Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations

Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy ba...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; p. 3079
Main Authors Liu, Mingfeng, Wang, Jiantao, Hu, Junwei, Liu, Peitao, Niu, Haiyang, Yan, Xuexi, Li, Jiangxu, Yan, Haile, Yang, Bo, Sun, Yan, Chen, Chunlin, Kresse, Georg, Zuo, Liang, Chen, Xing-Qiu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β - to λ -Ti 3 O 5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β − λ phase transformation initiates with the formation of two-dimensional nuclei in the a b -plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β − λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti 3 O 5 transformations using machine-learning molecular dynamics simulations.
AbstractList Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β−λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β−λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti3O5 transformations using machine-learning molecular dynamics simulations.
Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β−λ phase transformation initiates with the formation of two-dimensional nuclei in the a b-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β−λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.
Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β - to λ -Ti 3 O 5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β − λ phase transformation initiates with the formation of two-dimensional nuclei in the a b -plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β − λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.
Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β - to λ -Ti 3 O 5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β − λ phase transformation initiates with the formation of two-dimensional nuclei in the a b -plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β − λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti 3 O 5 transformations using machine-learning molecular dynamics simulations.
Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β-λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β-λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.
ArticleNumber 3079
Author Yan, Haile
Chen, Xing-Qiu
Wang, Jiantao
Yan, Xuexi
Hu, Junwei
Sun, Yan
Niu, Haiyang
Liu, Peitao
Chen, Chunlin
Liu, Mingfeng
Li, Jiangxu
Yang, Bo
Kresse, Georg
Zuo, Liang
Author_xml – sequence: 1
  givenname: Mingfeng
  surname: Liu
  fullname: Liu, Mingfeng
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China
– sequence: 2
  givenname: Jiantao
  surname: Wang
  fullname: Wang, Jiantao
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China
– sequence: 3
  givenname: Junwei
  orcidid: 0000-0002-6117-0623
  surname: Hu
  fullname: Hu, Junwei
  organization: State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University
– sequence: 4
  givenname: Peitao
  orcidid: 0000-0002-6950-1386
  surname: Liu
  fullname: Liu, Peitao
  email: ptliu@imr.ac.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 5
  givenname: Haiyang
  orcidid: 0000-0003-3049-5916
  surname: Niu
  fullname: Niu, Haiyang
  email: haiyang.niu@nwpu.edu.cn
  organization: State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University
– sequence: 6
  givenname: Xuexi
  surname: Yan
  fullname: Yan, Xuexi
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 7
  givenname: Jiangxu
  orcidid: 0000-0002-4534-4208
  surname: Li
  fullname: Li, Jiangxu
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 8
  givenname: Haile
  orcidid: 0000-0003-2184-132X
  surname: Yan
  fullname: Yan, Haile
  organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University
– sequence: 9
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University
– sequence: 10
  givenname: Yan
  orcidid: 0000-0002-7142-8552
  surname: Sun
  fullname: Sun, Yan
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 11
  givenname: Chunlin
  orcidid: 0000-0003-1985-1940
  surname: Chen
  fullname: Chen, Chunlin
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 12
  givenname: Georg
  orcidid: 0000-0001-9102-4259
  surname: Kresse
  fullname: Kresse, Georg
  organization: University of Vienna, Faculty of Physics and Center for Computational Materials Science
– sequence: 13
  givenname: Liang
  orcidid: 0000-0003-2971-3701
  surname: Zuo
  fullname: Zuo, Liang
  organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University
– sequence: 14
  givenname: Xing-Qiu
  orcidid: 0000-0002-5904-6578
  surname: Chen
  fullname: Chen, Xing-Qiu
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
BookMark eNp9kktr3DAUhU1JaR7NH-jK0E03bvW05VUpoY_AQDbpWlxL1zMabGkq2QH_-8pxaJMuqo0uV-d8iMO5LM588FgU7yj5SAlXn5Kgom4qwkQlGsFYRV8VF4wIWtGG8bNn83lxndKR5MNbqoR4U5xzJVvBGn5RHHawYKy6pRrWoTwdIGE5RfCpD3GEyQVfOl_eO34ny4gPCAPaslvKEczBeawGhOid35djGNDMA8TSLh5GZ1KZ3JgXKyO9LV73MCS8frqvip_fvt7f_Kh2d99vb77sKiOpmqpa1VY0Hast59C2AntJWmMMoKXM9k1PpJB9aymVStC2k0waBpwCYN9gZ_hVcbtxbYCjPkU3Qlx0AKcfFyHuNcTJmQE1UxZ4TZhhPRMdSGWgFq3ineqNtbiyPm-s09yNaA36HMzwAvryxbuD3ocHTSnJ6VOWCR-eCDH8mjFNenTJ4DCAxzAnzQmXUhBO2ix9_4_0GOboc1arSijBWVtnFdtUJoaUIvZ_fkOJXouht2LoXAz9WAxNs4lvppTFfo_xL_o_rt9oyb1C
CitedBy_id crossref_primary_10_1016_j_jmat_2024_06_006
Cites_doi 10.1038/s41586-022-04863-2
10.1515/zpch-1897-2233
10.1038/s42254-020-0153-0
10.1103/PhysRevLett.122.225701
10.1038/ncomms8037
10.6084/m9.figshare.24279616
10.1038/s41524-020-0283-z
10.1103/PhysRevA.31.1695
10.1103/PhysRevB.99.014104
10.1063/1.447334
10.1021/acs.jpcc.3c01549
10.1021/acs.jpcc.3c04986
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.100.136406
10.1021/acs.chemrev.0c01111
10.1063/1.2408420
10.1016/S0925-4005(02)00302-7
10.1038/421599b
10.1126/science.252.5003.216
10.1143/PTPS.103.1
10.1103/PhysRevB.107.125160
10.1038/s41524-021-00630-5
10.1002/ejic.202101037
10.1038/s41467-022-29939-5
10.1142/9789812830715
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRevLett.45.1196
10.1073/pnas.1803919115
10.1103/PhysRevMaterials.5.053804
10.1016/j.jcp.2014.12.018
10.1007/BF01589116
10.1016/j.cpc.2013.09.018
10.1063/5.0009491
10.1038/s41467-020-16372-9
10.1103/PhysRevB.103.054107
10.1038/s41467-023-38650-y
10.1103/PhysRevLett.103.055503
10.1103/PhysRevB.84.180301
10.1021/acs.chemrev.1c00022
10.1016/j.jphotochem.2015.06.027
10.1103/PhysRevLett.130.078001
10.1103/PhysRevLett.129.185701
10.1063/1.328693
10.1073/pnas.202427399
10.1016/S1003-6326(21)65731-X
10.1016/j.matt.2020.05.013
10.1038/nchem.670
10.1103/PhysRevB.95.085133
10.1016/j.apsusc.2021.149269
10.1137/15M1054183
10.1002/wcms.31
10.1021/acs.jpcc.2c00572
10.1021/cg5013439
10.1038/s41586-023-06509-3
10.1063/1.3382344
10.1103/PhysRevLett.126.236001
10.1201/9781003011804
10.1103/PhysRevLett.127.080603
10.1103/PhysRevB.54.11169
10.1021/acs.jpca.9b08723
10.1039/D3CC00641G
10.1103/PhysRevLett.127.105701
10.1103/PhysRevLett.115.036402
10.1021/acs.chemrev.0c00868
10.1126/sciadv.aaz5264
10.1103/PhysRevLett.100.020603
10.1038/nmat4083
10.1049/mnl.2016.0406
10.1038/s41467-021-21316-y
10.1103/PhysRevLett.100.185501
10.1103/PhysRevB.87.184115
10.1088/2752-5724/ac681d
10.1021/acs.accounts.0c00403
10.1002/jcc.21305
10.1038/s41467-023-36841-1
10.1016/j.cpc.2021.108171
10.1103/PhysRevLett.129.255702
10.1038/s41598-019-49690-0
10.1063/1.3684549
10.1103/PhysRevB.105.075134
10.1016/j.commatsci.2017.08.031
10.1093/oso/9780198803195.001.0001
10.1002/aenm.202300754
10.1103/PhysRevB.100.014105
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-47422-1
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 3079
ExternalDocumentID oai_doaj_org_article_28da3602c2f24ba58ca64983b8fcddec
10_1038_s41467_024_47422_1
GrantInformation_xml – fundername: The work at the Institute of Metal Research is supported by the National Natural Science Foundation of China (Grant No. 52201030 and Grant No. 52188101), the National Key R&D Program of China 2021YFB3501503, Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-2-5), and the National Science Fund for Distinguished Young Scholars (Grant No. 51725103). The work at the Northeastern University is supported by the National Natural Science Foundation of China (Grant No. 52331001). J.H. and H.N. acknowledge the supports from the National Natural Science Foundation of China (Grant No. 22003050) and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (grant No. 2020-QZ-03). G.K. acknowledges the support from the Austrian Science Fund (FWF) within the SFB TACO (Project No. F 81-N).
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c518t-686d47b26d33a994ef509cccaed12df7f0545f9d1158419b525c2a31aaef7ebc3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:12:13 EDT 2024
Tue Sep 17 21:29:38 EDT 2024
Sat Oct 26 05:32:18 EDT 2024
Fri Nov 08 20:49:37 EST 2024
Fri Aug 23 02:42:13 EDT 2024
Fri Oct 11 20:55:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-686d47b26d33a994ef509cccaed12df7f0545f9d1158419b525c2a31aaef7ebc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1985-1940
0000-0002-6117-0623
0000-0003-3049-5916
0000-0001-9102-4259
0000-0002-7142-8552
0000-0002-4534-4208
0000-0002-5904-6578
0000-0003-2971-3701
0000-0002-6950-1386
0000-0003-2184-132X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004112/
PMID 38594273
PQID 3034843296
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_28da3602c2f24ba58ca64983b8fcddec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004112
proquest_miscellaneous_3035540309
proquest_journals_3034843296
crossref_primary_10_1038_s41467_024_47422_1
springer_journals_10_1038_s41467_024_47422_1
PublicationCentury 2000
PublicationDate 2024-04-09
PublicationDateYYYYMMDD 2024-04-09
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhaoP-fProgress in Ti3O5: synthesis, properties and applicationsTrans. Nonferrous Met. Soc. China202131331033271:CAS:528:DC%2BB3MXislaku77F10.1016/S1003-6326(21)65731-X
ZhangLWangHCarREWPhase diagram of a deep potential water modelPhys. Rev. Lett.20211262360012021PhRvL.126w6001Z1:CAS:528:DC%2BB3MXhsVWku73M3417017510.1103/PhysRevLett.126.236001
KamiokaHTime-resolved imaging and spectroscopy for the photo-induced phase transition in Ti4O7J. Photochem. Photobiol. A: Chem.20153111541591:CAS:528:DC%2BC2MXhtFWisLfI10.1016/j.jphotochem.2015.06.027
TribelloGABonomiMBranduardiDCamilloniCBussiGPlumed 2: new feathers for an old birdComput. Phys. Commun.20141856046132014CoPhC.185..604T1:CAS:528:DC%2BC3sXhs1yqs7fJ10.1016/j.cpc.2013.09.018
TongQMachine learning metadynamics simulation of reconstructive phase transitionPhys. Rev. B20211030541072021PhRvB.103e4107T1:CAS:528:DC%2BB3MXms1Wgs70%3D10.1103/PhysRevB.103.054107
LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116
OhkoshiS-iSynthesis of a metal oxide with a room-temperature photoreversible phase transitionNat. Chem.201025395451:CAS:528:DC%2BC3cXnvVSiurY%3D2057157110.1038/nchem.670
LiuPVerdiCKarsaiFKresseGα-β phase transition of zirconium predicted by on-the-fly machine-learned force fieldPhys. Rev. Mater.202150538041:CAS:528:DC%2BB3MXht1yntrfO10.1103/PhysRevMaterials.5.053804
NiuHPiaggiPMInvernizziMParrinelloMMolecular dynamics simulations of liquid silica crystallizationProc. Natl Acad. Sci.2018115534853522018PNAS..115.5348N1:CAS:528:DC%2BC1cXhvVOltLvE29735667600348210.1073/pnas.1803919115
LiuPCombining machine learning and many-body calculations: coverage-dependent adsorption of CO on Rh(111)Phys. Rev. Lett.20231300780012023PhRvL.130g8001L1:CAS:528:DC%2BB3sXmtlGqsr4%3D3686782510.1103/PhysRevLett.130.078001
Jr, C., D, W. & Rethwisch, D. G. Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2020).
ZuoYPerformance and cost assessment of machine learning interatomic potentialsJ. Phys. Chem. A20201247317451:CAS:528:DC%2BB3cXmtVKjsg%3D%3D3191677310.1021/acs.jpca.9b08723
ShapeevAVMoment tensor potentials: a class of systematically improvable interatomic potentialsMultiscale Model. Simul.20161411531173354633510.1137/15M1054183
SheppardDXiaoPChemelewskiWJohnsonDDHenkelmanGA generalized solid-state nudged elastic band methodJ. Chem. Phys.20121360741032012JChPh.136g4103S2236023210.1063/1.3684549
SunPTi3O5 nanofilm on carbon nanotubes by pulse laser deposition: enhanced electrochemical performanceAppl. Surf. Sci.20215481492691:CAS:528:DC%2BB3MXkvFCmu7c%3D10.1016/j.apsusc.2021.149269
YangBFlatband λ-Ti3O5 towards extraordinary solar steam generationNature20236224992023Natur.622..499Y1:CAS:528:DC%2BB3sXhvFSmtbrK3770473210.1038/s41586-023-06509-3
DeringerVLGaussian process regression for materials and moleculesChem. Rev.202112110073101411:CAS:528:DC%2BB3MXhslyhs7rN34398616839196310.1021/acs.chemrev.1c00022
TadanoTGohdaYTsuneyukiSAnharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulationsJ. Phys.: Condens. Matter2014262254021:CAS:528:DC%2BC2cXht1amurrO24824156
GartnerTEPiaggiPMCarRPanagiotopoulosAZDebenedettiPGLiquid-liquid transition in water from first principlesPhys. Rev. Lett.20221292557022022PhRvL.129y5702G1:CAS:528:DC%2BB3sXnsVWi3660822410.1103/PhysRevLett.129.255702
FuXInfluences of hole/electron-lattice coupling on phase transition between λ-Ti3O5 and β-Ti3O5J. Phys.: Condens. Matter20203246LT011:CAS:528:DC%2BB3cXisF2ltLfN32759474
SaikiTSelection rule for the photoinduced phase transition dominated by anisotropy of strain in Ti3O5Phys. Rev. B20221050751342022PhRvB.105g5134S1:CAS:528:DC%2BB38Xmslegsbc%3D10.1103/PhysRevB.105.075134
NakamuraYSakaiYAzumaMichi OhkoshiSLong-term heat-storage ceramics absorbing thermal energy from hot waterSci. Adv.20206eaaz52642020SciA....6.5264N1:CAS:528:DC%2BB3cXitlWit7%2FJ32656338732933310.1126/sciadv.aaz5264
IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b
JinnouchiRKarsaiFKresseGOn-the-fly machine learning force field generation: application to melting pointsPhys. Rev. B20191000141052019PhRvB.100a4105J1:CAS:528:DC%2BC1MXhvFantb%2FI10.1103/PhysRevB.100.014105
JüttenSBredowTAnisotropy of the pressure effect in the Ti3O5 phase transition process resolved by direction-dependent interface propagationJ. Phys. Chem. C.2023127205302053810.1021/acs.jpcc.3c04986
TanakaKStructural phase transition between γ-Ti3O5 and δ-Ti3O5 by breaking of a one-dimensionally conducting pathwayCryst. Growth Des.2015156536571:CAS:528:DC%2BC2cXitFeitbrE10.1021/cg5013439
PerdewJPRestoring the density-gradient expansion for exchange in solids and surfacesPhys. Rev. Lett.20081001364062008PhRvL.100m6406P1851797910.1103/PhysRevLett.100.136406
Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase transformations in metals and alloys (4th ed.) (CRC Press, 2021).
VandermauseJOn-the-fly active learning of interpretable bayesian force fields for atomistic rare eventsnpj Comput. Mater.202062020npjCM...6...20V10.1038/s41524-020-0283-z
PozdnyakovSOganovARMazhnikEMazitovAKruglovIFast general two- and three-body interatomic potentialPhys. Rev. B20231071251602023PhRvB.107l5160P1:CAS:528:DC%2BB3sXosFyhtb8%3D10.1103/PhysRevB.107.125160
KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
NiuHBonatiLPiaggiPMParrinelloMAb initio phase diagram and nucleation of galliumNat. Commun.2020112020NatCo..11.2654N1:CAS:528:DC%2BB3cXhtVClsb7K32461573725347010.1038/s41467-020-16372-9
JinnouchiRKarsaiFVerdiCAsahiRKresseGDescriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentialsJ. Chem. Phys.20201522341022020JChPh.152w4102J1:CAS:528:DC%2BB3cXhtF2mtb7P3257105110.1063/5.0009491
LuoKCoherent interfaces govern direct transformation from graphite to diamondNature20226074864912022Natur.607..486L1:CAS:528:DC%2BB38XhslentrnP35794481930046410.1038/s41586-022-04863-2
DrautzRAtomic cluster expansion for accurate and transferable interatomic potentialsPhys. Rev. B2019990141042019PhRvB..99a4104D1:CAS:528:DC%2BC1MXnvFWjsrY%3D10.1103/PhysRevB.99.014104
OhkoshiS-iLow-pressure-responsive heat-storage ceramics for automobilesSci. Rep.201992019NatSR...913203O31534163675117210.1038/s41598-019-49690-0
BehlerJMartoňákRDonadioDParrinelloMMetadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potentialPhys. Rev. Lett.20081001855012008PhRvL.100r5501B1851838810.1103/PhysRevLett.100.185501
WenTZhangLWangHEWSrolovitzDJDeep potentials for materials scienceMater. Futures2022102260110.1088/2752-5724/ac681d
BonomiMBarducciAParrinelloMReconstructing the equilibrium Boltzmann distribution from well-tempered metadynamicsJ. Comput. Chem.200930161516211:CAS:528:DC%2BD1MXnsFCiur8%3D1942199710.1002/jcc.21305
BarducciABussiGParrinelloMWell-tempered metadynamics: a smoothly converging and tunable free-energy methodPhys. Rev. Lett.20081000206032008PhRvL.100b0603B1823284510.1103/PhysRevLett.100.020603
JüttenSBredowTDoping effect on the electronic structure and heat-storage properties of Ti3O5J. Phys. Chem. C.2023127104451045210.1021/acs.jpcc.3c01549
VerdiCKarsaiFLiuPJinnouchiRKresseGThermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentialsnpj Comput. Mater.202172021npjCM...7..156V1:CAS:528:DC%2BB3MXitFGhsbjO10.1038/s41524-021-00630-5
OstwaldWStudien über die bildung und umwandlung fester körperZ. f.ür. Physik. Chem.1897222893301:CAS:528:DyaD28Xpt1elsw%3D%3D10.1515/zpch-1897-2233
BussiGLaioAUsing metadynamics to explore complex free-energy landscapesNat. Rev. Phys.2020220021210.1038/s42254-020-0153-0
NovikovISGubaevKPodryabinkinEVShapeevAVThe MLIP package: moment tensor potentials with MPI and active learningMach. Learn.: Sci. Technol.20212025002
ZhuSYanXLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013
Tolédano, P. & Dmitriev, V. Reconstructive phase transitions: In: Crystals and quasicrystals (World scientific, 1996).
ChengBHamelSBethkenhagenMThermodynamics of diamond formation from hydrocarbon mixtures in planetsNat. Commun.2023142023NatCo..14.1104C1:CAS:528:DC%2BB3sXkt1Ogtbc%3D36843123996871510.1038/s41467-023-36841-1
JüttenSBredowTFirst-principles investigation of electronic properties and phase transition of Ti3O5J. Phys. Chem. C.20221267809781710.1021/acs.jpcc.2c00572
Allen, M. P. & Tildesley, D. J. Computer simulation of liquids (Oxford University Press, 2017).
BartókAPKondorRCsányiGOn representing chemical environmentsPhys. Rev. B2013871841152013PhRvB..87r4115B10.1103/PhysRevB.87.184115
GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344
MarietteCStrain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffractionNat. Commun.2021122021NatCo..12.1239M1:CAS:528:DC%2BB3MXltFOmsL8%3D33623010790281010.1038/s41467-021-21316-y
Santos-FlorezPAYanxonHKangBYaoYZhuQSize-dependent nucleation in crystal phase transition from machine learning metadynamicsPhys. Rev. Lett.20221291857012022PhRvL.129r5701S1:CAS:528:DC%2BB38XivFygtbvF3637468110.1103/PhysRevLett.129.185701
BussiGDonadioDParrinelloMCanonical sampling through velocity rescalingJ. Chem. Phys.20071260141012007JChPh.126a4101B1721248410.1063/1.2408420
KobayashiKElectronic structure and correlation in β-Ti3O5 and λ-Ti3O5 studied by hard x-ray photoelectron spectroscopyPhys. Rev. B2017950851332017PhRvB..95h5133K1
A Laio (47422_CR41) 2002; 99
JP Perdew (47422_CR61) 1996; 77
R Jinnouchi (47422_CR70) 2019; 122
L Zhang (47422_CR35) 2021; 126
S-i Ohkoshi (47422_CR13) 2010; 2
B Cheng (47422_CR51) 2020; 53
X Zhang (47422_CR23) 2016; 11
S-i Ohkoshi (47422_CR15) 2019; 9
AP Bartók (47422_CR52) 2013; 87
OT Unke (47422_CR31) 2021; 121
S Batzner (47422_CR38) 2022; 13
H Niu (47422_CR47) 2020; 11
H Tokoro (47422_CR14) 2015; 6
AP Thompson (47422_CR81) 2022; 271
S Pozdnyakov (47422_CR40) 2023; 107
K Kobayashi (47422_CR64) 2017; 95
P Liu (47422_CR77) 2023; 130
T Takeda (47422_CR26) 2022; 2022
H Kamioka (47422_CR58) 2015; 311
J Vandermause (47422_CR37) 2020; 6
GA Tribello (47422_CR82) 2014; 185
S Zhu (47422_CR9) 2020; 3
47422_CR88
J Behler (47422_CR44) 2008; 100
P Liu (47422_CR32) 2021; 5
G Bussi (47422_CR84) 2020; 2
D Sheppard (47422_CR69) 2012; 136
TE Gartner (47422_CR48) 2022; 129
VL Deringer (47422_CR29) 2021; 121
T Wen (47422_CR36) 2022; 1
Y Yao (47422_CR45) 2009; 103
EV Podryabinkin (47422_CR79) 2017; 140
H Niu (47422_CR46) 2018; 115
M Yang (47422_CR49) 2021; 127
A Barducci (47422_CR43) 2011; 1
47422_CR8
L Zheng (47422_CR22) 2003; 88
47422_CR3
Y Zuo (47422_CR76) 2020; 124
47422_CR1
G Kresse (47422_CR60) 1996; 54
47422_CR2
PA Santos-Florez (47422_CR12) 2022; 129
B Yang (47422_CR21) 2023; 622
J Behler (47422_CR30) 2021; 121
C Verdi (47422_CR33) 2021; 7
R Drautz (47422_CR39) 2019; 99
Y Peng (47422_CR56) 2015; 14
G Bussi (47422_CR83) 2007; 126
Q Tong (47422_CR10) 2021; 103
T Tadano (47422_CR68) 2014; 26
A Togo (47422_CR66) 2015; 108
J Sun (47422_CR63) 2015; 115
M Badin (47422_CR11) 2021; 127
Y Nakamura (47422_CR19) 2020; 6
S Jütten (47422_CR54) 2022; 126
S Jütten (47422_CR27) 2023; 127
M Bonomi (47422_CR53) 2009; 30
JP Perdew (47422_CR62) 2008; 100
K Luo (47422_CR5) 2022; 607
S Nosé (47422_CR85) 1984; 81
C Mariette (47422_CR16) 2021; 12
A Thompson (47422_CR34) 2015; 285
N Shuichi (47422_CR87) 1991; 103
S-i Ohkoshi (47422_CR20) 2023; 59
WG Hoover (47422_CR86) 1985; 31
T Saiki (47422_CR17) 2022; 105
S Jütten (47422_CR28) 2023; 127
P Sun (47422_CR18) 2021; 548
X Fu (47422_CR25) 2020; 32
R Jinnouchi (47422_CR72) 2020; 152
P-f Zhao (47422_CR24) 2021; 31
R Jinnouchi (47422_CR71) 2019; 100
DC Liu (47422_CR78) 1989; 45
T Irifune (47422_CR4) 2003; 421
SH Kirby (47422_CR6) 1991; 252
K Tanaka (47422_CR57) 2015; 15
O Hellman (47422_CR67) 2011; 84
X Wang (47422_CR59) 2023; 14
M Parrinello (47422_CR75) 1981; 52
W Ostwald (47422_CR55) 1897; 22
S Grimme (47422_CR65) 2010; 132
A Barducci (47422_CR42) 2008; 100
47422_CR73
47422_CR74
AV Shapeev (47422_CR50) 2016; 14
B Cheng (47422_CR7) 2023; 14
IS Novikov (47422_CR80) 2021; 2
References_xml – volume: 607
  start-page: 486
  year: 2022
  ident: 47422_CR5
  publication-title: Nature
  doi: 10.1038/s41586-022-04863-2
  contributor:
    fullname: K Luo
– volume: 22
  start-page: 289
  year: 1897
  ident: 47422_CR55
  publication-title: Z. f.ür. Physik. Chem.
  doi: 10.1515/zpch-1897-2233
  contributor:
    fullname: W Ostwald
– volume: 2
  start-page: 200
  year: 2020
  ident: 47422_CR84
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0153-0
  contributor:
    fullname: G Bussi
– volume: 122
  start-page: 225701
  year: 2019
  ident: 47422_CR70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.225701
  contributor:
    fullname: R Jinnouchi
– volume: 6
  year: 2015
  ident: 47422_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8037
  contributor:
    fullname: H Tokoro
– ident: 47422_CR88
  doi: 10.6084/m9.figshare.24279616
– volume: 6
  year: 2020
  ident: 47422_CR37
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0283-z
  contributor:
    fullname: J Vandermause
– volume: 31
  start-page: 1695
  year: 1985
  ident: 47422_CR86
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
  contributor:
    fullname: WG Hoover
– volume: 99
  start-page: 014104
  year: 2019
  ident: 47422_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.014104
  contributor:
    fullname: R Drautz
– volume: 81
  start-page: 511
  year: 1984
  ident: 47422_CR85
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: S Nosé
– volume: 127
  start-page: 10445
  year: 2023
  ident: 47422_CR28
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.3c01549
  contributor:
    fullname: S Jütten
– volume: 127
  start-page: 20530
  year: 2023
  ident: 47422_CR27
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.3c04986
  contributor:
    fullname: S Jütten
– volume: 77
  start-page: 3865
  year: 1996
  ident: 47422_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 100
  start-page: 136406
  year: 2008
  ident: 47422_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
  contributor:
    fullname: JP Perdew
– volume: 121
  start-page: 10142
  year: 2021
  ident: 47422_CR31
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01111
  contributor:
    fullname: OT Unke
– volume: 126
  start-page: 014101
  year: 2007
  ident: 47422_CR83
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
  contributor:
    fullname: G Bussi
– volume: 88
  start-page: 115
  year: 2003
  ident: 47422_CR22
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/S0925-4005(02)00302-7
  contributor:
    fullname: L Zheng
– volume: 421
  start-page: 599
  year: 2003
  ident: 47422_CR4
  publication-title: Nature
  doi: 10.1038/421599b
  contributor:
    fullname: T Irifune
– volume: 252
  start-page: 216
  year: 1991
  ident: 47422_CR6
  publication-title: Science
  doi: 10.1126/science.252.5003.216
  contributor:
    fullname: SH Kirby
– volume: 103
  start-page: 1
  year: 1991
  ident: 47422_CR87
  publication-title: Prog. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.103.1
  contributor:
    fullname: N Shuichi
– volume: 107
  start-page: 125160
  year: 2023
  ident: 47422_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.125160
  contributor:
    fullname: S Pozdnyakov
– volume: 7
  year: 2021
  ident: 47422_CR33
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00630-5
  contributor:
    fullname: C Verdi
– volume: 2022
  start-page: e202101037
  year: 2022
  ident: 47422_CR26
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.202101037
  contributor:
    fullname: T Takeda
– volume: 13
  year: 2022
  ident: 47422_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
  contributor:
    fullname: S Batzner
– ident: 47422_CR8
  doi: 10.1142/9789812830715
– volume: 108
  start-page: 1
  year: 2015
  ident: 47422_CR66
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
  contributor:
    fullname: A Togo
– ident: 47422_CR74
  doi: 10.1103/PhysRevLett.45.1196
– volume: 115
  start-page: 5348
  year: 2018
  ident: 47422_CR46
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1803919115
  contributor:
    fullname: H Niu
– volume: 5
  start-page: 053804
  year: 2021
  ident: 47422_CR32
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.053804
  contributor:
    fullname: P Liu
– volume: 285
  start-page: 316
  year: 2015
  ident: 47422_CR34
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.12.018
  contributor:
    fullname: A Thompson
– volume: 45
  start-page: 503
  year: 1989
  ident: 47422_CR78
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
  contributor:
    fullname: DC Liu
– volume: 185
  start-page: 604
  year: 2014
  ident: 47422_CR82
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.018
  contributor:
    fullname: GA Tribello
– volume: 152
  start-page: 234102
  year: 2020
  ident: 47422_CR72
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0009491
  contributor:
    fullname: R Jinnouchi
– volume: 11
  year: 2020
  ident: 47422_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16372-9
  contributor:
    fullname: H Niu
– volume: 103
  start-page: 054107
  year: 2021
  ident: 47422_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.054107
  contributor:
    fullname: Q Tong
– volume: 14
  year: 2023
  ident: 47422_CR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38650-y
  contributor:
    fullname: X Wang
– volume: 32
  start-page: 46LT01
  year: 2020
  ident: 47422_CR25
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: X Fu
– volume: 103
  start-page: 055503
  year: 2009
  ident: 47422_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.055503
  contributor:
    fullname: Y Yao
– volume: 84
  start-page: 180301
  year: 2011
  ident: 47422_CR67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.180301
  contributor:
    fullname: O Hellman
– volume: 121
  start-page: 10073
  year: 2021
  ident: 47422_CR29
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00022
  contributor:
    fullname: VL Deringer
– volume: 311
  start-page: 154
  year: 2015
  ident: 47422_CR58
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/j.jphotochem.2015.06.027
  contributor:
    fullname: H Kamioka
– volume: 130
  start-page: 078001
  year: 2023
  ident: 47422_CR77
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.078001
  contributor:
    fullname: P Liu
– ident: 47422_CR2
– volume: 129
  start-page: 185701
  year: 2022
  ident: 47422_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.185701
  contributor:
    fullname: PA Santos-Florez
– volume: 26
  start-page: 225402
  year: 2014
  ident: 47422_CR68
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: T Tadano
– volume: 52
  start-page: 7182
  year: 1981
  ident: 47422_CR75
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
  contributor:
    fullname: M Parrinello
– volume: 99
  start-page: 12562
  year: 2002
  ident: 47422_CR41
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.202427399
  contributor:
    fullname: A Laio
– volume: 31
  start-page: 3310
  year: 2021
  ident: 47422_CR24
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65731-X
  contributor:
    fullname: P-f Zhao
– volume: 3
  start-page: 864
  year: 2020
  ident: 47422_CR9
  publication-title: Matter
  doi: 10.1016/j.matt.2020.05.013
  contributor:
    fullname: S Zhu
– volume: 2
  start-page: 539
  year: 2010
  ident: 47422_CR13
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.670
  contributor:
    fullname: S-i Ohkoshi
– volume: 95
  start-page: 085133
  year: 2017
  ident: 47422_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.085133
  contributor:
    fullname: K Kobayashi
– volume: 548
  start-page: 149269
  year: 2021
  ident: 47422_CR18
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149269
  contributor:
    fullname: P Sun
– volume: 14
  start-page: 1153
  year: 2016
  ident: 47422_CR50
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/15M1054183
  contributor:
    fullname: AV Shapeev
– volume: 1
  start-page: 826
  year: 2011
  ident: 47422_CR43
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.31
  contributor:
    fullname: A Barducci
– volume: 126
  start-page: 7809
  year: 2022
  ident: 47422_CR54
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.2c00572
  contributor:
    fullname: S Jütten
– volume: 15
  start-page: 653
  year: 2015
  ident: 47422_CR57
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg5013439
  contributor:
    fullname: K Tanaka
– volume: 622
  start-page: 499
  year: 2023
  ident: 47422_CR21
  publication-title: Nature
  doi: 10.1038/s41586-023-06509-3
  contributor:
    fullname: B Yang
– volume: 132
  start-page: 154104
  year: 2010
  ident: 47422_CR65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
  contributor:
    fullname: S Grimme
– volume: 126
  start-page: 236001
  year: 2021
  ident: 47422_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.236001
  contributor:
    fullname: L Zhang
– ident: 47422_CR1
  doi: 10.1201/9781003011804
– volume: 127
  start-page: 080603
  year: 2021
  ident: 47422_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.080603
  contributor:
    fullname: M Yang
– volume: 54
  start-page: 11169
  year: 1996
  ident: 47422_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: G Kresse
– volume: 124
  start-page: 731
  year: 2020
  ident: 47422_CR76
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b08723
  contributor:
    fullname: Y Zuo
– volume: 59
  start-page: 7875
  year: 2023
  ident: 47422_CR20
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC00641G
  contributor:
    fullname: S-i Ohkoshi
– volume: 127
  start-page: 105701
  year: 2021
  ident: 47422_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.105701
  contributor:
    fullname: M Badin
– volume: 115
  start-page: 036402
  year: 2015
  ident: 47422_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036402
  contributor:
    fullname: J Sun
– volume: 121
  start-page: 10037
  year: 2021
  ident: 47422_CR30
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00868
  contributor:
    fullname: J Behler
– volume: 6
  start-page: eaaz5264
  year: 2020
  ident: 47422_CR19
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz5264
  contributor:
    fullname: Y Nakamura
– volume: 100
  start-page: 020603
  year: 2008
  ident: 47422_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.020603
  contributor:
    fullname: A Barducci
– volume: 14
  start-page: 101
  year: 2015
  ident: 47422_CR56
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4083
  contributor:
    fullname: Y Peng
– volume: 11
  start-page: 811
  year: 2016
  ident: 47422_CR23
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2016.0406
  contributor:
    fullname: X Zhang
– volume: 2
  start-page: 025002
  year: 2021
  ident: 47422_CR80
  publication-title: Mach. Learn.: Sci. Technol.
  contributor:
    fullname: IS Novikov
– volume: 12
  year: 2021
  ident: 47422_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21316-y
  contributor:
    fullname: C Mariette
– volume: 100
  start-page: 185501
  year: 2008
  ident: 47422_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.185501
  contributor:
    fullname: J Behler
– volume: 87
  start-page: 184115
  year: 2013
  ident: 47422_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.184115
  contributor:
    fullname: AP Bartók
– volume: 1
  start-page: 022601
  year: 2022
  ident: 47422_CR36
  publication-title: Mater. Futures
  doi: 10.1088/2752-5724/ac681d
  contributor:
    fullname: T Wen
– volume: 53
  start-page: 1981
  year: 2020
  ident: 47422_CR51
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00403
  contributor:
    fullname: B Cheng
– volume: 30
  start-page: 1615
  year: 2009
  ident: 47422_CR53
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21305
  contributor:
    fullname: M Bonomi
– volume: 14
  year: 2023
  ident: 47422_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36841-1
  contributor:
    fullname: B Cheng
– volume: 271
  start-page: 108171
  year: 2022
  ident: 47422_CR81
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
  contributor:
    fullname: AP Thompson
– volume: 129
  start-page: 255702
  year: 2022
  ident: 47422_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.255702
  contributor:
    fullname: TE Gartner
– volume: 9
  year: 2019
  ident: 47422_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49690-0
  contributor:
    fullname: S-i Ohkoshi
– volume: 136
  start-page: 074103
  year: 2012
  ident: 47422_CR69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
  contributor:
    fullname: D Sheppard
– volume: 105
  start-page: 075134
  year: 2022
  ident: 47422_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.075134
  contributor:
    fullname: T Saiki
– volume: 140
  start-page: 171
  year: 2017
  ident: 47422_CR79
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.08.031
  contributor:
    fullname: EV Podryabinkin
– ident: 47422_CR73
  doi: 10.1093/oso/9780198803195.001.0001
– ident: 47422_CR3
  doi: 10.1002/aenm.202300754
– volume: 100
  start-page: 014105
  year: 2019
  ident: 47422_CR71
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.014105
  contributor:
    fullname: R Jinnouchi
SSID ssj0000391844
Score 2.4929852
Snippet Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological...
Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological...
Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 3079
SubjectTerms 639/301/1034/1035
639/301/119/2795
Chemical bonds
First principles
Humanities and Social Sciences
Learning algorithms
Machine learning
Metastable phases
Molecular dynamics
multidisciplinary
Phase transitions
Science
Science (multidisciplinary)
Simulation
Titanium oxides
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOgl9EndpkWF3BKR1dPSsS0NoTTtJYHchJ7Zha431JvD_vuOZG-yDpReejOWjK0ZjeYbZvwNQkeCumRcqXlyxhMRfEt89Ir4wLMy0fEcS0b34oc6vxLfruX1TquvUhM20AMPgjtlGh5QMxZYZsI7qYNTwmjudQ5gmqGevjOzE0zVM5gbCF3E-JfMjOvTXtQzAVwSERAOMkInnqgS9k9Q5uMayUeJ0up_zp6hgxE44k_DBz9He6l7gZ4MrSQ3L9H8uwPwTPyG_CoX-HYO7gmvd2DpqsOLDl8u-E-JC28TeIaI_QYvazllImP_iBu83HbMxXFoV9_jfrEc23z1r9DV2dfLL-dk7KJAgqR6TZRWUbSeqci5M0akDBghgOJSpCzmNgNok9lEgIZaUOMlk4E5Tp1LuU2gs9dov1t16Q3CbZA-c-czxEiidd61DhBcnlEnW0-5aNDxVqL2diDLsDXJzbUd5G9B_rbK39IGfS5Cv59ZiK7rDVC_HdVv_6X-Bh1uVWZH6-stuGWhBWdGNejj_TDYTUmGuC6t7uocQFIlwdQgPVH15IOmI91iXhm4K88eINUGnWx3xcPb_77it_9jxe_QU1Z2cakeModof_37Lr0HYLT2H6oN_AEYuw5R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7C6fsSPUwWIqkI8Lq20N8vP7krdZGm2h_332I6zZSvBLUosxZkZz3z2TOYD4D3DJiiTa56Msog5K5D1liPraOTKGxp9zuj--MnPLti3eTuvB25DLaucfGJx1L53-Yz8OLlaJhklip-sf6PMGpWzq5VC4z54gMmM55IuMRe7M5bc_VwyVv-VmVF5PLDiGVJgQixtCgnCe_GotO3fw5p3KyXvpEtLFDp9Ah5X-Ag_jfp-Cu6F7hl4OBJKbp-DxXeTIDSyW3SVL-B6kYIU3PwFTvsOLjt4vqS_Wpi7N6X44KHdwlUpqgyoskhcwtXEmwv9SFo_wGG5qmRfwwtwcfr1_MsZqlwKyLVYbhCX3DNhCfeUGqVYiAkpuKS-4DHxUcQE3dqofAKIkmFlW9I6Yig2JkQRkuZegoOu78IrAIVrbaTGxrRTYsJYI0zCcXGGTSsspqwBHyaJ6vXYMkOXVDeVepS_TvLXRf4aN-BzFvpuZG53XW7015e6rh5NZLIaPiOORMKsaaUznClJrYwu-WfXgKNJZbquwUHfWkwD3u0ep9WTUyKmC_1NGZPwVE4zNUDuqXpvQvtPuuWi9OEu3fYSXm3Ax8kqbt_-7y9-_f_JHoJHJNtnrg5SR-Bgc30T3iTgs7Fvi3X_AYVnBJk
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQERIXxFMECjISN7Bo_Ip9hBVVhXhcWqk3a_xiV2KzFdke9t8zdrILqeDALYodJZlH5nNm_A0hr2ULyUKpeQLrmQy-Yz56zXwQWdsIIseS0f3yVZ9dyE-X6nKiySl7YWb5e2HeDbK6MkYSJnEVxxmudG5jDDalfGuhF4f_KYXp3Eg57Yv5-6Wz2FMp-me48mZV5I3UaI04p_fJvQkq0vejbh-QW6l_SO6MzSN3j8jyMyBcZn7HfpQDerXEgES3fwDRTU9XPT1fiW-KFqYmjAWR-h1d1wLKxKaOEd_pet8jl8axQf1Ah9V6auw1PCYXpx_PF2ds6pvAgmrNlmmjo-w811EIsFamjKggoKpSbHnMXUaYprKNCAaNbK1XXAUOogVIuUuopSfkqN_06SmhXVA-C_AZV0WyAw8dIGbLJy2ozrdCNuTNXqLuaqTHcDWtLYwb5e9Q_q7K37UN-VCEfphZqK3rCdS4mzzFcYMWok944JlLD8oE0NIa4U0O-C0ODTneq8xN_jY4DMTSSMGtbsirwzB6Skl_QJ8213UOYqeSUmqImal69kDzkX61rJzblVkPsWlD3u6t4vfd__3Gz_5v-nNylxd7LZVB9pgcbX9epxcIerb-ZbX2X6KI_W4
  priority: 102
  providerName: Springer Nature
Title Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations
URI https://link.springer.com/article/10.1038/s41467-024-47422-1
https://www.proquest.com/docview/3034843296
https://search.proquest.com/docview/3035540309
https://pubmed.ncbi.nlm.nih.gov/PMC11004112
https://doaj.org/article/28da3602c2f24ba58ca64983b8fcddec
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY5_MXRc02NumJpZkWXpMQ7MS1q5sLeTNSLLVGGon1OlD_vudZLurC3vZi20kgWXdne53vtMdQl94rAulfcyTVoZwa1JiciOIscwJlWvmcu_RPb8QZ9d8sUyWe0j0Z2FC0L415XF9Wx3X5SrEVm4qO-7jxMaX57OQ5gyAwngf7QOHPrLRw_7LFJgtvDshM2Fy3PCwH4A6IhxMQUp8fRgmE8VpygYKKeTtH4DNp6GST_ylQQ3NX6GXHX7E03aer9FeUb9Bz9uKkru3aPVDA4YmZkdu_QPerEBL4e0jdLqucVnjq5L9TLBP3wQKIsdmh6sQVVmQrozEDa76wrk4b6vWN7gpq67aV_MOXc9Pr2ZnpCumQGwSyy0RUuQ8NVTkjGmleOEAKligX5HHNHepA-yWOJUDQpQ8ViahiaWaxVoXLi2AdO_RQb2uiw8IpzYxjmnjwFTiqTY61QDk3CTWSWpixiP0tV_RbNPmzMiCr5vJrCVFBqTIAimyOEInftEfRvp816FhfXeTdVTPqAS2ERNqqaPc6ERaLbiSzEhnYYO2ETrqSZZ1QthkoJ255IwqEaHPD90gPt4noutifR_GAKDyfqYIyQGpBxMa9gBfhkTcPR9G6FvPFX_f_u8vPvz_N31EL6hnYx86pI7QwfbuvvgEqGhrRiAKyxSucv59hJ5Np4vfC7ifnF5c_oLWmZiNwv-GURCWP013FJI
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8VQDBYzEDaxubCexTwgQywLbctlKvVl-xN2V2GRptof994wdZ0sqwS1KLMWZGc988YznQ-gtz3Utdah50tIQbk1FjDMlMZb5UjrNvAsZ3ZPTcnbGv58X52nDrUtllYNPjI7atTbskR-Dq-WCMyrLD5vfJLBGhexqotC4je5wBrE6nBSfft3vsYTu54LzdFZmwsRxx6NngMBEOPwUUpKP4lFs2z_CmjcrJW-kS2MUmj5EDxJ8xB97fT9Ct-rmMbrbE0runqDlXAOEJmZHfoULvFlCkMLbv8Bp2-BVgxcr9rPAoXsTxAeHzQ6vY1FlTRKLxAVeD7y52PWk9R3uVutE9tU9RWfTL4vPM5K4FIgtcrElpSgdrwwtHWNaSl57QAoW1Fe7nDpfeYBuhZcOAKLguTQFLSzVLNe69lUNmnuGDpq2qQ8RrmxhPNPGw58Sr7TRlQYc5ye5LiqTM56hd4NE1aZvmaFiqpsJ1ctfgfxVlL_KM_QpCH0_MrS7jjfaywuVVo-iAqymnFBLPeVGF8LqkkvBjPAW_LPN0NGgMpXWYKeuLSZDb_aPYfWElIhu6vYqjgE8FdJMGRIjVY8mNH7SrJaxD3fstgd4NUPvB6u4fvu_v_j5_yf7Gt2bLU7mav7t9McLdJ8GWw2VQvIIHWwvr-qXAIK25lW09D_YSgeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxKcIDDASb2C1sZ3EeUIMVg0YZUKbtDfLn2slmpSle-h_z9lxOzIJ3qLEUpy7893Pvsv9EHrLc-VqFWqeVK0JN7oi2uqSaMN8WVvFvA0Z3e-z8uiMfz0vzlP9U5fKKrc-MTpq25pwRj4GV8sFZ7Quxz6VRZx8nn5Y_SaBQSpkWhOdxm20V_GSTUZo7-BwdvJzd-ISeqELztOfMxMmxh2PfgLCFOGwRaQkH0Sn2MR_gDxv1k3eSJ7GmDR9gO4nMIk_9tp_iG655hG609NLbh6j-bECQE30hvwKF3g1h5CF139B1bbBiwafLtiPAodeThAtLNYbvIwllo4kTokLvNyy6GLbU9h3uFssE_VX9wSdTQ9PPx2RxKxATJGLNSlFaXmlaWkZU3XNnQfcYECZzubU-soDkCt8bQEuCp7XuqCFoYrlSjlfOdDjUzRq2sY9Q7gyhfZMaQ_7Jl4prSoFqM5PclVUOmc8Q--2EpWrvoGGjIlvJmQvfwnyl1H-Ms_QQRD6bmRofh1vtJcXMq0lSQXYUDmhhnrKtSqEUSWvBdPCG_DWJkP7W5XJtCI7eW0_GXqzewxrKSRIVOPaqzgG0FVIOmVIDFQ9mNDwSbOYx67csfceoNcMvd9axfXb__3Fz_8_2dfoLpi5PP4y-_YC3aPBVEPZUL2PRuvLK_cSENFav0qm_geb5g0d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-layer+phase+transformation+in+Ti3O5+revealed+by+machine-learning+molecular+dynamics+simulations&rft.jtitle=Nature+communications&rft.au=Liu%2C+Mingfeng&rft.au=Wang%2C+Jiantao&rft.au=Hu%2C+Junwei&rft.au=Liu%2C+Peitao&rft.date=2024-04-09&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=3079&rft.epage=3079&rft_id=info:doi/10.1038%2Fs41467-024-47422-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon