Realization of an inherent time crystal in a dissipative many-body system

Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic for...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 6161 - 7
Main Authors Chen, Yu-Hui, Zhang, Xiangdong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-41905-3

Cover

Abstract Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation.
AbstractList Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation.
Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.
Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.
Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions. Physical realizations of time crystals, non-equilibrium many-body systems with broken time-translation symmetry, typically require periodic driving. Here the authors demonstrate a time crystal without external periodic drive in a collection of erbium atoms under a continuous laser excitation.
Abstract Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental observations have confirmed the existence of discrete or continuous time crystals, these realizations have relied on the utilization of periodic forces or effective modulation through cavity feedback. The original proposal for time crystals is that they would represent self-sustained motions without any external periodicity, but realizing such purely self-generated behavior has not yet been achieved. Here, we provide theoretical and experimental evidence that many-body interactions can give rise to an inherent time crystalline phase. Following a calculation that shows an ensemble of pumped four-level atoms can spontaneously break continuous time translation symmetry, we observe periodic motions in an erbium-doped solid. The inherent time crystal produced by our experiment is self-protected by many-body interactions and has a measured coherence time beyond that of individual erbium ions.
ArticleNumber 6161
Author Zhang, Xiangdong
Chen, Yu-Hui
Author_xml – sequence: 1
  givenname: Yu-Hui
  surname: Chen
  fullname: Chen, Yu-Hui
  organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology
– sequence: 2
  givenname: Xiangdong
  orcidid: 0000-0002-7725-8814
  surname: Zhang
  fullname: Zhang, Xiangdong
  email: zhangxd@bit.edu.cn
  organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology
BookMark eNp9kUtr3DAUhUVJaR7NH-jK0E03Tq8etqRVKaFpBwKFkq6FrMdEgy1NJU9g-uujjBPaZBFtJK6-c3Svzik6iik6hD5guMBAxefCMOt5C4S2DEvoWvoGnRBguMWc0KP_zsfovJQN1EUlFoy9Q8eUcyEB-hO0-uX0GP7qOaTYJN_o2IR467KLczOHyTUm78usx1ptdGNDKWFb4TvXTDru2yHZfVMq4ab36K3XY3Hnj_sZ-n317ebyR3v98_vq8ut1azos5razTHLDcac5JSB1z4be9NQIy0knpO24xB6MkaJCnBkqYICeYEEHKRzF9AytFl-b9EZtc5h03qukgzoUUl4rnedgRqe6nnssrfFEe-a9HCy2YiBWAFgPVlevL4vXdjdMzpo6ddbjM9PnNzHcqnW6Uxg6Vv8QqsOnR4ec_uxcmdUUinHjqKNLu6KI4ERADyAq-vEFukm7HOtfPVBYcoK5rJRYKJNTKdl5ZcJ8iKc2EMb6snrIXy35q5q_OuSvaJWSF9KnQV4V0UVUKhzXLv_r6hXVPayfwjc
CitedBy_id crossref_primary_10_1209_0295_5075_ad6e16
crossref_primary_10_1088_1361_6633_ad6585
crossref_primary_10_1103_PhysRevA_109_063317
crossref_primary_10_1103_PhysRevA_109_042212
crossref_primary_10_1103_PhysRevResearch_6_033185
Cites_doi 10.1103/PhysRevLett.111.240501
10.1103/PhysRevLett.127.043602
10.1038/nature21413
10.1103/PhysRevLett.121.035301
10.1103/PhysRevLett.68.3216
10.1103/PhysRevLett.111.070402
10.1103/PhysRevE.53.2110
10.1038/s41467-022-28462-x
10.1088/1367-2630/ab9ae3
10.1038/s41467-019-09757-y
10.1103/PhysRevA.84.031402
10.1103/PhysRevLett.63.78
10.1103/PhysRevA.99.053605
10.1103/PhysRevB.73.075101
10.1103/PhysRevLett.116.250401
10.1103/PhysRevLett.120.180603
10.1364/OL.21.000734
10.1088/1367-2630/ababc4
10.1088/1612-2011/10/4/045401
10.1103/PhysRevLett.126.110601
10.1088/1367-2630/aaf18b
10.1103/PhysRevLett.120.040404
10.1016/S0030-4018(02)01587-0
10.1103/PhysRevLett.115.163601
10.1103/PhysRevA.91.051601
10.1038/s41586-022-04854-3
10.1209/0295-5075/103/57008
10.1103/PhysRevLett.121.185301
10.1103/PhysRevLett.120.215301
10.1126/science.abg8102
10.1103/PhysRevLett.109.160402
10.1126/science.201.4358.777
10.1103/PhysRevLett.117.090402
10.1038/nature21426
10.1016/S0030-4018(96)00728-6
10.1364/OL.22.001174
10.1103/PhysRevLett.109.160401
10.1126/science.abo3382
10.1103/PhysRevLett.119.150402
10.1103/PhysRevLett.111.113901
10.1038/s41586-021-04257-w
10.1103/PhysRevLett.105.015702
10.1103/PhysRevA.91.033617
10.1126/science.abk0603
10.1103/PhysRevLett.114.251603
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41905-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_567f19dcf2af4ff9bd1d8b2d800df0da
PMC10547780
10_1038_s41467_023_41905_3
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62105033 and 12174026
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 62105033 and 12174026
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-5d497c715a73209a64b6c63c8d72589d5791f0cc98c7174c380b062183b98e313
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 18:35:35 EDT 2025
Fri Sep 05 13:40:06 EDT 2025
Wed Aug 13 09:13:13 EDT 2025
Tue Jul 01 02:10:38 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-5d497c715a73209a64b6c63c8d72589d5791f0cc98c7174c380b062183b98e313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7725-8814
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41905-3
PMID 37789006
PQID 2871972179
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_567f19dcf2af4ff9bd1d8b2d800df0da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547780
proquest_miscellaneous_2872806008
proquest_journals_2871972179
crossref_citationtrail_10_1038_s41467_023_41905_3
crossref_primary_10_1038_s41467_023_41905_3
springer_journals_10_1038_s41467_023_41905_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-03
PublicationDateYYYYMMDD 2023-10-03
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nozières (CR4) 2013; 103
Autti, Eltsov, Volovik (CR13) 2018; 120
Randall (CR15) 2021; 374
Zhang (CR17) 2022; 607
Lledó, Szymańska (CR46) 2020; 22
Ahlefeldt, McAuslan, Longdell, Manson, Sellars (CR32) 2013; 111
Smits, Liao, Stoof, van der Straten (CR11) 2018; 121
Liu, Cone (CR35) 1990; 41
Kyprianidis (CR14) 2021; 372
Else, Bauer, Nayak (CR8) 2016; 117
Keßler (CR25) 2021; 127
Rangel-Rojo, Mohebi (CR42) 1997; 137
Zhang (CR9) 2017; 543
Sacha (CR6) 2015; 91
Bruno (CR3) 2013; 111
Bŭca, Tindall, Jaksch (CR21) 2019; 10
Booker, Bŭca, Jaksch (CR24) 2020; 22
Luo, Chu (CR41) 1997; 22
Taheri, Matsko, Maleki, Sacha (CR26) 2022; 13
Gong, Hamazaki, Ueda (CR19) 2018; 120
Mi (CR16) 2022; 601
Diehl, Tomadin, Micheli, Fazio, Zoller (CR36) 2010; 105
Shapere, Wilczek (CR2) 2012; 109
Huang, Zhang, Lezama, Mossberg (CR34) 1989; 63
Karabanov, Rose, Köckenberger, Garrahan, Lesanovsky (CR29) 2017; 119
Thomas Böttger, Thiel, Sun, Cone (CR44) 2006; 73
Choi (CR10) 2017; 543
El-Sherif, King (CR43) 2002; 208
Rovny, Blum, Barrett (CR12) 2018; 120
Sanchez, Stephan (CR39) 1996; 53
Vlasov, Lemeza, Gladush (CR18) 2013; 10
Loh (CR40) 1996; 21
Lee, Häffner, Cross (CR30) 2011; 84
Kongkhambut (CR28) 2022; 377
Tucker (CR45) 2018; 20
Carr, Ritter, Wade, Adams, Weatherill (CR31) 2013; 111
Iemini (CR20) 2018; 121
Chan, Lee, Gopalakrishnan (CR37) 2015; 91
Wilczek (CR1) 2012; 109
Watanabe, Oshikawa (CR5) 2015; 114
Keßler, Cosme, Hemmerling, Mathey, Hemmerich (CR22) 2019; 99
Piazza, Ritsch (CR23) 2015; 115
Prigogine (CR47) 1978; 201
Khemani, Lazarides, Moessner, Sondhi (CR7) 2016; 116
Maksimov, Kharitonov, Ilyukhin, Belov (CR38) 1970; 15
Chen, Horvath, Longdell, Zhang (CR27) 2021; 126
Mitsunaga, Takagahara, Yano, Uesugi (CR33) 1992; 68
C Carr (41905_CR31) 2013; 111
GK Liu (41905_CR35) 1990; 41
F Wilczek (41905_CR1) 2012; 109
J Huang (41905_CR34) 1989; 63
F Sanchez (41905_CR39) 1996; 53
H Keßler (41905_CR22) 2019; 99
J Zhang (41905_CR9) 2017; 543
P Bruno (41905_CR3) 2013; 111
L Luo (41905_CR41) 1997; 22
J Randall (41905_CR15) 2021; 374
H Taheri (41905_CR26) 2022; 13
H Watanabe (41905_CR5) 2015; 114
C Lledó (41905_CR46) 2020; 22
I Prigogine (41905_CR47) 1978; 201
A Kyprianidis (41905_CR14) 2021; 372
V Khemani (41905_CR7) 2016; 116
DV Else (41905_CR8) 2016; 117
S Diehl (41905_CR36) 2010; 105
RL Ahlefeldt (41905_CR32) 2013; 111
BA Maksimov (41905_CR38) 1970; 15
J Rovny (41905_CR12) 2018; 120
R Rangel-Rojo (41905_CR42) 1997; 137
S Choi (41905_CR10) 2017; 543
J Smits (41905_CR11) 2018; 121
AF El-Sherif (41905_CR43) 2002; 208
P Nozières (41905_CR4) 2013; 103
CW Thomas Böttger (41905_CR44) 2006; 73
H Keßler (41905_CR25) 2021; 127
K Tucker (41905_CR45) 2018; 20
RA Vlasov (41905_CR18) 2013; 10
A Shapere (41905_CR2) 2012; 109
A Karabanov (41905_CR29) 2017; 119
X Zhang (41905_CR17) 2022; 607
X Mi (41905_CR16) 2022; 601
Y-H Chen (41905_CR27) 2021; 126
K Sacha (41905_CR6) 2015; 91
B Bŭca (41905_CR21) 2019; 10
C-K Chan (41905_CR37) 2015; 91
P Kongkhambut (41905_CR28) 2022; 377
S Autti (41905_CR13) 2018; 120
F Piazza (41905_CR23) 2015; 115
C Booker (41905_CR24) 2020; 22
F Iemini (41905_CR20) 2018; 121
TE Lee (41905_CR30) 2011; 84
Z Gong (41905_CR19) 2018; 120
WH Loh (41905_CR40) 1996; 21
M Mitsunaga (41905_CR33) 1992; 68
References_xml – volume: 109
  start-page: 160401
  year: 2012
  ident: CR1
  article-title: Quantum time crystals
  publication-title: Phys. Rev. Lett.
– volume: 543
  start-page: 217
  year: 2017
  ident: CR9
  article-title: Observation of a discrete time crystal
  publication-title: Nature
– volume: 10
  start-page: 045401
  year: 2013
  ident: CR18
  article-title: Dynamical instabilities of spectroscopic transitions in dense resonant media
  publication-title: Laser Phys. Lett.
– volume: 111
  start-page: 113901
  year: 2013
  ident: CR31
  article-title: Nonequilibrium phase transition in a dilute Rydberg ensemble
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 051601
  year: 2015
  ident: CR37
  article-title: Limit-cycle phase in driven-dissipative spin systems
  publication-title: Phys. Rev. A
– volume: 121
  start-page: 185301
  year: 2018
  ident: CR11
  article-title: Observation of a space-time crystal in a superfluid quantum gas
  publication-title: Phys. Rev. Lett.
– volume: 208
  start-page: 381
  year: 2002
  ident: CR43
  article-title: Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers
  publication-title: Opt. Commun.
– volume: 201
  start-page: 777
  year: 1978
  ident: CR47
  article-title: Time, structure, and fluctuations
  publication-title: Science
– volume: 103
  start-page: 57008
  year: 2013
  ident: CR4
  article-title: Time crystals: can diamagnetic currents drive a charge density wave into rotation
  publication-title: Europhys. Lett.
– volume: 111
  start-page: 070402
  year: 2013
  ident: CR3
  article-title: Impossibility of spontaneously rotating time crystals: a No-Go theorem
  publication-title: Phys. Rev. Lett.
– volume: 126
  start-page: 110601
  year: 2021
  ident: CR27
  article-title: Optically unstable phase from ion-ion interactions in an erbium-doped crystal
  publication-title: Phys. Rev. Lett.
– volume: 372
  start-page: 1192
  year: 2021
  ident: CR14
  article-title: Observation of a prethermal discrete time crystal
  publication-title: Science
– volume: 374
  start-page: 1474
  year: 2021
  ident: CR15
  article-title: Many-bodylocalized discrete time crystal with a programmable spin-based quantum simulator
  publication-title: Science
– volume: 115
  start-page: 163601
  year: 2015
  ident: CR23
  article-title: Self-ordered limit cycles, chaos, and phase slippage with a superfluid inside an optical resonator
  publication-title: Phys. Rev. Lett.
– volume: 127
  start-page: 043602
  year: 2021
  ident: CR25
  article-title: Observation of a dissipative time crystal
  publication-title: Phys. Rev. Lett.
– volume: 120
  start-page: 180603
  year: 2018
  ident: CR12
  article-title: Observation of discrete-time-crystal signatures in an ordered dipolar many-body system
  publication-title: Phys. Rev. Lett.
– volume: 111
  start-page: 240501
  year: 2013
  ident: CR32
  article-title: Precision measurement of electronic ion-ion interactions between neighboring Eu optical centers,
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 075101
  year: 2006
  ident: CR44
  article-title: Optical decoherence and spectral diffusion at 1.5 µm in Er :Y SiO versus magnetic field, temperature, and Er concentration
  publication-title: Phys. Rev. B
– volume: 543
  start-page: 221
  year: 2017
  ident: CR10
  article-title: Observation of discrete time-crystalline order in a disordered dipolar many-body system
  publication-title: Nature
– volume: 120
  start-page: 040404
  year: 2018
  ident: CR19
  article-title: Discrete time-crystalline order in cavity and circuit QED systems
  publication-title: Phys. Rev. Lett.
– volume: 607
  start-page: 468
  year: 2022
  ident: CR17
  article-title: Digital quantum simulation of Floquet symmetry-protected topological phases
  publication-title: Nature
– volume: 114
  start-page: 251603
  year: 2015
  ident: CR5
  article-title: Absence of quantum time crystals
  publication-title: Phys. Rev. Lett.
– volume: 377
  start-page: 670
  year: 2022
  ident: CR28
  article-title: Observation of a continuous time crystal
  publication-title: Science
– volume: 119
  start-page: 150402
  year: 2017
  ident: CR29
  article-title: Phase transitions in electron spin resonance under continuous microwave driving
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 1174
  year: 1997
  ident: CR41
  article-title: Suppression of self-pulsing in an erbium-doped fiber laser
  publication-title: Opt. Lett.
– volume: 22
  start-page: 075002
  year: 2020
  ident: CR46
  article-title: A dissipative time crystal with or without Z2 symmetry breaking
  publication-title: New J. of Phys.
– volume: 22
  start-page: 085007
  year: 2020
  ident: CR24
  article-title: Non-stationarity and dissipative time crystals: spectral properties and finite-size effects
  publication-title: New J. Phys.
– volume: 84
  start-page: 031402
  year: 2011
  ident: CR30
  article-title: Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms
  publication-title: Phys. Rev. A
– volume: 13
  year: 2022
  ident: CR26
  article-title: All-optical dissipative discrete time crystals
  publication-title: Nat. Commun.
– volume: 63
  start-page: 78
  year: 1989
  ident: CR34
  article-title: Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 033617
  year: 2015
  ident: CR6
  article-title: Modeling spontaneous breaking of time-translation symmetry
  publication-title: Phys. Rev. A
– volume: 20
  start-page: 123003
  year: 2018
  ident: CR45
  article-title: Shattered time: Can a dissipative time crystal survive many-body correlations
  publication-title: New J. Phys.
– volume: 117
  start-page: 090402
  year: 2016
  ident: CR8
  article-title: Floquet time crystals
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 053605
  year: 2019
  ident: CR22
  article-title: Emergent limit cycles and time crystal dynamics in an atom-cavity system
  publication-title: Phys. Rev. A
– volume: 121
  start-page: 035301
  year: 2018
  ident: CR20
  article-title: Boundary time crystals
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 6193
  year: 1990
  ident: CR35
  article-title: Laser-induced instantaneous spectral diffusion in Tb compounds as observed in photon-echo experiments
  publication-title: Phys. Rev. B
– volume: 137
  start-page: 98
  year: 1997
  ident: CR42
  article-title: Study of the onset of self-pulsing behaviour in an Er-doped fibre laser
  publication-title: Opt. Commun.
– volume: 116
  start-page: 250401
  year: 2016
  ident: CR7
  article-title: Phase structure of driven quantum systems
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 015702
  year: 2010
  ident: CR36
  article-title: Dynamical phase transitions and instabilities in open atomic many-body systems
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 734
  year: 1996
  ident: CR40
  article-title: Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping
  publication-title: Opt. Lett.
– volume: 10
  year: 2019
  ident: CR21
  article-title: Non-stationary coherent quantum many-body dynamics through dissipation
  publication-title: Nat. Commun.
– volume: 109
  start-page: 160402
  year: 2012
  ident: CR2
  article-title: Classical time crystals
  publication-title: Phys. Rev. Lett.
– volume: 120
  start-page: 215301
  year: 2018
  ident: CR13
  article-title: Observation of a time quasicrystal and its transition to a superfluid time crystal
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 806
  year: 1970
  ident: CR38
  article-title: The crystal structure of yttrium oxiorthosilicate the dual function of yttrium
  publication-title: Sov. Phys. Crystallogr.
– volume: 601
  start-page: 531
  year: 2022
  ident: CR16
  article-title: Time-crystalline eigenstate order on a quantum processor
  publication-title: Nature
– volume: 68
  start-page: 3216
  year: 1992
  ident: CR33
  article-title: Excitation-induced frequency shift probed by stimulated photon echoes Masaharu
  publication-title: Phys. Rev. Lett.
– volume: 53
  start-page: 2110
  year: 1996
  ident: CR39
  article-title: General analysis of instabilities in erbium-doped fiber lasers
  publication-title: Phys. Rev. E
– volume: 111
  start-page: 240501
  year: 2013
  ident: 41905_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.240501
– volume: 127
  start-page: 043602
  year: 2021
  ident: 41905_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.043602
– volume: 15
  start-page: 806
  year: 1970
  ident: 41905_CR38
  publication-title: Sov. Phys. Crystallogr.
– volume: 543
  start-page: 217
  year: 2017
  ident: 41905_CR9
  publication-title: Nature
  doi: 10.1038/nature21413
– volume: 121
  start-page: 035301
  year: 2018
  ident: 41905_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.035301
– volume: 68
  start-page: 3216
  year: 1992
  ident: 41905_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3216
– volume: 111
  start-page: 070402
  year: 2013
  ident: 41905_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.070402
– volume: 53
  start-page: 2110
  year: 1996
  ident: 41905_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.2110
– volume: 13
  year: 2022
  ident: 41905_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28462-x
– volume: 22
  start-page: 075002
  year: 2020
  ident: 41905_CR46
  publication-title: New J. of Phys.
  doi: 10.1088/1367-2630/ab9ae3
– volume: 10
  year: 2019
  ident: 41905_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09757-y
– volume: 84
  start-page: 031402
  year: 2011
  ident: 41905_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.031402
– volume: 41
  start-page: 6193
  year: 1990
  ident: 41905_CR35
  publication-title: Phys. Rev. B
– volume: 63
  start-page: 78
  year: 1989
  ident: 41905_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.78
– volume: 99
  start-page: 053605
  year: 2019
  ident: 41905_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.053605
– volume: 73
  start-page: 075101
  year: 2006
  ident: 41905_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.075101
– volume: 116
  start-page: 250401
  year: 2016
  ident: 41905_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.250401
– volume: 120
  start-page: 180603
  year: 2018
  ident: 41905_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.180603
– volume: 21
  start-page: 734
  year: 1996
  ident: 41905_CR40
  publication-title: Opt. Lett.
  doi: 10.1364/OL.21.000734
– volume: 22
  start-page: 085007
  year: 2020
  ident: 41905_CR24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ababc4
– volume: 10
  start-page: 045401
  year: 2013
  ident: 41905_CR18
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-2011/10/4/045401
– volume: 126
  start-page: 110601
  year: 2021
  ident: 41905_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.110601
– volume: 20
  start-page: 123003
  year: 2018
  ident: 41905_CR45
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaf18b
– volume: 120
  start-page: 040404
  year: 2018
  ident: 41905_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.040404
– volume: 208
  start-page: 381
  year: 2002
  ident: 41905_CR43
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(02)01587-0
– volume: 115
  start-page: 163601
  year: 2015
  ident: 41905_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.163601
– volume: 91
  start-page: 051601
  year: 2015
  ident: 41905_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.051601
– volume: 607
  start-page: 468
  year: 2022
  ident: 41905_CR17
  publication-title: Nature
  doi: 10.1038/s41586-022-04854-3
– volume: 103
  start-page: 57008
  year: 2013
  ident: 41905_CR4
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/57008
– volume: 121
  start-page: 185301
  year: 2018
  ident: 41905_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.185301
– volume: 120
  start-page: 215301
  year: 2018
  ident: 41905_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.215301
– volume: 372
  start-page: 1192
  year: 2021
  ident: 41905_CR14
  publication-title: Science
  doi: 10.1126/science.abg8102
– volume: 109
  start-page: 160402
  year: 2012
  ident: 41905_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.160402
– volume: 201
  start-page: 777
  year: 1978
  ident: 41905_CR47
  publication-title: Science
  doi: 10.1126/science.201.4358.777
– volume: 117
  start-page: 090402
  year: 2016
  ident: 41905_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.090402
– volume: 543
  start-page: 221
  year: 2017
  ident: 41905_CR10
  publication-title: Nature
  doi: 10.1038/nature21426
– volume: 137
  start-page: 98
  year: 1997
  ident: 41905_CR42
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(96)00728-6
– volume: 22
  start-page: 1174
  year: 1997
  ident: 41905_CR41
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.001174
– volume: 109
  start-page: 160401
  year: 2012
  ident: 41905_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.160401
– volume: 377
  start-page: 670
  year: 2022
  ident: 41905_CR28
  publication-title: Science
  doi: 10.1126/science.abo3382
– volume: 119
  start-page: 150402
  year: 2017
  ident: 41905_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.150402
– volume: 111
  start-page: 113901
  year: 2013
  ident: 41905_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.113901
– volume: 601
  start-page: 531
  year: 2022
  ident: 41905_CR16
  publication-title: Nature
  doi: 10.1038/s41586-021-04257-w
– volume: 105
  start-page: 015702
  year: 2010
  ident: 41905_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.015702
– volume: 91
  start-page: 033617
  year: 2015
  ident: 41905_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.033617
– volume: 374
  start-page: 1474
  year: 2021
  ident: 41905_CR15
  publication-title: Science
  doi: 10.1126/science.abk0603
– volume: 114
  start-page: 251603
  year: 2015
  ident: 41905_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.251603
SSID ssj0000391844
Score 2.5052161
Snippet Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While experimental...
Abstract Time crystals are many-body states that spontaneously break translation symmetry in time the way that ordinary crystals do in space. While...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6161
SubjectTerms 639/301/1023/1025
639/766/119/1002
639/766/119/995
Crystals
Erbium
Humanities and Social Sciences
Many body problem
multidisciplinary
Periodicity
Science
Science (multidisciplinary)
Symmetry
Time measurement
Translation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn7haJYI3XZpsvo8qliroQSz0FvJJC3WftK_C---dye57dgvqxWuSZZOZSeY3zBchr0Ky2TBt--yE7gHf8t7lCKaK5ME6VXJuuVWfv-ijY_npRJ1ca_WFMWFTeeCJcAdKm8pdTnUIVdbqYubZxiED0MmV5QaNmGPXjKn2BgsHpoucs2SYsAeXsr0JoKLQ8Ynu34UmagX7FyjzZozkDUdp0z-H98jdGTjSt9OG75NbZXxAbk-tJDcPycevgPjmnEq6qjSM9Gw8xVy-NcX-8TRdbAAInsMoDRS98C2W-meh3-E56OMqb-hU1fkROT788O39UT-3SeiT4nbdqyydSYarYASQImgZddICmTAo67IyjleWkrOwyMgkLItMIzSKzhbBxWOyN67G8oRQVhyoMh1SrFFyG1xAY7WqWiqwMQ8d4VuS-TTXEMdWFue--bKF9ROZPZDZNzJ70ZHXu29-TBU0_rr6HXJitxKrX7cBkAk_y4T_l0x0ZH_LRz9fyUuPpiGWKjKuIy9303CZ0EMSxrK6amvQ0wy4qCN2wf_FhpYz49lpK8sNSFUaY1lH3mxF5fff_3zip__jxM_InQFFGyMbxD7ZW19cleeAltbxRbsYvwBKHRED
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRP3G1SgTfdGmy-X4SFc8q6INY6FvIx8YW2t16dxXuvzeTzV3Zgn3dZNnszGTml8wXQm9c0FERqdtomGwzvqWtiT4fVTh12og-xpJb9f2HPDzi347Fcb1wW9Wwyq1OLIo6jgHuyA8A2UOlGWXeX_xpoWsUeFdrC43b6A7NlgbkXC--7O5YoPq55rzmyhCmD1a8aIZsqMD9CU7gmT0qZftnWPN6pOQ1d2mxQosH6H6Fj_jDxO-H6FY_PEJ3p4aSm8fo68-M-2pmJR4TdgM-HU4go2-NoYs8DstNhoNn-Sl2GHzxJaL6b4_Ps1Jo_Rg3eKrt_AQdLT7_-nTY1mYJbRBUr1sRuVFBUeEU64hxknsZJANWdEKbKJShiYRgdJ6keGCaeCIBIHmje0bZU7Q3jEP_DGHSm2zQpAs-eU61Mw6OrEmkPmVmxq5BdEsyG2olcWhocWaLR5tpO5HZZjLbQmbLGvR2987FVEfjxtkfgRO7mVADuzwYl79t3VJWSJWoiSF1LvGUjI80at_FDIFjItE1aH_LR1s35speiVGDXu-G85YCP4kb-vGyzAF_c0ZHDdIz_s8WNB8ZTk9Kce6MV7lSmjTo3VZUrr7-_z9-fvNiX6B70Oe-RBGyfbS3Xl72LzMaWvtXReT_AYA-Bps
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFcEX8RPXVongmy4mm2STPJ5iqQf6oBb6FvJpC-2uXK_C_fdNsrsnW1TwdTNhs5kk88vOzG8AXhsnvcCtrL2ibZ3wLamVt-mqwoiRigfvS27V5y_t8QlbnfLTPWimXJgStF8oLcsxPUWHvbtiZUsnC5P9ltl7ewf2ZTJ_zQL2l8vVt9Xuz0rmPJeMjRkymMo_dJ5ZoULWP0OYt-MjbzlJi-05egD3R9CIlsMwH8Je6B7B3aGM5PYxfPqa0N6YT4n6iEyHzruznMe3Qbl2PHLrbQKBF-kpMih74Esc9a-ALtNRUNveb9HA6PwETo4-fv9wXI8lEmrHidzU3DMlnCDcCNpgZVpmW9fSrICGS-W5UCRi55RMQoI5KrHFbYZFVslACX0Ki67vwjNAOKhkxlrjbLSMSKNMvqhGHkNMKvRNBWSaMu1G_vBcxuJCFz82lXqYZp2mWZdp1rSCN7s-Pwf2jH9Kv8-a2Elm5uvyoF__0ONK0LwVkSjvYmMii1FZT7y0jU_A10fsTQWHkx71uB2vdL4WZpoioSp4tWtOGyl7R0wX-usik73MCRNVIGf6nw1o3tKdnxVK7oRSmRASV_B2Wiq_3_73L37-f-IHcC9Xuy-xhPQQFpv1dXiRMNHGvhw3wQ0pkQWo
  priority: 102
  providerName: Springer Nature
Title Realization of an inherent time crystal in a dissipative many-body system
URI https://link.springer.com/article/10.1038/s41467-023-41905-3
https://www.proquest.com/docview/2871972179
https://www.proquest.com/docview/2872806008
https://pubmed.ncbi.nlm.nih.gov/PMC10547780
https://doaj.org/article/567f19dcf2af4ff9bd1d8b2d800df0da
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8ID5FYFRG4g0CcZz44wGhrloZlTahQaW-RY4db5NKAl2H6H_P2UmKMg3ESyLZTuLc-XK_y_nuAF5pI61IuIytYjxGfEtjZUs0VTKqpcora0Ns1ckpP55ns0W-2IG-3FFHwKtbTTtfT2q-Wr799WPzAQX-fRsyLt9dZUHcUft4n6b37O7CPmom7o2xkw7uhy8zU2jQeEdzmmQ0Rt3Nujia228z0FUhpf8Ah97cRXnDlRo01PQ-3OugJRm3a-EB7FT1Q7jTFpvcPIJPZ4gJu6hL0jiia3JZX_hovzXxFeaJWW0QKi6xlWji_fRht_XPinzDD0ZcNnZD2rzPj2E-Pfo6OY67Qgqxyalcx7nNlDCC5lqwNFGaZyU3nHk2pblUNheKusQYJXGQyAyTSZlwD55KJStG2RPYq5u6egokqRQqO65N6cqMSq20N2dd7iqHjLZpBLQnWWG6LOO-2MWyCN5uJouWzAWSuQhkLlgEr7fXfG9zbPxz9KHnxHakz48dGprVedGJW5Fz4aiyxqXaZc6p0lIry9QiPLYusTqCg56PRb_mCm88-mRGQkXwctuN4uZ9KLqumuswxvuiETlFIAf8H0xo2FNfXoTE3YhlMyFkEsGbfqn8efrf3_jZf8zmOdxN_cr1WxvYAeytV9fVC4RL63IEu2Ih8CinH0ewPx7PvszwfHh0-vkMWyd8Mgo_IkZBVn4D9KcUWA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNLWAkOEHUJHZi-4AQr2qXPg6olfZmHD9opZK0u1vQ_il-Ix4n2Wor0Vuv9iRxxjPjzx7PDMBrbYTlWSVSK2mVBnybp9LWYavCci1k6ayNsVX7B9XoiH2blJM1-DvEwuC1ysEmRkNtW4Nn5NuI7DHTDJcfzs5TrBqF3tWhhEYnFrtu8Sds2Wbvx1_C_L4pip2vh59HaV9VIDVlLuZpaZnkhuel5rTIpK5YXZmK4piLUkhbcpn7zBgpAhFnhoqszipEErUUjuY0vPcW3GZ4Mh70h0_48kwHs60LxvrYnIyK7RmLligsjOhuRafzyvoXywSsYNurNzOvuGfjqrfzAO73cJV87OTrIay55hHc6QpYLh7D-HvAmX0kJ2k90Q05aY4xgnBOsGo9MdNFgJ-noZVogr7_eIP7tyO_ghFK69YuSJdL-gkc3Qgbn8J60zZuA0jmZFhAK21qX7NcaKlxi-xL73wQHlskkA8sU6bPXI4FNE5V9KBToTo2q8BmFdmsaAJvl8-cdXk7rqX-hDOxpMSc27Ghnf5UvQqrsuI-l9b4QnvmvaxtbkVd2AC5rc-sTmBrmEfVG4KZuhTbBF4tu4MKo19GN669iDTo3w5oLAGxMv8rA1rtaU6OYzLwgI8Z5yJL4N0gKpdf__8fP7t-sC_h7uhwf0_tjQ92N-FegQKMtyboFqzPpxfueUBi8_pFFH8CP25a3_4Bi_lA0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4ilSChgJThBtHDuxfUAIKKsuhQohKu3NOHZMK5Wk3d2C9q_x65hxkq22Er31ajuJM54Zf_a8CHlhnfIyK1XqNS9TwLcs1b6Co4pgVumi9j7GVn3ZL3cPxKdpMd0gf4dYGHSrHHRiVNS-dXhHPkJkj5lmpB6F3i3i68747clpihWk0NI6lNPoWGSvXv6B49v8zWQH1vplno8_fv-wm_YVBlJXMLVICy-0dJIVVvI807YUVelKjvPPC6V9ITULmXNawSApHFdZlZWIKiqtas44vPcauS45oCqQJTmVq_sdzLyuhOjjdDKuRnMRtRJskmh6RQP02l4YSwas4dyLXpoXTLVxBxzfIbd76Erfdbx2l2zUzT1yoytmubxPJt8Ac_ZRnbQN1Db0qDnEaMIFxQr21M2WAEWPoZVain4A0Zv7d01_gUJKq9YvaZdX-gE5uBIyPiSbTdvUjwjNag2baWldFSrBlNUWj8uhCHUARvJ5QthAMuP6LOZYTOPYRGs6V6YjswEym0hmwxPyavXMSZfD49LR73ElViMx_3ZsaGc_TS_OpihlYNq7kNsgQtCVZ15VuQf47UPmbUK2h3U0vVKYm3MWTsjzVTeIM9pobFO3Z3EM2roBmSVEra3_2oTWe5qjw5gYHLCykFJlCXk9sMr51___x1uXT_YZuQmSZj5P9vcek1s58i86UPBtsrmYndVPAJQtqqeR-yn5cdXi9g_Kb0UP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+an+inherent+time+crystal+in+a+dissipative+many-body+system&rft.jtitle=Nature+communications&rft.au=Chen%2C+Yu-Hui&rft.au=Zhang%2C+Xiangdong&rft.date=2023-10-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=6161&rft_id=info:doi/10.1038%2Fs41467-023-41905-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon