Realization of an inherent time crystal in a dissipative many-body system
Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic for...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 6161 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-41905-3 |
Cover
Abstract | Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.
Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation. |
---|---|
AbstractList | Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation. Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation. Abstract Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. |
ArticleNumber | 6161 |
Author | Zhang, Xiangdong Chen, Yu-Hui |
Author_xml | – sequence: 1 givenname: Yu-Hui surname: Chen fullname: Chen, Yu-Hui organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology – sequence: 2 givenname: Xiangdong orcidid: 0000-0002-7725-8814 surname: Zhang fullname: Zhang, Xiangdong email: zhangxd@bit.edu.cn organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology |
BookMark | eNp9kUtr3DAUhUVJaR7NH-jK0E03Tq8etqRVKaFpBwKFkq6FrMdEgy1NJU9g-uujjBPaZBFtJK6-c3Svzik6iik6hD5guMBAxefCMOt5C4S2DEvoWvoGnRBguMWc0KP_zsfovJQN1EUlFoy9Q8eUcyEB-hO0-uX0GP7qOaTYJN_o2IR467KLczOHyTUm78usx1ptdGNDKWFb4TvXTDru2yHZfVMq4ab36K3XY3Hnj_sZ-n317ebyR3v98_vq8ut1azos5razTHLDcac5JSB1z4be9NQIy0knpO24xB6MkaJCnBkqYICeYEEHKRzF9AytFl-b9EZtc5h03qukgzoUUl4rnedgRqe6nnssrfFEe-a9HCy2YiBWAFgPVlevL4vXdjdMzpo6ddbjM9PnNzHcqnW6Uxg6Vv8QqsOnR4ec_uxcmdUUinHjqKNLu6KI4ERADyAq-vEFukm7HOtfPVBYcoK5rJRYKJNTKdl5ZcJ8iKc2EMb6snrIXy35q5q_OuSvaJWSF9KnQV4V0UVUKhzXLv_r6hXVPayfwjc |
CitedBy_id | crossref_primary_10_1209_0295_5075_ad6e16 crossref_primary_10_1088_1361_6633_ad6585 crossref_primary_10_1103_PhysRevA_109_063317 crossref_primary_10_1103_PhysRevA_109_042212 crossref_primary_10_1103_PhysRevResearch_6_033185 |
Cites_doi | 10.1103/PhysRevLett.111.240501 10.1103/PhysRevLett.127.043602 10.1038/nature21413 10.1103/PhysRevLett.121.035301 10.1103/PhysRevLett.68.3216 10.1103/PhysRevLett.111.070402 10.1103/PhysRevE.53.2110 10.1038/s41467-022-28462-x 10.1088/1367-2630/ab9ae3 10.1038/s41467-019-09757-y 10.1103/PhysRevA.84.031402 10.1103/PhysRevLett.63.78 10.1103/PhysRevA.99.053605 10.1103/PhysRevB.73.075101 10.1103/PhysRevLett.116.250401 10.1103/PhysRevLett.120.180603 10.1364/OL.21.000734 10.1088/1367-2630/ababc4 10.1088/1612-2011/10/4/045401 10.1103/PhysRevLett.126.110601 10.1088/1367-2630/aaf18b 10.1103/PhysRevLett.120.040404 10.1016/S0030-4018(02)01587-0 10.1103/PhysRevLett.115.163601 10.1103/PhysRevA.91.051601 10.1038/s41586-022-04854-3 10.1209/0295-5075/103/57008 10.1103/PhysRevLett.121.185301 10.1103/PhysRevLett.120.215301 10.1126/science.abg8102 10.1103/PhysRevLett.109.160402 10.1126/science.201.4358.777 10.1103/PhysRevLett.117.090402 10.1038/nature21426 10.1016/S0030-4018(96)00728-6 10.1364/OL.22.001174 10.1103/PhysRevLett.109.160401 10.1126/science.abo3382 10.1103/PhysRevLett.119.150402 10.1103/PhysRevLett.111.113901 10.1038/s41586-021-04257-w 10.1103/PhysRevLett.105.015702 10.1103/PhysRevA.91.033617 10.1126/science.abk0603 10.1103/PhysRevLett.114.251603 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-41905-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database (ProQuest) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_567f19dcf2af4ff9bd1d8b2d800df0da PMC10547780 10_1038_s41467_023_41905_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 62105033 and 12174026 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 62105033 and 12174026 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c518t-5d497c715a73209a64b6c63c8d72589d5791f0cc98c7174c380b062183b98e313 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:51 EDT 2025 Thu Aug 21 18:35:35 EDT 2025 Fri Sep 05 13:40:06 EDT 2025 Wed Aug 13 09:13:13 EDT 2025 Tue Jul 01 02:10:38 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-5d497c715a73209a64b6c63c8d72589d5791f0cc98c7174c380b062183b98e313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7725-8814 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41905-3 |
PMID | 37789006 |
PQID | 2871972179 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_567f19dcf2af4ff9bd1d8b2d800df0da pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547780 proquest_miscellaneous_2872806008 proquest_journals_2871972179 crossref_citationtrail_10_1038_s41467_023_41905_3 crossref_primary_10_1038_s41467_023_41905_3 springer_journals_10_1038_s41467_023_41905_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-03 |
PublicationDateYYYYMMDD | 2023-10-03 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Nozières (CR4) 2013; 103 Autti, Eltsov, Volovik (CR13) 2018; 120 Randall (CR15) 2021; 374 Zhang (CR17) 2022; 607 Lledó, Szymańska (CR46) 2020; 22 Ahlefeldt, McAuslan, Longdell, Manson, Sellars (CR32) 2013; 111 Smits, Liao, Stoof, van der Straten (CR11) 2018; 121 Liu, Cone (CR35) 1990; 41 Kyprianidis (CR14) 2021; 372 Else, Bauer, Nayak (CR8) 2016; 117 Keßler (CR25) 2021; 127 Rangel-Rojo, Mohebi (CR42) 1997; 137 Zhang (CR9) 2017; 543 Sacha (CR6) 2015; 91 Bruno (CR3) 2013; 111 Bŭca, Tindall, Jaksch (CR21) 2019; 10 Booker, Bŭca, Jaksch (CR24) 2020; 22 Luo, Chu (CR41) 1997; 22 Taheri, Matsko, Maleki, Sacha (CR26) 2022; 13 Gong, Hamazaki, Ueda (CR19) 2018; 120 Mi (CR16) 2022; 601 Diehl, Tomadin, Micheli, Fazio, Zoller (CR36) 2010; 105 Shapere, Wilczek (CR2) 2012; 109 Huang, Zhang, Lezama, Mossberg (CR34) 1989; 63 Karabanov, Rose, Köckenberger, Garrahan, Lesanovsky (CR29) 2017; 119 Thomas Böttger, Thiel, Sun, Cone (CR44) 2006; 73 Choi (CR10) 2017; 543 El-Sherif, King (CR43) 2002; 208 Rovny, Blum, Barrett (CR12) 2018; 120 Sanchez, Stephan (CR39) 1996; 53 Vlasov, Lemeza, Gladush (CR18) 2013; 10 Loh (CR40) 1996; 21 Lee, Häffner, Cross (CR30) 2011; 84 Kongkhambut (CR28) 2022; 377 Tucker (CR45) 2018; 20 Carr, Ritter, Wade, Adams, Weatherill (CR31) 2013; 111 Iemini (CR20) 2018; 121 Chan, Lee, Gopalakrishnan (CR37) 2015; 91 Wilczek (CR1) 2012; 109 Watanabe, Oshikawa (CR5) 2015; 114 Keßler, Cosme, Hemmerling, Mathey, Hemmerich (CR22) 2019; 99 Piazza, Ritsch (CR23) 2015; 115 Prigogine (CR47) 1978; 201 Khemani, Lazarides, Moessner, Sondhi (CR7) 2016; 116 Maksimov, Kharitonov, Ilyukhin, Belov (CR38) 1970; 15 Chen, Horvath, Longdell, Zhang (CR27) 2021; 126 Mitsunaga, Takagahara, Yano, Uesugi (CR33) 1992; 68 C Carr (41905_CR31) 2013; 111 GK Liu (41905_CR35) 1990; 41 F Wilczek (41905_CR1) 2012; 109 J Huang (41905_CR34) 1989; 63 F Sanchez (41905_CR39) 1996; 53 H Keßler (41905_CR22) 2019; 99 J Zhang (41905_CR9) 2017; 543 P Bruno (41905_CR3) 2013; 111 L Luo (41905_CR41) 1997; 22 J Randall (41905_CR15) 2021; 374 H Taheri (41905_CR26) 2022; 13 H Watanabe (41905_CR5) 2015; 114 C Lledó (41905_CR46) 2020; 22 I Prigogine (41905_CR47) 1978; 201 A Kyprianidis (41905_CR14) 2021; 372 V Khemani (41905_CR7) 2016; 116 DV Else (41905_CR8) 2016; 117 S Diehl (41905_CR36) 2010; 105 RL Ahlefeldt (41905_CR32) 2013; 111 BA Maksimov (41905_CR38) 1970; 15 J Rovny (41905_CR12) 2018; 120 R Rangel-Rojo (41905_CR42) 1997; 137 S Choi (41905_CR10) 2017; 543 J Smits (41905_CR11) 2018; 121 AF El-Sherif (41905_CR43) 2002; 208 P Nozières (41905_CR4) 2013; 103 CW Thomas Böttger (41905_CR44) 2006; 73 H Keßler (41905_CR25) 2021; 127 K Tucker (41905_CR45) 2018; 20 RA Vlasov (41905_CR18) 2013; 10 A Shapere (41905_CR2) 2012; 109 A Karabanov (41905_CR29) 2017; 119 X Zhang (41905_CR17) 2022; 607 X Mi (41905_CR16) 2022; 601 Y-H Chen (41905_CR27) 2021; 126 K Sacha (41905_CR6) 2015; 91 B Bŭca (41905_CR21) 2019; 10 C-K Chan (41905_CR37) 2015; 91 P Kongkhambut (41905_CR28) 2022; 377 S Autti (41905_CR13) 2018; 120 F Piazza (41905_CR23) 2015; 115 C Booker (41905_CR24) 2020; 22 F Iemini (41905_CR20) 2018; 121 TE Lee (41905_CR30) 2011; 84 Z Gong (41905_CR19) 2018; 120 WH Loh (41905_CR40) 1996; 21 M Mitsunaga (41905_CR33) 1992; 68 |
References_xml | – volume: 109 start-page: 160401 year: 2012 ident: CR1 article-title: Quantum time crystals publication-title: Phys. Rev. Lett. – volume: 543 start-page: 217 year: 2017 ident: CR9 article-title: Observation of a discrete time crystal publication-title: Nature – volume: 10 start-page: 045401 year: 2013 ident: CR18 article-title: Dynamical instabilities of spectroscopic transitions in dense resonant media publication-title: Laser Phys. Lett. – volume: 111 start-page: 113901 year: 2013 ident: CR31 article-title: Nonequilibrium phase transition in a dilute Rydberg ensemble publication-title: Phys. Rev. Lett. – volume: 91 start-page: 051601 year: 2015 ident: CR37 article-title: Limit-cycle phase in driven-dissipative spin systems publication-title: Phys. Rev. A – volume: 121 start-page: 185301 year: 2018 ident: CR11 article-title: Observation of a space-time crystal in a superfluid quantum gas publication-title: Phys. Rev. Lett. – volume: 208 start-page: 381 year: 2002 ident: CR43 article-title: Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers publication-title: Opt. Commun. – volume: 201 start-page: 777 year: 1978 ident: CR47 article-title: Time, structure, and fluctuations publication-title: Science – volume: 103 start-page: 57008 year: 2013 ident: CR4 article-title: Time crystals: can diamagnetic currents drive a charge density wave into rotation publication-title: Europhys. Lett. – volume: 111 start-page: 070402 year: 2013 ident: CR3 article-title: Impossibility of spontaneously rotating time crystals: a No-Go theorem publication-title: Phys. Rev. Lett. – volume: 126 start-page: 110601 year: 2021 ident: CR27 article-title: Optically unstable phase from ion-ion interactions in an erbium-doped crystal publication-title: Phys. Rev. Lett. – volume: 372 start-page: 1192 year: 2021 ident: CR14 article-title: Observation of a prethermal discrete time crystal publication-title: Science – volume: 374 start-page: 1474 year: 2021 ident: CR15 article-title: Many-bodylocalized discrete time crystal with a programmable spin-based quantum simulator publication-title: Science – volume: 115 start-page: 163601 year: 2015 ident: CR23 article-title: Self-ordered limit cycles, chaos, and phase slippage with a superfluid inside an optical resonator publication-title: Phys. Rev. Lett. – volume: 127 start-page: 043602 year: 2021 ident: CR25 article-title: Observation of a dissipative time crystal publication-title: Phys. Rev. Lett. – volume: 120 start-page: 180603 year: 2018 ident: CR12 article-title: Observation of discrete-time-crystal signatures in an ordered dipolar many-body system publication-title: Phys. Rev. Lett. – volume: 111 start-page: 240501 year: 2013 ident: CR32 article-title: Precision measurement of electronic ion-ion interactions between neighboring Eu optical centers, publication-title: Phys. Rev. Lett. – volume: 73 start-page: 075101 year: 2006 ident: CR44 article-title: Optical decoherence and spectral diffusion at 1.5 µm in Er :Y SiO versus magnetic field, temperature, and Er concentration publication-title: Phys. Rev. B – volume: 543 start-page: 221 year: 2017 ident: CR10 article-title: Observation of discrete time-crystalline order in a disordered dipolar many-body system publication-title: Nature – volume: 120 start-page: 040404 year: 2018 ident: CR19 article-title: Discrete time-crystalline order in cavity and circuit QED systems publication-title: Phys. Rev. Lett. – volume: 607 start-page: 468 year: 2022 ident: CR17 article-title: Digital quantum simulation of Floquet symmetry-protected topological phases publication-title: Nature – volume: 114 start-page: 251603 year: 2015 ident: CR5 article-title: Absence of quantum time crystals publication-title: Phys. Rev. Lett. – volume: 377 start-page: 670 year: 2022 ident: CR28 article-title: Observation of a continuous time crystal publication-title: Science – volume: 119 start-page: 150402 year: 2017 ident: CR29 article-title: Phase transitions in electron spin resonance under continuous microwave driving publication-title: Phys. Rev. Lett. – volume: 22 start-page: 1174 year: 1997 ident: CR41 article-title: Suppression of self-pulsing in an erbium-doped fiber laser publication-title: Opt. Lett. – volume: 22 start-page: 075002 year: 2020 ident: CR46 article-title: A dissipative time crystal with or without Z2 symmetry breaking publication-title: New J. of Phys. – volume: 22 start-page: 085007 year: 2020 ident: CR24 article-title: Non-stationarity and dissipative time crystals: spectral properties and finite-size effects publication-title: New J. Phys. – volume: 84 start-page: 031402 year: 2011 ident: CR30 article-title: Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms publication-title: Phys. Rev. A – volume: 13 year: 2022 ident: CR26 article-title: All-optical dissipative discrete time crystals publication-title: Nat. Commun. – volume: 63 start-page: 78 year: 1989 ident: CR34 article-title: Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts publication-title: Phys. Rev. Lett. – volume: 91 start-page: 033617 year: 2015 ident: CR6 article-title: Modeling spontaneous breaking of time-translation symmetry publication-title: Phys. Rev. A – volume: 20 start-page: 123003 year: 2018 ident: CR45 article-title: Shattered time: Can a dissipative time crystal survive many-body correlations publication-title: New J. Phys. – volume: 117 start-page: 090402 year: 2016 ident: CR8 article-title: Floquet time crystals publication-title: Phys. Rev. Lett. – volume: 99 start-page: 053605 year: 2019 ident: CR22 article-title: Emergent limit cycles and time crystal dynamics in an atom-cavity system publication-title: Phys. Rev. A – volume: 121 start-page: 035301 year: 2018 ident: CR20 article-title: Boundary time crystals publication-title: Phys. Rev. Lett. – volume: 41 start-page: 6193 year: 1990 ident: CR35 article-title: Laser-induced instantaneous spectral diffusion in Tb compounds as observed in photon-echo experiments publication-title: Phys. Rev. B – volume: 137 start-page: 98 year: 1997 ident: CR42 article-title: Study of the onset of self-pulsing behaviour in an Er-doped fibre laser publication-title: Opt. Commun. – volume: 116 start-page: 250401 year: 2016 ident: CR7 article-title: Phase structure of driven quantum systems publication-title: Phys. Rev. Lett. – volume: 105 start-page: 015702 year: 2010 ident: CR36 article-title: Dynamical phase transitions and instabilities in open atomic many-body systems publication-title: Phys. Rev. Lett. – volume: 21 start-page: 734 year: 1996 ident: CR40 article-title: Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping publication-title: Opt. Lett. – volume: 10 year: 2019 ident: CR21 article-title: Non-stationary coherent quantum many-body dynamics through dissipation publication-title: Nat. Commun. – volume: 109 start-page: 160402 year: 2012 ident: CR2 article-title: Classical time crystals publication-title: Phys. Rev. Lett. – volume: 120 start-page: 215301 year: 2018 ident: CR13 article-title: Observation of a time quasicrystal and its transition to a superfluid time crystal publication-title: Phys. Rev. Lett. – volume: 15 start-page: 806 year: 1970 ident: CR38 article-title: The crystal structure of yttrium oxiorthosilicate the dual function of yttrium publication-title: Sov. Phys. Crystallogr. – volume: 601 start-page: 531 year: 2022 ident: CR16 article-title: Time-crystalline eigenstate order on a quantum processor publication-title: Nature – volume: 68 start-page: 3216 year: 1992 ident: CR33 article-title: Excitation-induced frequency shift probed by stimulated photon echoes Masaharu publication-title: Phys. Rev. Lett. – volume: 53 start-page: 2110 year: 1996 ident: CR39 article-title: General analysis of instabilities in erbium-doped fiber lasers publication-title: Phys. Rev. E – volume: 111 start-page: 240501 year: 2013 ident: 41905_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.240501 – volume: 127 start-page: 043602 year: 2021 ident: 41905_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.043602 – volume: 15 start-page: 806 year: 1970 ident: 41905_CR38 publication-title: Sov. Phys. Crystallogr. – volume: 543 start-page: 217 year: 2017 ident: 41905_CR9 publication-title: Nature doi: 10.1038/nature21413 – volume: 121 start-page: 035301 year: 2018 ident: 41905_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.035301 – volume: 68 start-page: 3216 year: 1992 ident: 41905_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3216 – volume: 111 start-page: 070402 year: 2013 ident: 41905_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.070402 – volume: 53 start-page: 2110 year: 1996 ident: 41905_CR39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.2110 – volume: 13 year: 2022 ident: 41905_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28462-x – volume: 22 start-page: 075002 year: 2020 ident: 41905_CR46 publication-title: New J. of Phys. doi: 10.1088/1367-2630/ab9ae3 – volume: 10 year: 2019 ident: 41905_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09757-y – volume: 84 start-page: 031402 year: 2011 ident: 41905_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.031402 – volume: 41 start-page: 6193 year: 1990 ident: 41905_CR35 publication-title: Phys. Rev. B – volume: 63 start-page: 78 year: 1989 ident: 41905_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.78 – volume: 99 start-page: 053605 year: 2019 ident: 41905_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.053605 – volume: 73 start-page: 075101 year: 2006 ident: 41905_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.075101 – volume: 116 start-page: 250401 year: 2016 ident: 41905_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.250401 – volume: 120 start-page: 180603 year: 2018 ident: 41905_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.180603 – volume: 21 start-page: 734 year: 1996 ident: 41905_CR40 publication-title: Opt. Lett. doi: 10.1364/OL.21.000734 – volume: 22 start-page: 085007 year: 2020 ident: 41905_CR24 publication-title: New J. Phys. doi: 10.1088/1367-2630/ababc4 – volume: 10 start-page: 045401 year: 2013 ident: 41905_CR18 publication-title: Laser Phys. Lett. doi: 10.1088/1612-2011/10/4/045401 – volume: 126 start-page: 110601 year: 2021 ident: 41905_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.110601 – volume: 20 start-page: 123003 year: 2018 ident: 41905_CR45 publication-title: New J. Phys. doi: 10.1088/1367-2630/aaf18b – volume: 120 start-page: 040404 year: 2018 ident: 41905_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.040404 – volume: 208 start-page: 381 year: 2002 ident: 41905_CR43 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(02)01587-0 – volume: 115 start-page: 163601 year: 2015 ident: 41905_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.163601 – volume: 91 start-page: 051601 year: 2015 ident: 41905_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.051601 – volume: 607 start-page: 468 year: 2022 ident: 41905_CR17 publication-title: Nature doi: 10.1038/s41586-022-04854-3 – volume: 103 start-page: 57008 year: 2013 ident: 41905_CR4 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/57008 – volume: 121 start-page: 185301 year: 2018 ident: 41905_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.185301 – volume: 120 start-page: 215301 year: 2018 ident: 41905_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.215301 – volume: 372 start-page: 1192 year: 2021 ident: 41905_CR14 publication-title: Science doi: 10.1126/science.abg8102 – volume: 109 start-page: 160402 year: 2012 ident: 41905_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.160402 – volume: 201 start-page: 777 year: 1978 ident: 41905_CR47 publication-title: Science doi: 10.1126/science.201.4358.777 – volume: 117 start-page: 090402 year: 2016 ident: 41905_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.090402 – volume: 543 start-page: 221 year: 2017 ident: 41905_CR10 publication-title: Nature doi: 10.1038/nature21426 – volume: 137 start-page: 98 year: 1997 ident: 41905_CR42 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(96)00728-6 – volume: 22 start-page: 1174 year: 1997 ident: 41905_CR41 publication-title: Opt. Lett. doi: 10.1364/OL.22.001174 – volume: 109 start-page: 160401 year: 2012 ident: 41905_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.160401 – volume: 377 start-page: 670 year: 2022 ident: 41905_CR28 publication-title: Science doi: 10.1126/science.abo3382 – volume: 119 start-page: 150402 year: 2017 ident: 41905_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.150402 – volume: 111 start-page: 113901 year: 2013 ident: 41905_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.113901 – volume: 601 start-page: 531 year: 2022 ident: 41905_CR16 publication-title: Nature doi: 10.1038/s41586-021-04257-w – volume: 105 start-page: 015702 year: 2010 ident: 41905_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.015702 – volume: 91 start-page: 033617 year: 2015 ident: 41905_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.033617 – volume: 374 start-page: 1474 year: 2021 ident: 41905_CR15 publication-title: Science doi: 10.1126/science.abk0603 – volume: 114 start-page: 251603 year: 2015 ident: 41905_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.251603 |
SSID | ssj0000391844 |
Score | 2.5052161 |
Snippet | Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental... Abstract Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6161 |
SubjectTerms | 639/301/1023/1025 639/766/119/1002 639/766/119/995 Crystals Erbium Humanities and Social Sciences Many body problem multidisciplinary Periodicity Science Science (multidisciplinary) Symmetry Time measurement Translation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn7haJYI3XZpsvo8qliroQSz0FvJJC3WftK_C---dye57dgvqxWuSZZOZSeY3zBchr0Ky2TBt--yE7gHf8t7lCKaK5ME6VXJuuVWfv-ijY_npRJ1ca_WFMWFTeeCJcAdKm8pdTnUIVdbqYubZxiED0MmV5QaNmGPXjKn2BgsHpoucs2SYsAeXsr0JoKLQ8Ynu34UmagX7FyjzZozkDUdp0z-H98jdGTjSt9OG75NbZXxAbk-tJDcPycevgPjmnEq6qjSM9Gw8xVy-NcX-8TRdbAAInsMoDRS98C2W-meh3-E56OMqb-hU1fkROT788O39UT-3SeiT4nbdqyydSYarYASQImgZddICmTAo67IyjleWkrOwyMgkLItMIzSKzhbBxWOyN67G8oRQVhyoMh1SrFFyG1xAY7WqWiqwMQ8d4VuS-TTXEMdWFue--bKF9ROZPZDZNzJ70ZHXu29-TBU0_rr6HXJitxKrX7cBkAk_y4T_l0x0ZH_LRz9fyUuPpiGWKjKuIy9303CZ0EMSxrK6amvQ0wy4qCN2wf_FhpYz49lpK8sNSFUaY1lH3mxF5fff_3zip__jxM_InQFFGyMbxD7ZW19cleeAltbxRbsYvwBKHRED priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRP3G1SgTfdGmy-X4SFc8q6INY6FvIx8YW2t16dxXuvzeTzV3Zgn3dZNnszGTml8wXQm9c0FERqdtomGwzvqWtiT4fVTh12og-xpJb9f2HPDzi347Fcb1wW9Wwyq1OLIo6jgHuyA8A2UOlGWXeX_xpoWsUeFdrC43b6A7NlgbkXC--7O5YoPq55rzmyhCmD1a8aIZsqMD9CU7gmT0qZftnWPN6pOQ1d2mxQosH6H6Fj_jDxO-H6FY_PEJ3p4aSm8fo68-M-2pmJR4TdgM-HU4go2-NoYs8DstNhoNn-Sl2GHzxJaL6b4_Ps1Jo_Rg3eKrt_AQdLT7_-nTY1mYJbRBUr1sRuVFBUeEU64hxknsZJANWdEKbKJShiYRgdJ6keGCaeCIBIHmje0bZU7Q3jEP_DGHSm2zQpAs-eU61Mw6OrEmkPmVmxq5BdEsyG2olcWhocWaLR5tpO5HZZjLbQmbLGvR2987FVEfjxtkfgRO7mVADuzwYl79t3VJWSJWoiSF1LvGUjI80at_FDIFjItE1aH_LR1s35speiVGDXu-G85YCP4kb-vGyzAF_c0ZHDdIz_s8WNB8ZTk9Kce6MV7lSmjTo3VZUrr7-_z9-fvNiX6B70Oe-RBGyfbS3Xl72LzMaWvtXReT_AYA-Bps priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFcEX8RPXVongmy4mm2STPJ5iqQf6oBb6FvJpC-2uXK_C_fdNsrsnW1TwdTNhs5kk88vOzG8AXhsnvcCtrL2ibZ3wLamVt-mqwoiRigfvS27V5y_t8QlbnfLTPWimXJgStF8oLcsxPUWHvbtiZUsnC5P9ltl7ewf2ZTJ_zQL2l8vVt9Xuz0rmPJeMjRkymMo_dJ5ZoULWP0OYt-MjbzlJi-05egD3R9CIlsMwH8Je6B7B3aGM5PYxfPqa0N6YT4n6iEyHzruznMe3Qbl2PHLrbQKBF-kpMih74Esc9a-ALtNRUNveb9HA6PwETo4-fv9wXI8lEmrHidzU3DMlnCDcCNpgZVpmW9fSrICGS-W5UCRi55RMQoI5KrHFbYZFVslACX0Ki67vwjNAOKhkxlrjbLSMSKNMvqhGHkNMKvRNBWSaMu1G_vBcxuJCFz82lXqYZp2mWZdp1rSCN7s-Pwf2jH9Kv8-a2Elm5uvyoF__0ONK0LwVkSjvYmMii1FZT7y0jU_A10fsTQWHkx71uB2vdL4WZpoioSp4tWtOGyl7R0wX-usik73MCRNVIGf6nw1o3tKdnxVK7oRSmRASV_B2Wiq_3_73L37-f-IHcC9Xuy-xhPQQFpv1dXiRMNHGvhw3wQ0pkQWo priority: 102 providerName: Springer Nature |
Title | Realization of an inherent time crystal in a dissipative many-body system |
URI | https://link.springer.com/article/10.1038/s41467-023-41905-3 https://www.proquest.com/docview/2871972179 https://www.proquest.com/docview/2872806008 https://pubmed.ncbi.nlm.nih.gov/PMC10547780 https://doaj.org/article/567f19dcf2af4ff9bd1d8b2d800df0da |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8ID5FYFRG4g0CcZz44wGhrloZlTahQaW-RY4db5NKAl2H6H_P2UmKMg3ESyLZTuLc-XK_y_nuAF5pI61IuIytYjxGfEtjZUs0VTKqpcora0Ns1ckpP55ns0W-2IG-3FFHwKtbTTtfT2q-Wr799WPzAQX-fRsyLt9dZUHcUft4n6b37O7CPmom7o2xkw7uhy8zU2jQeEdzmmQ0Rt3Nujia228z0FUhpf8Ah97cRXnDlRo01PQ-3OugJRm3a-EB7FT1Q7jTFpvcPIJPZ4gJu6hL0jiia3JZX_hovzXxFeaJWW0QKi6xlWji_fRht_XPinzDD0ZcNnZD2rzPj2E-Pfo6OY67Qgqxyalcx7nNlDCC5lqwNFGaZyU3nHk2pblUNheKusQYJXGQyAyTSZlwD55KJStG2RPYq5u6egokqRQqO65N6cqMSq20N2dd7iqHjLZpBLQnWWG6LOO-2MWyCN5uJouWzAWSuQhkLlgEr7fXfG9zbPxz9KHnxHakz48dGprVedGJW5Fz4aiyxqXaZc6p0lIry9QiPLYusTqCg56PRb_mCm88-mRGQkXwctuN4uZ9KLqumuswxvuiETlFIAf8H0xo2FNfXoTE3YhlMyFkEsGbfqn8efrf3_jZf8zmOdxN_cr1WxvYAeytV9fVC4RL63IEu2Ih8CinH0ewPx7PvszwfHh0-vkMWyd8Mgo_IkZBVn4D9KcUWA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNLWAkOEHUJHZi-4AQr2qXPg6olfZmHD9opZK0u1vQ_il-Ix4n2Wor0Vuv9iRxxjPjzx7PDMBrbYTlWSVSK2mVBnybp9LWYavCci1k6ayNsVX7B9XoiH2blJM1-DvEwuC1ysEmRkNtW4Nn5NuI7DHTDJcfzs5TrBqF3tWhhEYnFrtu8Sds2Wbvx1_C_L4pip2vh59HaV9VIDVlLuZpaZnkhuel5rTIpK5YXZmK4piLUkhbcpn7zBgpAhFnhoqszipEErUUjuY0vPcW3GZ4Mh70h0_48kwHs60LxvrYnIyK7RmLligsjOhuRafzyvoXywSsYNurNzOvuGfjqrfzAO73cJV87OTrIay55hHc6QpYLh7D-HvAmX0kJ2k90Q05aY4xgnBOsGo9MdNFgJ-noZVogr7_eIP7tyO_ghFK69YuSJdL-gkc3Qgbn8J60zZuA0jmZFhAK21qX7NcaKlxi-xL73wQHlskkA8sU6bPXI4FNE5V9KBToTo2q8BmFdmsaAJvl8-cdXk7rqX-hDOxpMSc27Ghnf5UvQqrsuI-l9b4QnvmvaxtbkVd2AC5rc-sTmBrmEfVG4KZuhTbBF4tu4MKo19GN669iDTo3w5oLAGxMv8rA1rtaU6OYzLwgI8Z5yJL4N0gKpdf__8fP7t-sC_h7uhwf0_tjQ92N-FegQKMtyboFqzPpxfueUBi8_pFFH8CP25a3_4Bi_lA0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4ilSChgJThBtHDuxfUAIKKsuhQohKu3NOHZMK5Wk3d2C9q_x65hxkq22Er31ajuJM54Zf_a8CHlhnfIyK1XqNS9TwLcs1b6Co4pgVumi9j7GVn3ZL3cPxKdpMd0gf4dYGHSrHHRiVNS-dXhHPkJkj5lmpB6F3i3i68747clpihWk0NI6lNPoWGSvXv6B49v8zWQH1vplno8_fv-wm_YVBlJXMLVICy-0dJIVVvI807YUVelKjvPPC6V9ITULmXNawSApHFdZlZWIKiqtas44vPcauS45oCqQJTmVq_sdzLyuhOjjdDKuRnMRtRJskmh6RQP02l4YSwas4dyLXpoXTLVxBxzfIbd76Erfdbx2l2zUzT1yoytmubxPJt8Ac_ZRnbQN1Db0qDnEaMIFxQr21M2WAEWPoZVain4A0Zv7d01_gUJKq9YvaZdX-gE5uBIyPiSbTdvUjwjNag2baWldFSrBlNUWj8uhCHUARvJ5QthAMuP6LOZYTOPYRGs6V6YjswEym0hmwxPyavXMSZfD49LR73ElViMx_3ZsaGc_TS_OpihlYNq7kNsgQtCVZ15VuQf47UPmbUK2h3U0vVKYm3MWTsjzVTeIM9pobFO3Z3EM2roBmSVEra3_2oTWe5qjw5gYHLCykFJlCXk9sMr51___x1uXT_YZuQmSZj5P9vcek1s58i86UPBtsrmYndVPAJQtqqeR-yn5cdXi9g_Kb0UP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+an+inherent+time+crystal+in+a+dissipative+many-body+system&rft.jtitle=Nature+communications&rft.au=Chen%2C+Yu-Hui&rft.au=Zhang%2C+Xiangdong&rft.date=2023-10-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=6161&rft_id=info:doi/10.1038%2Fs41467-023-41905-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |