High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons

Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO 2 -to-CH 4 conversion must achieve high selectivity and energy efficiency at...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 3176
Main Authors Obasanjo, Cornelius A., Gao, Guorui, Crane, Jackson, Golovanova, Viktoria, García de Arquer, F. Pelayo, Dinh, Cao-Thang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO 2 -to-CH 4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO 2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH 4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO 2 concentration by combining both dissolved CO 2 and in-situ generated CO 2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH 4 . The combination of these strategies leads to CH 4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm -2 ) that is stable for at least 12 h at a current density of 500 mA cm -2 . The system also delivers a CH 4 concentration of 23.5% in the gas product stream. Electrochemical CO2 conversion to methane offers a promising solution for the large-scale storage of renewable electricity, yet the catalytic selectivity at high current density still needs to be refined. Here the authors report to use both dissolved CO2 and in-situ generated CO2 from bicarbonate to sustain high local CO2 concentration around Cu electrode and thus achieve selective CO2 conversion to methane.
AbstractList Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO 2 -to-CH 4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO 2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH 4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO 2 concentration by combining both dissolved CO 2 and in-situ generated CO 2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH 4 . The combination of these strategies leads to CH 4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm -2 ) that is stable for at least 12 h at a current density of 500 mA cm -2 . The system also delivers a CH 4 concentration of 23.5% in the gas product stream. Electrochemical CO2 conversion to methane offers a promising solution for the large-scale storage of renewable electricity, yet the catalytic selectivity at high current density still needs to be refined. Here the authors report to use both dissolved CO2 and in-situ generated CO2 from bicarbonate to sustain high local CO2 concentration around Cu electrode and thus achieve selective CO2 conversion to methane.
Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO2-to-CH4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO2 concentration by combining both dissolved CO2 and in-situ generated CO2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH4. The combination of these strategies leads to CH4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm-2) that is stable for at least 12 h at a current density of 500 mA cm-2. The system also delivers a CH4 concentration of 23.5% in the gas product stream.Electrochemical CO2 conversion to methane offers a promising solution for the large-scale storage of renewable electricity, yet the catalytic selectivity at high current density still needs to be refined. Here the authors report to use both dissolved CO2 and in-situ generated CO2 from bicarbonate to sustain high local CO2 concentration around Cu electrode and thus achieve selective CO2 conversion to methane.
Abstract Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO2-to-CH4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO2 concentration by combining both dissolved CO2 and in-situ generated CO2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH4. The combination of these strategies leads to CH4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm-2) that is stable for at least 12 h at a current density of 500 mA cm-2. The system also delivers a CH4 concentration of 23.5% in the gas product stream.
Abstract Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO 2 -to-CH 4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO 2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH 4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO 2 concentration by combining both dissolved CO 2 and in-situ generated CO 2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH 4 . The combination of these strategies leads to CH 4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm -2 ) that is stable for at least 12 h at a current density of 500 mA cm -2 . The system also delivers a CH 4 concentration of 23.5% in the gas product stream.
ArticleNumber 3176
Author Obasanjo, Cornelius A.
Dinh, Cao-Thang
Crane, Jackson
Gao, Guorui
Golovanova, Viktoria
García de Arquer, F. Pelayo
Author_xml – sequence: 1
  givenname: Cornelius A.
  surname: Obasanjo
  fullname: Obasanjo, Cornelius A.
  organization: Department of Chemical Engineering, Queen’s University
– sequence: 2
  givenname: Guorui
  surname: Gao
  fullname: Gao, Guorui
  organization: Department of Chemical Engineering, Queen’s University
– sequence: 3
  givenname: Jackson
  orcidid: 0000-0001-6573-7335
  surname: Crane
  fullname: Crane, Jackson
  organization: Department of Chemical Engineering, Queen’s University
– sequence: 4
  givenname: Viktoria
  surname: Golovanova
  fullname: Golovanova, Viktoria
  organization: ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
– sequence: 5
  givenname: F. Pelayo
  orcidid: 0000-0003-2422-6234
  surname: García de Arquer
  fullname: García de Arquer, F. Pelayo
  organization: ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology
– sequence: 6
  givenname: Cao-Thang
  orcidid: 0000-0001-9641-9815
  surname: Dinh
  fullname: Dinh, Cao-Thang
  email: caothang.dinh@queensu.ca
  organization: Department of Chemical Engineering, Queen’s University
BookMark eNp9kk1vEzEQhi1UREvpH-BkiQuXBX-u1yeEIqCVKpUDnC1_jJONNnaxN5Hy7-t0K6AcsGR5PPPOo9GreY3OUk6A0FtKPlDCh49VUNGrjjDe8UH3vDu-QBeMCNpRxfjZX_E5uqp1S9rhmg5CvELnXLFetMQF-n49rjddsTNgmwKuMIGfxwNgn9MBSh1zwjni1R3DseQdtr_2kPcV1zzt51aseM54cwwle1tc-79BL6OdKlw9vZfo59cvP1bX3e3dt5vV59vOSzrMXc-U6oXywIT1knEtey1Zu5IF1RLOceJD7_QATIZog46RUR4C9EBVcPwS3SzckO3W3JdxZ8vRZDuax0Qua2PLPPoJDPfAtRO6l5oLKZ1TIkaio7MRIETeWJ8W1v3e7SB4SHOx0zPo80oaN2adD4Y2-yURqhHePxFKbg7V2ezG6mGabDrZZdjAGFdSs6FJ3_0j3eZ9Sc2rk4pKwqkgTcUWlS-51gLx9zSUmNMCmGUBTJvAPC6AObYmvjTVJk5rKH_Q_-l6AOhwtIk
CitedBy_id crossref_primary_10_1016_j_apcatb_2024_124061
crossref_primary_10_1038_s44160_024_00530_8
crossref_primary_10_1021_acsaem_3c02758
crossref_primary_10_1039_D3CY01376F
crossref_primary_10_1016_S1872_2067_23_64604_2
crossref_primary_10_1021_acs_accounts_3c00349
crossref_primary_10_1007_s42247_023_00606_9
crossref_primary_10_1021_acs_est_4c02066
crossref_primary_10_1016_j_cattod_2023_114284
crossref_primary_10_1038_s42004_024_01151_0
crossref_primary_10_1007_s12678_024_00873_y
crossref_primary_10_1039_D3CS00887H
crossref_primary_10_1016_j_scitotenv_2024_170758
crossref_primary_10_1002_cssc_202400310
crossref_primary_10_1021_acs_energyfuels_3c02152
crossref_primary_10_1039_D4EE00048J
crossref_primary_10_1016_j_desal_2024_117713
crossref_primary_10_1088_2515_7655_ad0a39
Cites_doi 10.1038/s41560-020-00761-x
10.1002/anie.202010449
10.1016/j.memsci.2020.118538
10.1038/s41929-018-0133-2
10.1021/acsenergylett.2c00283
10.1038/s41467-020-19135-8
10.1038/s41467-022-30819-1
10.1126/science.aay4217
10.1021/jacs.2c03875
10.1021/ja511890h
10.1021/acs.iecr.2c00352
10.1038/s41467-018-03286-w
10.1039/C8CP01319E
10.1038/s41929-022-00760-z
10.1021/acscatal.5b02550
10.1021/acsenergylett.0c01291
10.1021/ja3010978
10.1126/science.aav3506
10.1021/acs.chemmater.0c00761
10.1002/anie.202108388
10.1021/acs.jpcc.5b00105
10.1021/acs.accounts.8b00010
10.1016/j.xcrp.2022.101027
10.1039/D2SC02222B
10.1002/aenm.202101424
10.1039/D0EE01604G
10.1039/D1TA08494A
10.1021/acsenergylett.0c02633
10.1039/D0CS00230E
10.1021/acs.chemrev.8b00705
10.1021/acsenergylett.0c00482
10.1021/jacs.2c04081
10.1002/adma.202101741
10.1038/s41467-018-05544-3
10.1038/s41560-020-0594-9
10.1002/adma.201807166
10.1021/acsenergylett.1c02522
10.1038/s41467-021-23065-4
10.1016/j.joule.2019.05.021
10.1021/acscentsci.2c00329
10.1021/la504445g
10.1039/C9EE00909D
10.1038/s41467-020-20769-x
10.1021/acsenergylett.1c00364
10.1126/science.aas9100
10.1002/anie.202011137
10.1021/jacs.0c10017
10.1021/jacs.9b12445
10.1038/s41467-022-33145-8
10.1038/nature13249
10.1038/s41560-021-00973-9
10.1021/acscatal.0c00847
10.1038/s41467-020-20004-7
10.1149/1.3273200
10.1038/s41467-021-23699-4
10.1038/s41560-022-01130-6
10.1002/anie.202000617
10.1039/D1EE02608A
10.1002/anie.202114450
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-38963-y
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 3176
ExternalDocumentID oai_doaj_org_article_3ce39b496593455bb74ff09fbafeedf3
10_1038_s41467_023_38963_y
GrantInformation_xml – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
  funderid: https://doi.org/10.13039/501100000038
– fundername: Canada Foundation for Innovation (Fondation canadienne pour l’innovation)
  funderid: https://doi.org/10.13039/501100000196
– fundername: Queen’s University
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c518t-6277647ce24ac52395695269552d7c52bb30cd6b98e25dfad9ff213dde6e17db3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:13:39 EDT 2024
Tue Sep 17 21:30:00 EDT 2024
Sat Oct 05 06:08:41 EDT 2024
Thu Oct 10 21:07:55 EDT 2024
Fri Aug 23 02:41:49 EDT 2024
Fri Oct 11 20:48:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-6277647ce24ac52395695269552d7c52bb30cd6b98e25dfad9ff213dde6e17db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9641-9815
0000-0001-6573-7335
0000-0003-2422-6234
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235047/
PMID 37264000
PQID 2821503140
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3ce39b496593455bb74ff09fbafeedf3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10235047
proquest_miscellaneous_2822375928
proquest_journals_2821503140
crossref_primary_10_1038_s41467_023_38963_y
springer_journals_10_1038_s41467_023_38963_y
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Han (CR12) 2022; 13
Li, Ciston, Kanan (CR42) 2014; 508
Wakerley (CR10) 2022; 7
Lee (CR33) 2021; 143
Li (CR30) 2019; 3
Klaus, Cai, Louie, Trotochaud, Bell (CR55) 2015; 119
Salvatore (CR24) 2021; 6
Chen (CR17) 2020; 10
Kas (CR39) 2022; 61
Sisler (CR5) 2021; 6
Lees, Bui, Song, Weber, Berlinguette (CR38) 2022; 7
Vavra, Shen, Stoian, Tileli, Buonsanti (CR46) 2021; 60
Pärnamäe (CR58) 2021; 617
Ren, Fong, Yeo (CR53) 2018; 9
Xiong (CR15) 2021; 33
Sedighian Rasouli (CR21) 2020; 8
Timoshenko (CR44) 2022; 5
Li, Irtem, Iglesias van Montfort, Abdinejad, Burdyny (CR29) 2022; 13
Simon, Kley, Roldan Cuenya (CR47) 2021; 60
Fan (CR16) 2021; 11
Jiang (CR51) 2020; 5
Weng, Bell, Weber (CR36) 2019; 12
Popović (CR34) 2020; 59
Rabinowitz, Kanan (CR23) 2020; 11
Varela, Ju, Reier, Strasser (CR54) 2016; 6
Kim, Baricuatro, Javier, Gregoire, Soriaga (CR31) 2014; 30
Lees (CR27) 2022; 7
Jouny, Luc, Jiao (CR41) 2018; 1
De Luna (CR1) 2019; 364
García de Arquer (CR6) 2020; 367
Kibria (CR4) 2019; 31
Crane, Dinh (CR3) 2022; 3
Li, Kanan (CR56) 2012; 134
Xu (CR2) 2021; 12
Chen (CR13) 2022; 144
Wang (CR20) 2020; 142
Zhang (CR25) 2022; 8
Wen (CR40) 2022; 7
Min, Kanan (CR57) 2015; 137
Li, Lees, Zhang, Berlinguette (CR28) 2020; 5
Bui, Kim, Weber, Bell (CR59) 2021; 6
Ebaid (CR52) 2020; 32
Nguyen (CR32) 2022; 144
Dinh (CR7) 2018; 360
Chen (CR14) 2022; 61
Wang (CR19) 2021; 12
Wei (CR49) 2022; 10
Arán-Ais, Scholten, Kunze, Rizo (CR45) 2020; 5
Li (CR22) 2020; 11
Cai (CR50) 2021; 12
Nitopi (CR43) 2019; 119
Wang (CR18) 2021; 60
Weng, Bell, Weber (CR35) 2020; 13
Weekes, Salvatore, Reyes, Huang, Berlinguette (CR8) 2018; 51
Nguyen, Dinh (CR9) 2020; 49
Wu (CR11) 2022; 13
Huang (CR48) 2018; 9
Zhang (CR26) 2022; 15
Grew, Chiu (CR60) 2010; 157
Weng, Bell, Weber (CR37) 2018; 20
CW Li (38963_CR42) 2014; 508
J Sisler (38963_CR5) 2021; 6
R Pärnamäe (38963_CR58) 2021; 617
TN Nguyen (38963_CR9) 2020; 49
S Chen (38963_CR14) 2022; 61
TN Nguyen (38963_CR32) 2022; 144
D Ren (38963_CR53) 2018; 9
G Wen (38963_CR40) 2022; 7
J Huang (38963_CR48) 2018; 9
S Chen (38963_CR17) 2020; 10
DA Salvatore (38963_CR24) 2021; 6
M Ebaid (38963_CR52) 2020; 32
X Min (38963_CR57) 2015; 137
FP García de Arquer (38963_CR6) 2020; 367
KN Grew (38963_CR60) 2010; 157
X Wang (38963_CR20) 2020; 142
Y Wu (38963_CR11) 2022; 13
P De Luna (38963_CR1) 2019; 364
Y Cai (38963_CR50) 2021; 12
R Kas (38963_CR39) 2022; 61
MG Kibria (38963_CR4) 2019; 31
S Klaus (38963_CR55) 2015; 119
S Popović (38963_CR34) 2020; 59
D Wakerley (38963_CR10) 2022; 7
M Li (38963_CR29) 2022; 13
EW Lees (38963_CR38) 2022; 7
Q Fan (38963_CR16) 2021; 11
AS Varela (38963_CR54) 2016; 6
Z Han (38963_CR12) 2022; 13
Y Xu (38963_CR2) 2021; 12
Y Li (38963_CR22) 2020; 11
M Jouny (38963_CR41) 2018; 1
Z Zhang (38963_CR26) 2022; 15
JC Bui (38963_CR59) 2021; 6
J Timoshenko (38963_CR44) 2022; 5
EW Lees (38963_CR27) 2022; 7
S Chen (38963_CR13) 2022; 144
L-C Weng (38963_CR35) 2020; 13
L-C Weng (38963_CR36) 2019; 12
L-C Weng (38963_CR37) 2018; 20
GH Simon (38963_CR47) 2021; 60
L Xiong (38963_CR15) 2021; 33
Z Zhang (38963_CR25) 2022; 8
T Li (38963_CR30) 2019; 3
C-T Dinh (38963_CR7) 2018; 360
DM Weekes (38963_CR8) 2018; 51
S Nitopi (38963_CR43) 2019; 119
T Li (38963_CR28) 2020; 5
J Vavra (38963_CR46) 2021; 60
K Jiang (38963_CR51) 2020; 5
S Wei (38963_CR49) 2022; 10
SH Lee (38963_CR33) 2021; 143
CW Li (38963_CR56) 2012; 134
JA Rabinowitz (38963_CR23) 2020; 11
Y-R Wang (38963_CR18) 2021; 60
Y-G Kim (38963_CR31) 2014; 30
X Wang (38963_CR19) 2021; 12
RM Arán-Ais (38963_CR45) 2020; 5
A Sedighian Rasouli (38963_CR21) 2020; 8
J Crane (38963_CR3) 2022; 3
References_xml – volume: 6
  start-page: 339
  year: 2021
  end-page: 348
  ident: CR24
  article-title: Designing anion exchange membranes for CO electrolysers
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00761-x
  contributor:
    fullname: Salvatore
– volume: 60
  start-page: 2561
  year: 2021
  end-page: 2568
  ident: CR47
  article-title: Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010449
  contributor:
    fullname: Roldan Cuenya
– volume: 617
  start-page: 118538
  year: 2021
  ident: CR58
  article-title: Bipolar membranes: a review on principles, latest developments, and applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118538
  contributor:
    fullname: Pärnamäe
– volume: 1
  start-page: 748
  year: 2018
  end-page: 755
  ident: CR41
  article-title: High-rate electroreduction of carbon monoxide to multi-carbon products
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0133-2
  contributor:
    fullname: Jiao
– volume: 7
  start-page: 1712
  year: 2022
  end-page: 1718
  ident: CR27
  article-title: Electrolytic methane production from reactive carbon solutions
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00283
  contributor:
    fullname: Lees
– volume: 11
  year: 2020
  ident: CR23
  article-title: The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19135-8
  contributor:
    fullname: Kanan
– volume: 13
  year: 2022
  ident: CR12
  article-title: Steering surface reconstruction of copper with electrolyte additives for CO electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30819-1
  contributor:
    fullname: Han
– volume: 367
  start-page: 661
  year: 2020
  ident: CR6
  article-title: CO2 electrolysis to multicarbon products at activities greater than 1 A cm
  publication-title: Science
  doi: 10.1126/science.aay4217
  contributor:
    fullname: García de Arquer
– volume: 144
  start-page: 12807
  year: 2022
  end-page: 12815
  ident: CR13
  article-title: Engineering water molecules activation center on multisite electrocatalysts for enhanced CO methanation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03875
  contributor:
    fullname: Chen
– volume: 137
  start-page: 4701
  year: 2015
  end-page: 4708
  ident: CR57
  article-title: Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511890h
  contributor:
    fullname: Kanan
– volume: 8
  start-page: 14668
  year: 2020
  end-page: 14673
  ident: CR21
  article-title: CO2 electroreduction to methane at production rates exceeding 100 mA/cm
  publication-title: Chem. Eng.
  contributor:
    fullname: Sedighian Rasouli
– volume: 61
  start-page: 10461
  year: 2022
  end-page: 10473
  ident: CR39
  article-title: Modeling the local environment within porous electrode during electrochemical reduction of bicarbonate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00352
  contributor:
    fullname: Kas
– volume: 9
  year: 2018
  ident: CR53
  article-title: The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03286-w
  contributor:
    fullname: Yeo
– volume: 20
  start-page: 16973
  year: 2018
  end-page: 16984
  ident: CR37
  article-title: Modeling gas-diffusion electrodes for CO reduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01319E
  contributor:
    fullname: Weber
– volume: 5
  start-page: 259
  year: 2022
  end-page: 267
  ident: CR44
  article-title: Steering the structure and selectivity of CO electroreduction catalysts by potential pulses
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00760-z
  contributor:
    fullname: Timoshenko
– volume: 6
  start-page: 2136
  year: 2016
  end-page: 2144
  ident: CR54
  article-title: Tuning the catalytic activity and selectivity of cu for CO electroreduction in the presence of halides
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02550
  contributor:
    fullname: Strasser
– volume: 5
  start-page: 2624
  year: 2020
  end-page: 2630
  ident: CR28
  article-title: Conversion of bicarbonate to formate in an electrochemical flow reactor
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01291
  contributor:
    fullname: Berlinguette
– volume: 134
  start-page: 7231
  year: 2012
  end-page: 7234
  ident: CR56
  article-title: CO Reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu O films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3010978
  contributor:
    fullname: Kanan
– volume: 364
  start-page: eaav3506
  year: 2019
  ident: CR1
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
  doi: 10.1126/science.aav3506
  contributor:
    fullname: De Luna
– volume: 32
  start-page: 3304
  year: 2020
  end-page: 3311
  ident: CR52
  article-title: Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00761
  contributor:
    fullname: Ebaid
– volume: 60
  start-page: 21952
  year: 2021
  end-page: 21958
  ident: CR18
  article-title: Implanting numerous hydrogen-bonding networks in a Cu-porphyrin-based nanosheet to boost CH selectivity in neutral-media CO electroreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108388
  contributor:
    fullname: Wang
– volume: 119
  start-page: 7243
  year: 2015
  end-page: 7254
  ident: CR55
  article-title: Effects of Fe electrolyte impurities on Ni(OH) /NiOOH structure and oxygen evolution activity
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b00105
  contributor:
    fullname: Bell
– volume: 51
  start-page: 910
  year: 2018
  ident: CR8
  article-title: Electrolytic CO reduction in a flow cell
  publication-title: Acc. Chem. Soc.
  doi: 10.1021/acs.accounts.8b00010
  contributor:
    fullname: Berlinguette
– volume: 3
  start-page: 101027
  year: 2022
  ident: CR3
  article-title: Strategies for decarbonizing natural gas with electrosynthesized methane
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.101027
  contributor:
    fullname: Dinh
– volume: 13
  start-page: 8388
  year: 2022
  end-page: 8394
  ident: CR11
  article-title: Enhancing CO electroreduction to CH over Cu nanoparticles supported on N-doped carbon
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC02222B
  contributor:
    fullname: Wu
– volume: 11
  start-page: 2101424
  year: 2021
  ident: CR16
  article-title: Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH or C products in CO electroreduction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101424
  contributor:
    fullname: Fan
– volume: 13
  start-page: 3592
  year: 2020
  end-page: 3606
  ident: CR35
  article-title: A systematic analysis of Cu-based membrane-electrode assemblies for CO reduction through multiphysics simulation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01604G
  contributor:
    fullname: Weber
– volume: 10
  start-page: 6187
  year: 2022
  end-page: 6192
  ident: CR49
  article-title: Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08494A
  contributor:
    fullname: Wei
– volume: 6
  start-page: 997
  year: 2021
  end-page: 1002
  ident: CR5
  article-title: Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO –CO–C H tandems
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02633
  contributor:
    fullname: Sisler
– volume: 49
  start-page: 7488
  year: 2020
  end-page: 7504
  ident: CR9
  article-title: Gas diffusion electrode design for electrochemical carbon dioxide reduction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00230E
  contributor:
    fullname: Dinh
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  ident: CR43
  article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
  contributor:
    fullname: Nitopi
– volume: 5
  start-page: 1206
  year: 2020
  end-page: 1214
  ident: CR51
  article-title: Effects of surface roughness on the electrochemical reduction of CO over Cu
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00482
  contributor:
    fullname: Jiang
– volume: 144
  start-page: 13254
  year: 2022
  end-page: 13265
  ident: CR32
  article-title: Catalyst regeneration via chemical oxidation enables long-term electrochemical carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c04081
  contributor:
    fullname: Nguyen
– volume: 61
  start-page: e202114450
  year: 2022
  ident: CR14
  article-title: MOF Encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Chen
– volume: 33
  start-page: 2101741
  year: 2021
  ident: CR15
  article-title: Geometric modulation of local co flux in Ag@Cu O nanoreactors for steering the CO RR pathway toward high-efficacy methane production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101741
  contributor:
    fullname: Xiong
– volume: 9
  year: 2018
  ident: CR48
  article-title: Potential-induced nanoclustering of metallic catalysts during electrochemical CO reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05544-3
  contributor:
    fullname: Huang
– volume: 5
  start-page: 317
  year: 2020
  end-page: 325
  ident: CR45
  article-title: & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C product selectivity during CO pulsed electroreduction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0594-9
  contributor:
    fullname: Rizo
– volume: 31
  start-page: 1807166
  year: 2019
  ident: CR4
  article-title: Electrochemical CO reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
  contributor:
    fullname: Kibria
– volume: 7
  start-page: 834
  year: 2022
  end-page: 842
  ident: CR38
  article-title: Continuum model to define the chemistry and mass transfer in a bicarbonate electrolyzer
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02522
  contributor:
    fullname: Berlinguette
– volume: 12
  year: 2021
  ident: CR2
  article-title: Low coordination number copper catalysts for electrochemical CO methanation in a membrane electrode assembly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23065-4
  contributor:
    fullname: Xu
– volume: 3
  start-page: 1487
  year: 2019
  end-page: 1497
  ident: CR30
  article-title: Electrolytic conversion of bicarbonate into CO in a flow cell
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.021
  contributor:
    fullname: Li
– volume: 8
  start-page: 749
  year: 2022
  end-page: 755
  ident: CR25
  article-title: Conversion of reactive carbon solutions into co at low voltage and high carbon efficiency
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.2c00329
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 15053
  year: 2014
  end-page: 15056
  ident: CR31
  article-title: The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO RR potential: a study by operando EC-STM
  publication-title: Langmuir
  doi: 10.1021/la504445g
  contributor:
    fullname: Soriaga
– volume: 12
  start-page: 1950
  year: 2019
  end-page: 1968
  ident: CR36
  article-title: Towards membrane-electrode assembly systems for CO reduction: a modeling study
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00909D
  contributor:
    fullname: Weber
– volume: 12
  year: 2021
  ident: CR50
  article-title: Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO to methane
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20769-x
  contributor:
    fullname: Cai
– volume: 6
  start-page: 1181
  year: 2021
  end-page: 1188
  ident: CR59
  article-title: Dynamic boundary layer simulation of pulsed CO electrolysis on a copper catalyst
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00364
  contributor:
    fullname: Bell
– volume: 360
  start-page: 783
  year: 2018
  ident: CR7
  article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
  publication-title: Science
  doi: 10.1126/science.aas9100
  contributor:
    fullname: Dinh
– volume: 60
  start-page: 1347
  year: 2021
  end-page: 1354
  ident: CR46
  article-title: Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011137
  contributor:
    fullname: Buonsanti
– volume: 143
  start-page: 588
  year: 2021
  end-page: 592
  ident: CR33
  article-title: Oxidation state and surface reconstruction of Cu under CO reduction conditions from in situ X-ray characterization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10017
  contributor:
    fullname: Lee
– volume: 142
  start-page: 3525
  year: 2020
  end-page: 3531
  ident: CR20
  article-title: Efficient methane electrosynthesis enabled by tuning local CO availability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12445
  contributor:
    fullname: Wang
– volume: 13
  year: 2022
  ident: CR29
  article-title: Energy comparison of sequential and integrated CO capture and electrochemical conversion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33145-8
  contributor:
    fullname: Burdyny
– volume: 508
  start-page: 504
  year: 2014
  end-page: 507
  ident: CR42
  article-title: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
  publication-title: Nature
  doi: 10.1038/nature13249
  contributor:
    fullname: Kanan
– volume: 7
  start-page: 130
  year: 2022
  end-page: 143
  ident: CR10
  article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO electrolysers
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00973-9
  contributor:
    fullname: Wakerley
– volume: 10
  start-page: 4640
  year: 2020
  end-page: 4646
  ident: CR17
  article-title: Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00847
  contributor:
    fullname: Chen
– volume: 11
  year: 2020
  ident: CR22
  article-title: Promoting CO methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20004-7
  contributor:
    fullname: Li
– volume: 157
  start-page: B327
  year: 2010
  ident: CR60
  article-title: A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3273200
  contributor:
    fullname: Chiu
– volume: 12
  year: 2021
  ident: CR19
  article-title: Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23699-4
  contributor:
    fullname: Wang
– volume: 7
  start-page: 978
  year: 2022
  end-page: 988
  ident: CR40
  article-title: Continuous CO electrolysis using a CO exsolution-induced flow cell
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01130-6
  contributor:
    fullname: Wen
– volume: 59
  start-page: 14736
  year: 2020
  end-page: 14746
  ident: CR34
  article-title: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000617
  contributor:
    fullname: Popović
– volume: 15
  start-page: 705
  year: 2022
  end-page: 713
  ident: CR26
  article-title: Porous metal electrodes enable efficient electrolysis of carbon capture solutions
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02608A
  contributor:
    fullname: Zhang
– volume: 1
  start-page: 748
  year: 2018
  ident: 38963_CR41
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0133-2
  contributor:
    fullname: M Jouny
– volume: 12
  year: 2021
  ident: 38963_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23699-4
  contributor:
    fullname: X Wang
– volume: 119
  start-page: 7610
  year: 2019
  ident: 38963_CR43
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
  contributor:
    fullname: S Nitopi
– volume: 30
  start-page: 15053
  year: 2014
  ident: 38963_CR31
  publication-title: Langmuir
  doi: 10.1021/la504445g
  contributor:
    fullname: Y-G Kim
– volume: 59
  start-page: 14736
  year: 2020
  ident: 38963_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000617
  contributor:
    fullname: S Popović
– volume: 7
  start-page: 978
  year: 2022
  ident: 38963_CR40
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01130-6
  contributor:
    fullname: G Wen
– volume: 10
  start-page: 6187
  year: 2022
  ident: 38963_CR49
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08494A
  contributor:
    fullname: S Wei
– volume: 144
  start-page: 13254
  year: 2022
  ident: 38963_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c04081
  contributor:
    fullname: TN Nguyen
– volume: 5
  start-page: 317
  year: 2020
  ident: 38963_CR45
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0594-9
  contributor:
    fullname: RM Arán-Ais
– volume: 6
  start-page: 339
  year: 2021
  ident: 38963_CR24
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00761-x
  contributor:
    fullname: DA Salvatore
– volume: 12
  year: 2021
  ident: 38963_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23065-4
  contributor:
    fullname: Y Xu
– volume: 367
  start-page: 661
  year: 2020
  ident: 38963_CR6
  publication-title: Science
  doi: 10.1126/science.aay4217
  contributor:
    fullname: FP García de Arquer
– volume: 7
  start-page: 130
  year: 2022
  ident: 38963_CR10
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00973-9
  contributor:
    fullname: D Wakerley
– volume: 60
  start-page: 1347
  year: 2021
  ident: 38963_CR46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011137
  contributor:
    fullname: J Vavra
– volume: 3
  start-page: 1487
  year: 2019
  ident: 38963_CR30
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.021
  contributor:
    fullname: T Li
– volume: 7
  start-page: 834
  year: 2022
  ident: 38963_CR38
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02522
  contributor:
    fullname: EW Lees
– volume: 9
  year: 2018
  ident: 38963_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03286-w
  contributor:
    fullname: D Ren
– volume: 60
  start-page: 21952
  year: 2021
  ident: 38963_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108388
  contributor:
    fullname: Y-R Wang
– volume: 61
  start-page: 10461
  year: 2022
  ident: 38963_CR39
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00352
  contributor:
    fullname: R Kas
– volume: 508
  start-page: 504
  year: 2014
  ident: 38963_CR42
  publication-title: Nature
  doi: 10.1038/nature13249
  contributor:
    fullname: CW Li
– volume: 364
  start-page: eaav3506
  year: 2019
  ident: 38963_CR1
  publication-title: Science
  doi: 10.1126/science.aav3506
  contributor:
    fullname: P De Luna
– volume: 51
  start-page: 910
  year: 2018
  ident: 38963_CR8
  publication-title: Acc. Chem. Soc.
  doi: 10.1021/acs.accounts.8b00010
  contributor:
    fullname: DM Weekes
– volume: 8
  start-page: 749
  year: 2022
  ident: 38963_CR25
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.2c00329
  contributor:
    fullname: Z Zhang
– volume: 134
  start-page: 7231
  year: 2012
  ident: 38963_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3010978
  contributor:
    fullname: CW Li
– volume: 20
  start-page: 16973
  year: 2018
  ident: 38963_CR37
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01319E
  contributor:
    fullname: L-C Weng
– volume: 13
  year: 2022
  ident: 38963_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33145-8
  contributor:
    fullname: M Li
– volume: 360
  start-page: 783
  year: 2018
  ident: 38963_CR7
  publication-title: Science
  doi: 10.1126/science.aas9100
  contributor:
    fullname: C-T Dinh
– volume: 142
  start-page: 3525
  year: 2020
  ident: 38963_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12445
  contributor:
    fullname: X Wang
– volume: 32
  start-page: 3304
  year: 2020
  ident: 38963_CR52
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00761
  contributor:
    fullname: M Ebaid
– volume: 617
  start-page: 118538
  year: 2021
  ident: 38963_CR58
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118538
  contributor:
    fullname: R Pärnamäe
– volume: 33
  start-page: 2101741
  year: 2021
  ident: 38963_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101741
  contributor:
    fullname: L Xiong
– volume: 8
  start-page: 14668
  year: 2020
  ident: 38963_CR21
  publication-title: Chem. Eng.
  contributor:
    fullname: A Sedighian Rasouli
– volume: 13
  start-page: 8388
  year: 2022
  ident: 38963_CR11
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC02222B
  contributor:
    fullname: Y Wu
– volume: 157
  start-page: B327
  year: 2010
  ident: 38963_CR60
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3273200
  contributor:
    fullname: KN Grew
– volume: 5
  start-page: 1206
  year: 2020
  ident: 38963_CR51
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00482
  contributor:
    fullname: K Jiang
– volume: 10
  start-page: 4640
  year: 2020
  ident: 38963_CR17
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00847
  contributor:
    fullname: S Chen
– volume: 31
  start-page: 1807166
  year: 2019
  ident: 38963_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
  contributor:
    fullname: MG Kibria
– volume: 6
  start-page: 997
  year: 2021
  ident: 38963_CR5
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02633
  contributor:
    fullname: J Sisler
– volume: 3
  start-page: 101027
  year: 2022
  ident: 38963_CR3
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.101027
  contributor:
    fullname: J Crane
– volume: 6
  start-page: 2136
  year: 2016
  ident: 38963_CR54
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02550
  contributor:
    fullname: AS Varela
– volume: 11
  year: 2020
  ident: 38963_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20004-7
  contributor:
    fullname: Y Li
– volume: 15
  start-page: 705
  year: 2022
  ident: 38963_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02608A
  contributor:
    fullname: Z Zhang
– volume: 11
  start-page: 2101424
  year: 2021
  ident: 38963_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101424
  contributor:
    fullname: Q Fan
– volume: 13
  start-page: 3592
  year: 2020
  ident: 38963_CR35
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01604G
  contributor:
    fullname: L-C Weng
– volume: 9
  year: 2018
  ident: 38963_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05544-3
  contributor:
    fullname: J Huang
– volume: 6
  start-page: 1181
  year: 2021
  ident: 38963_CR59
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00364
  contributor:
    fullname: JC Bui
– volume: 119
  start-page: 7243
  year: 2015
  ident: 38963_CR55
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b00105
  contributor:
    fullname: S Klaus
– volume: 11
  year: 2020
  ident: 38963_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19135-8
  contributor:
    fullname: JA Rabinowitz
– volume: 5
  start-page: 2624
  year: 2020
  ident: 38963_CR28
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01291
  contributor:
    fullname: T Li
– volume: 49
  start-page: 7488
  year: 2020
  ident: 38963_CR9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00230E
  contributor:
    fullname: TN Nguyen
– volume: 12
  start-page: 1950
  year: 2019
  ident: 38963_CR36
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00909D
  contributor:
    fullname: L-C Weng
– volume: 144
  start-page: 12807
  year: 2022
  ident: 38963_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03875
  contributor:
    fullname: S Chen
– volume: 61
  start-page: e202114450
  year: 2022
  ident: 38963_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202114450
  contributor:
    fullname: S Chen
– volume: 5
  start-page: 259
  year: 2022
  ident: 38963_CR44
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00760-z
  contributor:
    fullname: J Timoshenko
– volume: 12
  year: 2021
  ident: 38963_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20769-x
  contributor:
    fullname: Y Cai
– volume: 60
  start-page: 2561
  year: 2021
  ident: 38963_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010449
  contributor:
    fullname: GH Simon
– volume: 143
  start-page: 588
  year: 2021
  ident: 38963_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10017
  contributor:
    fullname: SH Lee
– volume: 137
  start-page: 4701
  year: 2015
  ident: 38963_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511890h
  contributor:
    fullname: X Min
– volume: 7
  start-page: 1712
  year: 2022
  ident: 38963_CR27
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00283
  contributor:
    fullname: EW Lees
– volume: 13
  year: 2022
  ident: 38963_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30819-1
  contributor:
    fullname: Z Han
SSID ssj0000391844
Score 2.554004
Snippet Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and large-scale...
Abstract Electrochemical carbon dioxide (CO 2 ) conversion to hydrocarbon fuels, such as methane (CH 4 ), offers a promising solution for the long-term and...
Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale...
Abstract Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 3176
SubjectTerms 140/131
140/146
147/135
639/301/299/886
639/4077/4079
639/638/161
Aqueous solutions
Bicarbonates
Carbon dioxide
Carbon dioxide concentration
Catalysts
Conversion
Copper
Current density
Electricity
Electrochemistry
Electrodes
Energy efficiency
Humanities and Social Sciences
Hydrocarbon fuels
Hydrocarbons
Mass transport
Methane
multidisciplinary
Science
Science (multidisciplinary)
Selectivity
Transportation management
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KUOhFam1x6wcRemuDu_nYJEeVighWDxW8hWSToJd94nse3n_vJLvv1RXES4_5gCQzyXwkk98A_HAuNSF4RYNQhgoZGmqS9lQx5xuRjE4-30Ne_mnPb8TFrbx9keorx4QN8MAD4Y54F7nxBdWcCym9VyKl2iTvEor3NOB81uaFM1VkMDfouojxl0zN9dFcFJmAKoqijm45XU40UQHsn1iZr2MkXz2UFv1z9hk2R8ORHA8T3oIPsf8CH4dUksttuM4BGzTjPhDXBzIv6W1QkpESVl7uxMgskdMrRvKPEuJwfHT6yXrrkcWM3C0D6jP36LH8FW7Ofv89PadjtgTayUYvaMuUaoXqIhOuQ_cSHR-T04dLyYLCCu953YXWGx2ZDMkFkxJrOIq3NjYqeP4NNvpZH3eAxBACHvYYddeJpmNO-9Z5lrK5FZrAK_i5opx9GEAxbHnM5toOdLZIZ1vobJcVnGTirntmQOtSgWy2I5vte2yuYG_FGjuesrlFdxHtWY4-YgWH62Y8H_nRw_WZjLkP40oapivQE5ZOJjRt6e_vCtJ2xrWQtVAV_Fpx_9_ob6_4-_9Y8S58yqnth7C0PdhYPD7FfTSAFv6g7PVnFNwGBw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LaxQxGA-6RfAiPnG0SgRvGjqTxyQ5iS0tRbAWsdBbyNN6mam728P-9_2SyW6Zgh4nCSTzJfne-X0IfbQ2dSE4SQKXmnAROqKTckRS6zqetEou-yG_n_WnF_zbpbisDrdVTavc8sTCqMPos4_8AEwD0F0Y2ANfrv-SXDUqR1drCY2HaI9CT7tAe4fHZ-c_d16WjH-uOK-vZVqmDla88AYQVQRkdc_IZiaRCnD_TNu8nyt5L2Ba5NDJU_SkKpD467Tjz9CDODxHj6aSkpsX6DwnbpCM_4DtEPCqlLkBjoZLennxjeEx4aMfFOeXJdjC_GD8490RxOsRX20CyDW7dPD9El2cHP86OiW1agLxolNr0lMpey59pNx6MDPBANK5jLgQNEhocI61PvROq0hFSDbolGjHgM31sZPBsVdoMYxDfI1wDCEAyWNU3vPOU6tcbx1NWe0KXWAN-rSlnLmewDFMCWozZSY6G6CzKXQ2mwYdZuLuRmZg69IwLn-bek8M85FpV0DsGRfCOclTanVyNoE0TzDl_nZrTL1tK3N3Nhr0YdcN9yQHP-yQyZjHUCaFpqpBaralswXNe4Y_VwVxO-NbiJbLBn3e7v7d7P_-4zf_X-xb9DgXr58Sz_bRYr28ie9AxVm79_Uc3wIJ6f1S
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_OE8GXw0-snhLBN41u89EkDyJ6eByCHw8u3FtImsQ7kK7u7sH1v3eStis9Th-bpiSdyXwlk_kBvHAu1SF4RYNQhgoZamqS9lQx52uRjE4-70N-_tKcLMWnU3m6BxPc0UjAzbWhXcaTWq5_vr783b9DgX87XBnXbzaiiDtaH4rmt-G0vwE3mcBIPafyje5-0czcYEAjxrsz1386s0-ljP_M97yaOXnl-LRYpeM7cDC6k-T9wP-7sBe7e3BrAJjs78O3nMZBczUI4rpANgX0BvUbKcnmZaeMrBI5-spIvmdCHI6_utiQ3YIk2xU56wNaObf2-PwAlscfvx-d0BFDgbay1lvaMKUaodrIhGsx6MRwyGRQcSlZUNjgPV-0ofFGRyZDcsGkxGqOSq-JtQqeP4T9btXFR0BiCAFVQIy6bUXdMqd94zxL2QkLdeAVvJwoZ38NpTJsOeLm2g50tkhnW-hs-wo-ZOLueuYy16Vhtf5hR6mxvI3c-FLSngspvVcipYVJ3iW07QmHPJxYY6elYzGIRC-XY-RYwfPda5SafBTiukzG3IdxJQ3TFegZS2cTmr_pzs9K_e1c7UIuhKrg1cT9v6P_-48f_3-yT-B2hrIf0tAOYX-7vohP0eHZ-mdlFf8BoDf_gQ
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUKVeENBWDS8ZqbfW6saP2D7CCoSQgB6KxM2yY1v0kkXscth_z9jJLgpqDxxjO3Iy4_HMeMbfAHx3LtUheEWDUIYKGWpqkvZUMedrkYxOPp9DXt80l3fi6l7eDzA5-S7MKH7P9a-5KKKMmoWiam04XX6ALdTBOqdvTZvp-jwlI51rIYZ7Mf9-daR7CkT_yK58mxX5JjRaNM7FDmwPpiI57Xm7Cxux24OPffHI5Wf4nVM0aEZ6IK4LZF4K2uDeRUoieTkFI7NEpreM5DskxOH86OaT9WIjixl5WAbUYO7J4_MXuLs4_zO9pEN9BNrKWi9ow5RqhGojE65FhxJdHZMLhkvJgsIG7_mkDY03OjIZkgsmJVZz3NCaWKvg-VfY7GZd_AYkhhBQvGPUbSvqljntG-dZygZWqAOv4MeKcvaxh8GwJXzNte3pbJHOttDZLis4y8Rdj8wQ1qUBOWsHibC8jdz4AlfPhZTeK5HSxCTvEurthFMerlhjB7maW3QQ0YLl6BVWcLLuRonIYQ7XZTLmMYwraZiuQI9YOvqgcU_396Fga2ckCzkRqoKfK-6_zv7_P95_3_AD-JTL1vcpZ4ewuXh6jkdo3Cz8cVnVL8Ak9Zw
  priority: 102
  providerName: Springer Nature
Title High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons
URI https://link.springer.com/article/10.1038/s41467-023-38963-y
https://www.proquest.com/docview/2821503140
https://search.proquest.com/docview/2822375928
https://pubmed.ncbi.nlm.nih.gov/PMC10235047
https://doaj.org/article/3ce39b496593455bb74ff09fbafeedf3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQNgfaC-BSBURmJN_Da2E7sPHbRylSpowIm9c2y45hNYunUlof-e85OUtZJvPDiKLajc85n3519HwAfjfGpc1ZSJ2RBReZSWnhlqWTGpsIXyttwDjm7zC-uxHSRLQ4g731hotF-ZW9Om1-3p83NdbStvLuthr2d2HA-K0O4gWwk5PAQDpFC7-nocf_lBaotovOQGXE1XIu4H-BXFPlzzun2GJ5wibLAKHi23WNIMW7_nrD50FTywX1pZEOTZ_C0kx_JuB3ncziomxfwuM0ouX0J82C3QUP4B2IaR9Yxyw1uaCRal8ejMbL0pPzKSHAsIQbho-5PdhRINktyvXXI1szK4vsruJqc_ygvaJc0gVZZqjY0Z1LmQlY1E6ZCLRP1nyJkEc8y5iRWWMtHlcttoWqWOW9c4T1LOe5yeZ1KZ_lrOGqWTf0GSO2cwzVf16qqRFoxo2xuLPNB6nKp4wl86jGn79rYGDreaXOlW5RrRLmOKNfbBM4Ccnc9Q1zrWLFc_dTd7Gpe1bywMYY9F1lmrRTejwpvjUdm7hHkST81ultsa41aI4q1HFXFBD7smnGZhLsP0wQ0hj6My6xgKgG1N6V7A9pvQfqLAbd7ekvgcz_7f6H_-4_f_j-kd3Ac8tq3NmkncLRZ_a7fo_SzsQMk-YXEUk2-DODReDz9PsXn2fnl_BvWlnk5iOcKWM6EGsSl8Qcpswz9
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbxQhFCdaY_Ri_IyjVTHxpqQ7fAxwMtq4rtpWD23SG4EBrJeZurse9r_3PWZ2m2mixwESmAe8b36PkDfe5zrGoFmU2jKpYs1sNoFp7kMtszU5oB_y-KRZnMmv5-p8dLitxrTKLU8sjDr2LfrID8A0AN1FgD3w_vI3w6pRGF0dS2jcJLekAFmNL8Xnn3c-FkQ_N1KOb2VmwhysZOEMIKgYSOpGsM1EHhXY_omueT1T8lq4tEih-X1yb1Qf6Ydhvx-QG6l7SG4PBSU3j8gPTNtgiP5AfRfpqhS5AX5GS3J58YzRPtPD75ziuxLqYX4w_enuANJ1Ty82EaSaXwb4fkzO5p9ODxdsrJnAWlWbNWu41o3UbeLSt2BkgvljsYi4UjxqaAhBzNrYBGsSVzH7aHPmtQAm16RaxyCekL2u79JTQlOMEQiekmlbWbfcm9D4wDMqXbGOoiJvt5RzlwM0hishbWHcQGcHdHaFzm5TkY9I3N1IhLUuDf3ypxtviRNtEjYUCHshlQpBy5xnNgefQZZnmHJ_uzVuvGsrd3UyKvJ61w23BEMfvkMy4hgutLLcVMRMtnSyoGlP9-ui4G0juoWaSV2Rd9vdv5r933_87P-LfUXuLE6Pj9zRl5Nvz8ldLGM_pKDtk7318k96AcrOOrwsJ_ov24D-3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiEBdUXiLQUiNxA2s3fsT2CUHpUl6lByr1ZvlJuSRlsz3s3zN2slulEhxjW7IzM563ZxB6bW2qQ3CSBC414SLURCfliKTW1TxplVz2Q34_aY7P-JdzcT7mP_VjWuWGJxZGHTqffeQzMA1Ad2FgD8zSmBZx-nHx7vIPyR2kcqR1bKdxG90BqdhkmleLT1t_S66Erjgf383MmZr1vHAJEFoEpHbDyHoim0oJ_4neeTNr8kbotEikxS56MKqS-P2A-4foVmwfobtDc8n1Y3SaUzhIrgSBbRtwXxreAG_DJdG8eMlwl_DhD4rzGxNsYf_uqsdbYsSrDl-sA0g4u3Tw_QSdLY5-Hh6TsX8C8aJWK9JQKRsufaTcejA4wRTSuaG4EDRIGHCOzX1onFaRipBs0CnRmgHDa2Itg2NP0U7btfEZwjGEAMCPUXnPa0-tco11NGUFLNSBVejNBnLmciiTYUp4mykzwNkAnE2Bs1lX6EMG7nZlLnFdBrrlLzPeGMN8ZNqVcvaMC-Gc5CnNdXI2gVxPsOXeBjVmvHe9uaaSCr3aTsONyWEQ22Yw5jWUSaGpqpCaoHRyoOlM-_ui1N7OlS7EnMsKvd1g_3r3f__x8_8f9gDdA2I23z6ffH2B7ueO9kM22h7aWS2v4j7oPSv3shD0X8JxAyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-rate+and+selective+conversion+of+CO2+from+aqueous+solutions+to+hydrocarbons&rft.jtitle=Nature+communications&rft.au=Obasanjo%2C+Cornelius+A&rft.au=Gao%2C+Guorui&rft.au=Crane%2C+Jackson&rft.au=Golovanova%2C+Viktoria&rft.date=2023-06-01&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=3176&rft_id=info:doi/10.1038%2Fs41467-023-38963-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon