZloVwWbtUi_LZkkrf8VSgZk669WL8nFyefzxSkd6yHQ2HFYUwOapcQDxkhBq2T7XnZMZMDxBZE8-hbe8yytBC9ZkF00zKRohck-KOGFfEV2h-WQX5M2M--lTQHQP1K9yQCe950OYGKAlFND-CQhF0ew8FKz4qerl9YS3EaqDqXqqlQdb8jxts_1BirjQepPRfBbygJzXT8sV9_dOO1Oh9DzZKJCbpUKFjCei30OFvedKAyyeTBNmxvX3o3DXQtNrAHeNeTdthlXTbkK8UNe3o40nQZmGgKz6Z4xNG8Zrn5U_G10URWGbbIh7yfN-PP3f4_4zf-R75MnouhsAfGUB2R3vbrNb9EBWofDqvG_AehY_ok priority: 102 providerName: Springer Nature |
Title | Contact-electro-catalytic CO2 reduction from ambient air |
URI | https://link.springer.com/article/10.1038/s41467-024-50118-1 https://www.proquest.com/docview/3079907815 https://www.proquest.com/docview/3079956807 https://pubmed.ncbi.nlm.nih.gov/PMC11246423 https://doaj.org/article/6bbf1d7c4aa344b98149cfeb9048c27d |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQqGXkr6o23RxobdWrW3JehxC2CzZhoWkpe3C3oReTgOpN3E20P33Gcn2Foe0h15ssEZIGmk0M5LnG4TeZYSySjqLcy0YpoIaLGVhsZNaMpPxysYo15NTdjyns0W52EJ9uqOOgdf3unYhn9S8ufj4-2p9AAK_34aMi0_XNIo7aBtchkBKDN7QDmgmHgT1pDP3485MJDg0tIudub_qQD9FGP-B7Xn3z8k716dRK0130ePOnEzH7fw_QVu-fooetgkm18-QCOBT2q5wl-0Gx9OaNRCnky9F2gTc1jAzaYgySfUvE6IjU33ePEfz6dGPyTHuciVgW-ZihblgmXO5Af_JMOpkVZEyK7yA8ZnCabA7tM49kURokhlSWp5xZ2XBvTa00AV5gbbrZe1fotRnWhPpjADbiVbcC6HzqmRGcGuE8y5Bec8hZTsg8ZDP4kLFC20iVMtVBVxVkasqT9D7TZ3LFkbjn9SHgfEbygCBHT8smzPVSZRixlS545ZCbyk1UoCvZytvJOxJtuDQzb1-2lS_rBTsaKB-ucjLBL3dFINEhWsSXfvlTUdTMpHxBInBdA86NCypz39GbG4wXym4dCRBH_qV8af1v4_41f-39Bo9KsL6DWCfZA9tr5ob_wYMpZUZoQd8weEppp9HaGc8nn2fwfvw6PTrN_g6YZNRPIIYRSm5BWnbFo8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMECgQJTmDVr8T2ASEoVFv64NJKezN-BSpBtuxuhfZP8RsZO8lWqURvvcaOMhnP0_Z8g9ArwkXd6OAxtarGQgmHtWYeB2117YhsfK5yPTyqJyfiy7SabqC_Qy1MulY52MRsqMPMpz3ybZBFMJxS0er92W-cukal09WhhUYnFvtx9QdStsW7vU-wvq8Z2_18vDPBfVcB7CuqlliqmoRAHWQarhZBNw2vCItKUOFYsOChraWRa64sJ45XXhIZvGYyWieYTUAHYPJvgOMlSaPkVK73dBLauhKir80hXG0vRLZE4AhxlWo8MR35v9wmYBTbXr6Zeel4Nnu93bvoTh-ulh86-bqHNmJ7H93sGliuHiCVwK2sX-K-mw7Ou0ErmFzufGXlPOHCppUvUxVLaX-5VH1Z2tP5Q3RyLVx7hDbbWRsfozISa7kOTkFsJhoZlbK0qWqnpHcqxFAgOnDI-B6oPPXL-GnygTlXpuOqAa6azFVDC_Rm_c5ZB9Nx5eyPifHrmQliOz-Yzb-bXmNN7VxDg_QCqBXCaQW5pG-i02DzPJNA5tawbKbX-4W5kNICvVwPg8amYxjbxtl5P6eqFZEFUqPlHhE0HmlPf2TsbwiPBaSMvEBvB8m4-Pr___jJ1cS-QLcmx4cH5mDvaP8pus2SvCbwUL6FNpfz8_gMAq-le56lvUTfrlu9_gGoYD0T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFOEFkglOFFr40di-4AQtKz6gMKhlfZm_EqpRLNldyu0f41fx9hJtkoleus1dpTJeF72eL5B6E3BeFUr7zAxssJccouVog57ZVRlC1G7VOX69ajaO-EHk3Kyhv72tTDxWmVvE5Oh9lMXz8hHIItgOIUk5ajurkV83x1_uPiNYwepmGnt22m0InIYln9g-zZ_v78La_2W0vHn45093HUYwK4kcoGFrArviYVdh624V3XNyoIGyQm31Bvw1saQwBSThhWWlU4UwjtFRTCWUxNBD8D83xGsJFHHxESsznci8rrkvKvTKZgczXmySuAUcRnrPTEZ-MLUMmAQ516_pXktVZs84PghetCFrvnHVtYeobXQPEZ322aWyydIRqAr4xa466yD08nQEibnO99oPosYsVEK8ljRkptzGysxc3M2e4pOboVrz9B6M23Cc5SHwhimvJUQp_FaBCkNqcvKSuGs9MFniPQc0q4DLY-9M37plDxnUrdc1cBVnbiqSYberd65aCE7bpz9KTJ-NTPCbacH09mp7rRXV9bWxAvHgVrOrZKwr3R1sArsn6MCyNzsl013NmCuryQ2Q1urYdDemJIxTZhednPKShYiQ3Kw3AOChiPN2c-EAw6hMoftI8vQdi8ZV1___x-_uJnY1-geKJb-sn90uIHu0yiuEUeUbaL1xewyvIQYbGFfJWHP0Y_b1q5_gYdBSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contact-electro-catalytic+CO2+reduction+from+ambient+air&rft.jtitle=Nature+communications&rft.au=Wang%2C+Nannan&rft.au=Jiang%2C+Wenbin&rft.au=Yang%2C+Jing&rft.au=Feng%2C+Haisong&rft.date=2024-07-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-50118-1&rft.externalDocID=PMC11246423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |