Contact-electro-catalytic CO2 reduction from ambient air

Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5913 - 12
Main Authors Wang, Nannan, Jiang, Wenbin, Yang, Jing, Feng, Haisong, Zheng, Youbin, Wang, Sheng, Li, Bofan, Heng, Jerry Zhi Xiong, Ong, Wai Chung, TAN, Hui Ru, Zhang, Yong-Wei, Wang, Daoai, Ye, Enyi, Li, Zibiao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO 2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO 2 on quaternized CNF allows efficient CO 2 capture at low concentrations, thus enabling the CO 2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO 2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g −1 h −1 . This technique provides a solution for reducing airborne CO 2 emissions while advancing chemical sustainability strategy. Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving CO Faradaic efficiency of 96.24%.
AbstractList Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO 2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO 2 on quaternized CNF allows efficient CO 2 capture at low concentrations, thus enabling the CO 2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO 2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g −1 h −1 . This technique provides a solution for reducing airborne CO 2 emissions while advancing chemical sustainability strategy. Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving CO Faradaic efficiency of 96.24%.
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO 2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO 2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO 2 on quaternized CNF allows efficient CO 2 capture at low concentrations, thus enabling the CO 2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO 2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g −1 h −1 . This technique provides a solution for reducing airborne CO 2 emissions while advancing chemical sustainability strategy.
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.
Abstract Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g−1 h−1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g−1 h−1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving CO Faradaic efficiency of 96.24%.
ArticleNumber 5913
Author Wang, Daoai
Zhang, Yong-Wei
Wang, Nannan
Ye, Enyi
Wang, Sheng
Feng, Haisong
Li, Zibiao
Zheng, Youbin
Jiang, Wenbin
Yang, Jing
Li, Bofan
Ong, Wai Chung
Heng, Jerry Zhi Xiong
TAN, Hui Ru
Author_xml – sequence: 1
  givenname: Nannan
  surname: Wang
  fullname: Wang, Nannan
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR)
– sequence: 2
  givenname: Wenbin
  orcidid: 0000-0001-8288-9808
  surname: Jiang
  fullname: Jiang, Wenbin
  organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR)
– sequence: 3
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR)
– sequence: 4
  givenname: Haisong
  surname: Feng
  fullname: Feng, Haisong
  organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR)
– sequence: 5
  givenname: Youbin
  orcidid: 0000-0003-3905-8552
  surname: Zheng
  fullname: Zheng, Youbin
  organization: Department of Electrical Engineering & Electronics, University of Liverpool, Brownlow Hill
– sequence: 6
  givenname: Sheng
  orcidid: 0000-0001-7622-4842
  surname: Wang
  fullname: Wang, Sheng
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR)
– sequence: 7
  givenname: Bofan
  orcidid: 0000-0002-8659-5134
  surname: Li
  fullname: Li, Bofan
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR)
– sequence: 8
  givenname: Jerry Zhi Xiong
  surname: Heng
  fullname: Heng, Jerry Zhi Xiong
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR)
– sequence: 9
  givenname: Wai Chung
  surname: Ong
  fullname: Ong, Wai Chung
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR)
– sequence: 10
  givenname: Hui Ru
  orcidid: 0000-0003-4839-4515
  surname: TAN
  fullname: TAN, Hui Ru
  organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR)
– sequence: 11
  givenname: Yong-Wei
  orcidid: 0000-0001-7255-1678
  surname: Zhang
  fullname: Zhang, Yong-Wei
  organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR)
– sequence: 12
  givenname: Daoai
  orcidid: 0000-0002-3019-282X
  surname: Wang
  fullname: Wang, Daoai
  email: wangda@licp.cas.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing
– sequence: 13
  givenname: Enyi
  orcidid: 0000-0002-2398-0676
  surname: Ye
  fullname: Ye, Enyi
  email: yeey@imre.a-star.efu.sg
  organization: Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR)
– sequence: 14
  givenname: Zibiao
  orcidid: 0000-0002-0591-5328
  surname: Li
  fullname: Li, Zibiao
  email: lizb@imre.a-star.edu.sg
  organization: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (ASTAR), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR), Department of Materials Science and Engineering, National University of Singapore
BookMark eNp9kU1PHSEYhSfGJlrrH3A1STfdTMsLzACrprmprYmJm3ZNXj7mlpuZwQLTxH9fdIytLmQDgXMeDpy3zfESF980F0A-AmHyU-bAB9ERyrueAMgOjppTSjh0ICg7_m990pznfCB1MAWS89NG7uJS0JbOT96WFDuLBae7Emy7u6Ft8m61JcSlHVOcW5xN8EtpMaR3zZsRp-zPH-ez5ufl1x-77931zber3ZfrzvYgSyfkQJwDQ6UyA3dqHFlPqJc1sqEOB84QwTPFJDJiWG8FEc4qKjwaTpGys-Zq47qIB32bwozpTkcM-mEjpr3GVONOXg_GjOCE5YiMc6MkcGVHbxTh0lLhKuvzxrpdzeydrU9JOD2DPj9Zwi-9j380AOUDp6wSPjwSUvy9-lz0HLL104SLj2vWjAil-kESUaXvX0gPcU1L_atNRYSEvqroprIp5pz8-JQGiL5vV2_t6tqufmhXQzXJFyYbCt7XVFOH6XUr26y53rPsffqX6hXXX0SBuhQ
CitedBy_id crossref_primary_10_3390_nano15050386
crossref_primary_10_1002_anie_202500222
crossref_primary_10_1016_j_nanoen_2025_110702
crossref_primary_10_1002_ange_202500222
crossref_primary_10_1016_j_susmat_2024_e01096
crossref_primary_10_1002_cssc_202402031
crossref_primary_10_1002_adfm_202413156
crossref_primary_10_1002_aenm_202500177
crossref_primary_10_1021_acsami_4c12952
crossref_primary_10_1021_acsnano_5c01268
crossref_primary_10_1002_smll_202411815
crossref_primary_10_1016_j_cej_2025_161443
crossref_primary_10_1016_j_cej_2025_161042
Cites_doi 10.1016/j.nanoen.2022.107346
10.1021/acs.nanolett.1c03249
10.1002/adma.202206706
10.1002/adfm.202009172
10.1038/s41467-021-21152-0
10.1002/adma.202008276
10.1002/adma.202003082
10.1016/j.nanoen.2022.107515
10.1021/acssuschemeng.8b06203
10.1016/j.chempr.2019.04.006
10.1002/anie.201811422
10.1021/jacs.8b12928
10.1038/s41467-019-14278-9
10.1002/anie.202213423
10.1002/adfm.202107143
10.1021/acsnano.1c02790
10.1038/s41467-022-29102-0
10.1016/j.seppur.2022.123030
10.1016/j.nanoen.2022.107748
10.1038/s41467-019-14237-4
10.1002/advs.202001545
10.1002/advs.202201633
10.1021/jacs.7b01956
10.1021/jacs.9b02318
10.1016/0022-3093(95)00355-X
10.1016/j.nanoen.2020.105088
10.1021/acsami.9b15537
10.1038/s41929-018-0108-3
10.1038/s41467-023-39544-9
10.1016/j.nanoen.2021.106300
10.1016/j.chempr.2017.08.002
10.1021/jacs.0c04981
10.1016/j.carbon.2016.12.056
10.1021/acscatal.9b04687
10.1039/D1CS00535A
10.1002/adma.202001307
10.1002/anie.201912845
10.1016/j.matt.2021.01.006
10.1038/s41586-020-1985-6
10.1038/s41467-021-25046-z
10.1002/ange.201700286
10.1002/smll.202103852
10.1002/eem2.12306
10.1016/j.nanoen.2021.105743
10.1021/acsnano.2c05993
10.1002/aenm.202101170
10.1021/jacs.2c00725
10.1038/s41467-021-27789-1
10.1002/adma.202101262
10.1038/s41467-019-12510-0
10.1016/j.cej.2023.141947
10.1002/anie.202300604
10.1016/j.nanoen.2022.107916
10.1002/adma.202004178
10.1002/ange.202002762
10.1002/adma.201905696
10.1021/acscatal.1c05503
10.1002/adma.202205262
10.1103/PhysRevB.50.17953
10.1002/ange.202113918
10.1103/PhysRevB.48.13115
10.1103/PhysRevLett.77.3865
10.1021/jacs.6b12103
10.1002/adma.202305257
10.1002/aenm.202101958
10.1002/anie.202306964
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50118-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_6bbf1d7c4aa344b98149cfeb9048c27d
PMC11246423
10_1038_s41467_024_50118_1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-7860dd1b289b64d9ff3502e8414b2da643aa1e3938a30b35c707dc927eab42a23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:11:50 EDT 2025
Thu Aug 21 18:32:51 EDT 2025
Mon Jul 21 10:24:33 EDT 2025
Wed Aug 13 03:27:30 EDT 2025
Tue Jul 01 02:37:21 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Fri Feb 21 02:40:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-7860dd1b289b64d9ff3502e8414b2da643aa1e3938a30b35c707dc927eab42a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8288-9808
0000-0003-3905-8552
0000-0001-7255-1678
0000-0002-0591-5328
0000-0002-2398-0676
0000-0001-7622-4842
0000-0003-4839-4515
0000-0002-3019-282X
0000-0002-8659-5134
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50118-1
PQID 3079907815
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6bbf1d7c4aa344b98149cfeb9048c27d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11246423
proquest_miscellaneous_3079956807
proquest_journals_3079907815
crossref_primary_10_1038_s41467_024_50118_1
crossref_citationtrail_10_1038_s41467_024_50118_1
springer_journals_10_1038_s41467_024_50118_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-13
PublicationDateYYYYMMDD 2024-07-13
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhu (CR1) 2020; 11
Yang (CR42) 2019; 10
Xiao (CR43) 2020; 32
Dong (CR23) 2022; 99
Perdew, Burke, Ernzerhof (CR65) 1996; 77
Zhao (CR5) 2023; 35
Sun (CR46) 2021; 12
Dong (CR24) 2022; 100
Khandelwal, Maria Joseph Raj, Kim (CR56) 2021; 11
Wang (CR35) 2022; 103
Hong, Tsukakoshi, Kotani, Ishizuka, Kojima (CR64) 2017; 139
Li (CR49) 2020; 7
Nie (CR28) 2020; 32
Zhang (CR15) 2021; 4
Lin, Xu, Chi Wang, Wang (CR29) 2020; 11
Xu (CR36) 2023; 6
CR30
Wang, Zheng, Feng, Zhou, Wang (CR34) 2020; 77
Ru (CR40) 2022; 18
Ma (CR63) 2022; 13
Kresse (CR67) 1995; 192
Gao (CR8) 2022; 144
Han (CR52) 2017; 3
Zhou, Pan, Deng, Xia, Kim (CR19) 2021; 33
Salauddin (CR33) 2022; 32
Luo, Gao, Wang (CR18) 2021; 33
Liu (CR51) 2023; 14
Wang (CR60) 2021; 21
Xie (CR3) 2022; 61
Zhao (CR50) 2023; 35
Chen (CR2) 2020; 142
Wei (CR31) 2021; 15
Zhuang (CR48) 2020; 59
Su (CR17) 2021; 33
Kresse, Hafner (CR68) 1993; 48
Li (CR13) 2022; 9
Cao (CR6) 2022; 134
Wang (CR44) 2021; 31
Li (CR26) 2020; 32
Wang, Lin, Chen, Lin (CR38) 2021; 83
Hayat, Shaishta, Mane, Khan, Hayat (CR59) 2019; 11
Datye, Guo (CR41) 2021; 12
Mezzavilla, Horch, Stephens, Seger, Chorkendorff (CR11) 2019; 58
Qin (CR25) 2020; 132
Yang, Ou, Fang, Wang (CR58) 2017; 129
Yang (CR4) 2022; 34
CR14
CR12
Kreft (CR61) 2019; 5
Zhao (CR20) 2023; 62
Liu (CR10) 2017; 139
Xu (CR27) 2020; 578
Li (CR47) 2018; 1
Sujan, Pang, Zhu, Jones, Lively (CR53) 2019; 7
Kim (CR39) 2022; 16
Hooe, Dressel, Dickie, Machan (CR9) 2019; 10
Liu, Xu, Del Pozo, Torker, Hoveyda (CR57) 2019; 141
Shen (CR22) 2021; 13
Wang (CR21) 2022; 13
Wu (CR62) 2019; 141
Gong (CR37) 2023; 461
Rana (CR45) 2021; 88
CR69
Ren (CR54) 2017; 114
Blöchl (CR66) 1994; 50
Zhao (CR16) 2021; 12
Ma (CR7) 2021; 50
Wang, Anyanwu, Hu, Yang (CR55) 2023; 309
Wang (CR32) 2022; 104
M-J Kim (50118_CR39) 2022; 16
S Lin (50118_CR29) 2020; 11
J Nie (50118_CR28) 2020; 32
Y Chen (50118_CR2) 2020; 142
X Dong (50118_CR23) 2022; 99
X Li (50118_CR49) 2020; 7
X Cao (50118_CR6) 2022; 134
S Gong (50118_CR37) 2023; 461
J Li (50118_CR47) 2018; 1
Z Zhao (50118_CR16) 2021; 12
S Zhang (50118_CR15) 2021; 4
W Xu (50118_CR27) 2020; 578
S Kreft (50118_CR61) 2019; 5
N Han (50118_CR52) 2017; 3
Z-H Gao (50118_CR8) 2022; 144
Z Wang (50118_CR21) 2022; 13
D Hong (50118_CR64) 2017; 139
S Li (50118_CR13) 2022; 9
X Wei (50118_CR31) 2021; 15
H Yang (50118_CR42) 2019; 10
X-C Sun (50118_CR46) 2021; 12
R Zhao (50118_CR5) 2023; 35
S Shen (50118_CR22) 2021; 13
50118_CR14
P Yang (50118_CR58) 2017; 129
50118_CR12
AR Sujan (50118_CR53) 2019; 7
N Wang (50118_CR34) 2020; 77
Y Wang (50118_CR55) 2023; 309
Y Su (50118_CR17) 2021; 33
G Khandelwal (50118_CR56) 2021; 11
X Xiao (50118_CR43) 2020; 32
HJ Zhu (50118_CR1) 2020; 11
S Zhuang (50118_CR48) 2020; 59
SS Rana (50118_CR45) 2021; 88
S Li (50118_CR26) 2020; 32
SL Hooe (50118_CR9) 2019; 10
X Ren (50118_CR54) 2017; 114
50118_CR69
S Liu (50118_CR10) 2017; 139
J Zhao (50118_CR20) 2023; 62
Y Ma (50118_CR63) 2022; 13
N Wang (50118_CR44) 2021; 31
R Zhao (50118_CR50) 2023; 35
M Liu (50118_CR51) 2023; 14
W Ma (50118_CR7) 2021; 50
M Salauddin (50118_CR33) 2022; 32
R-C Wang (50118_CR38) 2021; 83
Q Zhou (50118_CR19) 2021; 33
X Wu (50118_CR62) 2019; 141
G Kresse (50118_CR68) 1993; 48
YL Yang (50118_CR4) 2022; 34
G Kresse (50118_CR67) 1995; 192
JP Perdew (50118_CR65) 1996; 77
AK Datye (50118_CR41) 2021; 12
J Wang (50118_CR32) 2022; 104
L Wang (50118_CR60) 2021; 21
S Mezzavilla (50118_CR11) 2019; 58
W Ru (50118_CR40) 2022; 18
A Hayat (50118_CR59) 2019; 11
P Blöchl (50118_CR66) 1994; 50
J Luo (50118_CR18) 2021; 33
N Wang (50118_CR35) 2022; 103
Y Qin (50118_CR25) 2020; 132
F Dong (50118_CR24) 2022; 100
50118_CR30
M Xie (50118_CR3) 2022; 61
T Xu (50118_CR36) 2023; 6
Z Liu (50118_CR57) 2019; 141
References_xml – volume: 99
  year: 2022
  ident: CR23
  article-title: Investigations on the contact-electro-catalysis under various ultrasonic conditions and using different electrification particles
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107346
– volume: 21
  start-page: 10260
  year: 2021
  end-page: 10266
  ident: CR60
  article-title: Bismuth vacancy-induced efficient CO photoreduction in BiOCl directly from natural Air: a progressive step toward photosynthesis in nature
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03249
– volume: 34
  start-page: 2206706
  year: 2022
  ident: CR4
  article-title: A honeycomb‐like porous crystalline hetero‐electrocatalyst for efficient electrocatalytic CO reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206706
– volume: 31
  start-page: 2009172
  year: 2021
  ident: CR44
  article-title: New hydrogen bonding enhanced polyvinyl alcohol based self‐charged medical mask with superior charge retention and moisture resistance performances
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009172
– ident: CR12
– volume: 12
  year: 2021
  ident: CR41
  article-title: Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21152-0
– volume: 33
  start-page: 2008276
  year: 2021
  ident: CR19
  article-title: Triboelectric nanogenerator‐based sensor systems for chemical or biological detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008276
– volume: 32
  start-page: 202003082
  year: 2020
  ident: CR43
  article-title: A Promoted charge separation/transfer system from Cu single atoms and C N layers for efficient photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003082
– volume: 100
  year: 2022
  ident: CR24
  article-title: Triboelectric nanogenerator enhanced radical generation in a photoelectric catalysis system via pulsed direct-current
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107515
– volume: 7
  start-page: 5264
  year: 2019
  end-page: 5273
  ident: CR53
  article-title: Direct CO capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06203
– volume: 5
  start-page: 1818
  year: 2019
  end-page: 1833
  ident: CR61
  article-title: Improving selectivity and activity of CO reduction photocatalysts with oxygen
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.006
– volume: 58
  start-page: 3774
  year: 2019
  end-page: 3778
  ident: CR11
  article-title: Structure sensitivity in the electrocatalytic reduction of CO with gold catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811422
– volume: 141
  start-page: 5267
  year: 2019
  end-page: 5274
  ident: CR62
  article-title: Photocatalytic CO conversion of M WO directly from the air with high selectivity:insight into full spectrum-induced reaction mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12928
– volume: 11
  year: 2020
  ident: CR29
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. commun.
  doi: 10.1038/s41467-019-14278-9
– volume: 61
  start-page: e202213423
  year: 2022
  ident: CR3
  article-title: Fast screening for copper‐based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO to C products on magnesium‐modified copper
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213423
– volume: 32
  start-page: 2107143
  year: 2022
  ident: CR33
  article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107143
– volume: 13
  start-page: 194
  year: 2021
  ident: CR22
  article-title: High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator
  publication-title: Nanomicro Lett.
– volume: 15
  start-page: 13200
  year: 2021
  end-page: 13208
  ident: CR31
  article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting
  publication-title: ACS nano
  doi: 10.1021/acsnano.1c02790
– volume: 13
  year: 2022
  ident: CR63
  article-title: Selective photocatalytic CO reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29102-0
– volume: 309
  start-page: 123030
  year: 2023
  ident: CR55
  article-title: Significantly enhancing CO adsorption on Amine-Grafted SBA-15 by boron doping and acid treatment for direct air capture
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.123030
– volume: 103
  year: 2022
  ident: CR35
  article-title: Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107748
– volume: 11
  year: 2020
  ident: CR1
  article-title: Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14237-4
– volume: 7
  start-page: 2001545
  year: 2020
  ident: CR49
  article-title: Isolated FeN sites for efficient electrocatalytic CO reduction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001545
– volume: 9
  start-page: 2201633
  year: 2022
  ident: CR13
  article-title: Triboelectric plasma CO reduction reaching a mechanical energy conversion efficiency of 2.3%
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201633
– volume: 139
  start-page: 6538
  year: 2017
  end-page: 6541
  ident: CR64
  article-title: Visible-lightdriven photocatalytic CO reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01956
– volume: 141
  start-page: 7137
  year: 2019
  end-page: 7146
  ident: CR57
  article-title: Ru-based catechothiolate complexes bearing an unsaturated NHC ligand: effective cross-metathesis catalysts for synthesis of (Z)-α, β-unsaturated esters, carboxylic acids, and primary, secondary, and Weinreb amides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02318
– volume: 192
  start-page: 222
  year: 1995
  end-page: 229
  ident: CR67
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00355-X
– volume: 77
  start-page: 105088
  year: 2020
  ident: CR34
  article-title: Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105088
– volume: 11
  start-page: 46756
  year: 2019
  end-page: 46766
  ident: CR59
  article-title: Rational Ionothermal copolymerization of TCNQ with PCN semiconductor for enhanced Photocatalytic full water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15537
– volume: 1
  start-page: 592
  year: 2018
  end-page: 600
  ident: CR47
  article-title: Efficient electrocatalytic CO reduction on a three-phase interface
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0108-3
– volume: 14
  year: 2023
  ident: CR51
  article-title: Post-synthetic modification of covalent organic frameworks for CO electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39544-9
– volume: 88
  year: 2021
  ident: CR45
  article-title: Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106300
– volume: 3
  start-page: 652
  year: 2017
  end-page: 664
  ident: CR52
  article-title: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.08.002
– volume: 142
  start-page: 12760
  year: 2020
  end-page: 12766
  ident: CR2
  article-title: Ethylene selectivity in electrocatalytic CO reduction on Cu nanomaterials: a crystal phase-dependent study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04981
– volume: 114
  start-page: 473
  year: 2017
  end-page: 481
  ident: CR54
  article-title: N-doped porous carbons with exceptionally high CO selectivity for CO capture
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.056
– volume: 10
  start-page: 1146
  year: 2019
  end-page: 1151
  ident: CR9
  article-title: Highly efficient electrocatalytic reduction of CO to CO by a molecular chromium complex
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04687
– ident: CR14
– volume: 50
  start-page: 12897
  year: 2021
  end-page: 12914
  ident: CR7
  article-title: Electrocatalytic reduction of CO and CO to multi-carbon compounds over Cu-based catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00535A
– volume: 32
  start-page: 2001307
  year: 2020
  ident: CR26
  article-title: Contributions of different functional groups to contact electrification of polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001307
– ident: CR30
– volume: 59
  start-page: 3073
  year: 2020
  end-page: 3077
  ident: CR48
  article-title: Hard-sphere random close-packed Au Cd (TBBT) nanoclusters with a faradaic efficiency of up to 96% for electrocatalytic CO reduction to CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912845
– volume: 4
  start-page: 845
  year: 2021
  end-page: 887
  ident: CR15
  article-title: Leveraging triboelectric nanogenerators for bioengineering
  publication-title: Matter
  doi: 10.1016/j.matt.2021.01.006
– volume: 578
  start-page: 392
  year: 2020
  end-page: 396
  ident: CR27
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 12
  year: 2021
  ident: CR16
  article-title: Selection rules of triboelectric materials for direct-current triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25046-z
– volume: 129
  start-page: 4050
  year: 2017
  end-page: 4054
  ident: CR58
  article-title: A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201700286
– volume: 18
  year: 2022
  ident: CR40
  article-title: Control of local electronic structure of Pd single atom catalyst by adsorbate induction
  publication-title: Small
  doi: 10.1002/smll.202103852
– volume: 6
  start-page: e12306
  year: 2023
  ident: CR36
  article-title: Constructing crystalline g‐C N /g‐C N S isotype heterostructure for efficient photocatalytic and piezocatalytic performances
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12306
– volume: 83
  start-page: 105743
  year: 2021
  ident: CR38
  article-title: Energy harvesting from g-C3N4 piezoelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105743
– volume: 16
  start-page: 18284
  year: 2022
  end-page: 18297
  ident: CR39
  article-title: Laser-shock-driven in situ evolution of atomic defect and piezoelectricity in graphitic carbon nitride for the ionization in mass spectrometry
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05993
– volume: 11
  start-page: 2101170
  year: 2021
  ident: CR56
  article-title: Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101170
– volume: 144
  start-page: 5258
  year: 2022
  end-page: 5262
  ident: CR8
  article-title: A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO to CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00725
– volume: 13
  year: 2022
  ident: CR21
  article-title: Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27789-1
– ident: CR69
– volume: 33
  start-page: 2101262
  year: 2021
  ident: CR17
  article-title: Self‐powered respiration monitoring enabled by a triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101262
– volume: 10
  year: 2019
  ident: CR42
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– volume: 461
  start-page: 141947
  year: 2023
  ident: CR37
  article-title: Construction of a BaTiO /tubular g-C N dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141947
– volume: 62
  start-page: 202300604
  year: 2023
  ident: CR20
  article-title: Contact-electro-catalysis for direct synthesis of H O under ambient conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202300604
– volume: 104
  year: 2022
  ident: CR32
  article-title: Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107916
– volume: 33
  start-page: 2004178
  year: 2021
  ident: CR18
  article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports
  publication-title: Adv. mater.
  doi: 10.1002/adma.202004178
– volume: 132
  start-page: 10706
  year: 2020
  end-page: 10712
  ident: CR25
  article-title: Constant electricity generation in nanostructured silicon by evaporation‐driven water flow
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202002762
– volume: 32
  start-page: 1905696
  year: 2020
  ident: CR28
  article-title: Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905696
– volume: 12
  start-page: 923
  year: 2021
  end-page: 934
  ident: CR46
  article-title: Au species-induced interfacial activation enhances metal–support interactions for boosting electrocatalytic CO reduction to CO
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05503
– volume: 35
  start-page: e2205262
  year: 2023
  ident: CR50
  article-title: Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO reduction to CO at ultralow overpotential
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205262
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR66
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 134
  start-page: e202113918
  year: 2022
  ident: CR6
  article-title: Atomic bridging structure of nickel–nitrogen–carbon for highly efficient electrocatalytic reduction of CO
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113918
– volume: 48
  start-page: 13115
  year: 1993
  ident: CR68
  article-title: Ab initio molecular dynamics for open-shell transition metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR65
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 35
  start-page: 2205262
  year: 2023
  ident: CR5
  article-title: Partially nitrided Ni nanoclusters achieve energy‐efficient electrocatalytic CO reduction to CO at ultralow overpotential
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205262
– volume: 139
  start-page: 2160
  year: 2017
  end-page: 2163
  ident: CR10
  article-title: Shape-dependent electrocatalytic reduction of CO to CO on triangular silver nanoplates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12103
– volume: 4
  start-page: 845
  year: 2021
  ident: 50118_CR15
  publication-title: Matter
  doi: 10.1016/j.matt.2021.01.006
– volume: 12
  start-page: 923
  year: 2021
  ident: 50118_CR46
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05503
– volume: 62
  start-page: 202300604
  year: 2023
  ident: 50118_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202300604
– volume: 11
  year: 2020
  ident: 50118_CR29
  publication-title: Nat. commun.
  doi: 10.1038/s41467-019-14278-9
– volume: 114
  start-page: 473
  year: 2017
  ident: 50118_CR54
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.056
– volume: 309
  start-page: 123030
  year: 2023
  ident: 50118_CR55
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.123030
– volume: 59
  start-page: 3073
  year: 2020
  ident: 50118_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912845
– ident: 50118_CR12
  doi: 10.1002/adma.202305257
– volume: 88
  year: 2021
  ident: 50118_CR45
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106300
– volume: 77
  start-page: 105088
  year: 2020
  ident: 50118_CR34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105088
– volume: 13
  start-page: 194
  year: 2021
  ident: 50118_CR22
  publication-title: Nanomicro Lett.
– volume: 9
  start-page: 2201633
  year: 2022
  ident: 50118_CR13
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201633
– volume: 13
  year: 2022
  ident: 50118_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29102-0
– volume: 103
  year: 2022
  ident: 50118_CR35
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107748
– volume: 139
  start-page: 2160
  year: 2017
  ident: 50118_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12103
– volume: 104
  year: 2022
  ident: 50118_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107916
– volume: 141
  start-page: 7137
  year: 2019
  ident: 50118_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02318
– volume: 129
  start-page: 4050
  year: 2017
  ident: 50118_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201700286
– volume: 33
  start-page: 2101262
  year: 2021
  ident: 50118_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101262
– volume: 6
  start-page: e12306
  year: 2023
  ident: 50118_CR36
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12306
– volume: 33
  start-page: 2008276
  year: 2021
  ident: 50118_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008276
– volume: 12
  year: 2021
  ident: 50118_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21152-0
– volume: 139
  start-page: 6538
  year: 2017
  ident: 50118_CR64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01956
– volume: 33
  start-page: 2004178
  year: 2021
  ident: 50118_CR18
  publication-title: Adv. mater.
  doi: 10.1002/adma.202004178
– volume: 5
  start-page: 1818
  year: 2019
  ident: 50118_CR61
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.006
– volume: 141
  start-page: 5267
  year: 2019
  ident: 50118_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12928
– volume: 77
  start-page: 3865
  year: 1996
  ident: 50118_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 144
  start-page: 5258
  year: 2022
  ident: 50118_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00725
– ident: 50118_CR30
  doi: 10.1002/aenm.202101958
– volume: 142
  start-page: 12760
  year: 2020
  ident: 50118_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04981
– volume: 50
  start-page: 17953
  year: 1994
  ident: 50118_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 11
  start-page: 46756
  year: 2019
  ident: 50118_CR59
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15537
– volume: 132
  start-page: 10706
  year: 2020
  ident: 50118_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202002762
– volume: 32
  start-page: 2001307
  year: 2020
  ident: 50118_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001307
– volume: 16
  start-page: 18284
  year: 2022
  ident: 50118_CR39
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05993
– volume: 10
  start-page: 1146
  year: 2019
  ident: 50118_CR9
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04687
– volume: 99
  year: 2022
  ident: 50118_CR23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107346
– volume: 35
  start-page: e2205262
  year: 2023
  ident: 50118_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205262
– volume: 7
  start-page: 5264
  year: 2019
  ident: 50118_CR53
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06203
– volume: 14
  year: 2023
  ident: 50118_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39544-9
– volume: 578
  start-page: 392
  year: 2020
  ident: 50118_CR27
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 34
  start-page: 2206706
  year: 2022
  ident: 50118_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206706
– volume: 13
  year: 2022
  ident: 50118_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27789-1
– volume: 10
  year: 2019
  ident: 50118_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– volume: 61
  start-page: e202213423
  year: 2022
  ident: 50118_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213423
– volume: 11
  year: 2020
  ident: 50118_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14237-4
– volume: 12
  year: 2021
  ident: 50118_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25046-z
– volume: 100
  year: 2022
  ident: 50118_CR24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107515
– volume: 18
  year: 2022
  ident: 50118_CR40
  publication-title: Small
  doi: 10.1002/smll.202103852
– volume: 134
  start-page: e202113918
  year: 2022
  ident: 50118_CR6
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113918
– volume: 83
  start-page: 105743
  year: 2021
  ident: 50118_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105743
– volume: 32
  start-page: 1905696
  year: 2020
  ident: 50118_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905696
– volume: 58
  start-page: 3774
  year: 2019
  ident: 50118_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811422
– volume: 32
  start-page: 2107143
  year: 2022
  ident: 50118_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107143
– volume: 3
  start-page: 652
  year: 2017
  ident: 50118_CR52
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.08.002
– volume: 31
  start-page: 2009172
  year: 2021
  ident: 50118_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009172
– volume: 21
  start-page: 10260
  year: 2021
  ident: 50118_CR60
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03249
– volume: 192
  start-page: 222
  year: 1995
  ident: 50118_CR67
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(95)00355-X
– volume: 7
  start-page: 2001545
  year: 2020
  ident: 50118_CR49
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001545
– volume: 11
  start-page: 2101170
  year: 2021
  ident: 50118_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101170
– ident: 50118_CR14
  doi: 10.1002/anie.202306964
– volume: 1
  start-page: 592
  year: 2018
  ident: 50118_CR47
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0108-3
– volume: 50
  start-page: 12897
  year: 2021
  ident: 50118_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00535A
– volume: 461
  start-page: 141947
  year: 2023
  ident: 50118_CR37
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141947
– ident: 50118_CR69
– volume: 35
  start-page: 2205262
  year: 2023
  ident: 50118_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205262
– volume: 32
  start-page: 202003082
  year: 2020
  ident: 50118_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003082
– volume: 48
  start-page: 13115
  year: 1993
  ident: 50118_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 15
  start-page: 13200
  year: 2021
  ident: 50118_CR31
  publication-title: ACS nano
  doi: 10.1021/acsnano.1c02790
SSID ssj0000391844
Score 2.5798643
Snippet Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO 2 into value-added products because of...
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of...
Abstract Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5913
SubjectTerms 147/135
147/143
639/301/299/886
639/4077/4072/4062
639/638/161/886
Air pollution
Barriers
Carbon dioxide
Carbon dioxide emissions
Carbon nitride
Carbon sequestration
Catalysis
Catalysts
Catalytic converters
Cellulose
Cellulose fibers
Chemical reduction
Electron transfer
Electrons
Energy consumption
Humanities and Social Sciences
Low concentrations
multidisciplinary
Nanogenerators
Polyvinylidene fluorides
Renewable energy
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FKPRS2trSrbas4M0G87XJ5NhKRQT1ouAt5Gup0K7l-Tz433eS3fd0hdaL180sm0wm87GT-Q0hu0wq3dsUKfegqQIVqLUi0mS91YGZPtYq15NTfXShji-7ywetvsqdsBEeeGTcvg6h58lE5b1UKlhAlz72OVgUvShMKtoXbd6DYKrqYGkxdFFTlQyTsH-jqk5Ak0S7Um1J-cwSVcD-mZf5-I7ko0RptT-Hb8jryXFsv40Tfkte5OEdeTm2krzbJFBgpnxc0qmvDa3_Ze6QuD04E-2iILSWPWhLPUnrf4dSB9n6q8V7cnH44_zgiE5dEWjsOCypAc1S4gEjpaBVsn0vOyYy4PqCSB49DO95llaClyzILhpmUrTCZB-U8EJ-IBvD9ZA_kjYzZKpNAdBLUr3JAJ73nQ5gYoCUU0P4ikMuTpDhpXPFL1dT1xLcyFWHXHWVq443ZG_9zp8RMOO_1N8L49eUBey6PkARcJMIuKdEoCHbq21z0wm8cai70NAa4F1DdtbDeHZKQsQP-fp2ouk0MNMQmG33bELzkeHqZ0XhRkdVYfAmG_J1JRn3X__3ij89x4q3yCtRJLkAfMptsrFc3ObP6Bwtw5d6Dv4C7aIKPQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwprR-4WssKvmlosskmkyepxVIE9cXCvYV8rRbsXr27PvS_byaXu7IF-7rJsrMzk8lkJvMbQj4wIdVgYqDcgaISpKfGdIFG44zyTA-hVLl-_6HOzuW3WT-rAbdlvVa5sYnFUMd5wBj5UdbFbDg18P7z1T-KXaMwu1pbaDwmTxC6DK906ZnexlgQ_RykrLUyTMDRUhbLkDcm2mPNJeWT_ajA9k98zfs3Je-lS8sudLpHdqv72B6v5b1PHqXxOXm6bih584IAgk25sKK1uw0t0ZmbPLk9-dm1C8RpRUm0WFXSukuP1ZCtu1i8JOenX3-dnNHaG4GGnsOKalAsRu7zeckrGc0wiJ51CfL_-S667Gc4x5MwApxgXvRBMx2D6XRyXnauE6_Izjgf02vSJuacMNFD9pXkoBOA40OvPOjgIabYEL7hkA0VOBz7V_y1JYEtwK65ajNXbeGq5Q35uH3nag2b8eDsL8j47UyEvC4P5ovftq4gq7wfeNRBZmql9Aby2S4MyZtsg0KnM5kHG7HZug6X9k5rGvJ-O5xXEKZF3Jjm13VOr4DphsBE3BOCpiPjxZ-CxZ3dVZmPcKIhnzaacff1___xm4eJfUuedaijCOApDsjOanGd3mXnZ-UPi4bfAo9PAO4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-lIniR-oVra1mhtxrM1yaToz4sRdBeWugt5Gu1oPvK6-uh_72TvN0nW7TgdTNhJ5NJZibJ_IaQIyaV7m2KlHvQVIEK1FoRabLe6sBMH2uW69dv-vRCfbnsLneImHJh6qP9CmlZt-npddiHG1WXNFoU2pVkSYoRz6MC3V60eqEX23OVgngOSo35MUzCX7rObFCF6p_5l_dfR967Iq2W52SPPB1dxvbjhslnZCcPz8njTRHJuxcECsCUj2s6VrSh9UTmDonbxZloVwWbtUi_LZkkrf8VSgZk669WL8nFyefzxSkd6yHQ2HFYUwOapcQDxkhBq2T7XnZMZMDxBZE8-hbe8yytBC9ZkF00zKRohck-KOGFfEV2h-WQX5M2M--lTQHQP1K9yQCe950OYGKAlFND-CQhF0ew8FKz4qerl9YS3EaqDqXqqlQdb8jxts_1BirjQepPRfBbygJzXT8sV9_dOO1Oh9DzZKJCbpUKFjCei30OFvedKAyyeTBNmxvX3o3DXQtNrAHeNeTdthlXTbkK8UNe3o40nQZmGgKz6Z4xNG8Zrn5U_G10URWGbbIh7yfN-PP3f4_4zf-R75MnouhsAfGUB2R3vbrNb9EBWofDqvG_AehY_ok
  priority: 102
  providerName: Springer Nature
Title Contact-electro-catalytic CO2 reduction from ambient air
URI https://link.springer.com/article/10.1038/s41467-024-50118-1
https://www.proquest.com/docview/3079907815
https://www.proquest.com/docview/3079956807
https://pubmed.ncbi.nlm.nih.gov/PMC11246423
https://doaj.org/article/6bbf1d7c4aa344b98149cfeb9048c27d
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQqGXkr6o23RxobdWrW3JehxC2CzZhoWkpe3C3oReTgOpN3E20P33Gcn2Foe0h15ssEZIGmk0M5LnG4TeZYSySjqLcy0YpoIaLGVhsZNaMpPxysYo15NTdjyns0W52EJ9uqOOgdf3unYhn9S8ufj4-2p9AAK_34aMi0_XNIo7aBtchkBKDN7QDmgmHgT1pDP3485MJDg0tIudub_qQD9FGP-B7Xn3z8k716dRK0130ePOnEzH7fw_QVu-fooetgkm18-QCOBT2q5wl-0Gx9OaNRCnky9F2gTc1jAzaYgySfUvE6IjU33ePEfz6dGPyTHuciVgW-ZihblgmXO5Af_JMOpkVZEyK7yA8ZnCabA7tM49kURokhlSWp5xZ2XBvTa00AV5gbbrZe1fotRnWhPpjADbiVbcC6HzqmRGcGuE8y5Bec8hZTsg8ZDP4kLFC20iVMtVBVxVkasqT9D7TZ3LFkbjn9SHgfEbygCBHT8smzPVSZRixlS545ZCbyk1UoCvZytvJOxJtuDQzb1-2lS_rBTsaKB-ucjLBL3dFINEhWsSXfvlTUdTMpHxBInBdA86NCypz39GbG4wXym4dCRBH_qV8af1v4_41f-39Bo9KsL6DWCfZA9tr5ob_wYMpZUZoQd8weEppp9HaGc8nn2fwfvw6PTrN_g6YZNRPIIYRSm5BWnbFo8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMECgQJTmDVr8T2ASEoVFv64NJKezN-BSpBtuxuhfZP8RsZO8lWqURvvcaOMhnP0_Z8g9ArwkXd6OAxtarGQgmHtWYeB2117YhsfK5yPTyqJyfiy7SabqC_Qy1MulY52MRsqMPMpz3ybZBFMJxS0er92W-cukal09WhhUYnFvtx9QdStsW7vU-wvq8Z2_18vDPBfVcB7CuqlliqmoRAHWQarhZBNw2vCItKUOFYsOChraWRa64sJ45XXhIZvGYyWieYTUAHYPJvgOMlSaPkVK73dBLauhKir80hXG0vRLZE4AhxlWo8MR35v9wmYBTbXr6Zeel4Nnu93bvoTh-ulh86-bqHNmJ7H93sGliuHiCVwK2sX-K-mw7Ou0ErmFzufGXlPOHCppUvUxVLaX-5VH1Z2tP5Q3RyLVx7hDbbWRsfozISa7kOTkFsJhoZlbK0qWqnpHcqxFAgOnDI-B6oPPXL-GnygTlXpuOqAa6azFVDC_Rm_c5ZB9Nx5eyPifHrmQliOz-Yzb-bXmNN7VxDg_QCqBXCaQW5pG-i02DzPJNA5tawbKbX-4W5kNICvVwPg8amYxjbxtl5P6eqFZEFUqPlHhE0HmlPf2TsbwiPBaSMvEBvB8m4-Pr___jJ1cS-QLcmx4cH5mDvaP8pus2SvCbwUL6FNpfz8_gMAq-le56lvUTfrlu9_gGoYD0T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFOEFkglOFFr40di-4AQtKz6gMKhlfZm_EqpRLNldyu0f41fx9hJtkoleus1dpTJeF72eL5B6E3BeFUr7zAxssJccouVog57ZVRlC1G7VOX69ajaO-EHk3Kyhv72tTDxWmVvE5Oh9lMXz8hHIItgOIUk5ajurkV83x1_uPiNYwepmGnt22m0InIYln9g-zZ_v78La_2W0vHn45093HUYwK4kcoGFrArviYVdh624V3XNyoIGyQm31Bvw1saQwBSThhWWlU4UwjtFRTCWUxNBD8D83xGsJFHHxESsznci8rrkvKvTKZgczXmySuAUcRnrPTEZ-MLUMmAQ516_pXktVZs84PghetCFrvnHVtYeobXQPEZ322aWyydIRqAr4xa466yD08nQEibnO99oPosYsVEK8ljRkptzGysxc3M2e4pOboVrz9B6M23Cc5SHwhimvJUQp_FaBCkNqcvKSuGs9MFniPQc0q4DLY-9M37plDxnUrdc1cBVnbiqSYberd65aCE7bpz9KTJ-NTPCbacH09mp7rRXV9bWxAvHgVrOrZKwr3R1sArsn6MCyNzsl013NmCuryQ2Q1urYdDemJIxTZhednPKShYiQ3Kw3AOChiPN2c-EAw6hMoftI8vQdi8ZV1___x-_uJnY1-geKJb-sn90uIHu0yiuEUeUbaL1xewyvIQYbGFfJWHP0Y_b1q5_gYdBSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contact-electro-catalytic+CO2+reduction+from+ambient+air&rft.jtitle=Nature+communications&rft.au=Wang%2C+Nannan&rft.au=Jiang%2C+Wenbin&rft.au=Yang%2C+Jing&rft.au=Feng%2C+Haisong&rft.date=2024-07-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-50118-1&rft.externalDocID=PMC11246423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon