An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets

Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 12; no. 4; pp. 2959 - 2970
Main Authors Iturbide, Maialen, Gutiérrez, José M., Alves, Lincoln M., Bedia, Joaquín, Cerezo-Mota, Ruth, Cimadevilla, Ezequiel, Cofiño, Antonio S., Di Luca, Alejandro, Faria, Sergio Henrique, Gorodetskaya, Irina V., Hauser, Mathias, Herrera, Sixto, Hennessy, Kevin, Hewitt, Helene T., Jones, Richard G., Krakovska, Svitlana, Manzanas, Rodrigo, Martínez-Castro, Daniel, Narisma, Gemma T., Nurhati, Intan S., Pinto, Izidine, Seneviratne, Sonia I., van den Hurk, Bart, Vera, Carolina S.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 18.11.2020
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
AbstractList Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset.
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository:
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset.We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository:https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020),10.5281/zenodo.3998463 (Iturbide et al., 2020).
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).
Audience Academic
Author Pinto, Izidine
Seneviratne, Sonia I.
Hauser, Mathias
Bedia, Joaquín
Hennessy, Kevin
Faria, Sergio Henrique
Iturbide, Maialen
Herrera, Sixto
Manzanas, Rodrigo
Gutiérrez, José M.
Martínez-Castro, Daniel
Alves, Lincoln M.
Di Luca, Alejandro
Gorodetskaya, Irina V.
Jones, Richard G.
Krakovska, Svitlana
Cerezo-Mota, Ruth
Cofiño, Antonio S.
Narisma, Gemma T.
Nurhati, Intan S.
Vera, Carolina S.
van den Hurk, Bart
Hewitt, Helene T.
Cimadevilla, Ezequiel
Author_xml – sequence: 1
  givenname: Maialen
  surname: Iturbide
  fullname: Iturbide, Maialen
– sequence: 2
  givenname: José M.
  surname: Gutiérrez
  fullname: Gutiérrez, José M.
– sequence: 3
  givenname: Lincoln M.
  surname: Alves
  fullname: Alves, Lincoln M.
– sequence: 4
  givenname: Joaquín
  orcidid: 0000-0001-6219-4312
  surname: Bedia
  fullname: Bedia, Joaquín
– sequence: 5
  givenname: Ruth
  surname: Cerezo-Mota
  fullname: Cerezo-Mota, Ruth
– sequence: 6
  givenname: Ezequiel
  surname: Cimadevilla
  fullname: Cimadevilla, Ezequiel
– sequence: 7
  givenname: Antonio S.
  surname: Cofiño
  fullname: Cofiño, Antonio S.
– sequence: 8
  givenname: Alejandro
  orcidid: 0000-0002-1481-2961
  surname: Di Luca
  fullname: Di Luca, Alejandro
– sequence: 9
  givenname: Sergio Henrique
  surname: Faria
  fullname: Faria, Sergio Henrique
– sequence: 10
  givenname: Irina V.
  orcidid: 0000-0002-2294-7823
  surname: Gorodetskaya
  fullname: Gorodetskaya, Irina V.
– sequence: 11
  givenname: Mathias
  orcidid: 0000-0002-0057-4878
  surname: Hauser
  fullname: Hauser, Mathias
– sequence: 12
  givenname: Sixto
  surname: Herrera
  fullname: Herrera, Sixto
– sequence: 13
  givenname: Kevin
  surname: Hennessy
  fullname: Hennessy, Kevin
– sequence: 14
  givenname: Helene T.
  orcidid: 0000-0001-7432-6001
  surname: Hewitt
  fullname: Hewitt, Helene T.
– sequence: 15
  givenname: Richard G.
  surname: Jones
  fullname: Jones, Richard G.
– sequence: 16
  givenname: Svitlana
  orcidid: 0000-0001-9972-0937
  surname: Krakovska
  fullname: Krakovska, Svitlana
– sequence: 17
  givenname: Rodrigo
  orcidid: 0000-0002-0001-3448
  surname: Manzanas
  fullname: Manzanas, Rodrigo
– sequence: 18
  givenname: Daniel
  orcidid: 0000-0002-5957-4637
  surname: Martínez-Castro
  fullname: Martínez-Castro, Daniel
– sequence: 19
  givenname: Gemma T.
  surname: Narisma
  fullname: Narisma, Gemma T.
– sequence: 20
  givenname: Intan S.
  orcidid: 0000-0002-0549-2732
  surname: Nurhati
  fullname: Nurhati, Intan S.
– sequence: 21
  givenname: Izidine
  orcidid: 0000-0002-9919-4559
  surname: Pinto
  fullname: Pinto, Izidine
– sequence: 22
  givenname: Sonia I.
  orcidid: 0000-0001-9528-2917
  surname: Seneviratne
  fullname: Seneviratne, Sonia I.
– sequence: 23
  givenname: Bart
  orcidid: 0000-0003-3726-7086
  surname: van den Hurk
  fullname: van den Hurk, Bart
– sequence: 24
  givenname: Carolina S.
  orcidid: 0000-0003-4032-5232
  surname: Vera
  fullname: Vera, Carolina S.
BackLink https://insu.hal.science/insu-04875775$$DView record in HAL
BookMark eNp9kk2PFCEQhjtmTdxd_QHeOvGkSa_AAE17m0zUnWQSjR9nUg10y6QHVqCNe_SfW73j1xhjOFAUz_umoOqiOgsxuKp6TMmVoB1_7nK2DWUN60TXMMLIveqcKimblaDy7I_4QXWR854QyWkrzqtv61DPNxaKq-NQb99uNrWZ_GE5Jze45IJZotHHkOshpjrPvYmh-OBCgamGANNt9nlR_xQeonVTjZ7worZu8MEXlCNqaxhHNEPI3t1nV_LD6v4AU3aPfuyX1cdXLz9srpvdm9fbzXrXGEFVaQQ4JxVtW2YVM72RljOn1AowJI5QaqFjneKOy56CtGplDAFLMO6sVN3qstoefW2Evb5JWGu61RG8vkvENGpIxZvJ6X7olIShb5UlfKAOOsIBLCPQ0l6KFXo9O3p9gunE6nq90z7kWROuWtG24gtF-MkRvknx8-xy0fs4J_y3rBmXVHCmiPhNjYAV-DDEksAcfDZ6LTlDrKUSqat_ULisO3jsC_425k8ET08ES-_c1zLCnLPevn93ytIja1LMGdv_62mU6GXK9DJlmjK9TJlepgw17V8a4wss_cbC_PQf5Xd-rNh3
CitedBy_id crossref_primary_10_1016_j_energy_2024_132235
crossref_primary_10_1029_2023EF003534
crossref_primary_10_1029_2022JD037908
crossref_primary_10_1098_rspb_2024_2748
crossref_primary_10_1002_joc_7644
crossref_primary_10_1029_2022WR033314
crossref_primary_10_1016_j_jhydrol_2024_130960
crossref_primary_10_3389_fmicb_2025_1509882
crossref_primary_10_1038_s41612_021_00218_2
crossref_primary_10_1016_j_agrformet_2024_110127
crossref_primary_10_5194_gmd_16_4715_2023
crossref_primary_10_1029_2022EF003466
crossref_primary_10_1007_s11269_025_04162_1
crossref_primary_10_1002_joc_7773
crossref_primary_10_1029_2023EF003786
crossref_primary_10_1029_2024EF004936
crossref_primary_10_3390_rs15123201
crossref_primary_10_15531_KSCCR_2024_15_6_1167
crossref_primary_10_1002_asl_1178
crossref_primary_10_5194_npg_30_167_2023
crossref_primary_10_5194_gmd_15_2085_2022
crossref_primary_10_1126_sciadv_adn9660
crossref_primary_10_1007_s13253_022_00518_x
crossref_primary_10_1029_2021EF002500
crossref_primary_10_1016_j_jafrearsci_2023_104883
crossref_primary_10_1111_gcb_17224
crossref_primary_10_1029_2021EF002625
crossref_primary_10_1016_j_gfs_2024_100799
crossref_primary_10_1016_j_scitotenv_2024_174810
crossref_primary_10_1029_2021GL097261
crossref_primary_10_1029_2022EF003254
crossref_primary_10_5194_acp_23_8341_2023
crossref_primary_10_1016_j_atmosres_2024_107255
crossref_primary_10_1016_j_scitotenv_2023_168770
crossref_primary_10_1016_j_jhydrol_2023_129553
crossref_primary_10_1002_joc_7302
crossref_primary_10_3389_fenvs_2023_1205515
crossref_primary_10_3389_fclim_2021_610433
crossref_primary_10_3390_w16243624
crossref_primary_10_1038_s41612_023_00410_6
crossref_primary_10_1038_s43247_024_01734_8
crossref_primary_10_3390_atmos13101673
crossref_primary_10_1038_s41612_022_00248_4
crossref_primary_10_1002_asl_1180
crossref_primary_10_1038_s41559_022_01668_4
crossref_primary_10_1088_1748_9326_adad01
crossref_primary_10_5194_esd_13_321_2022
crossref_primary_10_1038_s41597_024_02932_x
crossref_primary_10_1088_1748_9326_ad9d5f
crossref_primary_10_5194_acp_22_8343_2022
crossref_primary_10_1029_2022EF002833
crossref_primary_10_1007_s00704_024_05123_1
crossref_primary_10_1088_1757_899X_1252_1_012062
crossref_primary_10_5194_gmd_15_2475_2022
crossref_primary_10_1016_j_scitotenv_2021_148162
crossref_primary_10_1016_j_palaeo_2024_112193
crossref_primary_10_3390_conservation4040040
crossref_primary_10_1126_sciadv_adr3243
crossref_primary_10_1016_j_scitotenv_2024_175113
crossref_primary_10_1029_2021GL094662
crossref_primary_10_1016_j_rser_2022_112596
crossref_primary_10_5194_hess_27_3999_2023
crossref_primary_10_1002_asl_1072
crossref_primary_10_1029_2022GL099012
crossref_primary_10_1016_j_agrformet_2022_109232
crossref_primary_10_3390_atmos13122107
crossref_primary_10_1007_s00704_024_05173_5
crossref_primary_10_1029_2022MS003074
crossref_primary_10_1126_sciadv_adl4005
crossref_primary_10_5194_esd_15_1019_2024
crossref_primary_10_3390_atmos15010012
crossref_primary_10_1371_journal_pone_0290181
crossref_primary_10_3390_metabo13030454
crossref_primary_10_1007_s00704_024_04963_1
crossref_primary_10_1016_j_jhydrol_2024_130647
crossref_primary_10_1038_s41561_024_01511_4
crossref_primary_10_5194_gmd_17_8283_2024
crossref_primary_10_3390_ijerph18136817
crossref_primary_10_1016_j_jclepro_2024_142021
crossref_primary_10_1016_j_jaridenv_2025_105357
crossref_primary_10_3390_rs13112058
crossref_primary_10_5194_nhess_24_4225_2024
crossref_primary_10_1111_jbi_14989
crossref_primary_10_3390_buildings13020352
crossref_primary_10_1016_j_cities_2024_105117
crossref_primary_10_5194_os_19_887_2023
crossref_primary_10_5194_acp_23_6083_2023
crossref_primary_10_1038_s41612_023_00365_8
crossref_primary_10_1038_s41597_025_04530_x
crossref_primary_10_1088_1748_9326_ac2348
crossref_primary_10_1016_j_gloplacha_2022_103773
crossref_primary_10_1088_1748_9326_ac71b7
crossref_primary_10_3390_insects14010051
crossref_primary_10_1016_j_plaphy_2024_108437
crossref_primary_10_1029_2023MS003641
crossref_primary_10_1016_j_scitotenv_2023_167265
crossref_primary_10_1029_2022EF003268
crossref_primary_10_1073_pnas_2312400121
crossref_primary_10_5194_acp_24_12727_2024
crossref_primary_10_1126_sciadv_abo1638
crossref_primary_10_1016_j_agee_2023_108511
crossref_primary_10_1038_s41467_020_20635_w
crossref_primary_10_1007_s00382_021_05640_z
crossref_primary_10_1016_j_cliser_2023_100368
crossref_primary_10_1002_joc_7976
crossref_primary_10_1175_JCLI_D_21_0637_1
crossref_primary_10_3390_land10111151
crossref_primary_10_1007_s00382_024_07358_0
crossref_primary_10_1016_j_renene_2023_119561
crossref_primary_10_1029_2019EF001473
crossref_primary_10_1029_2022GL102466
crossref_primary_10_1007_s00382_024_07529_z
crossref_primary_10_1016_j_quascirev_2023_108291
crossref_primary_10_1029_2021GL095161
crossref_primary_10_1016_j_jhydrol_2023_129598
crossref_primary_10_5194_esd_16_1_2025
crossref_primary_10_3389_fevo_2022_907079
crossref_primary_10_1016_j_jhydrol_2025_133099
crossref_primary_10_1007_s00382_024_07323_x
crossref_primary_10_1007_s41748_024_00397_x
crossref_primary_10_1088_1748_9326_ad101c
crossref_primary_10_1007_s00382_023_06790_y
crossref_primary_10_3389_fclim_2023_1100600
crossref_primary_10_1088_1748_9326_ac5271
crossref_primary_10_1016_j_jhydrol_2023_130456
crossref_primary_10_5194_esd_13_1167_2022
crossref_primary_10_1029_2023GL105200
crossref_primary_10_1007_s00382_023_07034_9
crossref_primary_10_1126_sciadv_adr5346
crossref_primary_10_5194_bg_21_3251_2024
crossref_primary_10_5194_esd_15_307_2024
crossref_primary_10_1016_j_cliser_2023_100386
crossref_primary_10_3390_atmos14060913
crossref_primary_10_3389_fpls_2024_1359265
crossref_primary_10_1016_j_atmosres_2023_106872
crossref_primary_10_1016_j_cam_2024_116479
crossref_primary_10_1038_s41597_022_01739_y
crossref_primary_10_5194_cp_20_573_2024
crossref_primary_10_3389_fpubh_2021_707264
crossref_primary_10_1007_s00382_024_07565_9
crossref_primary_10_1016_j_jhydrol_2024_132132
crossref_primary_10_1029_2021JD036153
crossref_primary_10_1016_j_wace_2020_100269
crossref_primary_10_1088_2515_7620_abd836
crossref_primary_10_1007_s00382_023_06956_8
crossref_primary_10_1016_j_accre_2024_10_006
crossref_primary_10_1088_1748_9326_ad627d
crossref_primary_10_1002_joc_7485
crossref_primary_10_3390_agriculture12040495
crossref_primary_10_1016_j_quascirev_2024_108755
crossref_primary_10_1038_s43247_024_01332_8
crossref_primary_10_1126_sciadv_adt5088
crossref_primary_10_3390_insects15060437
crossref_primary_10_3390_atmos14030607
crossref_primary_10_1002_joc_7134
crossref_primary_10_1038_s41467_023_42409_w
crossref_primary_10_48084_etasr_5332
crossref_primary_10_1007_s11356_025_36209_6
crossref_primary_10_1016_j_jhydrol_2024_131309
crossref_primary_10_5194_gmd_15_6085_2022
crossref_primary_10_1016_j_resconrec_2023_106997
crossref_primary_10_1088_2752_5295_acee9f
crossref_primary_10_1029_2021GL097511
crossref_primary_10_1079_cabireviews_2024_0027
crossref_primary_10_1088_1748_9326_adba01
crossref_primary_10_1016_j_hydroa_2024_100181
crossref_primary_10_1029_2023JD038906
crossref_primary_10_3390_atmos13091478
crossref_primary_10_1029_2022WR034263
crossref_primary_10_1007_s00382_020_05494_x
crossref_primary_10_1080_07055900_2023_2239194
crossref_primary_10_1021_acs_est_2c01175
crossref_primary_10_1016_j_jped_2024_11_002
crossref_primary_10_1073_pnas_2410881122
crossref_primary_10_5194_esd_14_1211_2023
crossref_primary_10_1016_j_scitotenv_2024_175744
crossref_primary_10_1007_s11273_022_09872_6
crossref_primary_10_1038_s43247_022_00558_8
crossref_primary_10_1016_j_jhydrol_2023_130387
crossref_primary_10_3390_atmos12060742
crossref_primary_10_1002_joc_8354
crossref_primary_10_5194_esd_14_1333_2023
crossref_primary_10_5194_nhess_21_1685_2021
crossref_primary_10_1175_JCLI_D_21_0028_1
crossref_primary_10_1002_joc_7707
crossref_primary_10_1088_1748_9326_ada8c2
crossref_primary_10_1088_2752_5295_ad8300
crossref_primary_10_1007_s11157_023_09658_z
crossref_primary_10_1016_j_agrformet_2023_109364
crossref_primary_10_1016_j_wace_2023_100577
crossref_primary_10_1186_s40645_023_00574_y
crossref_primary_10_3390_su15010690
crossref_primary_10_1016_j_wace_2023_100576
crossref_primary_10_5194_esd_16_151_2025
crossref_primary_10_5194_essd_16_3601_2024
crossref_primary_10_1016_j_catena_2025_108881
crossref_primary_10_1029_2022GL098568
crossref_primary_10_1007_s00382_022_06658_7
crossref_primary_10_1073_pnas_2401950121
crossref_primary_10_1016_j_jhydrol_2023_129143
crossref_primary_10_1007_s12583_021_1511_2
crossref_primary_10_1029_2023JC019843
crossref_primary_10_1088_1748_9326_ad2cad
crossref_primary_10_1016_j_wace_2023_100569
crossref_primary_10_1029_2022JD038199
crossref_primary_10_1029_2023JD039304
crossref_primary_10_1016_j_scitotenv_2024_172914
crossref_primary_10_1038_s41560_023_01304_w
crossref_primary_10_1029_2023EA002868
crossref_primary_10_1088_1748_9326_acbfd0
crossref_primary_10_1088_2752_5295_aceea1
crossref_primary_10_1088_1748_9326_aca3b9
crossref_primary_10_1002_joc_7566
crossref_primary_10_1088_1748_9326_aba869
crossref_primary_10_1002_joc_7207
crossref_primary_10_1038_s41467_025_56356_1
crossref_primary_10_1088_1748_9326_ad984f
crossref_primary_10_1088_1748_9326_ad9c9a
crossref_primary_10_1016_j_wace_2023_100636
crossref_primary_10_1016_j_atmosres_2023_106818
crossref_primary_10_3390_agronomy13020510
crossref_primary_10_1016_j_accre_2025_03_008
crossref_primary_10_1038_s41558_024_02140_w
crossref_primary_10_3390_w13152110
crossref_primary_10_5194_tc_16_4823_2022
crossref_primary_10_1007_s00382_023_06754_2
crossref_primary_10_1016_j_earscirev_2025_105063
crossref_primary_10_1029_2022PA004597
crossref_primary_10_1016_j_gloplacha_2024_104583
crossref_primary_10_1088_1748_9326_acd8d3
crossref_primary_10_3389_fclim_2024_1392033
crossref_primary_10_1007_s00704_022_04199_x
crossref_primary_10_1038_s43247_022_00528_0
crossref_primary_10_5194_gmd_16_3927_2023
crossref_primary_10_1016_j_atmosres_2023_106812
crossref_primary_10_1142_S2010007822400036
crossref_primary_10_1016_j_aosl_2024_100534
crossref_primary_10_3389_fmars_2022_1024111
crossref_primary_10_5194_gmd_14_1267_2021
crossref_primary_10_1038_s41467_024_53464_2
crossref_primary_10_1007_s13280_024_02092_7
crossref_primary_10_1038_s41598_022_14480_8
crossref_primary_10_1029_2019JD032356
crossref_primary_10_1016_j_jafrearsci_2023_104944
crossref_primary_10_3390_earth5040043
crossref_primary_10_1016_j_atmosres_2022_106165
crossref_primary_10_5194_esd_15_131_2024
crossref_primary_10_5194_bg_19_5107_2022
crossref_primary_10_1088_1748_9326_ac6888
crossref_primary_10_3390_land12091710
crossref_primary_10_1007_s00382_024_07218_x
crossref_primary_10_1029_2022GL101667
crossref_primary_10_1007_s10584_022_03307_0
crossref_primary_10_53433_yyufbed_1429813
crossref_primary_10_1016_j_jhydrol_2025_133133
crossref_primary_10_1038_s43247_023_01016_9
crossref_primary_10_1088_1748_9326_ad40c3
crossref_primary_10_1088_1748_9326_ad545c
crossref_primary_10_15531_KSCCR_2022_13_4_479
crossref_primary_10_1016_j_jclepro_2023_137201
crossref_primary_10_1088_1748_9326_ad90f6
crossref_primary_10_1007_s00382_023_06842_3
crossref_primary_10_1080_0035919X_2024_2410945
crossref_primary_10_1007_s11069_024_06604_2
crossref_primary_10_1002_joc_8447
crossref_primary_10_3390_atmos14091361
crossref_primary_10_1029_2022GL100906
crossref_primary_10_1007_s00382_021_05859_w
crossref_primary_10_1126_science_abo5003
crossref_primary_10_3389_fclim_2022_763983
crossref_primary_10_3390_atmos13050741
crossref_primary_10_1007_s00382_025_07626_7
crossref_primary_10_5194_esd_13_1233_2022
crossref_primary_10_5194_gmd_15_4569_2022
crossref_primary_10_1007_s00704_023_04657_0
crossref_primary_10_1029_2021EA001817
crossref_primary_10_1038_s41467_024_54952_1
crossref_primary_10_1016_j_gloplacha_2024_104476
crossref_primary_10_3390_atmos14061052
crossref_primary_10_5194_acp_25_1659_2025
crossref_primary_10_1088_1755_1315_1101_2_022008
crossref_primary_10_1016_j_buildenv_2021_108607
Cites_doi 10.1029/2009GL040000
10.1038/s41558-019-0660-0
10.1007/s00382-014-2418-8
10.1002/joc.3711
10.1088/1748-9326/aac3e5
10.1175/BAMS-D-11-00094.1
10.1127/0941-2948/2010/0430
10.1088/1748-9326/aab190
10.1002/joc.5249
10.1017/CBO9781139177245.006
10.1186/s40322-017-0036-4
10.1088/1748-9326/aa9f72
10.1175/2010JCLI3377.1
10.1088/1748-9326/aaba1b
10.5676/DWD_GPCC/FD_M_V7_050
10.1175/2009BAMS2607.1
10.5334/jors.148
10.1016/j.envsoft.2018.09.009
10.5194/gmd-11-3659-2018
10.1007/PL00013733
10.1038/s41598-019-39936-2
10.1017/CBO9781107415324.029
10.1007/s00382-018-4462-2
10.5194/gmd-9-3461-2016
10.1038/s41558-019-0599-1
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
1XC
VOOES
DOA
DOI 10.5194/essd-12-2959-2020
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList


Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 2970
ExternalDocumentID oai_doaj_org_article_bf986afb78d04f1ea904aad20a71b653
oai_HAL_insu_04875775v1
A642154716
10_5194_essd_12_2959_2020
GeographicLocations Antarctica
GeographicLocations_xml – name: Antarctica
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PQGLB
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
1XC
C1A
IPNFZ
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c518t-5aee681772d82cbc6d42e883abc60e011da92984e46b1a6d83cc0ad01a69d6893
IEDL.DBID BENPR
ISSN 1866-3516
1866-3508
IngestDate Mon Sep 01 19:38:17 EDT 2025
Fri May 09 12:15:04 EDT 2025
Fri Jul 25 19:14:53 EDT 2025
Tue Jun 17 22:04:24 EDT 2025
Thu Jul 17 05:59:27 EDT 2025
Fri Jun 27 05:25:21 EDT 2025
Tue Jul 01 02:14:30 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-5aee681772d82cbc6d42e883abc60e011da92984e46b1a6d83cc0ad01a69d6893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5957-4637
0000-0002-1481-2961
0000-0002-0057-4878
0000-0003-4032-5232
0000-0002-0001-3448
0000-0003-3726-7086
0000-0001-6219-4312
0000-0002-2294-7823
0000-0002-9919-4559
0000-0002-0549-2732
0000-0001-9972-0937
0000-0001-9528-2917
0000-0001-7432-6001
OpenAccessLink https://www.proquest.com/docview/2461542805?pq-origsite=%requestingapplication%
PQID 2461542805
PQPubID 105729
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bf986afb78d04f1ea904aad20a71b653
hal_primary_oai_HAL_insu_04875775v1
proquest_journals_2461542805
gale_infotracmisc_A642154716
gale_infotracacademiconefile_A642154716
gale_incontextgauss_ISR_A642154716
crossref_primary_10_5194_essd_12_2959_2020
crossref_citationtrail_10_5194_essd_12_2959_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-18
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-18
  day: 18
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1029/2009GL040000
– ident: ref9
  doi: 10.1038/s41558-019-0660-0
– ident: ref24
  doi: 10.1007/s00382-014-2418-8
– ident: ref3
– ident: ref13
  doi: 10.1002/joc.3711
– ident: ref5
– ident: ref6
  doi: 10.1088/1748-9326/aac3e5
– ident: ref32
  doi: 10.1175/BAMS-D-11-00094.1
– ident: ref29
  doi: 10.1127/0941-2948/2010/0430
– ident: ref23
  doi: 10.1088/1748-9326/aab190
– ident: ref20
  doi: 10.1002/joc.5249
– ident: ref31
  doi: 10.1017/CBO9781139177245.006
– ident: ref19
– ident: ref28
  doi: 10.1186/s40322-017-0036-4
– ident: ref2
  doi: 10.1088/1748-9326/aa9f72
– ident: ref11
– ident: ref34
– ident: ref7
  doi: 10.1175/2010JCLI3377.1
– ident: ref4
– ident: ref27
  doi: 10.1088/1748-9326/aaba1b
– ident: ref30
  doi: 10.5676/DWD_GPCC/FD_M_V7_050
– ident: ref15
  doi: 10.1175/2009BAMS2607.1
– ident: ref16
  doi: 10.5334/jors.148
– ident: ref18
  doi: 10.1016/j.envsoft.2018.09.009
– ident: ref1
  doi: 10.5194/gmd-11-3659-2018
– ident: ref21
– ident: ref10
  doi: 10.1007/PL00013733
– ident: ref22
  doi: 10.1038/s41598-019-39936-2
– ident: ref33
  doi: 10.1017/CBO9781107415324.029
– ident: ref8
  doi: 10.1007/s00382-018-4462-2
– ident: ref26
  doi: 10.5194/gmd-9-3461-2016
– ident: ref25
  doi: 10.1038/s41558-019-0599-1
– ident: ref12
– ident: ref14
SSID ssj0064175
Score 2.6356323
Snippet Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information....
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information....
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2959
SubjectTerms Adaptation
Analysis
Atmospheric data
Atmospheric models
Climate adaptation
Climate change
Climate models
Climatic analysis
Datasets
Disaster management
Disasters
Future climates
Global temperature changes
Homogeneity
Intergovernmental Panel on Climate Change
Mean temperatures
Oceans
open climate campaign
Precipitation
Precipitation-temperature relationships
Regional climates
Regions
Sciences of the Universe
Temperature
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-1UPBFrFU8vUpoBUFYmuwm2VzfzsN6LUVELfQt5LMW6l5x7wQf_c87k907XB_0pW_7MYHdmcnkN7uT3xDy2mHAg2WmKKOWhairUEy0FgWa36WQUtWxfX5U8wtxdikv_2j1hTVhHT1wp7gjlyZa2eRqHZhIPNoJE9aGktmaOyUzzyeseetkqovBSvBMsYtsbkUFGKT7nwloRRxBAAlYj1DiBzBI_dlgRcrE_Zvw_OAbVkf-FaTzynPymDzqISOddo-6S7Zi84TsfMgteX_tkd_Thq5uMXGni0RPP81m1N9cf8fzTQ8Riv0XwL8oQFTarhwWqAO8xJ2Q1Pa0JDh6PTD3x6FYPXpMQ0zXTS7sAtFA7RVk6PjtLeT7bVy2T8nFyfuvs3nRN1YovOR6WUgbo9IcgHXQpXdeBQGm0pWFQxZhxgcLqEmLKJTjVgVdec9sYHA8CQoQzjOy3Sya-JxQzmNIinm4DLEAUtIYXQBIxXWoasCeI8LWyjW-Zx3H5hc3BrIPtIdBexheGrSHQXuMyNvNkNuOcuNfwu_QYhtBZMvOF8CHTO9D5n8-NCIHaG-DfBgNFtxc2VXbmtMvn80UNwJLcGg1Im96obSAN_C2378AekAKrYHkeCAJE9YPbh-CWw2eeD49N7j3wDDMH-ta_gTFjdduZ_qw0hok_5OQMDL54j7e-yV5iDrErZVcj8n28scq7gPGWrpXeTrdATB1IOQ
  priority: 102
  providerName: Directory of Open Access Journals
Title An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets
URI https://www.proquest.com/docview/2461542805
https://insu.hal.science/insu-04875775
https://doaj.org/article/bf986afb78d04f1ea904aad20a71b653
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoKiReEJ-iUCoLkJCQotmJ47i8oLas6xCapsGkvVn-Spk0krK0SDzyn3OXOoXysLckPkuJzz7_7nL-HSFvLBo82GaSNKg8EUXmk7FSIkH129KXZbZl-zyViwvx6TK_jAG3JqZVdjaxNdS-dhgjP0TesxywMss_rH4kWDUK_67GEho90gcTrMD56k-PTs_OO1ssBW-pdpHVLckAi2z_awJqEYdgSDzmJaQYCEsZFvz-Z2dqCfx3Zrr3DbMk_zPW7Q40f0DuR-hIJ1tdPyR3QvWI3D1uS_P-ekx-Tyq6WaEDT-uSnpzNZtRdX33H-10tEYp1GGCeUYCqtNlYTFQHmIknIqmJ9CTYu-vY1smhmEX6nvpQXlVtgheIemqW4KljDM637U1YN0_Ixfzo62yRxAILicu5Wie5CUEqDgDbq9RZJ70AlanMwCULsPK9AfSkRBDSciO9ypxjxjO4HnsJSOcpOajqKjwjlPPgS8kcPAabAK5pCNYDtOLKZwVg0AFh3eBqF9nHsQjGtQYvBPWhUR-apxr1oVEfA_Ju12W1pd64TXiKGtsJImt2-6C-Weq4CLUtx0qa0hbKM1HyYMZMGONTZgpuZZ4NyCvUt0ZejAoTb5Zm0zT65Mu5nuCB4BwmthyQt1GorOELnInnGGAckEprT3K4JwkL1-01v4ZptffGi8lnjWcQNEM_sijynzBww27a6WheGv13MTy_vfkFuYejg4cnuRqSg_XNJrwEFLW2I9JT8-MR6U-mH6fzUVw4ozYm8QdD8xxE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxKfoKGDxISSkaHbiOA4SQqXQtaxMCDZpb55jO92kkZSlBe2Rf4i_kbt8FMrD3vaWxucquS-fnbvfEfI8Q4cHy0wQehUHIolckColAhR_lrs8jxq0zz05PhAfD-PDDfK7q4XBtMrOJ9aO2pUWz8i3EfcshliZxW_n3wPsGoVfV7sWGo1a7Przn7Blq95M3oN8X4Th6MP-cBy0XQUCG3O1CGLjvVQcokqnQptZ6QQ8p4oMXDIP6u4MhAxKeCEzbqRTkbXMOAbXqZMKwZfA5V8VUZSiRanRTuf5peA1sC9iyAURRD7NV1SIkcQ2uC2HWRAhHruFDNuL_7MO1u0CVovClWPMyfxvaajXu9EtcrMNVOmg0azbZMMXd8i1nboR8Pld8mtQ0OUcjwtomdPJ5-GQ2tOTb_h71bmEYtcH0GoKgTGtlhmmxUNQi_WX1LRgKDi7m1h35aGYs_qaOp-fFHU6GZA6amYz-DMgcvV45RfVPXJwKYy_TzaLsvAPCOXcu1wyC7fBA8FG2PvMQSDHlYsSiHh7hHXM1bbFOseWG6ca9jwoD43y0DzUKA-N8uiRV6sp8wbo4yLidyixFSFidNc3yrOZbk1eZ3mqpMmzRDkmcu5NyoQxLmQm4ZmMox55ivLWiMJRYJrPzCyrSk--ftEDLD-OwYxkj7xsifIS3sCatmoC-IDAXWuU_TVKcBN2bfgZqNXaE48HU40VD5rhrjVJ4h_AuH6ndrp1ZpX-a3pbFw8_IdfH-5-mejrZ231IbiCnsGyTqz7ZXJwt_SOI3xbZ49poKDm6bCv9A-RrVJ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVCAuvBGBACseQkJys-vHeoOEUJoSElqqUqjobVnvrkNFcUIdg8qNv8Vf4c8w40cgPfTWAzfHO47s9cw3s-uZbwh5lCDggZvxfCcjL4wD6_WkDD18_Ulq0zSo2D63xWgvfL0f7a-QX00tDKZVNphYArWdGtwj7yLvWQSxMou6aZ0WsbMxfDH76mEHKfzS2rTTqFRk0x1_h-Vb_ny8Ae_6se8PX74fjLy6w4BnIi7nXqSdE5JDhGmlbxIjbAj3LAMNh8yB6lsN4YMMXSgSroWVgTFMWwbHPSskEjEB_K9KISO_RVbXh2_efmj8gAh5SfOLjHJeAHFQ9U0VIqawCyBmMSfCx004n2Gz8X-8Ytk8YOEizn3CDM0TjqL0fsPL5Hczb1XSy-e1Yp6smR8nKCX_z4m9Qi7VQTntV1Z0lay47Bo5_6psenx8nfzsZ7SY4dYInaZ0vDMYUHN48AV_L7q0UOxwARZMYRFA8yLBEgAI4LHWlOqa-AWvbi4sOxBRzM99Rq1LD7IydQ5ELdWTCfwZCNlyPHfz_AbZO5Pnv0la2TRztwjl3NlUMAOnAW1h0e9cYiFo5dIGMUT3bcIa1VGm5nXH9iKHCtZ3qG0KtU1xX6G2KdS2Nnm6uGRWkZqcJryO-rgQRD7y8sT0aKJqeFNJ2pNCp0ksLQtT7nSPhVpbn-mYJyIK2uQBarNCxpEMVWyiizxX43e7qo-l1hFAhmiTJ7VQOoUnMLquEIF5QJKyJcnOkiRAolkafghGs3THo_6WwuoOxXCFHsfRN5i4TmMQqgbuXP21htunD98nF8BM1NZ4e_MOuYgThRWqXHZIa35UuLsQqs6TezUmUPLxrK3lD4wIodc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+of+IPCC+climate+reference+regions+for+subcontinental+analysis+of+climate+model+data%3A+definition+and+aggregated+datasets&rft.jtitle=Earth+system+science+data&rft.au=Iturbide%2C+Maialen&rft.au=Guti%C3%A9rrez%2C+Jos%C3%A9+M.&rft.au=Alves%2C+Lincoln+M.&rft.au=Bedia%2C+Joaqu%C3%ADn&rft.date=2020-11-18&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=4&rft.spage=2959&rft.epage=2970&rft_id=info:doi/10.5194%2Fessd-12-2959-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_2959_2020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon