Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers
► Electrospun cellulose nanofiber/hydroxyapatite composites were synthesized. ► Phosphorylated cellulose nanofibers were highly bioactive in inducing the HAp growth. ► The composites are porous materials with micro-, meso-pores and pores in micrometer. ► The composites can be potentially useful in t...
Saved in:
Published in | Carbohydrate polymers Vol. 90; no. 4; pp. 1573 - 1581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
06.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Electrospun cellulose nanofiber/hydroxyapatite composites were synthesized. ► Phosphorylated cellulose nanofibers were highly bioactive in inducing the HAp growth. ► The composites are porous materials with micro-, meso-pores and pores in micrometer. ► The composites can be potentially useful in the field of bone tissue engineering.
In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24nm, and the lattice spacing of (211) plane was 2.83Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering. |
---|---|
AbstractList | ► Electrospun cellulose nanofiber/hydroxyapatite composites were synthesized. ► Phosphorylated cellulose nanofibers were highly bioactive in inducing the HAp growth. ► The composites are porous materials with micro-, meso-pores and pores in micrometer. ► The composites can be potentially useful in the field of bone tissue engineering.
In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24nm, and the lattice spacing of (211) plane was 2.83Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering. In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24nm, and the lattice spacing of (211) plane was 2.83Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering. In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24 nm, and the lattice spacing of (211) plane was 2.83 Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering. In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24 nm, and the lattice spacing of (211) plane was 2.83 Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering.In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24 nm, and the lattice spacing of (211) plane was 2.83 Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering. |
Author | Wang, Jiangnan Liu, Haiqing Liu, Xinqing Li, Kaina Xiong, Xiaopeng |
Author_xml | – sequence: 1 givenname: Kaina surname: Li fullname: Li, Kaina organization: Key Laboratory of Polymer Materials of Fujian Province, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China – sequence: 2 givenname: Jiangnan surname: Wang fullname: Wang, Jiangnan organization: Key Laboratory of Polymer Materials of Fujian Province, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China – sequence: 3 givenname: Xinqing surname: Liu fullname: Liu, Xinqing organization: People's Hospital of Jiangxi Province, Nanchang 330006, China – sequence: 4 givenname: Xiaopeng surname: Xiong fullname: Xiong, Xiaopeng organization: Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China – sequence: 5 givenname: Haiqing surname: Liu fullname: Liu, Haiqing email: haiqing.liu@gmail.com organization: Key Laboratory of Polymer Materials of Fujian Province, College of Materials Science and Engineering, Fujian Normal University, Fujian 350007, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26341716$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22944418$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFjwDkgsQlwRM7sSMOFa34J1XiAOVqOc6k61ViBzuB7rfH0W6FxGUtWZZGvzczfu-CnDnvkJCXQAugUL_bFUaHdvJDUVIoCyoKytgTsgEpmhwY52dkQ4HzXNYgzslFjDuaTg30GTkvy4ZzDnJDfl5bP9oRZ2uy--D_zNvM99l23wX_sNeTnu2MmXfZtPUx3bAf9IxdhgOaOaTS4jKDw7AMPmLmtPO9bTHE5-Rpr4eIL47vJbn79PHHzZf89tvnrzcfbnNTgZzzynBRdcywWuoSOPK-EbXkXYdtlTatKwnQQgKgRsZMSxPdGMkNLbWUsmSX5O2h7xT8rwXjrEYb14W0Q79EVa5_ZhWI5iQKlEkqoKF1Ql8d0aUdsVNTsKMOe_VoWwLeHAEdjR76oJ2x8R9XMw4C1kbvD5xJXsWAvTJ2Tp56NwdthzRTrWGqnTqGqdYwFRUqhZnU1X_qxwGndK8Pul57pe9D2uzuewLq5EUFDEQirg4Epmx-WwwqGovOYGdDClZ13p6Y8RfOSMTE |
CODEN | CAPOD8 |
CitedBy_id | crossref_primary_10_1016_j_carbpol_2019_115294 crossref_primary_10_1016_j_msec_2015_05_033 crossref_primary_10_1016_j_actbio_2018_07_030 crossref_primary_10_1515_ntrev_2019_0023 crossref_primary_10_1039_D1TB02021H crossref_primary_10_3389_fbioe_2022_937266 crossref_primary_10_1021_bm400219u crossref_primary_10_1021_bm401656a crossref_primary_10_1039_C8RA05378B crossref_primary_10_3389_fbioe_2019_00045 crossref_primary_10_3389_fchem_2020_00489 crossref_primary_10_1007_s10570_014_0359_3 crossref_primary_10_1016_j_indcrop_2023_116965 crossref_primary_10_1016_j_msec_2015_01_053 crossref_primary_10_1039_c3ra23264f crossref_primary_10_1002_pat_4127 crossref_primary_10_1007_s10570_023_05407_1 crossref_primary_10_1016_j_indcrop_2022_115350 crossref_primary_10_1016_j_carbpol_2015_02_056 crossref_primary_10_1016_j_msec_2015_03_014 crossref_primary_10_1016_j_carbpol_2017_06_111 crossref_primary_10_1016_j_ijbiomac_2019_03_081 crossref_primary_10_1007_s12221_018_8527_y crossref_primary_10_1016_j_msec_2015_01_027 crossref_primary_10_1002_slct_202304050 crossref_primary_10_1016_j_ceramint_2014_12_055 crossref_primary_10_1007_s10570_016_0867_4 crossref_primary_10_1016_j_msec_2016_12_092 crossref_primary_10_1007_s10570_021_04000_8 crossref_primary_10_3390_jcs7070273 crossref_primary_10_1016_j_carbpol_2015_09_018 crossref_primary_10_1016_j_cej_2018_05_185 crossref_primary_10_1007_s10570_024_06362_1 crossref_primary_10_1039_C5TB00927H crossref_primary_10_1021_acsami_5b04682 crossref_primary_10_1016_j_bioactmat_2023_06_020 crossref_primary_10_1016_j_carbon_2012_08_061 crossref_primary_10_1515_ract_2018_3077 crossref_primary_10_1039_C4RA04646C crossref_primary_10_3390_inorganics4040033 crossref_primary_10_1021_acs_biomac_5b01117 crossref_primary_10_1016_j_vacuum_2017_05_008 crossref_primary_10_3390_nano14070646 crossref_primary_10_1039_C8RA01872C crossref_primary_10_1007_s10570_014_0281_8 crossref_primary_10_1039_C9NR00218A crossref_primary_10_1088_1748_6041_9_2_025014 crossref_primary_10_1177_00405175221074069 crossref_primary_10_3390_polym9080346 crossref_primary_10_1039_D1NJ04397H crossref_primary_10_1016_j_actbio_2014_06_017 crossref_primary_10_1039_D3NR00014A crossref_primary_10_1039_C6RA20996C crossref_primary_10_1016_j_ijbiomac_2017_04_022 crossref_primary_10_3390_antibiotics10020203 crossref_primary_10_1016_j_apmt_2018_03_010 crossref_primary_10_1049_mnl_2016_0591 crossref_primary_10_1016_j_ijbiomac_2019_10_176 crossref_primary_10_1016_j_jcis_2015_07_007 crossref_primary_10_1021_acs_biomac_2c01363 crossref_primary_10_3390_polym14071477 crossref_primary_10_3390_polym10091032 crossref_primary_10_1007_s10924_022_02507_0 crossref_primary_10_1002_adma_202001085 |
Cites_doi | 10.1016/j.biomaterials.2006.04.032 10.1007/s10570-011-9604-1 10.1016/S0142-9612(99)00094-0 10.1016/j.biomaterials.2004.01.024 10.1002/polb.20475 10.1007/s10853-011-6063-x 10.1016/S0079-6700(01)00021-1 10.1016/j.tsf.2011.08.112 10.1016/j.carbpol.2010.05.012 10.1166/jnn.2009.1311 10.1016/S0144-8617(02)00183-2 10.1016/j.jallcom.2010.04.211 10.1002/polb.10261 10.1002/jbm.820230110 10.1016/j.carbpol.2011.11.029 10.1016/S0039-9140(97)00134-3 10.1016/j.msec.2006.10.002 10.1021/ma00197a045 10.1021/am100972r 10.1002/adma.200802239 10.1016/0014-3057(65)90041-8 10.1126/science.1063187 10.1016/j.biomaterials.2005.10.026 10.1016/j.msec.2009.10.007 10.1021/la7011342 10.1016/j.actbio.2010.10.006 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2012.07.033 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1879-1344 |
EndPage | 1581 |
ExternalDocumentID | 22944418 26341716 10_1016_j_carbpol_2012_07_033 US201600051317 S0144861712006893 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AALCJ AAQXK ABGRD ABPIF ABPTK AGRDE ASPBG AVWKF AZFZN EJD FBQ FEDTE FGOYB G-2 HLV HMS HVGLF R2- SCB SEW SMS SOC WUQ XPP AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c518t-5c475d3c368a214e4f97684ddeb561065811b1d3c16e33cb075d9c84c02a88823 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Fri Jul 11 06:03:38 EDT 2025 Fri Jul 11 09:48:06 EDT 2025 Thu Apr 03 07:07:30 EDT 2025 Mon Jul 21 09:12:53 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Tue Jul 01 04:14:31 EDT 2025 Wed Dec 27 19:21:46 EST 2023 Fri Feb 23 02:30:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Electrospinning Cellulose biocomposite Nanofiber Hydroxyapatite Body fluid Cellulose Biomimetic reaction Biomineralization Cellulose phosphate Cellulose inorganic ester Nanoporous materials Experimental study Dimension spectrum Biological activity Pore size Mineralization Morphology Crystal growth from solutions Formation mechanism |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-5c475d3c368a214e4f97684ddeb561065811b1d3c16e33cb075d9c84c02a88823 |
Notes | http://dx.doi.org/10.1016/j.carbpol.2012.07.033 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22944418 |
PQID | 1038071906 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000035179 proquest_miscellaneous_1038071906 pubmed_primary_22944418 pascalfrancis_primary_26341716 crossref_citationtrail_10_1016_j_carbpol_2012_07_033 crossref_primary_10_1016_j_carbpol_2012_07_033 fao_agris_US201600051317 elsevier_sciencedirect_doi_10_1016_j_carbpol_2012_07_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-06 |
PublicationDateYYYYMMDD | 2012-11-06 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Cai, Zhang, Zeng, Sun (bib0015) 2011; 22 Rodriguez, Renneckar, Gatenholm (bib0115) 2011; 3 Kim, Frey, Marquez, Joo (bib0075) 2005; 43 Klemm, Schumann, Udhardt, Marsch (bib0080) 2001; 26 Xu, Zhao, Kang, Neoh, Li (bib0130) 2007; 23 García, Izquierdo-Barba, Colilla, de Laorden, Vallet-Regí (bib0040) 2011; 7 Wan, Huang, Yuan, Raman, Zhu, Jiang (bib0125) 2007; 27 Brown, Wiskston (bib0010) 1965; 1 Dahle, Voigts, Maus-Friedrichs (bib0025) 2012; 520 Märtson, Viljanto, Hurme, Laippala, Saukko (bib0105) 1999; 20 Liu, Huang, Xiao, Liu (bib0100) 2010; 503 Entcheva, Bien, Yin, Chung, Farrell, Kostov (bib0035) 2004; 25 He, Chang, Peng, Zhang (bib0055) 2012; 87 Juhasz, Best (bib0070) 2012; 47 de Magalhaes Padilha, Rocha, Moreira, de Sousa Campos, do Carmo Federici (bib0030) 1997; 45 Greish, Meetani, Al Matroushi, Shamsi (bib0045) 2010; 82 Backdahl, Helenius, Bodin, Nannmark, Johansson, Risberg (bib0005) 2006; 27 Wan, Gao, Luo, He, Liang, Li (bib0120) 2009; 9 Hartgerink, Beniash, Stupp (bib0050) 2001; 294 Knill, Kennedy (bib0085) 2003; 51 Liao, Wu, Wu, Zhan, Liu (bib0090) 2012; 19 Isogai, Usuda, Kato, Uryu, Atalla (bib0065) 1989; 22 Zimmermann, LeBlanc, Sheets, Fox, Gatenholm (bib0135) 2011; 31 Collins, Skaer, Gheysens, Knight, Bertram, Roach (bib0020) 2009; 21 Hutchens, Benson, Evans, O’eill, Rawn (bib0060) 2006; 27 Liu, Hsieh (bib0095) 2002; 40 Miyamoto, Takahashi, Ito, Inagaki, Noishiki (bib0110) 1989; 23 Brown (10.1016/j.carbpol.2012.07.033_bib0010) 1965; 1 Dahle (10.1016/j.carbpol.2012.07.033_bib0025) 2012; 520 Liu (10.1016/j.carbpol.2012.07.033_bib0095) 2002; 40 García (10.1016/j.carbpol.2012.07.033_bib0040) 2011; 7 He (10.1016/j.carbpol.2012.07.033_bib0055) 2012; 87 Juhasz (10.1016/j.carbpol.2012.07.033_bib0070) 2012; 47 Miyamoto (10.1016/j.carbpol.2012.07.033_bib0110) 1989; 23 Liao (10.1016/j.carbpol.2012.07.033_bib0090) 2012; 19 Märtson (10.1016/j.carbpol.2012.07.033_bib0105) 1999; 20 Xu (10.1016/j.carbpol.2012.07.033_bib0130) 2007; 23 Wan (10.1016/j.carbpol.2012.07.033_bib0120) 2009; 9 Backdahl (10.1016/j.carbpol.2012.07.033_bib0005) 2006; 27 Wan (10.1016/j.carbpol.2012.07.033_bib0125) 2007; 27 Zimmermann (10.1016/j.carbpol.2012.07.033_bib0135) 2011; 31 Collins (10.1016/j.carbpol.2012.07.033_bib0020) 2009; 21 Hutchens (10.1016/j.carbpol.2012.07.033_bib0060) 2006; 27 Rodriguez (10.1016/j.carbpol.2012.07.033_bib0115) 2011; 3 Hartgerink (10.1016/j.carbpol.2012.07.033_bib0050) 2001; 294 Klemm (10.1016/j.carbpol.2012.07.033_bib0080) 2001; 26 Greish (10.1016/j.carbpol.2012.07.033_bib0045) 2010; 82 de Magalhaes Padilha (10.1016/j.carbpol.2012.07.033_bib0030) 1997; 45 Entcheva (10.1016/j.carbpol.2012.07.033_bib0035) 2004; 25 Kim (10.1016/j.carbpol.2012.07.033_bib0075) 2005; 43 Liu (10.1016/j.carbpol.2012.07.033_bib0100) 2010; 503 Isogai (10.1016/j.carbpol.2012.07.033_bib0065) 1989; 22 Cai (10.1016/j.carbpol.2012.07.033_bib0015) 2011; 22 Knill (10.1016/j.carbpol.2012.07.033_bib0085) 2003; 51 |
References_xml | – volume: 294 start-page: 1684 year: 2001 end-page: 1688 ident: bib0050 article-title: Self-assembly and minerization of peptide-amphiphile nanofibers publication-title: Science – volume: 520 start-page: 1842 year: 2012 end-page: 1846 ident: bib0025 article-title: In situ preparation of calcium carbonate films publication-title: Thin Solid Films – volume: 503 start-page: 103 year: 2010 end-page: 110 ident: bib0100 article-title: Preparation and photocatalytic property of mesoporous ZnO/SnO publication-title: Journal of Alloys and Compounds – volume: 47 start-page: 610 year: 2012 end-page: 624 ident: bib0070 article-title: Bioactive ceramics: Processing, structures and properties publication-title: Journal of Materials Science – volume: 26 start-page: 1561 year: 2001 end-page: 1603 ident: bib0080 article-title: Bacterial synthesized cellulose-artificial blood vessels for microsurgery publication-title: Progress in Polymer Science – volume: 21 start-page: 75 year: 2009 end-page: 78 ident: bib0020 article-title: Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications publication-title: Advanced Materials – volume: 45 start-page: 317 year: 1997 end-page: 323 ident: bib0030 article-title: Preconcentration of heavy metals ions from aqueous solutions by means of cellulose phosphate: An application in water analysis publication-title: Talanta – volume: 27 start-page: 4661 year: 2006 end-page: 4670 ident: bib0060 article-title: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel publication-title: Biomaterials – volume: 23 start-page: 125 year: 1989 end-page: 133 ident: bib0110 article-title: Tissue biocompatibility of cellulose and its derivatives publication-title: Journal of Biomedical Materials Research – volume: 1 start-page: 1 year: 1965 end-page: 10 ident: bib0010 article-title: A viscosity–molecular weight relationship for cellulose in cadoxen and hydrodynamic interpretation publication-title: European Polymer Journal – volume: 19 start-page: 111 year: 2012 end-page: 119 ident: bib0090 article-title: Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance publication-title: Cellulose – volume: 22 start-page: 3168 year: 1989 end-page: 3172 ident: bib0065 article-title: Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs publication-title: Macromolecules – volume: 43 start-page: 1673 year: 2005 end-page: 1683 ident: bib0075 article-title: Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution publication-title: Journal of Polymer Science Part B: Polymer Physics – volume: 51 start-page: 281 year: 2003 end-page: 300 ident: bib0085 article-title: Degradation of cellulose under alkaline conditions publication-title: Carbohydrate Polymers – volume: 20 start-page: 1989 year: 1999 end-page: 1995 ident: bib0105 article-title: Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat publication-title: Biomaterials – volume: 82 start-page: 569 year: 2010 end-page: 577 ident: bib0045 article-title: Effects of thermal and chemical treatments on the structural stability of cellulose acetate nanofibers publication-title: Carbohydrate Polymers – volume: 25 start-page: 5753 year: 2004 end-page: 5762 ident: bib0035 article-title: Functional cardiac cell constructs on cellulose-based scaffolding publication-title: Biomaterials – volume: 3 start-page: 681 year: 2011 end-page: 689 ident: bib0115 article-title: Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds publication-title: ACS Applied Materials and Interfaces – volume: 31 start-page: 43 year: 2011 end-page: 49 ident: bib0135 article-title: Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications publication-title: Materials Science and Engineering C: Materials for Biological Applications – volume: 7 start-page: 1265 year: 2011 end-page: 1273 ident: bib0040 article-title: Preparation of 3-D scaffolds in the SiO publication-title: Acta Biomaterialia – volume: 87 start-page: 2512 year: 2012 end-page: 2518 ident: bib0055 article-title: Structure and properties of hydroxyapatite/cellulose nanocomposite films publication-title: Carbohydrate Polymers – volume: 27 start-page: 2141 year: 2006 end-page: 2149 ident: bib0005 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials – volume: 22 start-page: 1633 year: 2011 end-page: 1638 ident: bib0015 article-title: Effect of fluorine incorporation on long-term stability of magnesium-containing hydroxyapatite coatings publication-title: Journal of Materials Science: Materials in Medicine – volume: 27 start-page: 855 year: 2007 end-page: 864 ident: bib0125 article-title: Biomimetic synthesis of hydroxyapatite/bacterials cellulose nanocomposites for biomedical applications publication-title: Materials Science and Engineering C: Biomimetic and Supramolecular Systems – volume: 40 start-page: 2119 year: 2002 end-page: 2129 ident: bib0095 article-title: Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate publication-title: Journal of Polymer Science Part B: Polymer Physics – volume: 9 start-page: 6494 year: 2009 end-page: 6500 ident: bib0120 article-title: Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers publication-title: Journal of Nanoscience and Nanotechnology – volume: 23 start-page: 8585 year: 2007 end-page: 8592 ident: bib0130 article-title: Functionalization of nylon membranes via surface-initiated atom transfer radial polymerization publication-title: Langmuir – volume: 27 start-page: 4661 issue: 26 year: 2006 ident: 10.1016/j.carbpol.2012.07.033_bib0060 article-title: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.04.032 – volume: 19 start-page: 111 issue: 1 year: 2012 ident: 10.1016/j.carbpol.2012.07.033_bib0090 article-title: Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance publication-title: Cellulose doi: 10.1007/s10570-011-9604-1 – volume: 20 start-page: 1989 issue: 21 year: 1999 ident: 10.1016/j.carbpol.2012.07.033_bib0105 article-title: Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00094-0 – volume: 22 start-page: 1633 issue: 7 year: 2011 ident: 10.1016/j.carbpol.2012.07.033_bib0015 article-title: Effect of fluorine incorporation on long-term stability of magnesium-containing hydroxyapatite coatings publication-title: Journal of Materials Science: Materials in Medicine – volume: 25 start-page: 5753 issue: 26 year: 2004 ident: 10.1016/j.carbpol.2012.07.033_bib0035 article-title: Functional cardiac cell constructs on cellulose-based scaffolding publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.024 – volume: 43 start-page: 1673 issue: 13 year: 2005 ident: 10.1016/j.carbpol.2012.07.033_bib0075 article-title: Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution publication-title: Journal of Polymer Science Part B: Polymer Physics doi: 10.1002/polb.20475 – volume: 47 start-page: 610 issue: 2 year: 2012 ident: 10.1016/j.carbpol.2012.07.033_bib0070 article-title: Bioactive ceramics: Processing, structures and properties publication-title: Journal of Materials Science doi: 10.1007/s10853-011-6063-x – volume: 26 start-page: 1561 issue: 9 year: 2001 ident: 10.1016/j.carbpol.2012.07.033_bib0080 article-title: Bacterial synthesized cellulose-artificial blood vessels for microsurgery publication-title: Progress in Polymer Science doi: 10.1016/S0079-6700(01)00021-1 – volume: 520 start-page: 1842 issue: 6 year: 2012 ident: 10.1016/j.carbpol.2012.07.033_bib0025 article-title: In situ preparation of calcium carbonate films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.08.112 – volume: 82 start-page: 569 issue: 3 year: 2010 ident: 10.1016/j.carbpol.2012.07.033_bib0045 article-title: Effects of thermal and chemical treatments on the structural stability of cellulose acetate nanofibers publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2010.05.012 – volume: 9 start-page: 6494 issue: 11 year: 2009 ident: 10.1016/j.carbpol.2012.07.033_bib0120 article-title: Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2009.1311 – volume: 51 start-page: 281 year: 2003 ident: 10.1016/j.carbpol.2012.07.033_bib0085 article-title: Degradation of cellulose under alkaline conditions publication-title: Carbohydrate Polymers doi: 10.1016/S0144-8617(02)00183-2 – volume: 503 start-page: 103 issue: 1 year: 2010 ident: 10.1016/j.carbpol.2012.07.033_bib0100 article-title: Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2010.04.211 – volume: 40 start-page: 2119 issue: 18 year: 2002 ident: 10.1016/j.carbpol.2012.07.033_bib0095 article-title: Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate publication-title: Journal of Polymer Science Part B: Polymer Physics doi: 10.1002/polb.10261 – volume: 23 start-page: 125 year: 1989 ident: 10.1016/j.carbpol.2012.07.033_bib0110 article-title: Tissue biocompatibility of cellulose and its derivatives publication-title: Journal of Biomedical Materials Research doi: 10.1002/jbm.820230110 – volume: 87 start-page: 2512 issue: 4 year: 2012 ident: 10.1016/j.carbpol.2012.07.033_bib0055 article-title: Structure and properties of hydroxyapatite/cellulose nanocomposite films publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2011.11.029 – volume: 45 start-page: 317 issue: 2 year: 1997 ident: 10.1016/j.carbpol.2012.07.033_bib0030 article-title: Preconcentration of heavy metals ions from aqueous solutions by means of cellulose phosphate: An application in water analysis publication-title: Talanta doi: 10.1016/S0039-9140(97)00134-3 – volume: 27 start-page: 855 year: 2007 ident: 10.1016/j.carbpol.2012.07.033_bib0125 article-title: Biomimetic synthesis of hydroxyapatite/bacterials cellulose nanocomposites for biomedical applications publication-title: Materials Science and Engineering C: Biomimetic and Supramolecular Systems doi: 10.1016/j.msec.2006.10.002 – volume: 22 start-page: 3168 issue: 7 year: 1989 ident: 10.1016/j.carbpol.2012.07.033_bib0065 article-title: Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs publication-title: Macromolecules doi: 10.1021/ma00197a045 – volume: 3 start-page: 681 issue: 3 year: 2011 ident: 10.1016/j.carbpol.2012.07.033_bib0115 article-title: Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds publication-title: ACS Applied Materials and Interfaces doi: 10.1021/am100972r – volume: 21 start-page: 75 issue: 1 year: 2009 ident: 10.1016/j.carbpol.2012.07.033_bib0020 article-title: Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications publication-title: Advanced Materials doi: 10.1002/adma.200802239 – volume: 1 start-page: 1 year: 1965 ident: 10.1016/j.carbpol.2012.07.033_bib0010 article-title: A viscosity–molecular weight relationship for cellulose in cadoxen and hydrodynamic interpretation publication-title: European Polymer Journal doi: 10.1016/0014-3057(65)90041-8 – volume: 294 start-page: 1684 year: 2001 ident: 10.1016/j.carbpol.2012.07.033_bib0050 article-title: Self-assembly and minerization of peptide-amphiphile nanofibers publication-title: Science doi: 10.1126/science.1063187 – volume: 27 start-page: 2141 issue: 9 year: 2006 ident: 10.1016/j.carbpol.2012.07.033_bib0005 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.026 – volume: 31 start-page: 43 issue: 1 year: 2011 ident: 10.1016/j.carbpol.2012.07.033_bib0135 article-title: Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications publication-title: Materials Science and Engineering C: Materials for Biological Applications doi: 10.1016/j.msec.2009.10.007 – volume: 23 start-page: 8585 year: 2007 ident: 10.1016/j.carbpol.2012.07.033_bib0130 article-title: Functionalization of nylon membranes via surface-initiated atom transfer radial polymerization publication-title: Langmuir doi: 10.1021/la7011342 – volume: 7 start-page: 1265 issue: 3 year: 2011 ident: 10.1016/j.carbpol.2012.07.033_bib0040 article-title: Preparation of 3-D scaffolds in the SiO2–P2O5 system with tailored hierarchical meso-macroporosity publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2010.10.006 |
SSID | ssj0000610 |
Score | 2.3448918 |
Snippet | ► Electrospun cellulose nanofiber/hydroxyapatite composites were synthesized. ► Phosphorylated cellulose nanofibers were highly bioactive in inducing the HAp... In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1573 |
SubjectTerms | Applied sciences Biomimetics Bone and Bones - chemistry bones calcium cellulose Cellulose - chemistry Cellulose biocomposite collagen Durapatite - chemistry Electrochemistry Electrospinning Exact sciences and technology Fibers and threads Forms of application and semi-finished materials Hydroxyapatite Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nanofiber nanofibers Nanofibers - chemistry Nanofibers - ultrastructure Phosphorylation Photoelectron Spectroscopy Polymer industry, paints, wood scanning electron microscopy Spectroscopy, Fourier Transform Infrared Technology of polymers tissue engineering transmission electron microscopy X-Ray Diffraction X-ray photoelectron spectroscopy |
Title | Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers |
URI | https://dx.doi.org/10.1016/j.carbpol.2012.07.033 https://www.ncbi.nlm.nih.gov/pubmed/22944418 https://www.proquest.com/docview/1038071906 https://www.proquest.com/docview/2000035179 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFUV4N0JWRuGY3jp3EOZYV1QKiF1jUm2U7TnerbRxtsode-ts7k0dLD6UShxwS2UribzLzTTwPQj5b7uLIxDzUWWJDkck8NCBWocwNGBwHTkiXLvbzNF0sxfez5GyPzMdcGAyrHHR_r9M7bT1cmQ2rOavX6xmGJQkJBpihVwxmFzPYRYZSPr1mf2njriIBDg5x9F0Wz-wCXMCtqT3uQOAvwWwacf6QfXpSao-Bk7qBtSv7phcPs9LOOp28JC8GWkmP-yc_IHuuekWezcdubq_Jny9rf7m-xJRFeg6ud7uivqSrqwLDWDSGVbeO-orWK9_Asb3aAAkt6NAlp6l3FcV__LuNbxytdAUyaYA5viHLk6-_54tw6KkQ2oTJNkysyJKCW55KHTPhRJnjVhwoOYNMCvgIY4bBAJY6zq0BRlHkVgobxRqc5Zi_JfuVr9whoZGTzDEbFaI0gmujGW7BSm1c4RgvbUDEuJLKDgXHse_FRo2RZRdqAEAhACrKFAAQkOnttLqvuPHYBDnCpO6JjgKr8NjUQ4BV6XNQqGr5K8Zye6imgFQFZHIP69tniVMw_OBlBuTTCL4CLBEDXTm_axTWnAfmlkf_GIMZUriJm-UBeddLzt0d4lwAS5Xv___FPpDneNYlTaYfyX673bkjYE-tmXSfx4Q8Pf72Y3F6A7VwF8o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbSdEiXIH3GfaQs0I6yRZGSqKFDmzZwmsfSuMjGkhQVO3AkwZIReOmf6h_snR5JM6QBCmTQYpEwzY-8-873IuS95S7wTcA9HYfWE7FMPAPHypOJAYXjwAhp0sWOjqPxRHw7DU_XyO8-FwbDKjvZ38r0Rlp3n4y63RyVs9kIw5KEBAXM0CoGtdtFVh641SXYbdXH_S8A8ocg2Pt6sjv2utYCng2ZrL3QijhMueWR1AETTmQJeqTgrhskFKCWGTMMBrDIcW4NKNY0sVJYP9BgM2K1A5D7DwWIC2ybMPzF_hL_TQkEXJ2Hy7tOGxqdg825MGWBLg_8DzIe-pzfphAfZLrASE1dAVhZ22XjdhrcqMO9LbLZ8Vj6qd2qx2TN5U_Ixm7fPu4p-fF5VlzMLjBHkp6BrV9PaZHR6SrFuBmNcdy1o0VOy2lRwbNYzYH1prRry1OVy5yiU2E5LypHc53DJTBAVZ-Ryb3s9HOynhe52ybUd5I5Zv1UZEZwbTRDn6_UxqWO8cwOiOh3Utmuwjk22pirPpTtXHUAKARA-bECAAZkeDWtbEt83DVB9jCpG2dVgRq6a-o2wKr0GUhwNfkeYH0_lIvA4gZk5wbWV2sJImAaYNYOyLsefAVYIgY6d8WyUljkHqhi4v9jDKZkodc4TgbkRXtyrr8hSATQYvny_3_YW7IxPjk6VIf7xwevyCN802RsRq_Jer1YujdA3Wqz01wVSn7e9938AzDGUbo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+growth+of+hydroxyapatite+on+phosphorylated+electrospun+cellulose+nanofibers&rft.jtitle=Carbohydrate+polymers&rft.au=Li%2C+Kaina&rft.au=Wang%2C+Jiangnan&rft.au=Liu%2C+Xinqing&rft.au=Xiong%2C+Xiaopeng&rft.date=2012-11-06&rft.eissn=1879-1344&rft.volume=90&rft.issue=4&rft.spage=1573&rft_id=info:doi/10.1016%2Fj.carbpol.2012.07.033&rft_id=info%3Apmid%2F22944418&rft.externalDocID=22944418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |