Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading
Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nit...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5679 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-41423-2 |
Cover
Loading…
Abstract | Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu
single-atom
-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm
−2
for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity. |
---|---|
AbstractList | Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu
single-atom
-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm
−2
for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity. Abstract Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm−2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity. Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu single-atom -Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm −2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity. Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm−2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity. Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity. |
ArticleNumber | 5679 |
Author | Yu, Hongjie Mu, Xu Wang, Ziqiang Deng, Kai Mao, Qiqi Wang, Wenxin Xu, You Wang, Hongjing Wang, Liang |
Author_xml | – sequence: 1 givenname: Qiqi surname: Mao fullname: Mao, Qiqi organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 2 givenname: Xu surname: Mu fullname: Mu, Xu organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 3 givenname: Wenxin surname: Wang fullname: Wang, Wenxin organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 4 givenname: Kai surname: Deng fullname: Deng, Kai organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 5 givenname: Hongjie surname: Yu fullname: Yu, Hongjie organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 6 givenname: Ziqiang surname: Wang fullname: Wang, Ziqiang organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 7 givenname: You surname: Xu fullname: Xu, You organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 8 givenname: Liang surname: Wang fullname: Wang, Liang organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology – sequence: 9 givenname: Hongjing orcidid: 0000-0003-0641-3909 surname: Wang fullname: Wang, Hongjing email: hjw@zjut.edu.cn organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology |
BookMark | eNp9Uk1v1DAQjVARLUv_AKdIXLgEHH_nhKoVH5UqISE4W4492fXKiRfbQdorvxxnUwTtoT7YM-P33ozH87K6mMIEVfW6Re9aROT7RFvKRYMwaYpVdvysusKItk0rMLn4z76srlM6oLJI10pKX1SXRAjUCcGuqt83OYzOaO9PtXXpCDGBrbdzbUKI1k06F_fbvh4hFwxMUOsY9SnVQ4h1cuPss54gzKnwwYPJMZg9nBVrPTnvCiOdpryH5FKJ2Lp3YdQp1fNxF3XJsHtVPR-0T3B9f26qH58-ft9-ae6-fr7d3tw1hrUyNwL13CJm-t4w3IlegOYEcbE4Eg0aUc6BcaCGSNkZ03XQISxaQnuMSsvIprpddW3QB3WMbtTxpIJ26hwIcad0zM54UL3knPSDsFYA7ZDRHA1WMGQRkpphWrQ-rFrHuR_BGphy1P6B6MObye3VLvxSLWIIt-XXNtXbe4UYfs6QshpdMuD92k6FJWdCdJ1ckr15BD2EOU6lVwuKCsSoZAUlV5SJIaUIgzIu6-zCUoDzJbNaBketg6NKCeo8OGqpBT-i_n3IkySyklIBTzuI_6p6gvUH4tLYAA |
CitedBy_id | crossref_primary_10_1021_acscatal_4c05707 crossref_primary_10_1002_anie_202410442 crossref_primary_10_1021_acs_nanolett_4c03361 crossref_primary_10_1002_adfm_202407236 crossref_primary_10_1021_jacs_4c02835 crossref_primary_10_1002_adfm_202404648 crossref_primary_10_1016_j_ccr_2024_216399 crossref_primary_10_1016_j_chempr_2024_07_015 crossref_primary_10_1021_acsmaterialslett_4c00596 crossref_primary_10_1021_acsanm_3c04938 crossref_primary_10_1021_acsami_3c11303 crossref_primary_10_1002_adma_202404659 crossref_primary_10_1002_smtd_202301307 crossref_primary_10_1039_D4EE05500D crossref_primary_10_1016_j_apcatb_2024_124047 crossref_primary_10_1039_D4TA04581E crossref_primary_10_1039_D3QI01771K crossref_primary_10_1021_acsanm_4c01571 crossref_primary_10_1016_j_ccr_2025_216603 crossref_primary_10_1021_acsanm_3c03960 crossref_primary_10_1039_D4QI00319E crossref_primary_10_1016_j_cej_2024_152950 crossref_primary_10_1002_adsc_202400771 crossref_primary_10_1002_aenm_202304065 crossref_primary_10_1016_j_apcatb_2024_124958 crossref_primary_10_1002_smll_202310409 crossref_primary_10_1002_adma_202402767 crossref_primary_10_1149_1945_7111_ad4682 crossref_primary_10_1002_smll_202406829 crossref_primary_10_1002_eem2_12761 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1016_j_jechem_2024_11_063 crossref_primary_10_1021_acsmaterialslett_3c01414 crossref_primary_10_1016_j_ccr_2024_216296 crossref_primary_10_1002_smll_202407446 crossref_primary_10_1002_smll_202409502 crossref_primary_10_1016_j_seppur_2024_130244 crossref_primary_10_1016_j_jhazmat_2025_137679 crossref_primary_10_1021_acsami_4c09776 crossref_primary_10_1039_D4TA01071J crossref_primary_10_1002_ange_202410442 crossref_primary_10_1016_j_cjche_2024_05_018 crossref_primary_10_1016_j_mtsust_2023_100630 crossref_primary_10_1021_acs_nanolett_4c04966 crossref_primary_10_1016_j_apcatb_2024_123919 crossref_primary_10_1021_acsami_4c14927 crossref_primary_10_1088_1361_6528_ad9aad crossref_primary_10_1002_adma_202401857 crossref_primary_10_1002_adfm_202420728 crossref_primary_10_1002_smll_202407679 crossref_primary_10_1016_j_mtener_2024_101493 crossref_primary_10_1088_1361_6528_ad18ea crossref_primary_10_1016_j_cej_2024_149054 crossref_primary_10_1002_adfm_202410614 crossref_primary_10_1002_adma_202402747 crossref_primary_10_1088_1361_6528_ad2c5b |
Cites_doi | 10.1002/adma.202106028 10.1021/acs.nanolett.0c00364 10.1002/adma.202007894 10.1021/acs.chemrev.0c00158 10.1002/adfm.201909610 10.1021/acscatal.2c03551 10.1016/j.apcatb.2021.120359 10.1016/j.apcatb.2021.120545 10.1021/acs.chemrev.0c00078 10.1126/science.adg2866 10.1002/adfm.202209890 10.1021/acssuschemeng.9b01260 10.1002/aenm.201903038 10.1002/aenm.202201823 10.1021/jacs.2c03544 10.1021/acscatal.3c01285 10.1002/anie.202209849 10.1021/acsnano.3c02066 10.1016/j.jechem.2023.06.005 10.1016/j.apcatb.2017.12.079 10.1021/acscatal.8b04103 10.1002/adma.202302007 10.1002/eem2.12295 10.1039/C9TA03945G 10.31635/ccschem.020.202000218 10.1126/science.1215864 10.1002/anie.202101019 10.1016/j.cej.2019.06.020 10.1016/j.apsusc.2021.150318 10.1039/D0CS01041C 10.1038/s41929-019-0279-6 10.1021/acsenergylett.0c02498 10.1039/D0EE03183F 10.1002/eem2.12563 10.1002/anie.202207512 10.1002/adma.202208860 10.1016/j.apcatb.2020.119510 10.1021/acsnano.2c07911 10.1021/acssuschemeng.9b07041 10.1002/anie.202205923 10.1002/anie.202200211 10.1002/adma.202008508 10.1021/acs.accounts.9b00544 10.1021/jacs.1c09274 10.1002/adma.201908521 10.1038/s41586-019-1603-7 10.1021/acsnano.2c11094 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-41423-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_b8663bf7dd7e490ca60fd750d008a524 PMC10502102 10_1038_s41467_023_41423_2 |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2021M702889 funderid: https://doi.org/10.13039/501100002858 – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation) grantid: LQ23B030010; LQ22B030012 funderid: https://doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21978264; 22278369; 21905250; 21972126 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: LQ23B030010; LQ22B030012 – fundername: ; grantid: 2021M702889 – fundername: ; grantid: 21978264; 22278369; 21905250; 21972126 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-70b6d05cbbc5297b7ea63067529780fa0466e56e4c3889cc99e9027134b201033 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:08:10 EDT 2025 Thu Aug 21 18:36:45 EDT 2025 Thu Jul 10 18:44:11 EDT 2025 Sat Aug 23 13:34:46 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 02:10:35 EDT 2025 Fri Feb 21 02:39:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-70b6d05cbbc5297b7ea63067529780fa0466e56e4c3889cc99e9027134b201033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0641-3909 |
OpenAccessLink | https://www.nature.com/articles/s41467-023-41423-2 |
PMID | 37709775 |
PQID | 2864705485 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8663bf7dd7e490ca60fd750d008a524 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10502102 proquest_miscellaneous_2865779984 proquest_journals_2864705485 crossref_citationtrail_10_1038_s41467_023_41423_2 crossref_primary_10_1038_s41467_023_41423_2 springer_journals_10_1038_s41467_023_41423_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-14 |
PublicationDateYYYYMMDD | 2023-09-14 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hao (CR19) 2021; 281 Do (CR40) 2023; 35 Yang (CR44) 2019; 7 Li (CR18) 2022; 13 Mao (CR39) 2023; 85 Akhade (CR1) 2020; 120 Cao, Xu, Cheng (CR56) 2020; 10 Kim (CR50) 2022; 34 Zhang (CR49) 2023; 14 Tao (CR54) 2022; 144 Zhao, Liu, Wang, Chong, Zhang (CR11) 2021; 3 Ji (CR31) 2022; 61 Wang, Stahl (CR5) 2020; 53 Meng (CR6) 2022; 13 Jin (CR10) 2021; 298 Ge (CR14) 2022; 61 Giannakakis (CR23) 2021; 143 Forslund, Alexander, Abakumov, Johnston, Stevenson (CR13) 2019; 9 Yu (CR36) 2021; 60 Wu (CR29) 2023; 13 Mao (CR28) 2020; 20 Shen, Wang, Zhao, Hu, Wang (CR25) 2022; 12 Liu (CR27) 2022; 13 Li (CR32) 2022; 61 Mao (CR12) 2023; 17 Daems (CR21) 2018; 226 Babar (CR45) 2019; 7 Lee (CR30) 2020; 13 Yang (CR22) 2021; 296 Zhong (CR47) 2021; 33 CR16 Luo (CR33) 2021; 33 Kumar (CR51) 2021; 6 Yang (CR2) 2022; 13 Ahmadi, Wu (CR9) 2019; 374 Li (CR34) 2019; 2 Andrews (CR7) 2020; 8 Zhao (CR15) 2021; 12 Li (CR46) 2020; 32 CR52 Von Munchow, Dana, Xu, Yuan, Ackermann (CR3) 2023; 379 Yang, Yuan, Peng, Wang, Zou (CR4) 2022; 5 Kyriakou (CR24) 2012; 335 Chen (CR43) 2023; 33 Xiang (CR20) 2020; 30 Ma, Wang, Majima, Zhao (CR8) 2022; 12 Luo (CR38) 2019; 574 Li, Shen, Li, Ma, Chu (CR41) 2023; 17 Zhu (CR17) 2023; 14 Wu (CR42) 2022; 61 Zhan (CR55) 2021; 12 Hannagan, Giannakakis, Flytzani-Stephanopoulos, Sykes (CR26) 2020; 120 Prabhu, Lee (CR37) 2021; 50 Morales (CR48) 2021; 563 Wang (CR53) 2023; 42 Prabhu (CR35) 2023; 17 S Luo (41423_CR33) 2021; 33 G Giannakakis (41423_CR23) 2021; 143 S Li (41423_CR18) 2022; 13 G Yang (41423_CR2) 2022; 13 D Cao (41423_CR56) 2020; 10 H Zhao (41423_CR15) 2021; 12 JY Kim (41423_CR50) 2022; 34 M Jin (41423_CR10) 2021; 298 X Wang (41423_CR53) 2023; 42 P Prabhu (41423_CR35) 2023; 17 SA Akhade (41423_CR1) 2020; 120 RP Forslund (41423_CR13) 2019; 9 J Mao (41423_CR28) 2020; 20 Z Li (41423_CR46) 2020; 32 T Von Munchow (41423_CR3) 2023; 379 R Ge (41423_CR14) 2022; 61 J Hao (41423_CR19) 2021; 281 P Prabhu (41423_CR37) 2021; 50 VH Do (41423_CR40) 2023; 35 C Zhan (41423_CR55) 2021; 12 Q Yang (41423_CR44) 2019; 7 J Zhang (41423_CR49) 2023; 14 M Yang (41423_CR4) 2022; 5 41423_CR16 QF Yang (41423_CR22) 2021; 296 H Yu (41423_CR36) 2021; 60 41423_CR52 A Ahmadi (41423_CR9) 2019; 374 N Daems (41423_CR21) 2018; 226 G Kyriakou (41423_CR24) 2012; 335 Y Zhao (41423_CR11) 2021; 3 W Liu (41423_CR27) 2022; 13 W Zhong (41423_CR47) 2021; 33 M Li (41423_CR34) 2019; 2 K Chen (41423_CR43) 2023; 33 A Kumar (41423_CR51) 2021; 6 MR Morales (41423_CR48) 2021; 563 P Babar (41423_CR45) 2019; 7 X Wu (41423_CR29) 2023; 13 J Ma (41423_CR8) 2022; 12 X Li (41423_CR41) 2023; 17 M Luo (41423_CR38) 2019; 574 F Wang (41423_CR5) 2020; 53 RT Hannagan (41423_CR26) 2020; 120 T Shen (41423_CR25) 2022; 12 Q Mao (41423_CR39) 2023; 85 N Meng (41423_CR6) 2022; 13 E Andrews (41423_CR7) 2020; 8 L Tao (41423_CR54) 2022; 144 K Xiang (41423_CR20) 2020; 30 J Wu (41423_CR42) 2022; 61 Q Mao (41423_CR12) 2023; 17 B Zhu (41423_CR17) 2023; 14 K Ji (41423_CR31) 2022; 61 J Lee (41423_CR30) 2020; 13 X Li (41423_CR32) 2022; 61 |
References_xml | – volume: 2 start-page: 495 year: 2019 end-page: 503 ident: CR34 article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis publication-title: Nat. Catal. – volume: 12 year: 2021 ident: CR55 article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis publication-title: Nat. Commun. – volume: 12 year: 2021 ident: CR15 article-title: Raw biomass electroreforming coupled to green hydrogen generation publication-title: Nat. Commun. – volume: 17 start-page: 10733 year: 2023 end-page: 10747 ident: CR35 article-title: Oxygen-bridged stabilization of single atomic W on Rh metallenes for robust and efficient pH-universal hydrogen evolution publication-title: ACS Nano – volume: 13 year: 2022 ident: CR18 article-title: Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity publication-title: Nat. Commun. – volume: 296 start-page: 120359 year: 2021 ident: CR22 article-title: Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe-WO electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA cm publication-title: Appl. Catal. B: Environ. – ident: CR16 – volume: 7 start-page: 10035 year: 2019 end-page: 10043 ident: CR45 article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis publication-title: ACS Sustain. Chem. Eng. – volume: 12 start-page: 14062 year: 2022 end-page: 14071 ident: CR8 article-title: Role of Ni in PtNi alloy for modulating the proton–electron transfer of electrocatalytic hydrogenation revealed by the in situ raman–rotating disk electrode method publication-title: ACS Catal. – volume: 13 start-page: 6804 year: 2023 end-page: 6812 ident: CR29 article-title: Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction publication-title: ACS Catal. – volume: 33 start-page: 2007894 year: 2021 ident: CR47 article-title: RhSe : a superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions publication-title: Adv. Mater. – volume: 20 start-page: 3442 year: 2020 end-page: 3448 ident: CR28 article-title: Isolated Ni atoms dispersed on Ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction publication-title: Nano Lett. – volume: 574 start-page: 81 year: 2019 end-page: 85 ident: CR38 article-title: PdMo bimetallene for oxygen reduction catalysis publication-title: Nature – volume: 13 start-page: 5152 year: 2020 end-page: 5164 ident: CR30 article-title: Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation publication-title: Energy Environ. Sci. – volume: 14 year: 2023 ident: CR17 article-title: Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides publication-title: Nat. Commun. – volume: 9 start-page: 2664 year: 2019 end-page: 2673 ident: CR13 article-title: Enhanced electrocatalytic activities by substitutional tuning of nickel-based ruddlesden–popper catalysts for the oxidation of urea and small alcohols publication-title: ACS Catal. – volume: 33 start-page: 2209890 year: 2023 ident: CR43 article-title: Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia publication-title: Adv. Funct. Mater. – volume: 42 start-page: 100035 year: 2023 ident: CR53 article-title: Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction publication-title: Chin. J. Struc. Chem. – volume: 30 start-page: 1909610 year: 2020 ident: CR20 article-title: Boosting H generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts publication-title: Adv. Funct. Mater. – volume: 374 start-page: 1241 year: 2019 end-page: 1252 ident: CR9 article-title: Electrocatalytic reduction of nitrobenzene using TiO nanotube electrodes with different morphologies: Kinetics, mechanism, and degradation pathways publication-title: Chem. Eng. J. – volume: 61 start-page: 202200211 year: 2022 ident: CR14 article-title: Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 354 year: 2021 end-page: 363 ident: CR51 article-title: Modulating interfacial charge density of NiP –FeP via coupling with metallic Cu for accelerating alkaline hydrogen evolution publication-title: ACS Energy Lett. – volume: 120 start-page: 12044 year: 2020 end-page: 12088 ident: CR26 article-title: Single-atom alloy catalysis publication-title: Chem. Rev. – volume: 120 start-page: 11370 year: 2020 end-page: 11419 ident: CR1 article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review publication-title: Chem. Rev. – volume: 61 start-page: 202207512 year: 2022 ident: CR42 article-title: Atomically dispersed MoO on Rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 13 year: 2022 ident: CR6 article-title: Electrosynthesis of formamide from methanol and ammonia under ambient conditions publication-title: Nat. Commun. – volume: 61 start-page: 202209849 year: 2022 ident: CR31 article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru Cu single-atom alloy catalyst publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 4407 year: 2020 end-page: 4418 ident: CR7 article-title: Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds publication-title: ACS Sustain. Chem. Eng. – volume: 3 start-page: 507 year: 2021 end-page: 515 ident: CR11 article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H O over a Co S nanosheet cathode publication-title: CCS Chem. – volume: 298 start-page: 120545 year: 2021 ident: CR10 article-title: Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: experimental and theoretical studies publication-title: Appl. Catal. B: Environ. – volume: 85 start-page: 58 year: 2023 end-page: 66 ident: CR39 article-title: Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradation publication-title: J. Energy Chem. – volume: 7 start-page: 18846 year: 2019 end-page: 18851 ident: CR44 article-title: Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction publication-title: J. Mater. Chem. A – volume: 35 start-page: 2208860 year: 2023 ident: CR40 article-title: Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis publication-title: Adv. Mater. – volume: 281 start-page: 119510 year: 2021 ident: CR19 article-title: In situ facile fabrication of Ni(OH) nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution publication-title: Appl. Catal. B: Environ. – volume: 13 year: 2022 ident: CR27 article-title: Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes publication-title: Nat. Commun. – volume: 14 year: 2023 ident: CR49 article-title: Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis publication-title: Nat. Commun. – volume: 144 start-page: 10582 year: 2022 end-page: 10590 ident: CR54 article-title: A general synthetic method for high-entropy alloy subnanometer ribbons publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 561 year: 2020 end-page: 574 ident: CR5 article-title: Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron-proton transfer mediators publication-title: Acc. Chem. Res. – volume: 33 start-page: 2008508 year: 2021 ident: CR33 article-title: A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation publication-title: Adv. Mater. – volume: 17 start-page: 1081 year: 2023 end-page: 1090 ident: CR41 article-title: Sub-nm RuO clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia publication-title: ACS Nano – volume: 13 year: 2022 ident: CR2 article-title: Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock publication-title: Nat. Commun. – volume: 17 start-page: 790 year: 2023 end-page: 800 ident: CR12 article-title: Sulfur vacancy-rich amorphous Rh metallene sulfide for electrocatalytic selective synthesis of aniline coupled with efficient sulfion degradation publication-title: ACS Nano – volume: 379 start-page: 1036 year: 2023 end-page: 1042 ident: CR3 article-title: Enantioselective electrochemical cobalt-catalyzed aryl C-H activation reactions publication-title: Science – ident: CR52 – volume: 5 start-page: 1117 year: 2022 end-page: 1138 ident: CR4 article-title: Recent progress on electrocatalytic valorization of biomass-derived organics publication-title: Energy Environ. Mater. – volume: 143 start-page: 21567 year: 2021 end-page: 21579 ident: CR23 article-title: Mechanistic and electronic insights into a working NiAu single-atom alloy ethanol dehydrogenation catalyst publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2201823 year: 2022 ident: CR25 article-title: Recent advances of single-atom-alloy for energy electrocatalysis publication-title: Adv. Energy Mater. – volume: 34 start-page: 2106028 year: 2022 ident: CR50 article-title: Synergistic effect of Cu O mesh pattern on high-facet Cu surface for selective CO electroreduction to ethanol publication-title: Adv. Mater. – volume: 60 start-page: 12027 year: 2021 end-page: 12031 ident: CR36 article-title: Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 226 start-page: 509 year: 2018 end-page: 522 ident: CR21 article-title: Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals publication-title: Appl. Catal. B: Environ. – volume: 335 start-page: 1209 year: 2012 end-page: 1212 ident: CR24 article-title: Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations publication-title: Science – volume: 50 start-page: 6700 year: 2021 end-page: 6719 ident: CR37 article-title: Metallenes as functional materials in electrocatalysis publication-title: Chem. Soc. Rev. – volume: 32 start-page: 1908521 year: 2020 ident: CR46 article-title: Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction publication-title: Adv. Mater. – volume: 10 start-page: 1903038 year: 2020 ident: CR56 article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh Cu alloy phase for overall water splitting in all pH values publication-title: Adv. Energy Mater. – volume: 61 start-page: 202205923 year: 2022 ident: CR32 article-title: PdFe single-atom alloy metallene for N electroreduction publication-title: Angew. Chem. Int. Ed. – volume: 563 start-page: 150318 year: 2021 ident: CR48 article-title: In-depth structural and analytical study of the washcoating layer of a Mn-Cu monolithic catalyst using STEM-FIB, EDX and EELS. Insights into stability under working conditions publication-title: Appl. Surf. Sci. – volume: 14 year: 2023 ident: 41423_CR49 publication-title: Nat. Commun. – volume: 34 start-page: 2106028 year: 2022 ident: 41423_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.202106028 – volume: 20 start-page: 3442 year: 2020 ident: 41423_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00364 – volume: 33 start-page: 2007894 year: 2021 ident: 41423_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.202007894 – volume: 120 start-page: 11370 year: 2020 ident: 41423_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00158 – volume: 42 start-page: 100035 year: 2023 ident: 41423_CR53 publication-title: Chin. J. Struc. Chem. – volume: 30 start-page: 1909610 year: 2020 ident: 41423_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909610 – volume: 12 start-page: 14062 year: 2022 ident: 41423_CR8 publication-title: ACS Catal. doi: 10.1021/acscatal.2c03551 – volume: 296 start-page: 120359 year: 2021 ident: 41423_CR22 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120359 – volume: 298 start-page: 120545 year: 2021 ident: 41423_CR10 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120545 – volume: 120 start-page: 12044 year: 2020 ident: 41423_CR26 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00078 – volume: 379 start-page: 1036 year: 2023 ident: 41423_CR3 publication-title: Science doi: 10.1126/science.adg2866 – volume: 33 start-page: 2209890 year: 2023 ident: 41423_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209890 – volume: 7 start-page: 10035 year: 2019 ident: 41423_CR45 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01260 – volume: 10 start-page: 1903038 year: 2020 ident: 41423_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903038 – volume: 12 start-page: 2201823 year: 2022 ident: 41423_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201823 – volume: 144 start-page: 10582 year: 2022 ident: 41423_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03544 – volume: 13 start-page: 6804 year: 2023 ident: 41423_CR29 publication-title: ACS Catal. doi: 10.1021/acscatal.3c01285 – volume: 61 start-page: 202209849 year: 2022 ident: 41423_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209849 – volume: 17 start-page: 10733 year: 2023 ident: 41423_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.3c02066 – volume: 85 start-page: 58 year: 2023 ident: 41423_CR39 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.06.005 – volume: 226 start-page: 509 year: 2018 ident: 41423_CR21 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.12.079 – volume: 9 start-page: 2664 year: 2019 ident: 41423_CR13 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04103 – ident: 41423_CR52 doi: 10.1002/adma.202302007 – volume: 5 start-page: 1117 year: 2022 ident: 41423_CR4 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12295 – volume: 7 start-page: 18846 year: 2019 ident: 41423_CR44 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03945G – volume: 3 start-page: 507 year: 2021 ident: 41423_CR11 publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000218 – volume: 14 year: 2023 ident: 41423_CR17 publication-title: Nat. Commun. – volume: 12 year: 2021 ident: 41423_CR55 publication-title: Nat. Commun. – volume: 335 start-page: 1209 year: 2012 ident: 41423_CR24 publication-title: Science doi: 10.1126/science.1215864 – volume: 12 year: 2021 ident: 41423_CR15 publication-title: Nat. Commun. – volume: 13 year: 2022 ident: 41423_CR18 publication-title: Nat. Commun. – volume: 60 start-page: 12027 year: 2021 ident: 41423_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101019 – volume: 374 start-page: 1241 year: 2019 ident: 41423_CR9 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.020 – volume: 563 start-page: 150318 year: 2021 ident: 41423_CR48 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150318 – volume: 50 start-page: 6700 year: 2021 ident: 41423_CR37 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01041C – volume: 2 start-page: 495 year: 2019 ident: 41423_CR34 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0279-6 – volume: 6 start-page: 354 year: 2021 ident: 41423_CR51 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02498 – volume: 13 year: 2022 ident: 41423_CR2 publication-title: Nat. Commun. – volume: 13 start-page: 5152 year: 2020 ident: 41423_CR30 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03183F – ident: 41423_CR16 doi: 10.1002/eem2.12563 – volume: 13 year: 2022 ident: 41423_CR6 publication-title: Nat. Commun. – volume: 61 start-page: 202207512 year: 2022 ident: 41423_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207512 – volume: 35 start-page: 2208860 year: 2023 ident: 41423_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.202208860 – volume: 281 start-page: 119510 year: 2021 ident: 41423_CR19 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119510 – volume: 17 start-page: 1081 year: 2023 ident: 41423_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.2c07911 – volume: 8 start-page: 4407 year: 2020 ident: 41423_CR7 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b07041 – volume: 61 start-page: 202205923 year: 2022 ident: 41423_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205923 – volume: 61 start-page: 202200211 year: 2022 ident: 41423_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200211 – volume: 33 start-page: 2008508 year: 2021 ident: 41423_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.202008508 – volume: 53 start-page: 561 year: 2020 ident: 41423_CR5 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00544 – volume: 13 year: 2022 ident: 41423_CR27 publication-title: Nat. Commun. – volume: 143 start-page: 21567 year: 2021 ident: 41423_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09274 – volume: 32 start-page: 1908521 year: 2020 ident: 41423_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201908521 – volume: 574 start-page: 81 year: 2019 ident: 41423_CR38 publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 17 start-page: 790 year: 2023 ident: 41423_CR12 publication-title: ACS Nano doi: 10.1021/acsnano.2c11094 |
SSID | ssj0000391844 |
Score | 2.6292152 |
Snippet | Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently... Abstract Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5679 |
SubjectTerms | 119/118 140/131 140/146 147/135 147/137 147/143 147/3 639/301/1023/1026 639/638/224/685 639/638/77/886 639/925/357/1018 Alternative energy sources Aniline Anodizing Arrays Biomass Chemical synthesis Chemicals Conversion Copper Density functional theory Dispersion Efficiency Electrocatalysts Electrochemistry Energy consumption Humanities and Social Sciences Low cost Metal foams multidisciplinary Nitrobenzene Organic compounds Oxidation Reaction mechanisms Renewable resources Science Science (multidisciplinary) Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgRn1hnlAjutEzavJfj4DAIuhAHZhfyqlMYe4eb3sXd-ss9SXuv0wF146KlpOnznOR8H0m-g9BbKmxDtCV1YFrUjFtbuw5YSgceTSjgU03yeufPX8T5Bft0yS9vpfrKc8ImeeDpxx07BTHRdTIEGZkm3grSBQhzAYKX5W1RAoWYd4tMlT6YaqAubF4lQ6g6Tqz0CRCiajiCfbuIREWwf4Ey786RvDNQWuLP2SP0cAaO-GR64cfoXhyeoPtTKsntU_TzZFyVlf_XWxz6LP-dYsCnG-xXQC_7ASBlwF-v8I84luwpEdv12m4TBtCKU5_nFdohrjYJrp9T4_hZSwDboc9gFKftAHAx9QlKAs4L9wF5483N93WZiP8MXZx9_HZ6Xs_5FWrPGzXWkjgRCPfOed5q6WS0ojCINssSdRaos4hcROapUtp7raMGFttQ5vIYOqXP0cGwGuILhEPODx40YY3NGmmN7bj0rtMtbJJGX6Fm96-Nn8XHcw6Ma1MGwakyk30M2McU-5i2Qu_219xM0ht_rf0hm3BfM8tmlwJwJjM7k_mXM1XoaOcAZm7LybRKMAnIVvEKvdmfhlaYh1Ym0-Q6XEqgrnALtXCcxQstzwz9VdHzBohbmHeF3u987PfT__zFL__HFx-iB21uEzkpBjtCB-N6E18BzBrd69KifgHwSySF priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4lMECjISN4iaDzuxT6hULBUSHBCVerMc22kjtckSZw975Zcz43i3SiV6yCpynGx2Z2y_8djvEfKhrHSeSZ2llskqZVzrtGkhSmnBo7MS8KnMcL_zj5_V6Rn7fs7P44Sbj8sqd31i6KjtYHCO_KgQFasBXwj-ef0nRdUozK5GCY375EEOIw16uFh928-xIPu5YCzulclKceRZ6BlgoErhDD6LxXgUaPsXWPP2Sslb6dIwCq2ekMcRPtLj2d5PyT3XPyMPZ0HJ7XPy93gawv7_qy21HZKAe2fpyYaaAYLMrgdgaemvS3rtpqCh4qgeR731FKAr9R2uLtS9GzYe7o8COSYyClDddwhJqd_2ABp956HEUty-D_ibbtYXY1iO_4Kcrb7-PjlNo8pCanguprTOmspm3DSN4YWsm9rpKsQRBZITtRoC6MrxyjFTCiGNkdJJiGXzkjWYSS_Ll-SgH3r3ilCLKuFWZizXyJSW65bXpmllAUddOpOQfPdfKxMpyFEJ40qFVHgp1GwfBfZRwT6qSMjH_T3rmYDjztpf0IT7mkieHQqG8ULFtqgaATCraWtra8dkZnSVtRaQkwU8pHnBEnK4cwAVW7RXN_6XkPf7y9AWMcEymwbr8LqGABYeIRaOs3ih5ZW-uwys3gB0Q_ydkE87H7v59v__4td3v-wb8qhAb0fRC3ZIDqZx494CjJqad6Gt_AMb4xv7 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9VAFB5KRXAj9YWpVUZwp8FJMs9lvViKoAux0N0wr7SBmpQkd3G3_vKemSRXUlRwkZDHTF7nzMx3Mud8B6F3FTcFUYbkniqeU2ZMbmuwUmrQaFIBPlUkxjt__cbPL-iXS3Z5gMolFiY57SdKy9RNL95hHweamjSMMDlswRq63QeRuj268W34Zv9fJTKeS0rn-BhSyT9UXY1Biap_hS_ve0femyJNI8_ZEXo8Q0Z8Oj3kE3QQ2qfo4ZREcvcM_ToduxTzf7PDvonE30PweLPFrgPDsoHXhN3v1_hnGFPelIBN35vdgAGu4qGJHoWmDd12gPpzUhw3swhg0zYRhuJh1wJQHJoBjngcQ_YBc-Pt7VWfXPCfo4uzzz825_mcWSF3rJBjLojlnjBnrWOlElYEw5PtUEZCotqA0cwD44G6SkrlnFJBgf1aVNTG2fOqeoEO264NLxH2MTO4V4QWJrKjFaZmwtlalbCIKrgMFcu31m6mHY_ZL250mv6upJ7ko0E-OslHlxl6v69zO5Fu_LP0pyjCfclImJ0OdP2VnhVIWwnQytbCexGoIs5wUntASx4wkGElzdDJogB6bsWDLiWnAjCtZBl6uz8N7S9OqkyiiWWYEGC0wiXkSnFWD7Q-0zbXickbwG2yuTP0YdGx33f_-xsf_1_xV-hRGbU_Jr6gJ-hw7LfhNUCp0b5JbecOUuYZpw priority: 102 providerName: Springer Nature |
Title | Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading |
URI | https://link.springer.com/article/10.1038/s41467-023-41423-2 https://www.proquest.com/docview/2864705485 https://www.proquest.com/docview/2865779984 https://pubmed.ncbi.nlm.nih.gov/PMC10502102 https://doaj.org/article/b8663bf7dd7e490ca60fd750d008a524 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY5_Maxc02NvmzR-yPh7GSEOzEmgZ3QJ5M7Ikt4bUbm0H5tf95TvJdkZKN9hDHCPLjq278_0uJ90PoXcxlWEgZOBrIqhPEin9LIcoJQeNDmLApyKw653PzunpkixWyWoPjXRHwwA294Z2lk9qWa8__rztvoDBf-6XjPNPDXHmDt7Hhz3Ywiv5ADwTs1QOZwPcd2_mWEBAYxPNUUBCH3x3PKyjuf8yO77KlfTfwaF3Z1HeSaU6DzV_gh4P0BJPe114ivZM-Qw97Mkmu-fo17StXG2AdYd1YQuEN0bj2QarCgLQogTQqfHFFb42reNXMVjWtewaDLAWN4WdeShLU20aOH8gz1FDtQEsy8LCVdx0JQDKpmigRWO7tB-wOd7cXNZuqv4LtJyf_Jid-gMDg6-SkLc-CzKqg0RlmUoiwTJmJHUxRmQLF-USgmtqEmqIijkXSglhBMS5YUwym2WP45dov6xK8wphbRnEtYBxl7aKWijzhKksFxF8WGyUh8JxrFM1lCe3LBnr1KXJY5728klBPqmTTxp56P32nJu-OMc_ex9bEW572sLarqGqL9PBTtOMAwTLcqY1M0QEStIg14CqNGAlmUTEQ0ejAqSjsqYRp4QB9uWJh95uD4Od2uRLLxrbJ2EMglu4BN9RnJ0b2j1SFleu4jeAYBebe-jDqGN_fv3vT_z6v8bnED2KrPJbfgxyhPbbemPeAOJqswl6wFYMtnz-dYIOptPF9wV8H5-cf7uA1hmdTdx_GRNnbr8B2pMrbA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFNsKWAkOEFUJ3Hi-IBQKVRb-jigVtqbcWynjVSSJckK7ZUfxG9kxkm22kr01sNGq8TZTTzj8Tee8TeEvI1THTKpWWC5TAOeaB3kBXgpBWg0iwGfSob7nY9P0ukZ_zZLZhvk77gXBtMqR5voDbWtDa6R70RZygXgiyz5NP8VYNUojK6OJTR6tTh0y9_gsrUfD76AfN9F0f7X071pMFQVCEwSZl0gWJ5alpg8N0kkRS6cTj1ujpCMp9DgMKYuSR03cZZJY6R0Eny3MOY5Ro5xARRM_h2YeBmmEIqZWK3pINt6xvmwN4fF2U7LvSWCiTGAb3CM1uY_XyZgDdtez8y8Fp71s97-Q_JggKt0t9evR2TDVY_J3b6A5fIJ-bPb1Z5v4HJJbYmk462zdG9BTQ09VFYAZC39fkF_us7XbHFUN41ethSgMm1LzGbUlasXLdw_FOQxA4MB1VWJEJi2ywpAalu2cMZSpAsAvE8X8_PGp_8_JWe30v_PyGZVV-45oRarklvJeKiRmS3URSJMXsgIPiJ2ZkLCsa-VGSjPsfLGpfKh9zhTvXwUyEd5-ahoQt6v7pn3hB83tv6MIly1RLJuf6JuztUw9lWeAazLC2GtcFwyo1NWWEBqFvCXTiI-IdujAqjBgrTqSt8n5M3qMox9DOj0osE2iRDgMMNPZGuKs_ZA61eq8sKziIP6en9_Qj6MOnb17_9_462bH_Y1uTc9PT5SRwcnhy_I_Qg1Hwtu8G2y2TUL9xIgXJe_8uOGkh-3PVD_Ab1_Vm4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBtHk4cHxAqLauWQoUQlfZmHNtpI5VkSbJCufKz-HXMOMlWW4neetholTi7iWc8_saP7yPkVZyqMBAq8A0Tqc8Spfy8gCylAI8OYsCnIsD9zl-O04MT9mmRLLbI32kvDC6rnGKiC9Sm1jhGPouylHHAF1kyK8ZlEV_35--Xv3xUkMKZ1klOY3CRI9v_hvStfXe4D7Z-HUXzj9_3DvxRYcDXSZh1Pg_y1ASJznOdRILn3KrUYegIiXkKBcljapPUMh1nmdBaCCsgjwtjluMsMg6GQvi_wWPoNqEt8QVfj-8g83rG2LhPJ4izWctcVIJO0odvcIw2-kInGbCBcy-v0rw0Vet6wPldcmeErnR38LV7ZMtW98nNQcyyf0D-7Ha14x4476kpkYC8tYburaiuoYbKCkCtod_O6E_bOf0WS1XTqL6lAJtpW-LKRlXZetXC_aM4jx7ZDKiqSoTDtO0rAKxt2cIZQ5E6ALA_XS1PG7cV4CE5uZb6f0S2q7qyjwk1qFBuRMBChSxtoSoSrvNCRPDhsdUeCae6lnqkP0cVjnPppuHjTA72kWAf6ewjI4-8Wd-zHMg_riz9AU24LonE3e5E3ZzKMQ7IPAOIlxfcGG6ZCLRKg8IAajOAxVQSMY_sTA4gx2jSygvf98jL9WWIAzi5M5gGyyScQ_IMP5FtOM7GA21eqcozxygOINvl_h55O_nYxb___42fXP2wL8gtaKLy8-Hx0VNyO0LHR-0NtkO2u2ZlnwGa6_LnrtlQ8uO62-k_yPFapA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+dispersed+Cu+coordinated+Rh+metallene+arrays+for+simultaneously+electrochemical+aniline+synthesis+and+biomass+upgrading&rft.jtitle=Nature+communications&rft.au=Mao%2C+Qiqi&rft.au=Mu%2C+Xu&rft.au=Wang%2C+Wenxin&rft.au=Deng%2C+Kai&rft.date=2023-09-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-41423-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_41423_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |