Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading

Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nit...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5679 - 12
Main Authors Mao, Qiqi, Mu, Xu, Wang, Wenxin, Deng, Kai, Yu, Hongjie, Wang, Ziqiang, Xu, You, Wang, Liang, Wang, Hongjing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-41423-2

Cover

Loading…
Abstract Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu single-atom -Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm −2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity. Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity.
AbstractList Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu single-atom -Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm −2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity. Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity.
Abstract Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm−2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cu single-atom -Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm −2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm−2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.Electrocatalytic conversion of low-cost organic compounds to high-value chemicals urgently demands the development of efficient electrocatalysts. Mao et al. report the synthesis of Cu single-atom dispersed Rh metallene arrays for electrochemical aniline synthesis and biomass upgrading with enhanced electrocatalytic activity.
Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.
ArticleNumber 5679
Author Yu, Hongjie
Mu, Xu
Wang, Ziqiang
Deng, Kai
Mao, Qiqi
Wang, Wenxin
Xu, You
Wang, Hongjing
Wang, Liang
Author_xml – sequence: 1
  givenname: Qiqi
  surname: Mao
  fullname: Mao, Qiqi
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 2
  givenname: Xu
  surname: Mu
  fullname: Mu, Xu
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 3
  givenname: Wenxin
  surname: Wang
  fullname: Wang, Wenxin
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 4
  givenname: Kai
  surname: Deng
  fullname: Deng, Kai
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 5
  givenname: Hongjie
  surname: Yu
  fullname: Yu, Hongjie
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 6
  givenname: Ziqiang
  surname: Wang
  fullname: Wang, Ziqiang
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 7
  givenname: You
  surname: Xu
  fullname: Xu, You
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 8
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
– sequence: 9
  givenname: Hongjing
  orcidid: 0000-0003-0641-3909
  surname: Wang
  fullname: Wang, Hongjing
  email: hjw@zjut.edu.cn
  organization: State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology
BookMark eNp9Uk1v1DAQjVARLUv_AKdIXLgEHH_nhKoVH5UqISE4W4492fXKiRfbQdorvxxnUwTtoT7YM-P33ozH87K6mMIEVfW6Re9aROT7RFvKRYMwaYpVdvysusKItk0rMLn4z76srlM6oLJI10pKX1SXRAjUCcGuqt83OYzOaO9PtXXpCDGBrbdzbUKI1k06F_fbvh4hFwxMUOsY9SnVQ4h1cuPss54gzKnwwYPJMZg9nBVrPTnvCiOdpryH5FKJ2Lp3YdQp1fNxF3XJsHtVPR-0T3B9f26qH58-ft9-ae6-fr7d3tw1hrUyNwL13CJm-t4w3IlegOYEcbE4Eg0aUc6BcaCGSNkZ03XQISxaQnuMSsvIprpddW3QB3WMbtTxpIJ26hwIcad0zM54UL3knPSDsFYA7ZDRHA1WMGQRkpphWrQ-rFrHuR_BGphy1P6B6MObye3VLvxSLWIIt-XXNtXbe4UYfs6QshpdMuD92k6FJWdCdJ1ckr15BD2EOU6lVwuKCsSoZAUlV5SJIaUIgzIu6-zCUoDzJbNaBketg6NKCeo8OGqpBT-i_n3IkySyklIBTzuI_6p6gvUH4tLYAA
CitedBy_id crossref_primary_10_1021_acscatal_4c05707
crossref_primary_10_1002_anie_202410442
crossref_primary_10_1021_acs_nanolett_4c03361
crossref_primary_10_1002_adfm_202407236
crossref_primary_10_1021_jacs_4c02835
crossref_primary_10_1002_adfm_202404648
crossref_primary_10_1016_j_ccr_2024_216399
crossref_primary_10_1016_j_chempr_2024_07_015
crossref_primary_10_1021_acsmaterialslett_4c00596
crossref_primary_10_1021_acsanm_3c04938
crossref_primary_10_1021_acsami_3c11303
crossref_primary_10_1002_adma_202404659
crossref_primary_10_1002_smtd_202301307
crossref_primary_10_1039_D4EE05500D
crossref_primary_10_1016_j_apcatb_2024_124047
crossref_primary_10_1039_D4TA04581E
crossref_primary_10_1039_D3QI01771K
crossref_primary_10_1021_acsanm_4c01571
crossref_primary_10_1016_j_ccr_2025_216603
crossref_primary_10_1021_acsanm_3c03960
crossref_primary_10_1039_D4QI00319E
crossref_primary_10_1016_j_cej_2024_152950
crossref_primary_10_1002_adsc_202400771
crossref_primary_10_1002_aenm_202304065
crossref_primary_10_1016_j_apcatb_2024_124958
crossref_primary_10_1002_smll_202310409
crossref_primary_10_1002_adma_202402767
crossref_primary_10_1149_1945_7111_ad4682
crossref_primary_10_1002_smll_202406829
crossref_primary_10_1002_eem2_12761
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1016_j_jechem_2024_11_063
crossref_primary_10_1021_acsmaterialslett_3c01414
crossref_primary_10_1016_j_ccr_2024_216296
crossref_primary_10_1002_smll_202407446
crossref_primary_10_1002_smll_202409502
crossref_primary_10_1016_j_seppur_2024_130244
crossref_primary_10_1016_j_jhazmat_2025_137679
crossref_primary_10_1021_acsami_4c09776
crossref_primary_10_1039_D4TA01071J
crossref_primary_10_1002_ange_202410442
crossref_primary_10_1016_j_cjche_2024_05_018
crossref_primary_10_1016_j_mtsust_2023_100630
crossref_primary_10_1021_acs_nanolett_4c04966
crossref_primary_10_1016_j_apcatb_2024_123919
crossref_primary_10_1021_acsami_4c14927
crossref_primary_10_1088_1361_6528_ad9aad
crossref_primary_10_1002_adma_202401857
crossref_primary_10_1002_adfm_202420728
crossref_primary_10_1002_smll_202407679
crossref_primary_10_1016_j_mtener_2024_101493
crossref_primary_10_1088_1361_6528_ad18ea
crossref_primary_10_1016_j_cej_2024_149054
crossref_primary_10_1002_adfm_202410614
crossref_primary_10_1002_adma_202402747
crossref_primary_10_1088_1361_6528_ad2c5b
Cites_doi 10.1002/adma.202106028
10.1021/acs.nanolett.0c00364
10.1002/adma.202007894
10.1021/acs.chemrev.0c00158
10.1002/adfm.201909610
10.1021/acscatal.2c03551
10.1016/j.apcatb.2021.120359
10.1016/j.apcatb.2021.120545
10.1021/acs.chemrev.0c00078
10.1126/science.adg2866
10.1002/adfm.202209890
10.1021/acssuschemeng.9b01260
10.1002/aenm.201903038
10.1002/aenm.202201823
10.1021/jacs.2c03544
10.1021/acscatal.3c01285
10.1002/anie.202209849
10.1021/acsnano.3c02066
10.1016/j.jechem.2023.06.005
10.1016/j.apcatb.2017.12.079
10.1021/acscatal.8b04103
10.1002/adma.202302007
10.1002/eem2.12295
10.1039/C9TA03945G
10.31635/ccschem.020.202000218
10.1126/science.1215864
10.1002/anie.202101019
10.1016/j.cej.2019.06.020
10.1016/j.apsusc.2021.150318
10.1039/D0CS01041C
10.1038/s41929-019-0279-6
10.1021/acsenergylett.0c02498
10.1039/D0EE03183F
10.1002/eem2.12563
10.1002/anie.202207512
10.1002/adma.202208860
10.1016/j.apcatb.2020.119510
10.1021/acsnano.2c07911
10.1021/acssuschemeng.9b07041
10.1002/anie.202205923
10.1002/anie.202200211
10.1002/adma.202008508
10.1021/acs.accounts.9b00544
10.1021/jacs.1c09274
10.1002/adma.201908521
10.1038/s41586-019-1603-7
10.1021/acsnano.2c11094
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41423-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_b8663bf7dd7e490ca60fd750d008a524
PMC10502102
10_1038_s41467_023_41423_2
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2021M702889
  funderid: https://doi.org/10.13039/501100002858
– fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)
  grantid: LQ23B030010; LQ22B030012
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21978264; 22278369; 21905250; 21972126
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: LQ23B030010; LQ22B030012
– fundername: ;
  grantid: 2021M702889
– fundername: ;
  grantid: 21978264; 22278369; 21905250; 21972126
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-70b6d05cbbc5297b7ea63067529780fa0466e56e4c3889cc99e9027134b201033
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:08:10 EDT 2025
Thu Aug 21 18:36:45 EDT 2025
Thu Jul 10 18:44:11 EDT 2025
Sat Aug 23 13:34:46 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 02:10:35 EDT 2025
Fri Feb 21 02:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-70b6d05cbbc5297b7ea63067529780fa0466e56e4c3889cc99e9027134b201033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0641-3909
OpenAccessLink https://www.nature.com/articles/s41467-023-41423-2
PMID 37709775
PQID 2864705485
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_b8663bf7dd7e490ca60fd750d008a524
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10502102
proquest_miscellaneous_2865779984
proquest_journals_2864705485
crossref_citationtrail_10_1038_s41467_023_41423_2
crossref_primary_10_1038_s41467_023_41423_2
springer_journals_10_1038_s41467_023_41423_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-14
PublicationDateYYYYMMDD 2023-09-14
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hao (CR19) 2021; 281
Do (CR40) 2023; 35
Yang (CR44) 2019; 7
Li (CR18) 2022; 13
Mao (CR39) 2023; 85
Akhade (CR1) 2020; 120
Cao, Xu, Cheng (CR56) 2020; 10
Kim (CR50) 2022; 34
Zhang (CR49) 2023; 14
Tao (CR54) 2022; 144
Zhao, Liu, Wang, Chong, Zhang (CR11) 2021; 3
Ji (CR31) 2022; 61
Wang, Stahl (CR5) 2020; 53
Meng (CR6) 2022; 13
Jin (CR10) 2021; 298
Ge (CR14) 2022; 61
Giannakakis (CR23) 2021; 143
Forslund, Alexander, Abakumov, Johnston, Stevenson (CR13) 2019; 9
Yu (CR36) 2021; 60
Wu (CR29) 2023; 13
Mao (CR28) 2020; 20
Shen, Wang, Zhao, Hu, Wang (CR25) 2022; 12
Liu (CR27) 2022; 13
Li (CR32) 2022; 61
Mao (CR12) 2023; 17
Daems (CR21) 2018; 226
Babar (CR45) 2019; 7
Lee (CR30) 2020; 13
Yang (CR22) 2021; 296
Zhong (CR47) 2021; 33
CR16
Luo (CR33) 2021; 33
Kumar (CR51) 2021; 6
Yang (CR2) 2022; 13
Ahmadi, Wu (CR9) 2019; 374
Li (CR34) 2019; 2
Andrews (CR7) 2020; 8
Zhao (CR15) 2021; 12
Li (CR46) 2020; 32
CR52
Von Munchow, Dana, Xu, Yuan, Ackermann (CR3) 2023; 379
Yang, Yuan, Peng, Wang, Zou (CR4) 2022; 5
Kyriakou (CR24) 2012; 335
Chen (CR43) 2023; 33
Xiang (CR20) 2020; 30
Ma, Wang, Majima, Zhao (CR8) 2022; 12
Luo (CR38) 2019; 574
Li, Shen, Li, Ma, Chu (CR41) 2023; 17
Zhu (CR17) 2023; 14
Wu (CR42) 2022; 61
Zhan (CR55) 2021; 12
Hannagan, Giannakakis, Flytzani-Stephanopoulos, Sykes (CR26) 2020; 120
Prabhu, Lee (CR37) 2021; 50
Morales (CR48) 2021; 563
Wang (CR53) 2023; 42
Prabhu (CR35) 2023; 17
S Luo (41423_CR33) 2021; 33
G Giannakakis (41423_CR23) 2021; 143
S Li (41423_CR18) 2022; 13
G Yang (41423_CR2) 2022; 13
D Cao (41423_CR56) 2020; 10
H Zhao (41423_CR15) 2021; 12
JY Kim (41423_CR50) 2022; 34
M Jin (41423_CR10) 2021; 298
X Wang (41423_CR53) 2023; 42
P Prabhu (41423_CR35) 2023; 17
SA Akhade (41423_CR1) 2020; 120
RP Forslund (41423_CR13) 2019; 9
J Mao (41423_CR28) 2020; 20
Z Li (41423_CR46) 2020; 32
T Von Munchow (41423_CR3) 2023; 379
R Ge (41423_CR14) 2022; 61
J Hao (41423_CR19) 2021; 281
P Prabhu (41423_CR37) 2021; 50
VH Do (41423_CR40) 2023; 35
C Zhan (41423_CR55) 2021; 12
Q Yang (41423_CR44) 2019; 7
J Zhang (41423_CR49) 2023; 14
M Yang (41423_CR4) 2022; 5
41423_CR16
QF Yang (41423_CR22) 2021; 296
H Yu (41423_CR36) 2021; 60
41423_CR52
A Ahmadi (41423_CR9) 2019; 374
N Daems (41423_CR21) 2018; 226
G Kyriakou (41423_CR24) 2012; 335
Y Zhao (41423_CR11) 2021; 3
W Liu (41423_CR27) 2022; 13
W Zhong (41423_CR47) 2021; 33
M Li (41423_CR34) 2019; 2
K Chen (41423_CR43) 2023; 33
A Kumar (41423_CR51) 2021; 6
MR Morales (41423_CR48) 2021; 563
P Babar (41423_CR45) 2019; 7
X Wu (41423_CR29) 2023; 13
J Ma (41423_CR8) 2022; 12
X Li (41423_CR41) 2023; 17
M Luo (41423_CR38) 2019; 574
F Wang (41423_CR5) 2020; 53
RT Hannagan (41423_CR26) 2020; 120
T Shen (41423_CR25) 2022; 12
Q Mao (41423_CR39) 2023; 85
N Meng (41423_CR6) 2022; 13
E Andrews (41423_CR7) 2020; 8
L Tao (41423_CR54) 2022; 144
K Xiang (41423_CR20) 2020; 30
J Wu (41423_CR42) 2022; 61
Q Mao (41423_CR12) 2023; 17
B Zhu (41423_CR17) 2023; 14
K Ji (41423_CR31) 2022; 61
J Lee (41423_CR30) 2020; 13
X Li (41423_CR32) 2022; 61
References_xml – volume: 2
  start-page: 495
  year: 2019
  end-page: 503
  ident: CR34
  article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
  publication-title: Nat. Catal.
– volume: 12
  year: 2021
  ident: CR55
  article-title: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis
  publication-title: Nat. Commun.
– volume: 12
  year: 2021
  ident: CR15
  article-title: Raw biomass electroreforming coupled to green hydrogen generation
  publication-title: Nat. Commun.
– volume: 17
  start-page: 10733
  year: 2023
  end-page: 10747
  ident: CR35
  article-title: Oxygen-bridged stabilization of single atomic W on Rh metallenes for robust and efficient pH-universal hydrogen evolution
  publication-title: ACS Nano
– volume: 13
  year: 2022
  ident: CR18
  article-title: Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity
  publication-title: Nat. Commun.
– volume: 296
  start-page: 120359
  year: 2021
  ident: CR22
  article-title: Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe-WO electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA cm
  publication-title: Appl. Catal. B: Environ.
– ident: CR16
– volume: 7
  start-page: 10035
  year: 2019
  end-page: 10043
  ident: CR45
  article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis
  publication-title: ACS Sustain. Chem. Eng.
– volume: 12
  start-page: 14062
  year: 2022
  end-page: 14071
  ident: CR8
  article-title: Role of Ni in PtNi alloy for modulating the proton–electron transfer of electrocatalytic hydrogenation revealed by the in situ raman–rotating disk electrode method
  publication-title: ACS Catal.
– volume: 13
  start-page: 6804
  year: 2023
  end-page: 6812
  ident: CR29
  article-title: Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction
  publication-title: ACS Catal.
– volume: 33
  start-page: 2007894
  year: 2021
  ident: CR47
  article-title: RhSe : a superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions
  publication-title: Adv. Mater.
– volume: 20
  start-page: 3442
  year: 2020
  end-page: 3448
  ident: CR28
  article-title: Isolated Ni atoms dispersed on Ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction
  publication-title: Nano Lett.
– volume: 574
  start-page: 81
  year: 2019
  end-page: 85
  ident: CR38
  article-title: PdMo bimetallene for oxygen reduction catalysis
  publication-title: Nature
– volume: 13
  start-page: 5152
  year: 2020
  end-page: 5164
  ident: CR30
  article-title: Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation
  publication-title: Energy Environ. Sci.
– volume: 14
  year: 2023
  ident: CR17
  article-title: Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2664
  year: 2019
  end-page: 2673
  ident: CR13
  article-title: Enhanced electrocatalytic activities by substitutional tuning of nickel-based ruddlesden–popper catalysts for the oxidation of urea and small alcohols
  publication-title: ACS Catal.
– volume: 33
  start-page: 2209890
  year: 2023
  ident: CR43
  article-title: Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 100035
  year: 2023
  ident: CR53
  article-title: Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction
  publication-title: Chin. J. Struc. Chem.
– volume: 30
  start-page: 1909610
  year: 2020
  ident: CR20
  article-title: Boosting H generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts
  publication-title: Adv. Funct. Mater.
– volume: 374
  start-page: 1241
  year: 2019
  end-page: 1252
  ident: CR9
  article-title: Electrocatalytic reduction of nitrobenzene using TiO nanotube electrodes with different morphologies: Kinetics, mechanism, and degradation pathways
  publication-title: Chem. Eng. J.
– volume: 61
  start-page: 202200211
  year: 2022
  ident: CR14
  article-title: Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 354
  year: 2021
  end-page: 363
  ident: CR51
  article-title: Modulating interfacial charge density of NiP –FeP via coupling with metallic Cu for accelerating alkaline hydrogen evolution
  publication-title: ACS Energy Lett.
– volume: 120
  start-page: 12044
  year: 2020
  end-page: 12088
  ident: CR26
  article-title: Single-atom alloy catalysis
  publication-title: Chem. Rev.
– volume: 120
  start-page: 11370
  year: 2020
  end-page: 11419
  ident: CR1
  article-title: Electrocatalytic hydrogenation of biomass-derived organics: a review
  publication-title: Chem. Rev.
– volume: 61
  start-page: 202207512
  year: 2022
  ident: CR42
  article-title: Atomically dispersed MoO on Rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2022
  ident: CR6
  article-title: Electrosynthesis of formamide from methanol and ammonia under ambient conditions
  publication-title: Nat. Commun.
– volume: 61
  start-page: 202209849
  year: 2022
  ident: CR31
  article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru Cu single-atom alloy catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 4407
  year: 2020
  end-page: 4418
  ident: CR7
  article-title: Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds
  publication-title: ACS Sustain. Chem. Eng.
– volume: 3
  start-page: 507
  year: 2021
  end-page: 515
  ident: CR11
  article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H O over a Co S nanosheet cathode
  publication-title: CCS Chem.
– volume: 298
  start-page: 120545
  year: 2021
  ident: CR10
  article-title: Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: experimental and theoretical studies
  publication-title: Appl. Catal. B: Environ.
– volume: 85
  start-page: 58
  year: 2023
  end-page: 66
  ident: CR39
  article-title: Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradation
  publication-title: J. Energy Chem.
– volume: 7
  start-page: 18846
  year: 2019
  end-page: 18851
  ident: CR44
  article-title: Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 2208860
  year: 2023
  ident: CR40
  article-title: Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis
  publication-title: Adv. Mater.
– volume: 281
  start-page: 119510
  year: 2021
  ident: CR19
  article-title: In situ facile fabrication of Ni(OH) nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution
  publication-title: Appl. Catal. B: Environ.
– volume: 13
  year: 2022
  ident: CR27
  article-title: Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes
  publication-title: Nat. Commun.
– volume: 14
  year: 2023
  ident: CR49
  article-title: Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis
  publication-title: Nat. Commun.
– volume: 144
  start-page: 10582
  year: 2022
  end-page: 10590
  ident: CR54
  article-title: A general synthetic method for high-entropy alloy subnanometer ribbons
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 561
  year: 2020
  end-page: 574
  ident: CR5
  article-title: Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron-proton transfer mediators
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 2008508
  year: 2021
  ident: CR33
  article-title: A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1081
  year: 2023
  end-page: 1090
  ident: CR41
  article-title: Sub-nm RuO clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia
  publication-title: ACS Nano
– volume: 13
  year: 2022
  ident: CR2
  article-title: Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock
  publication-title: Nat. Commun.
– volume: 17
  start-page: 790
  year: 2023
  end-page: 800
  ident: CR12
  article-title: Sulfur vacancy-rich amorphous Rh metallene sulfide for electrocatalytic selective synthesis of aniline coupled with efficient sulfion degradation
  publication-title: ACS Nano
– volume: 379
  start-page: 1036
  year: 2023
  end-page: 1042
  ident: CR3
  article-title: Enantioselective electrochemical cobalt-catalyzed aryl C-H activation reactions
  publication-title: Science
– ident: CR52
– volume: 5
  start-page: 1117
  year: 2022
  end-page: 1138
  ident: CR4
  article-title: Recent progress on electrocatalytic valorization of biomass-derived organics
  publication-title: Energy Environ. Mater.
– volume: 143
  start-page: 21567
  year: 2021
  end-page: 21579
  ident: CR23
  article-title: Mechanistic and electronic insights into a working NiAu single-atom alloy ethanol dehydrogenation catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2201823
  year: 2022
  ident: CR25
  article-title: Recent advances of single-atom-alloy for energy electrocatalysis
  publication-title: Adv. Energy Mater.
– volume: 34
  start-page: 2106028
  year: 2022
  ident: CR50
  article-title: Synergistic effect of Cu O mesh pattern on high-facet Cu surface for selective CO electroreduction to ethanol
  publication-title: Adv. Mater.
– volume: 60
  start-page: 12027
  year: 2021
  end-page: 12031
  ident: CR36
  article-title: Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 226
  start-page: 509
  year: 2018
  end-page: 522
  ident: CR21
  article-title: Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals
  publication-title: Appl. Catal. B: Environ.
– volume: 335
  start-page: 1209
  year: 2012
  end-page: 1212
  ident: CR24
  article-title: Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations
  publication-title: Science
– volume: 50
  start-page: 6700
  year: 2021
  end-page: 6719
  ident: CR37
  article-title: Metallenes as functional materials in electrocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 1908521
  year: 2020
  ident: CR46
  article-title: Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1903038
  year: 2020
  ident: CR56
  article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh Cu alloy phase for overall water splitting in all pH values
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 202205923
  year: 2022
  ident: CR32
  article-title: PdFe single-atom alloy metallene for N electroreduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 563
  start-page: 150318
  year: 2021
  ident: CR48
  article-title: In-depth structural and analytical study of the washcoating layer of a Mn-Cu monolithic catalyst using STEM-FIB, EDX and EELS. Insights into stability under working conditions
  publication-title: Appl. Surf. Sci.
– volume: 14
  year: 2023
  ident: 41423_CR49
  publication-title: Nat. Commun.
– volume: 34
  start-page: 2106028
  year: 2022
  ident: 41423_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106028
– volume: 20
  start-page: 3442
  year: 2020
  ident: 41423_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00364
– volume: 33
  start-page: 2007894
  year: 2021
  ident: 41423_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007894
– volume: 120
  start-page: 11370
  year: 2020
  ident: 41423_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00158
– volume: 42
  start-page: 100035
  year: 2023
  ident: 41423_CR53
  publication-title: Chin. J. Struc. Chem.
– volume: 30
  start-page: 1909610
  year: 2020
  ident: 41423_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909610
– volume: 12
  start-page: 14062
  year: 2022
  ident: 41423_CR8
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c03551
– volume: 296
  start-page: 120359
  year: 2021
  ident: 41423_CR22
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120359
– volume: 298
  start-page: 120545
  year: 2021
  ident: 41423_CR10
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120545
– volume: 120
  start-page: 12044
  year: 2020
  ident: 41423_CR26
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00078
– volume: 379
  start-page: 1036
  year: 2023
  ident: 41423_CR3
  publication-title: Science
  doi: 10.1126/science.adg2866
– volume: 33
  start-page: 2209890
  year: 2023
  ident: 41423_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209890
– volume: 7
  start-page: 10035
  year: 2019
  ident: 41423_CR45
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01260
– volume: 10
  start-page: 1903038
  year: 2020
  ident: 41423_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903038
– volume: 12
  start-page: 2201823
  year: 2022
  ident: 41423_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201823
– volume: 144
  start-page: 10582
  year: 2022
  ident: 41423_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03544
– volume: 13
  start-page: 6804
  year: 2023
  ident: 41423_CR29
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01285
– volume: 61
  start-page: 202209849
  year: 2022
  ident: 41423_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209849
– volume: 17
  start-page: 10733
  year: 2023
  ident: 41423_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c02066
– volume: 85
  start-page: 58
  year: 2023
  ident: 41423_CR39
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.06.005
– volume: 226
  start-page: 509
  year: 2018
  ident: 41423_CR21
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.12.079
– volume: 9
  start-page: 2664
  year: 2019
  ident: 41423_CR13
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04103
– ident: 41423_CR52
  doi: 10.1002/adma.202302007
– volume: 5
  start-page: 1117
  year: 2022
  ident: 41423_CR4
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12295
– volume: 7
  start-page: 18846
  year: 2019
  ident: 41423_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03945G
– volume: 3
  start-page: 507
  year: 2021
  ident: 41423_CR11
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000218
– volume: 14
  year: 2023
  ident: 41423_CR17
  publication-title: Nat. Commun.
– volume: 12
  year: 2021
  ident: 41423_CR55
  publication-title: Nat. Commun.
– volume: 335
  start-page: 1209
  year: 2012
  ident: 41423_CR24
  publication-title: Science
  doi: 10.1126/science.1215864
– volume: 12
  year: 2021
  ident: 41423_CR15
  publication-title: Nat. Commun.
– volume: 13
  year: 2022
  ident: 41423_CR18
  publication-title: Nat. Commun.
– volume: 60
  start-page: 12027
  year: 2021
  ident: 41423_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101019
– volume: 374
  start-page: 1241
  year: 2019
  ident: 41423_CR9
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.020
– volume: 563
  start-page: 150318
  year: 2021
  ident: 41423_CR48
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150318
– volume: 50
  start-page: 6700
  year: 2021
  ident: 41423_CR37
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01041C
– volume: 2
  start-page: 495
  year: 2019
  ident: 41423_CR34
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0279-6
– volume: 6
  start-page: 354
  year: 2021
  ident: 41423_CR51
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02498
– volume: 13
  year: 2022
  ident: 41423_CR2
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5152
  year: 2020
  ident: 41423_CR30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03183F
– ident: 41423_CR16
  doi: 10.1002/eem2.12563
– volume: 13
  year: 2022
  ident: 41423_CR6
  publication-title: Nat. Commun.
– volume: 61
  start-page: 202207512
  year: 2022
  ident: 41423_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202207512
– volume: 35
  start-page: 2208860
  year: 2023
  ident: 41423_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208860
– volume: 281
  start-page: 119510
  year: 2021
  ident: 41423_CR19
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119510
– volume: 17
  start-page: 1081
  year: 2023
  ident: 41423_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07911
– volume: 8
  start-page: 4407
  year: 2020
  ident: 41423_CR7
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07041
– volume: 61
  start-page: 202205923
  year: 2022
  ident: 41423_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205923
– volume: 61
  start-page: 202200211
  year: 2022
  ident: 41423_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200211
– volume: 33
  start-page: 2008508
  year: 2021
  ident: 41423_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008508
– volume: 53
  start-page: 561
  year: 2020
  ident: 41423_CR5
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00544
– volume: 13
  year: 2022
  ident: 41423_CR27
  publication-title: Nat. Commun.
– volume: 143
  start-page: 21567
  year: 2021
  ident: 41423_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09274
– volume: 32
  start-page: 1908521
  year: 2020
  ident: 41423_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908521
– volume: 574
  start-page: 81
  year: 2019
  ident: 41423_CR38
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 17
  start-page: 790
  year: 2023
  ident: 41423_CR12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11094
SSID ssj0000391844
Score 2.6292152
Snippet Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently...
Abstract Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5679
SubjectTerms 119/118
140/131
140/146
147/135
147/137
147/143
147/3
639/301/1023/1026
639/638/224/685
639/638/77/886
639/925/357/1018
Alternative energy sources
Aniline
Anodizing
Arrays
Biomass
Chemical synthesis
Chemicals
Conversion
Copper
Density functional theory
Dispersion
Efficiency
Electrocatalysts
Electrochemistry
Energy consumption
Humanities and Social Sciences
Low cost
Metal foams
multidisciplinary
Nitrobenzene
Organic compounds
Oxidation
Reaction mechanisms
Renewable resources
Science
Science (multidisciplinary)
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yILgRn1hnlAjutEzavJfj4DAIuhAHZhfyqlMYe4eb3sXd-ss9SXuv0wF146KlpOnznOR8H0m-g9BbKmxDtCV1YFrUjFtbuw5YSgceTSjgU03yeufPX8T5Bft0yS9vpfrKc8ImeeDpxx07BTHRdTIEGZkm3grSBQhzAYKX5W1RAoWYd4tMlT6YaqAubF4lQ6g6Tqz0CRCiajiCfbuIREWwf4Ey786RvDNQWuLP2SP0cAaO-GR64cfoXhyeoPtTKsntU_TzZFyVlf_XWxz6LP-dYsCnG-xXQC_7ASBlwF-v8I84luwpEdv12m4TBtCKU5_nFdohrjYJrp9T4_hZSwDboc9gFKftAHAx9QlKAs4L9wF5483N93WZiP8MXZx9_HZ6Xs_5FWrPGzXWkjgRCPfOed5q6WS0ojCINssSdRaos4hcROapUtp7raMGFttQ5vIYOqXP0cGwGuILhEPODx40YY3NGmmN7bj0rtMtbJJGX6Fm96-Nn8XHcw6Ma1MGwakyk30M2McU-5i2Qu_219xM0ht_rf0hm3BfM8tmlwJwJjM7k_mXM1XoaOcAZm7LybRKMAnIVvEKvdmfhlaYh1Ym0-Q6XEqgrnALtXCcxQstzwz9VdHzBohbmHeF3u987PfT__zFL__HFx-iB21uEzkpBjtCB-N6E18BzBrd69KifgHwSySF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4lMECjISN4iaDzuxT6hULBUSHBCVerMc22kjtckSZw975Zcz43i3SiV6yCpynGx2Z2y_8djvEfKhrHSeSZ2llskqZVzrtGkhSmnBo7MS8KnMcL_zj5_V6Rn7fs7P44Sbj8sqd31i6KjtYHCO_KgQFasBXwj-ef0nRdUozK5GCY375EEOIw16uFh928-xIPu5YCzulclKceRZ6BlgoErhDD6LxXgUaPsXWPP2Sslb6dIwCq2ekMcRPtLj2d5PyT3XPyMPZ0HJ7XPy93gawv7_qy21HZKAe2fpyYaaAYLMrgdgaemvS3rtpqCh4qgeR731FKAr9R2uLtS9GzYe7o8COSYyClDddwhJqd_2ABp956HEUty-D_ibbtYXY1iO_4Kcrb7-PjlNo8pCanguprTOmspm3DSN4YWsm9rpKsQRBZITtRoC6MrxyjFTCiGNkdJJiGXzkjWYSS_Ll-SgH3r3ilCLKuFWZizXyJSW65bXpmllAUddOpOQfPdfKxMpyFEJ40qFVHgp1GwfBfZRwT6qSMjH_T3rmYDjztpf0IT7mkieHQqG8ULFtqgaATCraWtra8dkZnSVtRaQkwU8pHnBEnK4cwAVW7RXN_6XkPf7y9AWMcEymwbr8LqGABYeIRaOs3ih5ZW-uwys3gB0Q_ydkE87H7v59v__4td3v-wb8qhAb0fRC3ZIDqZx494CjJqad6Gt_AMb4xv7
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9VAFB5KRXAj9YWpVUZwp8FJMs9lvViKoAux0N0wr7SBmpQkd3G3_vKemSRXUlRwkZDHTF7nzMx3Mud8B6F3FTcFUYbkniqeU2ZMbmuwUmrQaFIBPlUkxjt__cbPL-iXS3Z5gMolFiY57SdKy9RNL95hHweamjSMMDlswRq63QeRuj268W34Zv9fJTKeS0rn-BhSyT9UXY1Biap_hS_ve0femyJNI8_ZEXo8Q0Z8Oj3kE3QQ2qfo4ZREcvcM_ToduxTzf7PDvonE30PweLPFrgPDsoHXhN3v1_hnGFPelIBN35vdgAGu4qGJHoWmDd12gPpzUhw3swhg0zYRhuJh1wJQHJoBjngcQ_YBc-Pt7VWfXPCfo4uzzz825_mcWSF3rJBjLojlnjBnrWOlElYEw5PtUEZCotqA0cwD44G6SkrlnFJBgf1aVNTG2fOqeoEO264NLxH2MTO4V4QWJrKjFaZmwtlalbCIKrgMFcu31m6mHY_ZL250mv6upJ7ko0E-OslHlxl6v69zO5Fu_LP0pyjCfclImJ0OdP2VnhVIWwnQytbCexGoIs5wUntASx4wkGElzdDJogB6bsWDLiWnAjCtZBl6uz8N7S9OqkyiiWWYEGC0wiXkSnFWD7Q-0zbXickbwG2yuTP0YdGx33f_-xsf_1_xV-hRGbU_Jr6gJ-hw7LfhNUCp0b5JbecOUuYZpw
  priority: 102
  providerName: Springer Nature
Title Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading
URI https://link.springer.com/article/10.1038/s41467-023-41423-2
https://www.proquest.com/docview/2864705485
https://www.proquest.com/docview/2865779984
https://pubmed.ncbi.nlm.nih.gov/PMC10502102
https://doaj.org/article/b8663bf7dd7e490ca60fd750d008a524
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY5_Maxc02NvmzR-yPh7GSEOzEmgZ3QJ5M7Ikt4bUbm0H5tf95TvJdkZKN9hDHCPLjq278_0uJ90PoXcxlWEgZOBrIqhPEin9LIcoJQeNDmLApyKw653PzunpkixWyWoPjXRHwwA294Z2lk9qWa8__rztvoDBf-6XjPNPDXHmDt7Hhz3Ywiv5ADwTs1QOZwPcd2_mWEBAYxPNUUBCH3x3PKyjuf8yO77KlfTfwaF3Z1HeSaU6DzV_gh4P0BJPe114ivZM-Qw97Mkmu-fo17StXG2AdYd1YQuEN0bj2QarCgLQogTQqfHFFb42reNXMVjWtewaDLAWN4WdeShLU20aOH8gz1FDtQEsy8LCVdx0JQDKpmigRWO7tB-wOd7cXNZuqv4LtJyf_Jid-gMDg6-SkLc-CzKqg0RlmUoiwTJmJHUxRmQLF-USgmtqEmqIijkXSglhBMS5YUwym2WP45dov6xK8wphbRnEtYBxl7aKWijzhKksFxF8WGyUh8JxrFM1lCe3LBnr1KXJY5728klBPqmTTxp56P32nJu-OMc_ex9bEW572sLarqGqL9PBTtOMAwTLcqY1M0QEStIg14CqNGAlmUTEQ0ejAqSjsqYRp4QB9uWJh95uD4Od2uRLLxrbJ2EMglu4BN9RnJ0b2j1SFleu4jeAYBebe-jDqGN_fv3vT_z6v8bnED2KrPJbfgxyhPbbemPeAOJqswl6wFYMtnz-dYIOptPF9wV8H5-cf7uA1hmdTdx_GRNnbr8B2pMrbA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFNsKWAkOEFUJ3Hi-IBQKVRb-jigVtqbcWynjVSSJckK7ZUfxG9kxkm22kr01sNGq8TZTTzj8Tee8TeEvI1THTKpWWC5TAOeaB3kBXgpBWg0iwGfSob7nY9P0ukZ_zZLZhvk77gXBtMqR5voDbWtDa6R70RZygXgiyz5NP8VYNUojK6OJTR6tTh0y9_gsrUfD76AfN9F0f7X071pMFQVCEwSZl0gWJ5alpg8N0kkRS6cTj1ujpCMp9DgMKYuSR03cZZJY6R0Eny3MOY5Ro5xARRM_h2YeBmmEIqZWK3pINt6xvmwN4fF2U7LvSWCiTGAb3CM1uY_XyZgDdtez8y8Fp71s97-Q_JggKt0t9evR2TDVY_J3b6A5fIJ-bPb1Z5v4HJJbYmk462zdG9BTQ09VFYAZC39fkF_us7XbHFUN41ethSgMm1LzGbUlasXLdw_FOQxA4MB1VWJEJi2ywpAalu2cMZSpAsAvE8X8_PGp_8_JWe30v_PyGZVV-45oRarklvJeKiRmS3URSJMXsgIPiJ2ZkLCsa-VGSjPsfLGpfKh9zhTvXwUyEd5-ahoQt6v7pn3hB83tv6MIly1RLJuf6JuztUw9lWeAazLC2GtcFwyo1NWWEBqFvCXTiI-IdujAqjBgrTqSt8n5M3qMox9DOj0osE2iRDgMMNPZGuKs_ZA61eq8sKziIP6en9_Qj6MOnb17_9_462bH_Y1uTc9PT5SRwcnhy_I_Qg1Hwtu8G2y2TUL9xIgXJe_8uOGkh-3PVD_Ab1_Vm4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBtHk4cHxAqLauWQoUQlfZmHNtpI5VkSbJCufKz-HXMOMlWW4neetholTi7iWc8_saP7yPkVZyqMBAq8A0Tqc8Spfy8gCylAI8OYsCnIsD9zl-O04MT9mmRLLbI32kvDC6rnGKiC9Sm1jhGPouylHHAF1kyK8ZlEV_35--Xv3xUkMKZ1klOY3CRI9v_hvStfXe4D7Z-HUXzj9_3DvxRYcDXSZh1Pg_y1ASJznOdRILn3KrUYegIiXkKBcljapPUMh1nmdBaCCsgjwtjluMsMg6GQvi_wWPoNqEt8QVfj-8g83rG2LhPJ4izWctcVIJO0odvcIw2-kInGbCBcy-v0rw0Vet6wPldcmeErnR38LV7ZMtW98nNQcyyf0D-7Ha14x4476kpkYC8tYburaiuoYbKCkCtod_O6E_bOf0WS1XTqL6lAJtpW-LKRlXZetXC_aM4jx7ZDKiqSoTDtO0rAKxt2cIZQ5E6ALA_XS1PG7cV4CE5uZb6f0S2q7qyjwk1qFBuRMBChSxtoSoSrvNCRPDhsdUeCae6lnqkP0cVjnPppuHjTA72kWAf6ewjI4-8Wd-zHMg_riz9AU24LonE3e5E3ZzKMQ7IPAOIlxfcGG6ZCLRKg8IAajOAxVQSMY_sTA4gx2jSygvf98jL9WWIAzi5M5gGyyScQ_IMP5FtOM7GA21eqcozxygOINvl_h55O_nYxb___42fXP2wL8gtaKLy8-Hx0VNyO0LHR-0NtkO2u2ZlnwGa6_LnrtlQ8uO62-k_yPFapA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+dispersed+Cu+coordinated+Rh+metallene+arrays+for+simultaneously+electrochemical+aniline+synthesis+and+biomass+upgrading&rft.jtitle=Nature+communications&rft.au=Mao%2C+Qiqi&rft.au=Mu%2C+Xu&rft.au=Wang%2C+Wenxin&rft.au=Deng%2C+Kai&rft.date=2023-09-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-41423-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_41423_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon