Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 7461 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIV
AD8-EO
infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8
+
CD69
+
T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
In this work, the authors study the immunological and virological effects of administering either wild-type anti-HIV-1 broadly neutralizing antibodies (bNAbs) or bNAbs with a mutation that increases binding to Fc-gamma receptors (FcγRs) to rhesus macaques in the acute phase of SHIV
AD8-EO
infection. |
---|---|
AbstractList | Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIV
AD8-EO
infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8
+
CD69
+
T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
In this work, the authors study the immunological and virological effects of administering either wild-type anti-HIV-1 broadly neutralizing antibodies (bNAbs) or bNAbs with a mutation that increases binding to Fc-gamma receptors (FcγRs) to rhesus macaques in the acute phase of SHIV
AD8-EO
infection. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.In this work, the authors study the immunological and virological effects of administering either wild-type anti-HIV-1 broadly neutralizing antibodies (bNAbs) or bNAbs with a mutation that increases binding to Fc-gamma receptors (FcγRs) to rhesus macaques in the acute phase of SHIVAD8-EO infection. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIV AD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8 + CD69 + T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy. Abstract Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy. |
ArticleNumber | 7461 |
Author | Douek, Daniel C. Fabozzi, Giulia Shi, Wei March, Kylie Lifson, Jeffrey D. Sékaly, Rafick-Pierre Dias, Joana Maximova, Anna A. Nishimura, Yoshiaki Petrovas, Constantinos Lucas, Margaret E. Asokan, Mangaiarkarasi Koup, Richard A. Fourati, Slim Todd, John-Paul Schmidt, Stephen D. Boswell, Kristin L. Ransier, Amy Laboune, Farida Pegu, Amarendra Ernste, Keenan Martin, Malcolm A. Mascola, John R. Hu, Jianfei Samsel, Jakob Boritz, Eli A. Doria-Rose, Nicole A. Chen, Xuejun Talana, Chloe A. Liu, Cuiping Ko, Sung Hee Gama, Lucio Ambrozak, David R. Radecki, Pierce E. |
Author_xml | – sequence: 1 givenname: Joana orcidid: 0000-0002-1187-8770 surname: Dias fullname: Dias, Joana organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 2 givenname: Giulia surname: Fabozzi fullname: Fabozzi, Giulia organization: Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 3 givenname: Slim orcidid: 0000-0001-6609-7587 surname: Fourati fullname: Fourati, Slim organization: Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University – sequence: 4 givenname: Xuejun orcidid: 0000-0001-9192-0440 surname: Chen fullname: Chen, Xuejun organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 5 givenname: Cuiping orcidid: 0000-0001-8390-1047 surname: Liu fullname: Liu, Cuiping organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 6 givenname: David R. surname: Ambrozak fullname: Ambrozak, David R. organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 7 givenname: Amy surname: Ransier fullname: Ransier, Amy organization: Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 8 givenname: Farida surname: Laboune fullname: Laboune, Farida organization: Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 9 givenname: Jianfei surname: Hu fullname: Hu, Jianfei organization: Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 10 givenname: Wei surname: Shi fullname: Shi, Wei organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 11 givenname: Kylie surname: March fullname: March, Kylie organization: Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 12 givenname: Anna A. surname: Maximova fullname: Maximova, Anna A. organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 13 givenname: Stephen D. surname: Schmidt fullname: Schmidt, Stephen D. organization: Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 14 givenname: Jakob surname: Samsel fullname: Samsel, Jakob organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Institute for Biomedical Sciences, George Washington University – sequence: 15 givenname: Chloe A. orcidid: 0000-0002-0313-8502 surname: Talana fullname: Talana, Chloe A. organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 16 givenname: Keenan orcidid: 0000-0002-2988-6429 surname: Ernste fullname: Ernste, Keenan organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 17 givenname: Sung Hee orcidid: 0000-0002-4678-7449 surname: Ko fullname: Ko, Sung Hee organization: Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 18 givenname: Margaret E. orcidid: 0009-0003-4147-1896 surname: Lucas fullname: Lucas, Margaret E. organization: Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 19 givenname: Pierce E. orcidid: 0000-0002-1103-5327 surname: Radecki fullname: Radecki, Pierce E. organization: Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 20 givenname: Kristin L. surname: Boswell fullname: Boswell, Kristin L. organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 21 givenname: Yoshiaki orcidid: 0000-0003-1347-2368 surname: Nishimura fullname: Nishimura, Yoshiaki organization: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 22 givenname: John-Paul surname: Todd fullname: Todd, John-Paul organization: Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 23 givenname: Malcolm A. orcidid: 0000-0002-6845-9905 surname: Martin fullname: Martin, Malcolm A. organization: Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 24 givenname: Constantinos surname: Petrovas fullname: Petrovas, Constantinos organization: Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 25 givenname: Eli A. surname: Boritz fullname: Boritz, Eli A. organization: Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 26 givenname: Nicole A. orcidid: 0000-0002-5731-3054 surname: Doria-Rose fullname: Doria-Rose, Nicole A. organization: Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 27 givenname: Daniel C. orcidid: 0000-0001-5575-8634 surname: Douek fullname: Douek, Daniel C. organization: Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 28 givenname: Rafick-Pierre orcidid: 0000-0002-7816-4828 surname: Sékaly fullname: Sékaly, Rafick-Pierre organization: Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University – sequence: 29 givenname: Jeffrey D. surname: Lifson fullname: Lifson, Jeffrey D. organization: AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research – sequence: 30 givenname: Mangaiarkarasi surname: Asokan fullname: Asokan, Mangaiarkarasi organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 31 givenname: Lucio surname: Gama fullname: Gama, Lucio organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 32 givenname: John R. surname: Mascola fullname: Mascola, John R. organization: ModeX Therapeutics – sequence: 33 givenname: Amarendra surname: Pegu fullname: Pegu, Amarendra organization: Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health – sequence: 34 givenname: Richard A. surname: Koup fullname: Koup, Richard A. email: rkoup@mail.nih.gov organization: Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health |
BookMark | eNp9ks1u3CAUha0qlZqmeYGukLrpxi0YsPGqGqVJM1KkLPqzRRguE0YemAJuNX2NPEreo89UPJOqTRZhA4JzPg7c-7I68sFDVb0m-B3BVLxPjLC2q3HDak4EE_XuWXXcYEZq0jX06L_1i-o0pTUug_ZFyY6r24XZOO9Sjiq74FGwSPns6svlt5qgIQZlxh3yMBXB6H45v0Kb4IMeg1fjXjoE4yChny7fIOd1BJXAIGVtweYdygFd6N93KIKGbQ4xITPFGaP0lAF9LhctPor6_LqYLeg5xKvquVVjgtP7-aT6enH-5eyyvrr-tDxbXNW6PDPXHWW8tS0bMOnowFohFGcN7bFuO8KFxT10RnDSW4wJ5YI21rSD4F07NMVr6Um1PHBNUGu5jW6j4k4G5eR-I8SVVDE7PYIcLOnBWM246JgWrRqIANwbbGzTEs4L68OBtZ2GDRgNfv6wB9CHJ97dyFX4IckcjWNRCG_vCTF8nyBluXFJwzgqD2FKkuK-J4xg0hfpm0fSdZhiKcheJTDlhLGiEgeVjiGlCFZql_dVLgHcKAmWc_vIQ_vI0j5y3z5yV6zNI-vfhzxpogdT2s4Fhvgv1ROuP9H32_E |
CitedBy_id | crossref_primary_10_1016_j_antiviral_2024_106015 crossref_primary_10_1371_journal_ppat_1012777 crossref_primary_10_1097_COH_0000000000000924 crossref_primary_10_1097_COH_0000000000000920 crossref_primary_10_1038_s41586_024_08500_y |
Cites_doi | 10.1128/JVI.07163-11 10.1038/nature21435 10.1073/pnas.1415789111 10.1038/nature07930 10.3389/fimmu.2014.00140 10.1126/science.278.5341.1295 10.1016/S2352-3018(19)30181-X 10.1126/science.1178746 10.1038/nature14411 10.1073/pnas.2008190117 10.1038/nm.4063 10.1172/JCI122466 10.1126/science.278.5341.1291 10.1038/s41591-021-01509-0 10.1038/nature13036 10.1073/pnas.0508123103 10.1016/j.cell.2014.07.043 10.1128/JVI.02051-18 10.1038/s41467-019-13972-y 10.5281/zenodo.12825013 10.1016/S0195-5616(02)00055-4 10.1038/nature12746 10.1038/44755 10.1038/nature12744 10.1073/pnas.1217443109 10.1073/pnas.96.26.15109 10.5281/zenodo.12802634 10.1126/scitranslmed.aad5752 10.1128/JVI.00491-12 10.1038/nm.4268 10.1101/gr.209601.116 10.1016/j.tim.2015.07.005 10.1126/science.1187659 10.1111/cei.12692 10.3389/fimmu.2018.01571 10.1073/pnas.2008236117 10.1128/JVI.02213-14 10.1073/pnas.94.24.13193 10.1038/nature11544 10.1126/scitranslmed.aab3964 10.1126/science.aaf1279 10.1038/s41591-018-0186-4 10.5281/zenodo.12801249 10.1371/journal.ppat.1009339 10.1128/JVI.02454-15 10.1371/journal.ppat.1009431 10.1371/journal.ppat.1003342 10.1038/nature10373 10.1101/cshperspect.a007161 10.1172/JCI151632 10.1007/s00251-011-0514-z 10.1038/nbt.1601 10.3389/fimmu.2019.00697 10.1128/JVI.00498-17 10.1016/j.cell.2014.08.023 10.1038/nature22984 10.1084/jem.20132494 10.1371/journal.pone.0099881 10.1016/j.cell.2016.06.039 10.1128/JVI.77.22.11896-11909.2003 10.1371/journal.pmed.1002493 10.1038/nature06106 10.1126/science.1207227 10.1073/pnas.1217207109 10.1126/scitranslmed.3008104 10.1038/nm.1974 10.1126/scitranslmed.aao4235 10.4049/jimmunol.1502252 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024 |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-51848-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_bf19edfc45874c86ab18e09d0df26155 PMC11358508 10_1038_s41467_024_51848_y |
GrantInformation_xml | – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: OPP1147555 funderid: https://doi.org/10.13039/100000865 – fundername: Intramural Research Program of the VRC, NIAID, NIH – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: 75N91019D00024/HHSN261201500003I funderid: https://doi.org/10.13039/100000054 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-73456f64b0173b4688a542390c67158f09e7d8519f00135832fd6b8576b2734f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:59 EDT 2025 Thu Aug 21 18:31:59 EDT 2025 Fri Jul 11 15:15:25 EDT 2025 Wed Aug 13 05:16:40 EDT 2025 Tue Jul 01 02:37:30 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-73456f64b0173b4688a542390c67158f09e7d8519f00135832fd6b8576b2734f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1347-2368 0000-0002-4678-7449 0000-0002-2988-6429 0009-0003-4147-1896 0000-0002-1187-8770 0000-0002-6845-9905 0000-0001-5575-8634 0000-0001-6609-7587 0000-0001-8390-1047 0000-0002-5731-3054 0000-0001-9192-0440 0000-0002-0313-8502 0000-0002-1103-5327 0000-0002-7816-4828 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51848-y |
PQID | 3098035144 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf19edfc45874c86ab18e09d0df26155 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11358508 proquest_miscellaneous_3099141019 proquest_journals_3098035144 crossref_citationtrail_10_1038_s41467_024_51848_y crossref_primary_10_1038_s41467_024_51848_y springer_journals_10_1038_s41467_024_51848_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-29 |
PublicationDateYYYYMMDD | 2024-08-29 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | PelegrinMNaranjo-GomezMPiechaczykMAntiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?Trends Microbiol.2015236536651:CAS:528:DC%2BC2MXhs1Chu7bI26433697712703310.1016/j.tim.2015.07.005 HessellAJFc receptor but not complement binding is important in antibody protection against HIVNature20074491011042007Natur.449..101H1:CAS:528:DC%2BD2sXpvFWrs7s%3D1780529810.1038/nature06106 ChunTWDaveyRTJr.EngelDLaneHCFauciASRe-emergence of HIV after stopping therapyNature19994018748751999Natur.401..874C1:CAS:528:DyaK1MXntFyhs74%3D1055390310.1038/44755 SokDRecombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apexProc. Natl. Acad. Sci. USA201411117624176292014PNAS..11117624S1:CAS:528:DC%2BC2cXhvFKmu7%2FN25422458426740310.1073/pnas.1415789111 ShapiroMBSingle-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunityNat. Commun.2020112020NatCo..11...70S1:CAS:528:DC%2BB3cXlslWrtQ%3D%3D31911610694666410.1038/s41467-019-13972-y BoltonDLHuman Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral ReservoirsJ. Virol.201690132113321:CAS:528:DC%2BC28XosVClsbk%3D26581981471960410.1128/JVI.02454-15 LiHEnvelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaquesProc. Natl. Acad. Sci. USA2016113E3413E34222016PNAS..113.3453L1:CAS:528:DC%2BC28XovV2jsbs%3D272474004914158 LazarGAEngineered antibody Fc variants with enhanced effector functionProc. Natl. Acad. Sci. USA2006103400540102006PNAS..103.4005L1:CAS:528:DC%2BD28XivFWitLw%3D16537476138970510.1073/pnas.0508123103 GaudinskiMRSafety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adultsPLoS Med.20181529364886578334710.1371/journal.pmed.1002493 SokDPromiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIVSci. Transl. Med20146236ra26310.1126/scitranslmed.3008104 ParsonsMSFc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaquesJ. Clin. Invest.20191291821913047523010.1172/JCI122466 WalkerLMBroad neutralization coverage of HIV by multiple highly potent antibodiesNature20114774664702011Natur.477..466W1:CAS:528:DC%2BC3MXhtFers7nM21849977339311010.1038/nature10373 StephensonKESafety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trialNat. Med.202127171817241:CAS:528:DC%2BB3MXit1WqtrrE34621054851664510.1038/s41591-021-01509-0 DiasJConcordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent stagingJ. Clin. Invest.2021131e1516321:CAS:528:DC%2BB3MXit1agt73L34623326840957810.1172/JCI151632 Hepler, N. L. et al. An Improved Circular Consensus Algorithm with an Application to Detect HIV-1 Drug-Resistance Associated Mutations (DRAMs). An Improved Circular Consensus Algorithm with an Application to Detect HIV-1 Drug-Resistance Associated Mutations (DRAMs). Conference on Advances in Genome Biology and Technology; 2016. CaskeyMAntibody 10-1074 suppresses viremia in HIV-1-infected individualsNat. Med.2017231851911:CAS:528:DC%2BC2sXhtVCls78%3D28092665546721910.1038/nm.4268 HessellAJEffective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaquesNat. Med.2009159519541:CAS:528:DC%2BD1MXnt1ShsLs%3D19525965433443910.1038/nm.1974 Doria-RoseNADevelopmental pathway for potent V1V2-directed HIV-neutralizing antibodiesNature201450955622014Natur.509...55D1:CAS:528:DC%2BC2cXntlyisrs%3D24590074439500710.1038/nature13036 RudicellRSEnhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivoJ. Virol.201488126691268225142607424894110.1128/JVI.02213-14 BoritzEAMultiple Origins of Virus Persistence during Natural Control of HIV InfectionCell2016166100410151:CAS:528:DC%2BC28Xht1eju7bO27453467498321610.1016/j.cell.2016.06.039 MouquetHComplex-type N-glycan recognition by potent broadly neutralizing HIV antibodiesProc. Natl. Acad. Sci. USA2012109E3268E32771:CAS:528:DC%2BC38XhvValsrvM23115339351115310.1073/pnas.1217207109 Radecki, P., Ko, S. H., Lucas, M. & Boritz, E. niaid/UMI-pacbio-pipeline: v1 with SHIV (1-dc6ef5c). 2024 [cited]Available from: https://doi.org/10.5281/zenodo.12825013. HuangJBroad and potent neutralization of HIV-1 by a gp41-specific human antibodyNature20124914064122012Natur.491..406H1:CAS:528:DC%2BC38Xhs1OgsrzL23151583485428510.1038/nature11544 Flerin, N. C. et al. Establishment of a Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs. J. Virol.93, e02051–18 (2019). WangPQuantifying the contribution of Fc-mediated effector functions to the antiviral activity of anti-HIV-1 IgG1 antibodies in vivoProc. Natl. Acad. Sci. USA202011718002180092020PNAS..11718002W1:CAS:528:DC%2BB3cXhs1SltLfI32665438739546110.1073/pnas.2008190117 YamamotoTQuality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infectionSci. Transl. Med20157298ra1202622330310.1126/scitranslmed.aab3964 WalkerLMBroad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine targetScience20093262852892009Sci...326..285W1:CAS:528:DC%2BD1MXht1agsbvL19729618333527010.1126/science.1178746 ChanYNIgG Binding Characteristics of Rhesus Macaque FcgammaRJ. Immunol.2016197293629471:CAS:528:DC%2BC2sXos1Kmur4%3D2755904610.4049/jimmunol.1502252 ScheidJFBroad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individualsNature20094586366402009Natur.458..636S1:CAS:528:DC%2BD1MXjtFCisLc%3D1928737310.1038/nature07930 BournazosSBroadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activityCell2014158124312531:CAS:528:DC%2BC2cXhsFCgtLnM25215485416739810.1016/j.cell.2014.08.023 LuCLEnhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivoScience2016352100110042016Sci...352.1001L1:CAS:528:DC%2BC28XotVSktLk%3D27199430512696710.1126/science.aaf1279 ShingaiMPassive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaquesJ. Exp. Med.2014211206120741:CAS:528:DC%2BC2cXhs1CgtbfO25155019417222310.1084/jem.20132494 World Health Organization Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. World Health Organization: Geneva, 2021. WongJKRecovery of replication-competent HIV despite prolonged suppression of plasma viremiaScience1997278129112951997Sci...278.1291W1:CAS:528:DyaK2sXntlOnu7k%3D936092610.1126/science.278.5341.1291 BonsignoriMTwo distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine designJ. Virol.201286468846921:CAS:528:DC%2BC38XlsVCgt70%3D22301150331865110.1128/JVI.07163-11 CrowleyARAckermanMEMind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector FunctionFront Immunol.2019106971:CAS:528:DC%2BC1MXhtlKhu7nN31024542646375610.3389/fimmu.2019.00697 AsokanMFc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibodyProc. Natl. Acad. Sci. USA202011718754187632020PNAS..11718754A1:CAS:528:DC%2BB3cXhs1Wgt7vO32690707741404610.1073/pnas.2008236117 NguyenDCScinicarielloFAttanasioRCharacterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genesImmunogenetics2011633513621:CAS:528:DC%2BC3MXlvFOquro%3D2132760710.1007/s00251-011-0514-z CaskeyMViraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117Nature20155224874912015Natur.522..487C1:CAS:528:DC%2BC2MXmt1Smtrw%3D25855300489071410.1038/nature14411 KuznetsovYGVictoriaJGRobinsonWEJr.McPhersonAAtomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytesJ. Virol.20037711896119091:CAS:528:DC%2BD3sXovVansLo%3D1458152625426810.1128/JVI.77.22.11896-11909.2003 Fourati, S. sekalylab/joana: Zenodo release (v1.0.0). 2024 [cited]Available from: https://doi.org/10.5281/zenodo.12801249. ShingaiMAntibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemiaNature20135032772802013Natur.503..277S1:CAS:528:DC%2BC3sXhslSnsLbL24172896413378710.1038/nature12746 HansenSGAddendum: Immune clearance of highly pathogenic SIV infectionNature20175471231242017Natur.547..123H1:CAS:528:DC%2BC2sXhtVequrfP2863659910.1038/nature22984 FinziDIdentification of a reservoir for HIV-1 in patients on highly active antiretroviral therapyScience1997278129513001997Sci...278.1295F1:CAS:528:DyaK2sXntlOmsro%3D936092710.1126/science.278.5341.1295 LynchRMVirologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infectionSci. Transl. Med.20157319ra2062670209410.1126/scitranslmed.aad5752 Bar-OnYSafety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individualsNat. Med.201824170117071:CAS:528:DC%2BC1cXhvVSitbjJ30258217622197310.1038/s41591-018-0186-4 ZalevskyJEnhanced antibody half-life improves in vivo activityNat. Biotechnol.2010281571591:CAS:528:DC%2BC3cXntVClug%3D%3D20081867285549210.1038/nbt.1601 HsuDCTLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruptionPLoS Pathog.2021171:CAS:528:DC%2BB3MXlvVKhsrs%3D33600506792476610.1371/journal.ppat.1009339 Halper-StrombergABroadly neutralizing antibodies and viral ind M Caskey (51848_CR22) 2015; 522 Y Bar-On (51848_CR25) 2018; 24 EA Boritz (51848_CR62) 2016; 166 GA Lazar (51848_CR42) 2006; 103 M Shingai (51848_CR55) 2012; 109 CL Lu (51848_CR34) 2016; 352 D Finzi (51848_CR3) 1997; 278 RS Rudicell (51848_CR43) 2014; 88 51848_CR69 EJ Arts (51848_CR2) 2012; 2 M Pelegrin (51848_CR31) 2015; 23 51848_CR21 J Dias (51848_CR49) 2021; 131 JK Wong (51848_CR4) 1997; 278 AJ Hessell (51848_CR37) 2009; 15 51848_CR63 JF Scheid (51848_CR10) 2011; 333 LM Walker (51848_CR12) 2009; 326 B Moldt (51848_CR38) 2012; 86 51848_CR1 RL Cowell (51848_CR66) 2003; 33 Y Nishimura (51848_CR29) 2017; 543 M Shingai (51848_CR56) 2014; 211 RT Davey Jr. (51848_CR7) 1999; 96 MR Gaudinski (51848_CR53) 2018; 15 T Smith (51848_CR64) 2017; 27 S Bournazos (51848_CR33) 2014; 158 H Mouquet (51848_CR15) 2012; 109 M Bonsignori (51848_CR11) 2012; 86 TW Chun (51848_CR6) 1999; 401 M Shingai (51848_CR19) 2013; 503 P Wang (51848_CR41) 2020; 117 DL Bolton (51848_CR28) 2016; 90 D Sok (51848_CR16) 2014; 6 J Huang (51848_CR18) 2012; 491 JE Ledgerwood (51848_CR52) 2015; 182 YN Chan (51848_CR58) 2016; 197 B Julg (51848_CR44) 2017; 9 AJ Hessell (51848_CR36) 2007; 449 KE Stephenson (51848_CR54) 2021; 27 T Yamamoto (51848_CR65) 2015; 7 DC Hsu (51848_CR50) 2021; 17 TW Chun (51848_CR5) 1997; 94 DC Nguyen (51848_CR57) 2011; 63 JF Scheid (51848_CR8) 2009; 458 SG Hansen (51848_CR60) 2017; 547 D Sok (51848_CR14) 2014; 111 MS Parsons (51848_CR39) 2019; 129 YG Kuznetsov (51848_CR68) 2003; 77 B Platzer (51848_CR30) 2014; 5 AR Crowley (51848_CR48) 2019; 10 M Asokan (51848_CR40) 2020; 117 LM Walker (51848_CR17) 2011; 477 DH Barouch (51848_CR20) 2013; 503 AJ Hessell (51848_CR26) 2016; 22 J Zalevsky (51848_CR45) 2010; 28 NA Doria-Rose (51848_CR13) 2014; 509 M Caskey (51848_CR24) 2017; 23 51848_CR35 JP Julien (51848_CR47) 2013; 9 X Wu (51848_CR9) 2010; 329 MB Shapiro (51848_CR27) 2020; 11 RM Lynch (51848_CR23) 2015; 7 A Halper-Stromberg (51848_CR32) 2014; 158 H Li (51848_CR59) 2016; 113 51848_CR71 MR Gaudinski (51848_CR51) 2019; 6 SH Ko (51848_CR46) 2021; 17 51848_CR70 H Tasnim (51848_CR67) 2018; 9 T Zhou (51848_CR61) 2014; 9 |
References_xml | – reference: WongJKRecovery of replication-competent HIV despite prolonged suppression of plasma viremiaScience1997278129112951997Sci...278.1291W1:CAS:528:DyaK2sXntlOnu7k%3D936092610.1126/science.278.5341.1291 – reference: MouquetHComplex-type N-glycan recognition by potent broadly neutralizing HIV antibodiesProc. Natl. Acad. Sci. USA2012109E3268E32771:CAS:528:DC%2BC38XhvValsrvM23115339351115310.1073/pnas.1217207109 – reference: PelegrinMNaranjo-GomezMPiechaczykMAntiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?Trends Microbiol.2015236536651:CAS:528:DC%2BC2MXhs1Chu7bI26433697712703310.1016/j.tim.2015.07.005 – reference: BoritzEAMultiple Origins of Virus Persistence during Natural Control of HIV InfectionCell2016166100410151:CAS:528:DC%2BC28Xht1eju7bO27453467498321610.1016/j.cell.2016.06.039 – reference: CaskeyMViraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117Nature20155224874912015Natur.522..487C1:CAS:528:DC%2BC2MXmt1Smtrw%3D25855300489071410.1038/nature14411 – reference: NishimuraYEarly antibody therapy can induce long-lasting immunity to SHIVNature20175435595632017Natur.543..559N1:CAS:528:DC%2BC2sXkvVWmsb8%3D28289286545853110.1038/nature21435 – reference: ShingaiMPassive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaquesJ. Exp. Med.2014211206120741:CAS:528:DC%2BC2cXhs1CgtbfO25155019417222310.1084/jem.20132494 – reference: AsokanMFc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibodyProc. Natl. Acad. Sci. USA202011718754187632020PNAS..11718754A1:CAS:528:DC%2BB3cXhs1Wgt7vO32690707741404610.1073/pnas.2008236117 – reference: LazarGAEngineered antibody Fc variants with enhanced effector functionProc. Natl. Acad. Sci. USA2006103400540102006PNAS..103.4005L1:CAS:528:DC%2BD28XivFWitLw%3D16537476138970510.1073/pnas.0508123103 – reference: WalkerLMBroad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine targetScience20093262852892009Sci...326..285W1:CAS:528:DC%2BD1MXht1agsbvL19729618333527010.1126/science.1178746 – reference: SokDPromiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIVSci. Transl. Med20146236ra26310.1126/scitranslmed.3008104 – reference: ArtsEJHazudaDJHIV-1 antiretroviral drug therapyCold Spring Harb. Perspect. Med20122a00716122474613331240010.1101/cshperspect.a007161 – reference: HansenSGAddendum: Immune clearance of highly pathogenic SIV infectionNature20175471231242017Natur.547..123H1:CAS:528:DC%2BC2sXhtVequrfP2863659910.1038/nature22984 – reference: SmithTHegerASudberyIUMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracyGenome Res2017274914991:CAS:528:DC%2BC2sXhtVaiu7fL28100584534097610.1101/gr.209601.116 – reference: ZhouTTransplanting supersites of HIV-1 vulnerabilityPLoS One201492014PLoSO...999881Z24992528408463710.1371/journal.pone.0099881 – reference: StephensonKESafety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trialNat. Med.202127171817241:CAS:528:DC%2BB3MXit1WqtrrE34621054851664510.1038/s41591-021-01509-0 – reference: Bar-OnYSafety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individualsNat. Med.201824170117071:CAS:528:DC%2BC1cXhvVSitbjJ30258217622197310.1038/s41591-018-0186-4 – reference: HessellAJEarly short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaquesNat. Med.2016223623681:CAS:528:DC%2BC28XksVyrsL8%3D26998834498310010.1038/nm.4063 – reference: PlatzerBStoutMFiebigerEAntigen cross-presentation of immune complexesFront Immunol.2014514024744762397834810.3389/fimmu.2014.00140 – reference: JulgBProtection against a mixed SHIV challenge by a broadly neutralizing antibody cocktailSci. Transl. Med.20179eaao423528931655574752810.1126/scitranslmed.aao4235 – reference: FinziDIdentification of a reservoir for HIV-1 in patients on highly active antiretroviral therapyScience1997278129513001997Sci...278.1295F1:CAS:528:DyaK2sXntlOmsro%3D936092710.1126/science.278.5341.1295 – reference: YamamotoTQuality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infectionSci. Transl. Med20157298ra1202622330310.1126/scitranslmed.aab3964 – reference: CaskeyMAntibody 10-1074 suppresses viremia in HIV-1-infected individualsNat. Med.2017231851911:CAS:528:DC%2BC2sXhtVCls78%3D28092665546721910.1038/nm.4268 – reference: Halper-StrombergABroadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized miceCell20141589899991:CAS:528:DC%2BC2cXhtlKmtbrF25131989416391110.1016/j.cell.2014.07.043 – reference: KoSHHigh-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19PLoS Pathog.2021171:CAS:528:DC%2BB3MXovVWju7c%3D33831133803130410.1371/journal.ppat.1009431 – reference: LedgerwoodJESafety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adultsClin. Exp. Immunol.20151822893011:CAS:528:DC%2BC2MXhvVSlsL%2FE26332605463689110.1111/cei.12692 – reference: ShapiroMBSingle-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunityNat. Commun.2020112020NatCo..11...70S1:CAS:528:DC%2BB3cXlslWrtQ%3D%3D31911610694666410.1038/s41467-019-13972-y – reference: DiasJConcordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent stagingJ. Clin. Invest.2021131e1516321:CAS:528:DC%2BB3MXit1agt73L34623326840957810.1172/JCI151632 – reference: GaudinskiMRSafety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trialLancet HIV20196e667e679314731671110086610.1016/S2352-3018(19)30181-X – reference: Talla, A., Pelletier, A., Fourati, S. & Al-Shakhshir, H. sekalylab/mRNASeq: Zenodo release (v1.0.0). 2024 [cited]Available from: https://doi.org/10.5281/zenodo.12802634. – reference: JulienJPBroadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycansPLoS Pathog.201391:CAS:528:DC%2BC3sXpsFyksbg%3D23658524364208210.1371/journal.ppat.1003342 – reference: WalkerLMBroad neutralization coverage of HIV by multiple highly potent antibodiesNature20114774664702011Natur.477..466W1:CAS:528:DC%2BC3MXhtFers7nM21849977339311010.1038/nature10373 – reference: Fourati, S. sekalylab/joana: Zenodo release (v1.0.0). 2024 [cited]Available from: https://doi.org/10.5281/zenodo.12801249. – reference: TasnimHQuantitative Measurement of Naïve T Cell Association With Dendritic Cells, FRCs, and Blood Vessels in Lymph NodesFront Immunol.20189157130093900607061010.3389/fimmu.2018.01571 – reference: BonsignoriMTwo distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine designJ. Virol.201286468846921:CAS:528:DC%2BC38XlsVCgt70%3D22301150331865110.1128/JVI.07163-11 – reference: WuXRational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1Science20103298568612010Sci...329..856W1:CAS:528:DC%2BC3cXpvV2hsr0%3D20616233296506610.1126/science.1187659 – reference: WangPQuantifying the contribution of Fc-mediated effector functions to the antiviral activity of anti-HIV-1 IgG1 antibodies in vivoProc. Natl. Acad. Sci. USA202011718002180092020PNAS..11718002W1:CAS:528:DC%2BB3cXhs1SltLfI32665438739546110.1073/pnas.2008190117 – reference: NguyenDCScinicarielloFAttanasioRCharacterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genesImmunogenetics2011633513621:CAS:528:DC%2BC3MXlvFOquro%3D2132760710.1007/s00251-011-0514-z – reference: LuCLEnhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivoScience2016352100110042016Sci...352.1001L1:CAS:528:DC%2BC28XotVSktLk%3D27199430512696710.1126/science.aaf1279 – reference: Hepler, N. L. et al. An Improved Circular Consensus Algorithm with an Application to Detect HIV-1 Drug-Resistance Associated Mutations (DRAMs). An Improved Circular Consensus Algorithm with an Application to Detect HIV-1 Drug-Resistance Associated Mutations (DRAMs). Conference on Advances in Genome Biology and Technology; 2016. – reference: KuznetsovYGVictoriaJGRobinsonWEJr.McPhersonAAtomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytesJ. Virol.20037711896119091:CAS:528:DC%2BD3sXovVansLo%3D1458152625426810.1128/JVI.77.22.11896-11909.2003 – reference: World Health Organization Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. World Health Organization: Geneva, 2021. – reference: Doria-RoseNADevelopmental pathway for potent V1V2-directed HIV-neutralizing antibodiesNature201450955622014Natur.509...55D1:CAS:528:DC%2BC2cXntlyisrs%3D24590074439500710.1038/nature13036 – reference: HessellAJFc receptor but not complement binding is important in antibody protection against HIVNature20074491011042007Natur.449..101H1:CAS:528:DC%2BD2sXpvFWrs7s%3D1780529810.1038/nature06106 – reference: ChunTWDaveyRTJr.EngelDLaneHCFauciASRe-emergence of HIV after stopping therapyNature19994018748751999Natur.401..874C1:CAS:528:DyaK1MXntFyhs74%3D1055390310.1038/44755 – reference: ChunTWPresence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapyProc. Natl. Acad. Sci. USA19979413193131971997PNAS...9413193C1:CAS:528:DyaK2sXnvFamtrc%3D93718222428510.1073/pnas.94.24.13193 – reference: LiHEnvelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaquesProc. Natl. Acad. Sci. USA2016113E3413E34222016PNAS..113.3453L1:CAS:528:DC%2BC28XovV2jsbs%3D272474004914158 – reference: GaudinskiMRSafety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adultsPLoS Med.20181529364886578334710.1371/journal.pmed.1002493 – reference: HuangJBroad and potent neutralization of HIV-1 by a gp41-specific human antibodyNature20124914064122012Natur.491..406H1:CAS:528:DC%2BC38Xhs1OgsrzL23151583485428510.1038/nature11544 – reference: DaveyRTJr.HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppressionProc. Natl. Acad. Sci. USA19999615109151141999PNAS...9615109D1:CAS:528:DC%2BD3cXhtFartA%3D%3D106113462478110.1073/pnas.96.26.15109 – reference: ScheidJFSequence and structural convergence of broad and potent HIV antibodies that mimic CD4 bindingScience2011333163316372011Sci...333.1633S1:CAS:528:DC%2BC3MXhtFGitb%2FE21764753335183610.1126/science.1207227 – reference: ShingaiMAntibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemiaNature20135032772802013Natur.503..277S1:CAS:528:DC%2BC3sXhslSnsLbL24172896413378710.1038/nature12746 – reference: Flerin, N. C. et al. Establishment of a Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs. J. Virol.93, e02051–18 (2019). – reference: BarouchDHTherapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeysNature20135032242282013Natur.503..224B1:CAS:528:DC%2BC3sXhslSnsbzE24172905401778010.1038/nature12744 – reference: BoltonDLHuman Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral ReservoirsJ. Virol.201690132113321:CAS:528:DC%2BC28XosVClsbk%3D26581981471960410.1128/JVI.02454-15 – reference: MoldtBA nonfucosylated variant of the anti-HIV-1 monoclonal antibody b12 has enhanced FcgammaRIIIa-mediated antiviral activity in vitro but does not improve protection against mucosal SHIV challenge in macaquesJ. Virol.201286618961961:CAS:528:DC%2BC38XnsVKntr8%3D22457527337220710.1128/JVI.00491-12 – reference: LynchRMVirologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infectionSci. Transl. Med.20157319ra2062670209410.1126/scitranslmed.aad5752 – reference: CrowleyARAckermanMEMind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector FunctionFront Immunol.2019106971:CAS:528:DC%2BC1MXhtlKhu7nN31024542646375610.3389/fimmu.2019.00697 – reference: ScheidJFBroad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individualsNature20094586366402009Natur.458..636S1:CAS:528:DC%2BD1MXjtFCisLc%3D1928737310.1038/nature07930 – reference: RudicellRSEnhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivoJ. Virol.201488126691268225142607424894110.1128/JVI.02213-14 – reference: ZalevskyJEnhanced antibody half-life improves in vivo activityNat. Biotechnol.2010281571591:CAS:528:DC%2BC3cXntVClug%3D%3D20081867285549210.1038/nbt.1601 – reference: SokDRecombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apexProc. Natl. Acad. Sci. USA201411117624176292014PNAS..11117624S1:CAS:528:DC%2BC2cXhvFKmu7%2FN25422458426740310.1073/pnas.1415789111 – reference: BournazosSBroadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activityCell2014158124312531:CAS:528:DC%2BC2cXhsFCgtLnM25215485416739810.1016/j.cell.2014.08.023 – reference: ParsonsMSFc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaquesJ. Clin. Invest.20191291821913047523010.1172/JCI122466 – reference: ChanYNIgG Binding Characteristics of Rhesus Macaque FcgammaRJ. Immunol.2016197293629471:CAS:528:DC%2BC2sXos1Kmur4%3D2755904610.4049/jimmunol.1502252 – reference: Julg, B. et al. Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. J. Virol.91, e00498–17 (2017). – reference: ShingaiMMost rhesus macaques infected with the CCR5-tropic SHIV(AD8) generate cross-reactive antibodies that neutralize multiple HIV-1 strainsProc. Natl. Acad. Sci. USA201210919769197742012PNAS..10919769S1:CAS:528:DC%2BC38XhvVChurbO23129652351173710.1073/pnas.1217443109 – reference: Radecki, P., Ko, S. H., Lucas, M. & Boritz, E. niaid/UMI-pacbio-pipeline: v1 with SHIV (1-dc6ef5c). 2024 [cited]Available from: https://doi.org/10.5281/zenodo.12825013. – reference: HsuDCTLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruptionPLoS Pathog.2021171:CAS:528:DC%2BB3MXlvVKhsrs%3D33600506792476610.1371/journal.ppat.1009339 – reference: CowellRLDorseyKEMeinkothJHLymph node cytologyVet. Clin. North Am. Small Anim. Pr.2003334767, v10.1016/S0195-5616(02)00055-4 – reference: HessellAJEffective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaquesNat. Med.2009159519541:CAS:528:DC%2BD1MXnt1ShsLs%3D19525965433443910.1038/nm.1974 – volume: 86 start-page: 4688 year: 2012 ident: 51848_CR11 publication-title: J. Virol. doi: 10.1128/JVI.07163-11 – volume: 543 start-page: 559 year: 2017 ident: 51848_CR29 publication-title: Nature doi: 10.1038/nature21435 – volume: 111 start-page: 17624 year: 2014 ident: 51848_CR14 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1415789111 – volume: 458 start-page: 636 year: 2009 ident: 51848_CR8 publication-title: Nature doi: 10.1038/nature07930 – volume: 5 start-page: 140 year: 2014 ident: 51848_CR30 publication-title: Front Immunol. doi: 10.3389/fimmu.2014.00140 – volume: 278 start-page: 1295 year: 1997 ident: 51848_CR3 publication-title: Science doi: 10.1126/science.278.5341.1295 – volume: 6 start-page: e667 year: 2019 ident: 51848_CR51 publication-title: Lancet HIV doi: 10.1016/S2352-3018(19)30181-X – volume: 326 start-page: 285 year: 2009 ident: 51848_CR12 publication-title: Science doi: 10.1126/science.1178746 – volume: 522 start-page: 487 year: 2015 ident: 51848_CR22 publication-title: Nature doi: 10.1038/nature14411 – volume: 117 start-page: 18002 year: 2020 ident: 51848_CR41 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2008190117 – volume: 22 start-page: 362 year: 2016 ident: 51848_CR26 publication-title: Nat. Med. doi: 10.1038/nm.4063 – volume: 129 start-page: 182 year: 2019 ident: 51848_CR39 publication-title: J. Clin. Invest. doi: 10.1172/JCI122466 – volume: 278 start-page: 1291 year: 1997 ident: 51848_CR4 publication-title: Science doi: 10.1126/science.278.5341.1291 – volume: 27 start-page: 1718 year: 2021 ident: 51848_CR54 publication-title: Nat. Med. doi: 10.1038/s41591-021-01509-0 – volume: 509 start-page: 55 year: 2014 ident: 51848_CR13 publication-title: Nature doi: 10.1038/nature13036 – volume: 103 start-page: 4005 year: 2006 ident: 51848_CR42 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508123103 – volume: 158 start-page: 989 year: 2014 ident: 51848_CR32 publication-title: Cell doi: 10.1016/j.cell.2014.07.043 – ident: 51848_CR35 doi: 10.1128/JVI.02051-18 – volume: 11 year: 2020 ident: 51848_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13972-y – ident: 51848_CR69 doi: 10.5281/zenodo.12825013 – volume: 33 start-page: 47 year: 2003 ident: 51848_CR66 publication-title: Vet. Clin. North Am. Small Anim. Pr. doi: 10.1016/S0195-5616(02)00055-4 – volume: 503 start-page: 277 year: 2013 ident: 51848_CR19 publication-title: Nature doi: 10.1038/nature12746 – volume: 401 start-page: 874 year: 1999 ident: 51848_CR6 publication-title: Nature doi: 10.1038/44755 – volume: 503 start-page: 224 year: 2013 ident: 51848_CR20 publication-title: Nature doi: 10.1038/nature12744 – volume: 109 start-page: 19769 year: 2012 ident: 51848_CR55 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1217443109 – volume: 96 start-page: 15109 year: 1999 ident: 51848_CR7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.26.15109 – ident: 51848_CR70 doi: 10.5281/zenodo.12802634 – ident: 51848_CR1 – volume: 7 start-page: 319ra206 year: 2015 ident: 51848_CR23 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad5752 – volume: 86 start-page: 6189 year: 2012 ident: 51848_CR38 publication-title: J. Virol. doi: 10.1128/JVI.00491-12 – volume: 23 start-page: 185 year: 2017 ident: 51848_CR24 publication-title: Nat. Med. doi: 10.1038/nm.4268 – volume: 27 start-page: 491 year: 2017 ident: 51848_CR64 publication-title: Genome Res doi: 10.1101/gr.209601.116 – volume: 23 start-page: 653 year: 2015 ident: 51848_CR31 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.07.005 – volume: 329 start-page: 856 year: 2010 ident: 51848_CR9 publication-title: Science doi: 10.1126/science.1187659 – volume: 182 start-page: 289 year: 2015 ident: 51848_CR52 publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12692 – volume: 9 start-page: 1571 year: 2018 ident: 51848_CR67 publication-title: Front Immunol. doi: 10.3389/fimmu.2018.01571 – volume: 117 start-page: 18754 year: 2020 ident: 51848_CR40 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2008236117 – volume: 88 start-page: 12669 year: 2014 ident: 51848_CR43 publication-title: J. Virol. doi: 10.1128/JVI.02213-14 – volume: 94 start-page: 13193 year: 1997 ident: 51848_CR5 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.24.13193 – volume: 491 start-page: 406 year: 2012 ident: 51848_CR18 publication-title: Nature doi: 10.1038/nature11544 – volume: 7 start-page: 298ra120 year: 2015 ident: 51848_CR65 publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.aab3964 – volume: 352 start-page: 1001 year: 2016 ident: 51848_CR34 publication-title: Science doi: 10.1126/science.aaf1279 – volume: 24 start-page: 1701 year: 2018 ident: 51848_CR25 publication-title: Nat. Med. doi: 10.1038/s41591-018-0186-4 – ident: 51848_CR71 doi: 10.5281/zenodo.12801249 – volume: 17 year: 2021 ident: 51848_CR50 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009339 – volume: 90 start-page: 1321 year: 2016 ident: 51848_CR28 publication-title: J. Virol. doi: 10.1128/JVI.02454-15 – volume: 17 year: 2021 ident: 51848_CR46 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009431 – volume: 9 year: 2013 ident: 51848_CR47 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003342 – ident: 51848_CR63 – volume: 477 start-page: 466 year: 2011 ident: 51848_CR17 publication-title: Nature doi: 10.1038/nature10373 – volume: 113 start-page: E3413 year: 2016 ident: 51848_CR59 publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: a007161 year: 2012 ident: 51848_CR2 publication-title: Cold Spring Harb. Perspect. Med doi: 10.1101/cshperspect.a007161 – volume: 131 start-page: e151632 year: 2021 ident: 51848_CR49 publication-title: J. Clin. Invest. doi: 10.1172/JCI151632 – volume: 63 start-page: 351 year: 2011 ident: 51848_CR57 publication-title: Immunogenetics doi: 10.1007/s00251-011-0514-z – volume: 28 start-page: 157 year: 2010 ident: 51848_CR45 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 10 start-page: 697 year: 2019 ident: 51848_CR48 publication-title: Front Immunol. doi: 10.3389/fimmu.2019.00697 – ident: 51848_CR21 doi: 10.1128/JVI.00498-17 – volume: 158 start-page: 1243 year: 2014 ident: 51848_CR33 publication-title: Cell doi: 10.1016/j.cell.2014.08.023 – volume: 547 start-page: 123 year: 2017 ident: 51848_CR60 publication-title: Nature doi: 10.1038/nature22984 – volume: 211 start-page: 2061 year: 2014 ident: 51848_CR56 publication-title: J. Exp. Med. doi: 10.1084/jem.20132494 – volume: 9 year: 2014 ident: 51848_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0099881 – volume: 166 start-page: 1004 year: 2016 ident: 51848_CR62 publication-title: Cell doi: 10.1016/j.cell.2016.06.039 – volume: 77 start-page: 11896 year: 2003 ident: 51848_CR68 publication-title: J. Virol. doi: 10.1128/JVI.77.22.11896-11909.2003 – volume: 15 year: 2018 ident: 51848_CR53 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002493 – volume: 449 start-page: 101 year: 2007 ident: 51848_CR36 publication-title: Nature doi: 10.1038/nature06106 – volume: 333 start-page: 1633 year: 2011 ident: 51848_CR10 publication-title: Science doi: 10.1126/science.1207227 – volume: 109 start-page: E3268 year: 2012 ident: 51848_CR15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1217207109 – volume: 6 start-page: 236ra263 year: 2014 ident: 51848_CR16 publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3008104 – volume: 15 start-page: 951 year: 2009 ident: 51848_CR37 publication-title: Nat. Med. doi: 10.1038/nm.1974 – volume: 9 start-page: eaao4235 year: 2017 ident: 51848_CR44 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aao4235 – volume: 197 start-page: 2936 year: 2016 ident: 51848_CR58 publication-title: J. Immunol. doi: 10.4049/jimmunol.1502252 |
SSID | ssj0000391844 |
Score | 2.4867837 |
Snippet | Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab... Abstract Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7461 |
SubjectTerms | 13/1 13/106 13/31 14/19 14/63 38/91 45/90 631/250/2152/2153/1291 631/250/2520 692/308/2778 692/699/255/1901 Affinity Antibodies Antiviral agents Antiviral drugs Binding CD69 antigen CD8 antigen Cell-mediated immunity Chronic infection Down-regulation Fc receptors HIV Human immunodeficiency virus Humanities and Social Sciences Immunology Infections Lymph nodes Lymphocytes Lymphocytes T Monkeys Monoclonal antibodies Monocytes multidisciplinary Mutation Neutralization Neutralizing NF-κB protein Receptors Science Science (multidisciplinary) Shape effects Viruses γ-Interferon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJSQuiF8R2iIjcQOrydpJ7GOhXS1IwAGKerP8K1ZaJVU3ewivwaPwHn0mZpzstqkEXLjGThzPn8ee8TeEvKqMsMIay0olBBM-GFCpqmB1XtoaEdlkSh7_-KlanIkP5-X5jVJfmBM2wAMPhDuysVDBRydKWQsnK2MLGXLlcx9nGFND6wtr3o3NVLLBXMHWRYy3ZHIuj9Yi2QRYklgJTZL1k5UoAfZPvMzbOZK3AqVp_Zk_IPdHx5EeDz_8kNwJzSNydygl2T8mP6couLSNFGi2ZIv331hB7WVr_KqnTdikk40fMAQFAWzdCj3x1NW2mFBI8WCWLht0JtfBUxMjfLbradfSubv6RcFChgss0UOHG47UuE0X6BcY6PhEstPPdJvf1TwhZ_PTr-8WbCy4wBzQpGM1B3cqVsKCmnIrKilNiQCBuavqopQxV6H24KKpiJ5jCcYg-spK2LJYRMmJ_CnZa9omPCMUuKSclDZ3PgonjAql5Zx7x10xq6zLSLElvnYjGjkWxVjpFBXnUg8M08AwnRim-4y83r1zMWBx_LX3W-TprifiaKcHIF16lC79L-nKyMFWIvSo3GvNcyUxACtERl7umkEtMdZimtBuUh-FKbSFyoicSNLkh6YtzfJ7AvgukLjgOWfkzVborkf_84yf_48Z75N7M1SSHC_nHJC97nITDsHv6uyLpGK_AZ4rK0A priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxFMEFmQkbmBt0jiJfUILbFWQgAMs6s3yEypVSWnTQ_gb_BT-B7-JGSfpKiux19iJH_PwZGb8DSEvSs0NN9qwQnLOuPMaRKrMWJUWpkJENhGTxz9-Khfn_MOyWA4Ot92QVjnqxKioXWPRR36Sp1Jg1Ivz15ufDKtGYXR1KKFxndxA6DJM6aqW1cHHgujngvPhrkyai5Mdj5oBDiZWQJNg3eQ8irD9E1vzcqbkpXBpPIXmd8jtwXykpz2975Jrvr5HbvYFJbv75PcUC5c2gcLOrdji_TeWUbNttFt3tPb76N_4BUNQWFdj12iPx66mwbRCiu5ZuqrRpNx5R3UI8Nm2o21D5_bvHwp60m-wUA_t7zlSbfetp19goNN3gp19pmOWV_2AnM_Pvr5dsKHsArOwJy2rcjCqQskNCGtueCmELhAmMLVllRUipNJXDgw1GdB-LEAlBFcaAT8uBrFyQv6QHNVN7R8RajIhrRAmtS5wy7X0hcnz3NncZrPS2IRk4-YrO2CSY2mMtYqx8VyonmAKCKYiwVSXkJeHdzY9IseVvd8gTQ89EU07Pmi239UgnMqETHoXLC9Exa0oNczbp9KlLswwbpuQ45Ej1CDiO3XBkAl5fmgG4cSIi659s499JCbSZjIhYsJJkwlNW-rVjwjzneHmgv2ckFcj012M_v8VP756sk_IrRmyf4qXb47JUbvd-6dgV7XmWRSefy61Ii0 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKERIXxK8IFGQkbmCRrJ3EOZalqwUJOEBRb5Z_6UqrpNrNHsJr9FH6HjwTM06yKBUgcU3GsTOesT97xp8JeVloYYTRhuWVEEw4r8GlioyVaW5KZGSTMXn846dieSo-nOVnB2Q2noWJSfuR0jIO02N22JutiC4NMwrLYVEiWXeD3ETqdrTqeTHf76sg47kUYjgfk3L5h6KTOShS9U_w5fXsyGsh0jjzLO6SOwNkpMd9I--RA1_fJ7f6SyS7B-Ryyn9Lm0BBWyu2fP-NZdRsGu3WHa39Lu5p_IAqKJheY9eIwaOoaTCVkOKWLF3VCCO33lEdAny27Wjb0IX9eUVhbPQXeDkP7c82Um13radfoKLjd5KdfKZjZlf9kJwuTr7Ol2y4aoFZ0EnLSg5AKhTCgINyIwopdY7UgKktyiyXIa186QCcVQExYw7DQHCFkbBYMciPE_gjclg3tX9MqMlkZaU0qXVBWKErnxvOubPcZrPC2IRko_KVHXjI8TqMtYrxcC5V32EKOkzFDlNdQl7ty1z0LBz_lH6LfbqXRAbt-KDZfFeDRSkTssq7YEUOVmRloaHdPq1c6sIMY7UJORotQg1uvVU8rSSGXoVIyIv9a3BIjLLo2je7KFNh8mxWJUROLGnSoOmbenUeqb0zVC5g5oS8Ho3ud-1__-Mn_yf-lNyeoTukeADniBy2m51_BtiqNc-jM_0CoSkglQ priority: 102 providerName: Springer Nature |
Title | Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection |
URI | https://link.springer.com/article/10.1038/s41467-024-51848-y https://www.proquest.com/docview/3098035144 https://www.proquest.com/docview/3099141019 https://pubmed.ncbi.nlm.nih.gov/PMC11358508 https://doaj.org/article/bf19edfc45874c86ab18e09d0df26155 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELb2R0hcEL8isFRG4gaGpHYS54BQt7SUSrsglqK9RbFjQ6UqWdpUIrwGj8J78EzMOElRVgsSl0SKndgZz3g-e8YzhDyJMqGEyhQLEyGYyE0GIhUFLPZDFWNENumcx09Oo9lCzM_D8z3SpTtqCbi5cmmH-aQW69Xzb1_rVyDwL5sj4_LFRjhxB23DQliwSFbvk0PQTDEK6kkL993MzBMoR0Pz0BcBA93N23M0V3-mp6tcSP8eDr3sRXnJlOo01PQmudFCSzpqeOEW2TPFbXKtSTZZ3yE_-nFyaWkpUHXJZm8_sYCqdZnlq5oWZuv2Pr5DExRYtNQrxOquqirR5ZDi1i1dFgg3NyanmbXw2aqmVUmn-tdPCnOoucAkPrQ5A0kzva0MPYOGRq8lm7yjnQdYcZcsppOP4xlrUzIwDTSpWMwBcNlIKBBkrkQkZRZiCEFfR3EQSusnJs4BxCUWsWUI04XNIyVhUaMwjo7l98hBURbmPqEqkImWUvk6t0KLLDGh4pznmutgGCntkaAjfqrbeOWYNmOVOrs5l2kzYCkMWOoGLK098nT3zkUTreOftY9xTHc1MdK2e1CuP6et4KbKBonJrRahjIWWUQb9Nn6S-7kdok3XI0cdR6Qd96bcTySaaIXwyONdMQguWmOywpRbVydBJ9sg8YjscVKvQ_2SYvnFhQAPkLiArT3yrGO6P63__Y8f_Bd9HpLrQ5QGH8_pHJGDar01jwCCVWpA9uPzGK5y-mZADkej-dkc7seT0_cf4Ok4Gg_c5sbAyd9v_8UyWg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYIN4ilSChgJVmA1mTiJs0Co0I5m6IMFLZpdGr9gpFEynckIhd_gP9jwH3wT9zrJVKlEd90mTuz4Pnzie30uIa_inEsuc8milHPGtcnBpOKAJX4kE2RkEy55_Og4Hp3yT5NoskF-d2dhMK2y84nOUetS4R75TuinAqNenL-fnzOsGoXR1a6ERqMWB6b-Ab9sy3fjPZDv68FguH_yccTaqgJMRYGoWBICZrAxl6CLoeSxEHmELHi-ipMgEtZPTaIBh6QW4VEEGm91LAXgcolUMDaE994gN2Hh9dGikkmy3tNBtnXBeXs2xw_FzpI7TwQLIYPOuWB1b_1zZQJ62PZyZual8Kxb9Yb3yN0WrtLdRr_ukw1TPCC3mgKW9UPyq8-9S0tLQVJTNhp_ZQGVizLXs5oWZuX2U35CFxTmsVQzxP-uqSwxjZHidjCdFghhl0bT3Fp4bVXTqqRD9fcPBb9s5lgYiDbnKmmuVpWhX6Cj3T3B9j_TLquseEROr0Ugj8lmURbmCaEyEKkSQvpKW654nppIhmGoVaiCQSyVR4Ju8jPVcqBjKY5Z5mLxocgagWUgsMwJLKs98mb9zLxhALmy9QeU6bolsne7C-XiW9Y6g0zaIDXaKh6JhCsR5zBu46fa13aAcWKPbHcakbUuZZldGIBHXq5vgzPACE9emHLl2qSYuBukHhE9TeoNqH-nmH53tOIBTi7gdY-87ZTuovf_f_HW1YN9QW6PTo4Os8Px8cFTcmeApuDjwZ9tslktVuYZYLpKPneGRMnZdVvuP5I5W0I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRSAuiF8RWMBIcAKrSeMkzgGhhW7VsrAgwaLevLFjQ6UqKW0qFF6DR-HGQ_BMzDhJV1mJve01cWLH8-MvnvE3hDyNM664yhSLUs4Zz00GJhUHLPEjlSAjm3DJ4--P4skxfzuLZjvkT3cWBtMqO5_oHHVeatwjH4R-KjDqxfnAtmkRH0fjV8vvDCtIYaS1K6fRqMihqX_A79v65XQEsn42HI4PPr-ZsLbCANNRICqWhIAfbMwV6GWoeCxEFiEjnq_jJIiE9VOT5IBJUotQKQLtt3msBGB0hbQwNoT3XiKXExgX2lgyS7b7O8i8Ljhvz-n4oRisufNKsCgy6JwLVvfWQlcyoIdzz2ZpngnVuhVwfINcb6Er3W907SbZMcUtcqUpZlnfJr_6PLy0tBSkNmeT6RcWULUqs3xR08Js3N7KT-iCwjyWeoH_Aq6pKjGlkeLWMJ0XCGfXJqeZtfDaqqZVScf6728KPtossUgQbc5Y0kxvKkM_QUf7I8EOPtAuw6y4Q44vRCB3yW5RFuYeoSoQqRZC-Tq3XPMsNZEKwzDXoQ6GsdIeCbrJl7rlQ8eyHAvp4vKhkI3AJAhMOoHJ2iPPt88sGzaQc1u_RpluWyKTt7tQrr7K1jFIZYPU5FbzSCRciziDcRs_zf3cDjFm7JG9TiNk617W8tQYPPJkexscA0Z7ssKUG9cmxSTeIPWI6GlSb0D9O8X8m6MYD3ByAbt75EWndKe9__-L758_2MfkKtisfDc9OnxArg3REnw8A7RHdqvVxjwEeFepR86OKDm5aMP9B-XWX3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Administration+of+anti-HIV-1+broadly+neutralizing+monoclonal+antibodies+with+increased+affinity+to+Fc%CE%B3+receptors+during+acute+SHIVAD8-EO+infection&rft.jtitle=Nature+communications&rft.au=Dias%2C+Joana&rft.au=Fabozzi%2C+Giulia&rft.au=Fourati%2C+Slim&rft.au=Chen%2C+Xuejun&rft.date=2024-08-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-51848-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_51848_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |