Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations
Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy ba...
Saved in:
Published in | Nature communications Vol. 15; no. 1; p. 3079 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from
β
- to
λ
-Ti
3
O
5
exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the
β
−
λ
phase transformation initiates with the formation of two-dimensional nuclei in the
a
b
-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the
β
−
λ
transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.
Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti
3
O
5
transformations using machine-learning molecular dynamics simulations. |
---|---|
AbstractList | Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β−λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β−λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti3O5 transformations using machine-learning molecular dynamics simulations. Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β−λ phase transformation initiates with the formation of two-dimensional nuclei in the a b-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β−λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β - to λ -Ti 3 O 5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β − λ phase transformation initiates with the formation of two-dimensional nuclei in the a b -plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β − λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β - to λ -Ti 3 O 5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β − λ phase transformation initiates with the formation of two-dimensional nuclei in the a b -plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β − λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. Reconstructive phase transitions in materials are usually slow due to large activation energy barriers. Here, the authors show a kinetically favorable layer-by-layer mechanism in Ti 3 O 5 transformations using machine-learning molecular dynamics simulations. Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β-λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β-λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions. |
ArticleNumber | 3079 |
Author | Yan, Haile Chen, Xing-Qiu Wang, Jiantao Yan, Xuexi Hu, Junwei Sun, Yan Niu, Haiyang Liu, Peitao Chen, Chunlin Liu, Mingfeng Li, Jiangxu Yang, Bo Kresse, Georg Zuo, Liang |
Author_xml | – sequence: 1 givenname: Mingfeng surname: Liu fullname: Liu, Mingfeng organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China – sequence: 2 givenname: Jiantao surname: Wang fullname: Wang, Jiantao organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China – sequence: 3 givenname: Junwei orcidid: 0000-0002-6117-0623 surname: Hu fullname: Hu, Junwei organization: State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University – sequence: 4 givenname: Peitao orcidid: 0000-0002-6950-1386 surname: Liu fullname: Liu, Peitao email: ptliu@imr.ac.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 5 givenname: Haiyang orcidid: 0000-0003-3049-5916 surname: Niu fullname: Niu, Haiyang email: haiyang.niu@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University – sequence: 6 givenname: Xuexi surname: Yan fullname: Yan, Xuexi organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 7 givenname: Jiangxu orcidid: 0000-0002-4534-4208 surname: Li fullname: Li, Jiangxu organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 8 givenname: Haile orcidid: 0000-0003-2184-132X surname: Yan fullname: Yan, Haile organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University – sequence: 9 givenname: Bo surname: Yang fullname: Yang, Bo organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University – sequence: 10 givenname: Yan orcidid: 0000-0002-7142-8552 surname: Sun fullname: Sun, Yan organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 11 givenname: Chunlin orcidid: 0000-0003-1985-1940 surname: Chen fullname: Chen, Chunlin organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences – sequence: 12 givenname: Georg orcidid: 0000-0001-9102-4259 surname: Kresse fullname: Kresse, Georg organization: University of Vienna, Faculty of Physics and Center for Computational Materials Science – sequence: 13 givenname: Liang orcidid: 0000-0003-2971-3701 surname: Zuo fullname: Zuo, Liang organization: Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University – sequence: 14 givenname: Xing-Qiu orcidid: 0000-0002-5904-6578 surname: Chen fullname: Chen, Xing-Qiu organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences |
BookMark | eNp9kktr3DAUhU1JaR7NH-jK0E03bvW05VUpoY_AQDbpWlxL1zMabGkq2QH_-8pxaJMuqo0uV-d8iMO5LM588FgU7yj5SAlXn5Kgom4qwkQlGsFYRV8VF4wIWtGG8bNn83lxndKR5MNbqoR4U5xzJVvBGn5RHHawYKy6pRrWoTwdIGE5RfCpD3GEyQVfOl_eO34ny4gPCAPaslvKEczBeawGhOid35djGNDMA8TSLh5GZ1KZ3JgXKyO9LV73MCS8frqvip_fvt7f_Kh2d99vb77sKiOpmqpa1VY0Hast59C2AntJWmMMoKXM9k1PpJB9aymVStC2k0waBpwCYN9gZ_hVcbtxbYCjPkU3Qlx0AKcfFyHuNcTJmQE1UxZ4TZhhPRMdSGWgFq3ineqNtbiyPm-s09yNaA36HMzwAvryxbuD3ocHTSnJ6VOWCR-eCDH8mjFNenTJ4DCAxzAnzQmXUhBO2ix9_4_0GOboc1arSijBWVtnFdtUJoaUIvZ_fkOJXouht2LoXAz9WAxNs4lvppTFfo_xL_o_rt9oyb1C |
CitedBy_id | crossref_primary_10_1016_j_jmat_2024_06_006 |
Cites_doi | 10.1038/s41586-022-04863-2 10.1515/zpch-1897-2233 10.1038/s42254-020-0153-0 10.1103/PhysRevLett.122.225701 10.1038/ncomms8037 10.6084/m9.figshare.24279616 10.1038/s41524-020-0283-z 10.1103/PhysRevA.31.1695 10.1103/PhysRevB.99.014104 10.1063/1.447334 10.1021/acs.jpcc.3c01549 10.1021/acs.jpcc.3c04986 10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.100.136406 10.1021/acs.chemrev.0c01111 10.1063/1.2408420 10.1016/S0925-4005(02)00302-7 10.1038/421599b 10.1126/science.252.5003.216 10.1143/PTPS.103.1 10.1103/PhysRevB.107.125160 10.1038/s41524-021-00630-5 10.1002/ejic.202101037 10.1038/s41467-022-29939-5 10.1142/9789812830715 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevLett.45.1196 10.1073/pnas.1803919115 10.1103/PhysRevMaterials.5.053804 10.1016/j.jcp.2014.12.018 10.1007/BF01589116 10.1016/j.cpc.2013.09.018 10.1063/5.0009491 10.1038/s41467-020-16372-9 10.1103/PhysRevB.103.054107 10.1038/s41467-023-38650-y 10.1103/PhysRevLett.103.055503 10.1103/PhysRevB.84.180301 10.1021/acs.chemrev.1c00022 10.1016/j.jphotochem.2015.06.027 10.1103/PhysRevLett.130.078001 10.1103/PhysRevLett.129.185701 10.1063/1.328693 10.1073/pnas.202427399 10.1016/S1003-6326(21)65731-X 10.1016/j.matt.2020.05.013 10.1038/nchem.670 10.1103/PhysRevB.95.085133 10.1016/j.apsusc.2021.149269 10.1137/15M1054183 10.1002/wcms.31 10.1021/acs.jpcc.2c00572 10.1021/cg5013439 10.1038/s41586-023-06509-3 10.1063/1.3382344 10.1103/PhysRevLett.126.236001 10.1201/9781003011804 10.1103/PhysRevLett.127.080603 10.1103/PhysRevB.54.11169 10.1021/acs.jpca.9b08723 10.1039/D3CC00641G 10.1103/PhysRevLett.127.105701 10.1103/PhysRevLett.115.036402 10.1021/acs.chemrev.0c00868 10.1126/sciadv.aaz5264 10.1103/PhysRevLett.100.020603 10.1038/nmat4083 10.1049/mnl.2016.0406 10.1038/s41467-021-21316-y 10.1103/PhysRevLett.100.185501 10.1103/PhysRevB.87.184115 10.1088/2752-5724/ac681d 10.1021/acs.accounts.0c00403 10.1002/jcc.21305 10.1038/s41467-023-36841-1 10.1016/j.cpc.2021.108171 10.1103/PhysRevLett.129.255702 10.1038/s41598-019-49690-0 10.1063/1.3684549 10.1103/PhysRevB.105.075134 10.1016/j.commatsci.2017.08.031 10.1093/oso/9780198803195.001.0001 10.1002/aenm.202300754 10.1103/PhysRevB.100.014105 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-47422-1 |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 3079 |
ExternalDocumentID | oai_doaj_org_article_28da3602c2f24ba58ca64983b8fcddec 10_1038_s41467_024_47422_1 |
GrantInformation_xml | – fundername: The work at the Institute of Metal Research is supported by the National Natural Science Foundation of China (Grant No. 52201030 and Grant No. 52188101), the National Key R&D Program of China 2021YFB3501503, Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-2-5), and the National Science Fund for Distinguished Young Scholars (Grant No. 51725103). The work at the Northeastern University is supported by the National Natural Science Foundation of China (Grant No. 52331001). J.H. and H.N. acknowledge the supports from the National Natural Science Foundation of China (Grant No. 22003050) and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (grant No. 2020-QZ-03). G.K. acknowledges the support from the Austrian Science Fund (FWF) within the SFB TACO (Project No. F 81-N). |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c518t-686d47b26d33a994ef509cccaed12df7f0545f9d1158419b525c2a31aaef7ebc3 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:12:13 EDT 2024 Tue Sep 17 21:29:38 EDT 2024 Sat Oct 26 05:32:18 EDT 2024 Fri Nov 08 20:49:37 EST 2024 Fri Aug 23 02:42:13 EDT 2024 Fri Oct 11 20:55:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-686d47b26d33a994ef509cccaed12df7f0545f9d1158419b525c2a31aaef7ebc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1985-1940 0000-0002-6117-0623 0000-0003-3049-5916 0000-0001-9102-4259 0000-0002-7142-8552 0000-0002-4534-4208 0000-0002-5904-6578 0000-0003-2971-3701 0000-0002-6950-1386 0000-0003-2184-132X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004112/ |
PMID | 38594273 |
PQID | 3034843296 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_28da3602c2f24ba58ca64983b8fcddec pubmedcentral_primary_oai_pubmedcentral_nih_gov_11004112 proquest_miscellaneous_3035540309 proquest_journals_3034843296 crossref_primary_10_1038_s41467_024_47422_1 springer_journals_10_1038_s41467_024_47422_1 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-09 |
PublicationDateYYYYMMDD | 2024-04-09 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ZhaoP-fProgress in Ti3O5: synthesis, properties and applicationsTrans. Nonferrous Met. Soc. China202131331033271:CAS:528:DC%2BB3MXislaku77F10.1016/S1003-6326(21)65731-X ZhangLWangHCarREWPhase diagram of a deep potential water modelPhys. Rev. Lett.20211262360012021PhRvL.126w6001Z1:CAS:528:DC%2BB3MXhsVWku73M3417017510.1103/PhysRevLett.126.236001 KamiokaHTime-resolved imaging and spectroscopy for the photo-induced phase transition in Ti4O7J. Photochem. Photobiol. A: Chem.20153111541591:CAS:528:DC%2BC2MXhtFWisLfI10.1016/j.jphotochem.2015.06.027 TribelloGABonomiMBranduardiDCamilloniCBussiGPlumed 2: new feathers for an old birdComput. Phys. Commun.20141856046132014CoPhC.185..604T1:CAS:528:DC%2BC3sXhs1yqs7fJ10.1016/j.cpc.2013.09.018 TongQMachine learning metadynamics simulation of reconstructive phase transitionPhys. Rev. B20211030541072021PhRvB.103e4107T1:CAS:528:DC%2BB3MXms1Wgs70%3D10.1103/PhysRevB.103.054107 LiuDCNocedalJOn the limited memory BFGS method for large scale optimizationMath. Program.198945503528103824510.1007/BF01589116 OhkoshiS-iSynthesis of a metal oxide with a room-temperature photoreversible phase transitionNat. Chem.201025395451:CAS:528:DC%2BC3cXnvVSiurY%3D2057157110.1038/nchem.670 LiuPVerdiCKarsaiFKresseGα-β phase transition of zirconium predicted by on-the-fly machine-learned force fieldPhys. Rev. Mater.202150538041:CAS:528:DC%2BB3MXht1yntrfO10.1103/PhysRevMaterials.5.053804 NiuHPiaggiPMInvernizziMParrinelloMMolecular dynamics simulations of liquid silica crystallizationProc. Natl Acad. Sci.2018115534853522018PNAS..115.5348N1:CAS:528:DC%2BC1cXhvVOltLvE29735667600348210.1073/pnas.1803919115 LiuPCombining machine learning and many-body calculations: coverage-dependent adsorption of CO on Rh(111)Phys. Rev. Lett.20231300780012023PhRvL.130g8001L1:CAS:528:DC%2BB3sXmtlGqsr4%3D3686782510.1103/PhysRevLett.130.078001 Jr, C., D, W. & Rethwisch, D. G. Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2020). ZuoYPerformance and cost assessment of machine learning interatomic potentialsJ. Phys. Chem. A20201247317451:CAS:528:DC%2BB3cXmtVKjsg%3D%3D3191677310.1021/acs.jpca.9b08723 ShapeevAVMoment tensor potentials: a class of systematically improvable interatomic potentialsMultiscale Model. Simul.20161411531173354633510.1137/15M1054183 SheppardDXiaoPChemelewskiWJohnsonDDHenkelmanGA generalized solid-state nudged elastic band methodJ. Chem. Phys.20121360741032012JChPh.136g4103S2236023210.1063/1.3684549 SunPTi3O5 nanofilm on carbon nanotubes by pulse laser deposition: enhanced electrochemical performanceAppl. Surf. Sci.20215481492691:CAS:528:DC%2BB3MXkvFCmu7c%3D10.1016/j.apsusc.2021.149269 YangBFlatband λ-Ti3O5 towards extraordinary solar steam generationNature20236224992023Natur.622..499Y1:CAS:528:DC%2BB3sXhvFSmtbrK3770473210.1038/s41586-023-06509-3 DeringerVLGaussian process regression for materials and moleculesChem. Rev.202112110073101411:CAS:528:DC%2BB3MXhslyhs7rN34398616839196310.1021/acs.chemrev.1c00022 TadanoTGohdaYTsuneyukiSAnharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulationsJ. Phys.: Condens. Matter2014262254021:CAS:528:DC%2BC2cXht1amurrO24824156 GartnerTEPiaggiPMCarRPanagiotopoulosAZDebenedettiPGLiquid-liquid transition in water from first principlesPhys. Rev. Lett.20221292557022022PhRvL.129y5702G1:CAS:528:DC%2BB3sXnsVWi3660822410.1103/PhysRevLett.129.255702 FuXInfluences of hole/electron-lattice coupling on phase transition between λ-Ti3O5 and β-Ti3O5J. Phys.: Condens. Matter20203246LT011:CAS:528:DC%2BB3cXisF2ltLfN32759474 SaikiTSelection rule for the photoinduced phase transition dominated by anisotropy of strain in Ti3O5Phys. Rev. B20221050751342022PhRvB.105g5134S1:CAS:528:DC%2BB38Xmslegsbc%3D10.1103/PhysRevB.105.075134 NakamuraYSakaiYAzumaMichi OhkoshiSLong-term heat-storage ceramics absorbing thermal energy from hot waterSci. Adv.20206eaaz52642020SciA....6.5264N1:CAS:528:DC%2BB3cXitlWit7%2FJ32656338732933310.1126/sciadv.aaz5264 IrifuneTKurioASakamotoSInoueTSumiyaHUltrahard polycrystalline diamond from graphiteNature20034215996002003Natur.421..599I1:CAS:528:DC%2BD3sXovFKgsQ%3D%3D1257158710.1038/421599b JinnouchiRKarsaiFKresseGOn-the-fly machine learning force field generation: application to melting pointsPhys. Rev. B20191000141052019PhRvB.100a4105J1:CAS:528:DC%2BC1MXhvFantb%2FI10.1103/PhysRevB.100.014105 JüttenSBredowTAnisotropy of the pressure effect in the Ti3O5 phase transition process resolved by direction-dependent interface propagationJ. Phys. Chem. C.2023127205302053810.1021/acs.jpcc.3c04986 TanakaKStructural phase transition between γ-Ti3O5 and δ-Ti3O5 by breaking of a one-dimensionally conducting pathwayCryst. Growth Des.2015156536571:CAS:528:DC%2BC2cXitFeitbrE10.1021/cg5013439 PerdewJPRestoring the density-gradient expansion for exchange in solids and surfacesPhys. Rev. Lett.20081001364062008PhRvL.100m6406P1851797910.1103/PhysRevLett.100.136406 Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase transformations in metals and alloys (4th ed.) (CRC Press, 2021). VandermauseJOn-the-fly active learning of interpretable bayesian force fields for atomistic rare eventsnpj Comput. Mater.202062020npjCM...6...20V10.1038/s41524-020-0283-z PozdnyakovSOganovARMazhnikEMazitovAKruglovIFast general two- and three-body interatomic potentialPhys. Rev. B20231071251602023PhRvB.107l5160P1:CAS:528:DC%2BB3sXosFyhtb8%3D10.1103/PhysRevB.107.125160 KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 NiuHBonatiLPiaggiPMParrinelloMAb initio phase diagram and nucleation of galliumNat. Commun.2020112020NatCo..11.2654N1:CAS:528:DC%2BB3cXhtVClsb7K32461573725347010.1038/s41467-020-16372-9 JinnouchiRKarsaiFVerdiCAsahiRKresseGDescriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentialsJ. Chem. Phys.20201522341022020JChPh.152w4102J1:CAS:528:DC%2BB3cXhtF2mtb7P3257105110.1063/5.0009491 LuoKCoherent interfaces govern direct transformation from graphite to diamondNature20226074864912022Natur.607..486L1:CAS:528:DC%2BB38XhslentrnP35794481930046410.1038/s41586-022-04863-2 DrautzRAtomic cluster expansion for accurate and transferable interatomic potentialsPhys. Rev. B2019990141042019PhRvB..99a4104D1:CAS:528:DC%2BC1MXnvFWjsrY%3D10.1103/PhysRevB.99.014104 OhkoshiS-iLow-pressure-responsive heat-storage ceramics for automobilesSci. Rep.201992019NatSR...913203O31534163675117210.1038/s41598-019-49690-0 BehlerJMartoňákRDonadioDParrinelloMMetadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potentialPhys. Rev. Lett.20081001855012008PhRvL.100r5501B1851838810.1103/PhysRevLett.100.185501 WenTZhangLWangHEWSrolovitzDJDeep potentials for materials scienceMater. Futures2022102260110.1088/2752-5724/ac681d BonomiMBarducciAParrinelloMReconstructing the equilibrium Boltzmann distribution from well-tempered metadynamicsJ. Comput. Chem.200930161516211:CAS:528:DC%2BD1MXnsFCiur8%3D1942199710.1002/jcc.21305 BarducciABussiGParrinelloMWell-tempered metadynamics: a smoothly converging and tunable free-energy methodPhys. Rev. Lett.20081000206032008PhRvL.100b0603B1823284510.1103/PhysRevLett.100.020603 JüttenSBredowTDoping effect on the electronic structure and heat-storage properties of Ti3O5J. Phys. Chem. C.2023127104451045210.1021/acs.jpcc.3c01549 VerdiCKarsaiFLiuPJinnouchiRKresseGThermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentialsnpj Comput. Mater.202172021npjCM...7..156V1:CAS:528:DC%2BB3MXitFGhsbjO10.1038/s41524-021-00630-5 OstwaldWStudien über die bildung und umwandlung fester körperZ. f.ür. Physik. Chem.1897222893301:CAS:528:DyaD28Xpt1elsw%3D%3D10.1515/zpch-1897-2233 BussiGLaioAUsing metadynamics to explore complex free-energy landscapesNat. Rev. Phys.2020220021210.1038/s42254-020-0153-0 NovikovISGubaevKPodryabinkinEVShapeevAVThe MLIP package: moment tensor potentials with MPI and active learningMach. Learn.: Sci. Technol.20212025002 ZhuSYanXLiuJOganovARZhuQA revisited mechanism of the graphite-to-diamond transition at high temperatureMatter2020386487810.1016/j.matt.2020.05.013 Tolédano, P. & Dmitriev, V. Reconstructive phase transitions: In: Crystals and quasicrystals (World scientific, 1996). ChengBHamelSBethkenhagenMThermodynamics of diamond formation from hydrocarbon mixtures in planetsNat. Commun.2023142023NatCo..14.1104C1:CAS:528:DC%2BB3sXkt1Ogtbc%3D36843123996871510.1038/s41467-023-36841-1 JüttenSBredowTFirst-principles investigation of electronic properties and phase transition of Ti3O5J. Phys. Chem. C.20221267809781710.1021/acs.jpcc.2c00572 Allen, M. P. & Tildesley, D. J. Computer simulation of liquids (Oxford University Press, 2017). BartókAPKondorRCsányiGOn representing chemical environmentsPhys. Rev. B2013871841152013PhRvB..87r4115B10.1103/PhysRevB.87.184115 GrimmeSAntonyJEhrlichSKriegHA consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PuJ. Chem. Phys.20101321541042010JChPh.132o4104G2042316510.1063/1.3382344 MarietteCStrain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffractionNat. Commun.2021122021NatCo..12.1239M1:CAS:528:DC%2BB3MXltFOmsL8%3D33623010790281010.1038/s41467-021-21316-y Santos-FlorezPAYanxonHKangBYaoYZhuQSize-dependent nucleation in crystal phase transition from machine learning metadynamicsPhys. Rev. Lett.20221291857012022PhRvL.129r5701S1:CAS:528:DC%2BB38XivFygtbvF3637468110.1103/PhysRevLett.129.185701 BussiGDonadioDParrinelloMCanonical sampling through velocity rescalingJ. Chem. Phys.20071260141012007JChPh.126a4101B1721248410.1063/1.2408420 KobayashiKElectronic structure and correlation in β-Ti3O5 and λ-Ti3O5 studied by hard x-ray photoelectron spectroscopyPhys. Rev. B2017950851332017PhRvB..95h5133K1 A Laio (47422_CR41) 2002; 99 JP Perdew (47422_CR61) 1996; 77 R Jinnouchi (47422_CR70) 2019; 122 L Zhang (47422_CR35) 2021; 126 S-i Ohkoshi (47422_CR13) 2010; 2 B Cheng (47422_CR51) 2020; 53 X Zhang (47422_CR23) 2016; 11 S-i Ohkoshi (47422_CR15) 2019; 9 AP Bartók (47422_CR52) 2013; 87 OT Unke (47422_CR31) 2021; 121 S Batzner (47422_CR38) 2022; 13 H Niu (47422_CR47) 2020; 11 H Tokoro (47422_CR14) 2015; 6 AP Thompson (47422_CR81) 2022; 271 S Pozdnyakov (47422_CR40) 2023; 107 K Kobayashi (47422_CR64) 2017; 95 P Liu (47422_CR77) 2023; 130 T Takeda (47422_CR26) 2022; 2022 H Kamioka (47422_CR58) 2015; 311 J Vandermause (47422_CR37) 2020; 6 GA Tribello (47422_CR82) 2014; 185 S Zhu (47422_CR9) 2020; 3 47422_CR88 J Behler (47422_CR44) 2008; 100 P Liu (47422_CR32) 2021; 5 G Bussi (47422_CR84) 2020; 2 D Sheppard (47422_CR69) 2012; 136 TE Gartner (47422_CR48) 2022; 129 VL Deringer (47422_CR29) 2021; 121 T Wen (47422_CR36) 2022; 1 Y Yao (47422_CR45) 2009; 103 EV Podryabinkin (47422_CR79) 2017; 140 H Niu (47422_CR46) 2018; 115 M Yang (47422_CR49) 2021; 127 A Barducci (47422_CR43) 2011; 1 47422_CR8 L Zheng (47422_CR22) 2003; 88 47422_CR3 Y Zuo (47422_CR76) 2020; 124 47422_CR1 G Kresse (47422_CR60) 1996; 54 47422_CR2 PA Santos-Florez (47422_CR12) 2022; 129 B Yang (47422_CR21) 2023; 622 J Behler (47422_CR30) 2021; 121 C Verdi (47422_CR33) 2021; 7 R Drautz (47422_CR39) 2019; 99 Y Peng (47422_CR56) 2015; 14 G Bussi (47422_CR83) 2007; 126 Q Tong (47422_CR10) 2021; 103 T Tadano (47422_CR68) 2014; 26 A Togo (47422_CR66) 2015; 108 J Sun (47422_CR63) 2015; 115 M Badin (47422_CR11) 2021; 127 Y Nakamura (47422_CR19) 2020; 6 S Jütten (47422_CR54) 2022; 126 S Jütten (47422_CR27) 2023; 127 M Bonomi (47422_CR53) 2009; 30 JP Perdew (47422_CR62) 2008; 100 K Luo (47422_CR5) 2022; 607 S Nosé (47422_CR85) 1984; 81 C Mariette (47422_CR16) 2021; 12 A Thompson (47422_CR34) 2015; 285 N Shuichi (47422_CR87) 1991; 103 S-i Ohkoshi (47422_CR20) 2023; 59 WG Hoover (47422_CR86) 1985; 31 T Saiki (47422_CR17) 2022; 105 S Jütten (47422_CR28) 2023; 127 P Sun (47422_CR18) 2021; 548 X Fu (47422_CR25) 2020; 32 R Jinnouchi (47422_CR72) 2020; 152 P-f Zhao (47422_CR24) 2021; 31 R Jinnouchi (47422_CR71) 2019; 100 DC Liu (47422_CR78) 1989; 45 T Irifune (47422_CR4) 2003; 421 SH Kirby (47422_CR6) 1991; 252 K Tanaka (47422_CR57) 2015; 15 O Hellman (47422_CR67) 2011; 84 X Wang (47422_CR59) 2023; 14 M Parrinello (47422_CR75) 1981; 52 W Ostwald (47422_CR55) 1897; 22 S Grimme (47422_CR65) 2010; 132 A Barducci (47422_CR42) 2008; 100 47422_CR73 47422_CR74 AV Shapeev (47422_CR50) 2016; 14 B Cheng (47422_CR7) 2023; 14 IS Novikov (47422_CR80) 2021; 2 |
References_xml | – volume: 607 start-page: 486 year: 2022 ident: 47422_CR5 publication-title: Nature doi: 10.1038/s41586-022-04863-2 contributor: fullname: K Luo – volume: 22 start-page: 289 year: 1897 ident: 47422_CR55 publication-title: Z. f.ür. Physik. Chem. doi: 10.1515/zpch-1897-2233 contributor: fullname: W Ostwald – volume: 2 start-page: 200 year: 2020 ident: 47422_CR84 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0153-0 contributor: fullname: G Bussi – volume: 122 start-page: 225701 year: 2019 ident: 47422_CR70 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.225701 contributor: fullname: R Jinnouchi – volume: 6 year: 2015 ident: 47422_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms8037 contributor: fullname: H Tokoro – ident: 47422_CR88 doi: 10.6084/m9.figshare.24279616 – volume: 6 year: 2020 ident: 47422_CR37 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0283-z contributor: fullname: J Vandermause – volume: 31 start-page: 1695 year: 1985 ident: 47422_CR86 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 contributor: fullname: WG Hoover – volume: 99 start-page: 014104 year: 2019 ident: 47422_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.014104 contributor: fullname: R Drautz – volume: 81 start-page: 511 year: 1984 ident: 47422_CR85 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: S Nosé – volume: 127 start-page: 10445 year: 2023 ident: 47422_CR28 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.3c01549 contributor: fullname: S Jütten – volume: 127 start-page: 20530 year: 2023 ident: 47422_CR27 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.3c04986 contributor: fullname: S Jütten – volume: 77 start-page: 3865 year: 1996 ident: 47422_CR61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: JP Perdew – volume: 100 start-page: 136406 year: 2008 ident: 47422_CR62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 contributor: fullname: JP Perdew – volume: 121 start-page: 10142 year: 2021 ident: 47422_CR31 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01111 contributor: fullname: OT Unke – volume: 126 start-page: 014101 year: 2007 ident: 47422_CR83 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 contributor: fullname: G Bussi – volume: 88 start-page: 115 year: 2003 ident: 47422_CR22 publication-title: Sens. Actuators B: Chem. doi: 10.1016/S0925-4005(02)00302-7 contributor: fullname: L Zheng – volume: 421 start-page: 599 year: 2003 ident: 47422_CR4 publication-title: Nature doi: 10.1038/421599b contributor: fullname: T Irifune – volume: 252 start-page: 216 year: 1991 ident: 47422_CR6 publication-title: Science doi: 10.1126/science.252.5003.216 contributor: fullname: SH Kirby – volume: 103 start-page: 1 year: 1991 ident: 47422_CR87 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.103.1 contributor: fullname: N Shuichi – volume: 107 start-page: 125160 year: 2023 ident: 47422_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.125160 contributor: fullname: S Pozdnyakov – volume: 7 year: 2021 ident: 47422_CR33 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00630-5 contributor: fullname: C Verdi – volume: 2022 start-page: e202101037 year: 2022 ident: 47422_CR26 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.202101037 contributor: fullname: T Takeda – volume: 13 year: 2022 ident: 47422_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 contributor: fullname: S Batzner – ident: 47422_CR8 doi: 10.1142/9789812830715 – volume: 108 start-page: 1 year: 2015 ident: 47422_CR66 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 contributor: fullname: A Togo – ident: 47422_CR74 doi: 10.1103/PhysRevLett.45.1196 – volume: 115 start-page: 5348 year: 2018 ident: 47422_CR46 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1803919115 contributor: fullname: H Niu – volume: 5 start-page: 053804 year: 2021 ident: 47422_CR32 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.053804 contributor: fullname: P Liu – volume: 285 start-page: 316 year: 2015 ident: 47422_CR34 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.018 contributor: fullname: A Thompson – volume: 45 start-page: 503 year: 1989 ident: 47422_CR78 publication-title: Math. Program. doi: 10.1007/BF01589116 contributor: fullname: DC Liu – volume: 185 start-page: 604 year: 2014 ident: 47422_CR82 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.09.018 contributor: fullname: GA Tribello – volume: 152 start-page: 234102 year: 2020 ident: 47422_CR72 publication-title: J. Chem. Phys. doi: 10.1063/5.0009491 contributor: fullname: R Jinnouchi – volume: 11 year: 2020 ident: 47422_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16372-9 contributor: fullname: H Niu – volume: 103 start-page: 054107 year: 2021 ident: 47422_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.054107 contributor: fullname: Q Tong – volume: 14 year: 2023 ident: 47422_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38650-y contributor: fullname: X Wang – volume: 32 start-page: 46LT01 year: 2020 ident: 47422_CR25 publication-title: J. Phys.: Condens. Matter contributor: fullname: X Fu – volume: 103 start-page: 055503 year: 2009 ident: 47422_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.055503 contributor: fullname: Y Yao – volume: 84 start-page: 180301 year: 2011 ident: 47422_CR67 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.180301 contributor: fullname: O Hellman – volume: 121 start-page: 10073 year: 2021 ident: 47422_CR29 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00022 contributor: fullname: VL Deringer – volume: 311 start-page: 154 year: 2015 ident: 47422_CR58 publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/j.jphotochem.2015.06.027 contributor: fullname: H Kamioka – volume: 130 start-page: 078001 year: 2023 ident: 47422_CR77 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.078001 contributor: fullname: P Liu – ident: 47422_CR2 – volume: 129 start-page: 185701 year: 2022 ident: 47422_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.185701 contributor: fullname: PA Santos-Florez – volume: 26 start-page: 225402 year: 2014 ident: 47422_CR68 publication-title: J. Phys.: Condens. Matter contributor: fullname: T Tadano – volume: 52 start-page: 7182 year: 1981 ident: 47422_CR75 publication-title: J. Appl. Phys. doi: 10.1063/1.328693 contributor: fullname: M Parrinello – volume: 99 start-page: 12562 year: 2002 ident: 47422_CR41 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.202427399 contributor: fullname: A Laio – volume: 31 start-page: 3310 year: 2021 ident: 47422_CR24 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65731-X contributor: fullname: P-f Zhao – volume: 3 start-page: 864 year: 2020 ident: 47422_CR9 publication-title: Matter doi: 10.1016/j.matt.2020.05.013 contributor: fullname: S Zhu – volume: 2 start-page: 539 year: 2010 ident: 47422_CR13 publication-title: Nat. Chem. doi: 10.1038/nchem.670 contributor: fullname: S-i Ohkoshi – volume: 95 start-page: 085133 year: 2017 ident: 47422_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.085133 contributor: fullname: K Kobayashi – volume: 548 start-page: 149269 year: 2021 ident: 47422_CR18 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149269 contributor: fullname: P Sun – volume: 14 start-page: 1153 year: 2016 ident: 47422_CR50 publication-title: Multiscale Model. Simul. doi: 10.1137/15M1054183 contributor: fullname: AV Shapeev – volume: 1 start-page: 826 year: 2011 ident: 47422_CR43 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.31 contributor: fullname: A Barducci – volume: 126 start-page: 7809 year: 2022 ident: 47422_CR54 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.2c00572 contributor: fullname: S Jütten – volume: 15 start-page: 653 year: 2015 ident: 47422_CR57 publication-title: Cryst. Growth Des. doi: 10.1021/cg5013439 contributor: fullname: K Tanaka – volume: 622 start-page: 499 year: 2023 ident: 47422_CR21 publication-title: Nature doi: 10.1038/s41586-023-06509-3 contributor: fullname: B Yang – volume: 132 start-page: 154104 year: 2010 ident: 47422_CR65 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 contributor: fullname: S Grimme – volume: 126 start-page: 236001 year: 2021 ident: 47422_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.236001 contributor: fullname: L Zhang – ident: 47422_CR1 doi: 10.1201/9781003011804 – volume: 127 start-page: 080603 year: 2021 ident: 47422_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.080603 contributor: fullname: M Yang – volume: 54 start-page: 11169 year: 1996 ident: 47422_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: G Kresse – volume: 124 start-page: 731 year: 2020 ident: 47422_CR76 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b08723 contributor: fullname: Y Zuo – volume: 59 start-page: 7875 year: 2023 ident: 47422_CR20 publication-title: Chem. Commun. doi: 10.1039/D3CC00641G contributor: fullname: S-i Ohkoshi – volume: 127 start-page: 105701 year: 2021 ident: 47422_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.105701 contributor: fullname: M Badin – volume: 115 start-page: 036402 year: 2015 ident: 47422_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036402 contributor: fullname: J Sun – volume: 121 start-page: 10037 year: 2021 ident: 47422_CR30 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00868 contributor: fullname: J Behler – volume: 6 start-page: eaaz5264 year: 2020 ident: 47422_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz5264 contributor: fullname: Y Nakamura – volume: 100 start-page: 020603 year: 2008 ident: 47422_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.020603 contributor: fullname: A Barducci – volume: 14 start-page: 101 year: 2015 ident: 47422_CR56 publication-title: Nat. Mater. doi: 10.1038/nmat4083 contributor: fullname: Y Peng – volume: 11 start-page: 811 year: 2016 ident: 47422_CR23 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2016.0406 contributor: fullname: X Zhang – volume: 2 start-page: 025002 year: 2021 ident: 47422_CR80 publication-title: Mach. Learn.: Sci. Technol. contributor: fullname: IS Novikov – volume: 12 year: 2021 ident: 47422_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21316-y contributor: fullname: C Mariette – volume: 100 start-page: 185501 year: 2008 ident: 47422_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.185501 contributor: fullname: J Behler – volume: 87 start-page: 184115 year: 2013 ident: 47422_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.184115 contributor: fullname: AP Bartók – volume: 1 start-page: 022601 year: 2022 ident: 47422_CR36 publication-title: Mater. Futures doi: 10.1088/2752-5724/ac681d contributor: fullname: T Wen – volume: 53 start-page: 1981 year: 2020 ident: 47422_CR51 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00403 contributor: fullname: B Cheng – volume: 30 start-page: 1615 year: 2009 ident: 47422_CR53 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21305 contributor: fullname: M Bonomi – volume: 14 year: 2023 ident: 47422_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36841-1 contributor: fullname: B Cheng – volume: 271 start-page: 108171 year: 2022 ident: 47422_CR81 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 contributor: fullname: AP Thompson – volume: 129 start-page: 255702 year: 2022 ident: 47422_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.255702 contributor: fullname: TE Gartner – volume: 9 year: 2019 ident: 47422_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-019-49690-0 contributor: fullname: S-i Ohkoshi – volume: 136 start-page: 074103 year: 2012 ident: 47422_CR69 publication-title: J. Chem. Phys. doi: 10.1063/1.3684549 contributor: fullname: D Sheppard – volume: 105 start-page: 075134 year: 2022 ident: 47422_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.075134 contributor: fullname: T Saiki – volume: 140 start-page: 171 year: 2017 ident: 47422_CR79 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.08.031 contributor: fullname: EV Podryabinkin – ident: 47422_CR73 doi: 10.1093/oso/9780198803195.001.0001 – ident: 47422_CR3 doi: 10.1002/aenm.202300754 – volume: 100 start-page: 014105 year: 2019 ident: 47422_CR71 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.014105 contributor: fullname: R Jinnouchi |
SSID | ssj0000391844 |
Score | 2.4929852 |
Snippet | Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological... Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological... Abstract Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 3079 |
SubjectTerms | 639/301/1034/1035 639/301/119/2795 Chemical bonds First principles Humanities and Social Sciences Learning algorithms Machine learning Metastable phases Molecular dynamics multidisciplinary Phase transitions Science Science (multidisciplinary) Simulation Titanium oxides |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOgl9EndpkWF3BKR1dPSsS0NoTTtJYHchJ7Zha431JvD_vuOZG-yDpReejOWjK0ZjeYbZvwNQkeCumRcqXlyxhMRfEt89Ir4wLMy0fEcS0b34oc6vxLfruX1TquvUhM20AMPgjtlGh5QMxZYZsI7qYNTwmjudQ5gmqGevjOzE0zVM5gbCF3E-JfMjOvTXtQzAVwSERAOMkInnqgS9k9Q5uMayUeJ0up_zp6hgxE44k_DBz9He6l7gZ4MrSQ3L9H8uwPwTPyG_CoX-HYO7gmvd2DpqsOLDl8u-E-JC28TeIaI_QYvazllImP_iBu83HbMxXFoV9_jfrEc23z1r9DV2dfLL-dk7KJAgqR6TZRWUbSeqci5M0akDBghgOJSpCzmNgNok9lEgIZaUOMlk4E5Tp1LuU2gs9dov1t16Q3CbZA-c-czxEiidd61DhBcnlEnW0-5aNDxVqL2diDLsDXJzbUd5G9B_rbK39IGfS5Cv59ZiK7rDVC_HdVv_6X-Bh1uVWZH6-stuGWhBWdGNejj_TDYTUmGuC6t7uocQFIlwdQgPVH15IOmI91iXhm4K88eINUGnWx3xcPb_77it_9jxe_QU1Z2cakeModof_37Lr0HYLT2H6oN_AEYuw5R priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7C6fsSPUwWIqkI8Lq20N8vP7krdZGm2h_332I6zZSvBLUosxZkZz3z2TOYD4D3DJiiTa56Msog5K5D1liPraOTKGxp9zuj--MnPLti3eTuvB25DLaucfGJx1L53-Yz8OLlaJhklip-sf6PMGpWzq5VC4z54gMmM55IuMRe7M5bc_VwyVv-VmVF5PLDiGVJgQixtCgnCe_GotO3fw5p3KyXvpEtLFDp9Ah5X-Ag_jfp-Cu6F7hl4OBJKbp-DxXeTIDSyW3SVL-B6kYIU3PwFTvsOLjt4vqS_Wpi7N6X44KHdwlUpqgyoskhcwtXEmwv9SFo_wGG5qmRfwwtwcfr1_MsZqlwKyLVYbhCX3DNhCfeUGqVYiAkpuKS-4DHxUcQE3dqofAKIkmFlW9I6Yig2JkQRkuZegoOu78IrAIVrbaTGxrRTYsJYI0zCcXGGTSsspqwBHyaJ6vXYMkOXVDeVepS_TvLXRf4aN-BzFvpuZG53XW7015e6rh5NZLIaPiOORMKsaaUznClJrYwu-WfXgKNJZbquwUHfWkwD3u0ep9WTUyKmC_1NGZPwVE4zNUDuqXpvQvtPuuWi9OEu3fYSXm3Ax8kqbt_-7y9-_f_JHoJHJNtnrg5SR-Bgc30T3iTgs7Fvi3X_AYVnBJk priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQERIXxFMECjISN7Bo_Ip9hBVVhXhcWqk3a_xiV2KzFdke9t8zdrILqeDALYodJZlH5nNm_A0hr2ULyUKpeQLrmQy-Yz56zXwQWdsIIseS0f3yVZ9dyE-X6nKiySl7YWb5e2HeDbK6MkYSJnEVxxmudG5jDDalfGuhF4f_KYXp3Eg57Yv5-6Wz2FMp-me48mZV5I3UaI04p_fJvQkq0vejbh-QW6l_SO6MzSN3j8jyMyBcZn7HfpQDerXEgES3fwDRTU9XPT1fiW-KFqYmjAWR-h1d1wLKxKaOEd_pet8jl8axQf1Ah9V6auw1PCYXpx_PF2ds6pvAgmrNlmmjo-w811EIsFamjKggoKpSbHnMXUaYprKNCAaNbK1XXAUOogVIuUuopSfkqN_06SmhXVA-C_AZV0WyAw8dIGbLJy2ozrdCNuTNXqLuaqTHcDWtLYwb5e9Q_q7K37UN-VCEfphZqK3rCdS4mzzFcYMWok944JlLD8oE0NIa4U0O-C0ODTneq8xN_jY4DMTSSMGtbsirwzB6Skl_QJ8213UOYqeSUmqImal69kDzkX61rJzblVkPsWlD3u6t4vfd__3Gz_5v-nNylxd7LZVB9pgcbX9epxcIerb-ZbX2X6KI_W4 priority: 102 providerName: Springer Nature |
Title | Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations |
URI | https://link.springer.com/article/10.1038/s41467-024-47422-1 https://www.proquest.com/docview/3034843296 https://search.proquest.com/docview/3035540309 https://pubmed.ncbi.nlm.nih.gov/PMC11004112 https://doaj.org/article/28da3602c2f24ba58ca64983b8fcddec |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY5_MXRc02NumJpZkWXpMQ7MS1q5sLeTNSLLVGGon1OlD_vudZLurC3vZi20kgWXdne53vtMdQl94rAulfcyTVoZwa1JiciOIscwJlWvmcu_RPb8QZ9d8sUyWe0j0Z2FC0L415XF9Wx3X5SrEVm4qO-7jxMaX57OQ5gyAwngf7QOHPrLRw_7LFJgtvDshM2Fy3PCwH4A6IhxMQUp8fRgmE8VpygYKKeTtH4DNp6GST_ylQQ3NX6GXHX7E03aer9FeUb9Bz9uKkru3aPVDA4YmZkdu_QPerEBL4e0jdLqucVnjq5L9TLBP3wQKIsdmh6sQVVmQrozEDa76wrk4b6vWN7gpq67aV_MOXc9Pr2ZnpCumQGwSyy0RUuQ8NVTkjGmleOEAKligX5HHNHepA-yWOJUDQpQ8ViahiaWaxVoXLi2AdO_RQb2uiw8IpzYxjmnjwFTiqTY61QDk3CTWSWpixiP0tV_RbNPmzMiCr5vJrCVFBqTIAimyOEInftEfRvp816FhfXeTdVTPqAS2ERNqqaPc6ERaLbiSzEhnYYO2ETrqSZZ1QthkoJ255IwqEaHPD90gPt4noutifR_GAKDyfqYIyQGpBxMa9gBfhkTcPR9G6FvPFX_f_u8vPvz_N31EL6hnYx86pI7QwfbuvvgEqGhrRiAKyxSucv59hJ5Np4vfC7ifnF5c_oLWmZiNwv-GURCWP013FJI |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8VQDBYzEDaxubCexTwgQywLbctlKvVl-xN2V2GRptof994wdZ0sqwS1KLMWZGc988YznQ-gtz3Utdah50tIQbk1FjDMlMZb5UjrNvAsZ3ZPTcnbGv58X52nDrUtllYNPjI7atTbskR-Dq-WCMyrLD5vfJLBGhexqotC4je5wBrE6nBSfft3vsYTu54LzdFZmwsRxx6NngMBEOPwUUpKP4lFs2z_CmjcrJW-kS2MUmj5EDxJ8xB97fT9Ct-rmMbrbE0runqDlXAOEJmZHfoULvFlCkMLbv8Bp2-BVgxcr9rPAoXsTxAeHzQ6vY1FlTRKLxAVeD7y52PWk9R3uVutE9tU9RWfTL4vPM5K4FIgtcrElpSgdrwwtHWNaSl57QAoW1Fe7nDpfeYBuhZcOAKLguTQFLSzVLNe69lUNmnuGDpq2qQ8RrmxhPNPGw58Sr7TRlQYc5ye5LiqTM56hd4NE1aZvmaFiqpsJ1ctfgfxVlL_KM_QpCH0_MrS7jjfaywuVVo-iAqymnFBLPeVGF8LqkkvBjPAW_LPN0NGgMpXWYKeuLSZDb_aPYfWElIhu6vYqjgE8FdJMGRIjVY8mNH7SrJaxD3fstgd4NUPvB6u4fvu_v_j5_yf7Gt2bLU7mav7t9McLdJ8GWw2VQvIIHWwvr-qXAIK25lW09D_YSgeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxKcIDDASb2C1sZ3EeUIMVg0YZUKbtDfLn2slmpSle-h_z9lxOzIJ3qLEUpy7893Pvsv9EHrLc-VqFWqeVK0JN7oi2uqSaMN8WVvFvA0Z3e-z8uiMfz0vzlP9U5fKKrc-MTpq25pwRj4GV8sFZ7Quxz6VRZx8nn5Y_SaBQSpkWhOdxm20V_GSTUZo7-BwdvJzd-ISeqELztOfMxMmxh2PfgLCFOGwRaQkH0Sn2MR_gDxv1k3eSJ7GmDR9gO4nMIk_9tp_iG655hG609NLbh6j-bECQE30hvwKF3g1h5CF139B1bbBiwafLtiPAodeThAtLNYbvIwllo4kTokLvNyy6GLbU9h3uFssE_VX9wSdTQ9PPx2RxKxATJGLNSlFaXmlaWkZU3XNnQfcYECZzubU-soDkCt8bQEuCp7XuqCFoYrlSjlfOdDjUzRq2sY9Q7gyhfZMaQ_7Jl4prSoFqM5PclVUOmc8Q--2EpWrvoGGjIlvJmQvfwnyl1H-Ms_QQRD6bmRofh1vtJcXMq0lSQXYUDmhhnrKtSqEUSWvBdPCG_DWJkP7W5XJtCI7eW0_GXqzewxrKSRIVOPaqzgG0FVIOmVIDFQ9mNDwSbOYx67csfceoNcMvd9axfXb__3Fz_8_2dfoLpi5PP4y-_YC3aPBVEPZUL2PRuvLK_cSENFav0qm_geb5g0d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-layer+phase+transformation+in+Ti3O5+revealed+by+machine-learning+molecular+dynamics+simulations&rft.jtitle=Nature+communications&rft.au=Liu%2C+Mingfeng&rft.au=Wang%2C+Jiantao&rft.au=Hu%2C+Junwei&rft.au=Liu%2C+Peitao&rft.date=2024-04-09&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=3079&rft.epage=3079&rft_id=info:doi/10.1038%2Fs41467-024-47422-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |