An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets
Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing...
Saved in:
Published in | Earth system science data Vol. 12; no. 4; pp. 2959 - 2970 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
18.11.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several sets of reference regions have been used in the literature
for the regional synthesis of observed and modelled climate and climate
change information. A popular example is the series of reference regions
used in the Intergovernmental Panel on Climate Change (IPCC) Special Report
on Managing the Risks of Extreme Events and Disasters to Advance Climate
Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental
observed and projected changes over a reduced number (33) of
climatologically consistent regions encompassing a representative number of
grid boxes. These regions are intended to allow analysis of atmospheric data
over broad land or ocean regions and have been used as the basis for several
popular spatially aggregated datasets, such as the Seasonal Mean Temperature
and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of
new observed and simulated datasets (including CMIP6) which offer an
opportunity for refinement due to the higher atmospheric model resolution.
As a result, the number of land and ocean regions is increased to 46 and 15,
respectively, better representing consistent regional climate features. The
paper describes the rationale for the definition of the new regions and
analyses their homogeneity. The regions are defined as polygons and are
provided as coordinates and a shapefile together with companion R and Python
notebooks to illustrate their use in practical problems (e.g. calculating
regional averages). We also describe the generation of a new dataset with
monthly temperature and precipitation, spatially aggregated in the new
regions, currently for CMIP5 and CMIP6, to be extended to other datasets in
the future (including observations). The use of these reference regions,
dataset and code is illustrated through a worked example using scatter plots
to offer guidance on the likely range of future climate change at the scale
of the reference regions. The regions, datasets and code (R and Python
notebooks) are freely available at the ATLAS GitHub repository:
https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020),
https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020). |
---|---|
AbstractList | Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020). Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset.We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository:https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020),10.5281/zenodo.3998463 (Iturbide et al., 2020). Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020). Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020). |
Audience | Academic |
Author | Pinto, Izidine Seneviratne, Sonia I. Hauser, Mathias Bedia, Joaquín Hennessy, Kevin Faria, Sergio Henrique Iturbide, Maialen Herrera, Sixto Manzanas, Rodrigo Gutiérrez, José M. Martínez-Castro, Daniel Alves, Lincoln M. Di Luca, Alejandro Gorodetskaya, Irina V. Jones, Richard G. Krakovska, Svitlana Cerezo-Mota, Ruth Cofiño, Antonio S. Narisma, Gemma T. Nurhati, Intan S. Vera, Carolina S. van den Hurk, Bart Hewitt, Helene T. Cimadevilla, Ezequiel |
Author_xml | – sequence: 1 givenname: Maialen surname: Iturbide fullname: Iturbide, Maialen – sequence: 2 givenname: José M. surname: Gutiérrez fullname: Gutiérrez, José M. – sequence: 3 givenname: Lincoln M. surname: Alves fullname: Alves, Lincoln M. – sequence: 4 givenname: Joaquín orcidid: 0000-0001-6219-4312 surname: Bedia fullname: Bedia, Joaquín – sequence: 5 givenname: Ruth surname: Cerezo-Mota fullname: Cerezo-Mota, Ruth – sequence: 6 givenname: Ezequiel surname: Cimadevilla fullname: Cimadevilla, Ezequiel – sequence: 7 givenname: Antonio S. surname: Cofiño fullname: Cofiño, Antonio S. – sequence: 8 givenname: Alejandro orcidid: 0000-0002-1481-2961 surname: Di Luca fullname: Di Luca, Alejandro – sequence: 9 givenname: Sergio Henrique surname: Faria fullname: Faria, Sergio Henrique – sequence: 10 givenname: Irina V. orcidid: 0000-0002-2294-7823 surname: Gorodetskaya fullname: Gorodetskaya, Irina V. – sequence: 11 givenname: Mathias orcidid: 0000-0002-0057-4878 surname: Hauser fullname: Hauser, Mathias – sequence: 12 givenname: Sixto surname: Herrera fullname: Herrera, Sixto – sequence: 13 givenname: Kevin surname: Hennessy fullname: Hennessy, Kevin – sequence: 14 givenname: Helene T. orcidid: 0000-0001-7432-6001 surname: Hewitt fullname: Hewitt, Helene T. – sequence: 15 givenname: Richard G. surname: Jones fullname: Jones, Richard G. – sequence: 16 givenname: Svitlana orcidid: 0000-0001-9972-0937 surname: Krakovska fullname: Krakovska, Svitlana – sequence: 17 givenname: Rodrigo orcidid: 0000-0002-0001-3448 surname: Manzanas fullname: Manzanas, Rodrigo – sequence: 18 givenname: Daniel orcidid: 0000-0002-5957-4637 surname: Martínez-Castro fullname: Martínez-Castro, Daniel – sequence: 19 givenname: Gemma T. surname: Narisma fullname: Narisma, Gemma T. – sequence: 20 givenname: Intan S. orcidid: 0000-0002-0549-2732 surname: Nurhati fullname: Nurhati, Intan S. – sequence: 21 givenname: Izidine orcidid: 0000-0002-9919-4559 surname: Pinto fullname: Pinto, Izidine – sequence: 22 givenname: Sonia I. orcidid: 0000-0001-9528-2917 surname: Seneviratne fullname: Seneviratne, Sonia I. – sequence: 23 givenname: Bart orcidid: 0000-0003-3726-7086 surname: van den Hurk fullname: van den Hurk, Bart – sequence: 24 givenname: Carolina S. orcidid: 0000-0003-4032-5232 surname: Vera fullname: Vera, Carolina S. |
BackLink | https://insu.hal.science/insu-04875775$$DView record in HAL |
BookMark | eNp9kk2PFCEQhjtmTdxd_QHeOvGkSa_AAE17m0zUnWQSjR9nUg10y6QHVqCNe_SfW73j1xhjOFAUz_umoOqiOgsxuKp6TMmVoB1_7nK2DWUN60TXMMLIveqcKimblaDy7I_4QXWR854QyWkrzqtv61DPNxaKq-NQb99uNrWZ_GE5Jze45IJZotHHkOshpjrPvYmh-OBCgamGANNt9nlR_xQeonVTjZ7worZu8MEXlCNqaxhHNEPI3t1nV_LD6v4AU3aPfuyX1cdXLz9srpvdm9fbzXrXGEFVaQQ4JxVtW2YVM72RljOn1AowJI5QaqFjneKOy56CtGplDAFLMO6sVN3qstoefW2Evb5JWGu61RG8vkvENGpIxZvJ6X7olIShb5UlfKAOOsIBLCPQ0l6KFXo9O3p9gunE6nq90z7kWROuWtG24gtF-MkRvknx8-xy0fs4J_y3rBmXVHCmiPhNjYAV-DDEksAcfDZ6LTlDrKUSqat_ULisO3jsC_425k8ET08ES-_c1zLCnLPevn93ytIja1LMGdv_62mU6GXK9DJlmjK9TJlepgw17V8a4wss_cbC_PQf5Xd-rNh3 |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132235 crossref_primary_10_1029_2023EF003534 crossref_primary_10_1029_2022JD037908 crossref_primary_10_1098_rspb_2024_2748 crossref_primary_10_1002_joc_7644 crossref_primary_10_1029_2022WR033314 crossref_primary_10_1016_j_jhydrol_2024_130960 crossref_primary_10_3389_fmicb_2025_1509882 crossref_primary_10_1038_s41612_021_00218_2 crossref_primary_10_1016_j_agrformet_2024_110127 crossref_primary_10_5194_gmd_16_4715_2023 crossref_primary_10_1029_2022EF003466 crossref_primary_10_1007_s11269_025_04162_1 crossref_primary_10_1002_joc_7773 crossref_primary_10_1029_2023EF003786 crossref_primary_10_1029_2024EF004936 crossref_primary_10_3390_rs15123201 crossref_primary_10_15531_KSCCR_2024_15_6_1167 crossref_primary_10_1002_asl_1178 crossref_primary_10_5194_npg_30_167_2023 crossref_primary_10_5194_gmd_15_2085_2022 crossref_primary_10_1126_sciadv_adn9660 crossref_primary_10_1007_s13253_022_00518_x crossref_primary_10_1029_2021EF002500 crossref_primary_10_1016_j_jafrearsci_2023_104883 crossref_primary_10_1111_gcb_17224 crossref_primary_10_1029_2021EF002625 crossref_primary_10_1016_j_gfs_2024_100799 crossref_primary_10_1016_j_scitotenv_2024_174810 crossref_primary_10_1029_2021GL097261 crossref_primary_10_1029_2022EF003254 crossref_primary_10_5194_acp_23_8341_2023 crossref_primary_10_1016_j_atmosres_2024_107255 crossref_primary_10_1016_j_scitotenv_2023_168770 crossref_primary_10_1016_j_jhydrol_2023_129553 crossref_primary_10_1002_joc_7302 crossref_primary_10_3389_fenvs_2023_1205515 crossref_primary_10_3389_fclim_2021_610433 crossref_primary_10_3390_w16243624 crossref_primary_10_1038_s41612_023_00410_6 crossref_primary_10_1038_s43247_024_01734_8 crossref_primary_10_3390_atmos13101673 crossref_primary_10_1038_s41612_022_00248_4 crossref_primary_10_1002_asl_1180 crossref_primary_10_1038_s41559_022_01668_4 crossref_primary_10_1088_1748_9326_adad01 crossref_primary_10_5194_esd_13_321_2022 crossref_primary_10_1038_s41597_024_02932_x crossref_primary_10_1088_1748_9326_ad9d5f crossref_primary_10_5194_acp_22_8343_2022 crossref_primary_10_1029_2022EF002833 crossref_primary_10_1007_s00704_024_05123_1 crossref_primary_10_1088_1757_899X_1252_1_012062 crossref_primary_10_5194_gmd_15_2475_2022 crossref_primary_10_1016_j_scitotenv_2021_148162 crossref_primary_10_1016_j_palaeo_2024_112193 crossref_primary_10_3390_conservation4040040 crossref_primary_10_1126_sciadv_adr3243 crossref_primary_10_1016_j_scitotenv_2024_175113 crossref_primary_10_1029_2021GL094662 crossref_primary_10_1016_j_rser_2022_112596 crossref_primary_10_5194_hess_27_3999_2023 crossref_primary_10_1002_asl_1072 crossref_primary_10_1029_2022GL099012 crossref_primary_10_1016_j_agrformet_2022_109232 crossref_primary_10_3390_atmos13122107 crossref_primary_10_1007_s00704_024_05173_5 crossref_primary_10_1029_2022MS003074 crossref_primary_10_1126_sciadv_adl4005 crossref_primary_10_5194_esd_15_1019_2024 crossref_primary_10_3390_atmos15010012 crossref_primary_10_1371_journal_pone_0290181 crossref_primary_10_3390_metabo13030454 crossref_primary_10_1007_s00704_024_04963_1 crossref_primary_10_1016_j_jhydrol_2024_130647 crossref_primary_10_1038_s41561_024_01511_4 crossref_primary_10_5194_gmd_17_8283_2024 crossref_primary_10_3390_ijerph18136817 crossref_primary_10_1016_j_jclepro_2024_142021 crossref_primary_10_1016_j_jaridenv_2025_105357 crossref_primary_10_3390_rs13112058 crossref_primary_10_5194_nhess_24_4225_2024 crossref_primary_10_1111_jbi_14989 crossref_primary_10_3390_buildings13020352 crossref_primary_10_1016_j_cities_2024_105117 crossref_primary_10_5194_os_19_887_2023 crossref_primary_10_5194_acp_23_6083_2023 crossref_primary_10_1038_s41612_023_00365_8 crossref_primary_10_1038_s41597_025_04530_x crossref_primary_10_1088_1748_9326_ac2348 crossref_primary_10_1016_j_gloplacha_2022_103773 crossref_primary_10_1088_1748_9326_ac71b7 crossref_primary_10_3390_insects14010051 crossref_primary_10_1016_j_plaphy_2024_108437 crossref_primary_10_1029_2023MS003641 crossref_primary_10_1016_j_scitotenv_2023_167265 crossref_primary_10_1029_2022EF003268 crossref_primary_10_1073_pnas_2312400121 crossref_primary_10_5194_acp_24_12727_2024 crossref_primary_10_1126_sciadv_abo1638 crossref_primary_10_1016_j_agee_2023_108511 crossref_primary_10_1038_s41467_020_20635_w crossref_primary_10_1007_s00382_021_05640_z crossref_primary_10_1016_j_cliser_2023_100368 crossref_primary_10_1002_joc_7976 crossref_primary_10_1175_JCLI_D_21_0637_1 crossref_primary_10_3390_land10111151 crossref_primary_10_1007_s00382_024_07358_0 crossref_primary_10_1016_j_renene_2023_119561 crossref_primary_10_1029_2019EF001473 crossref_primary_10_1029_2022GL102466 crossref_primary_10_1007_s00382_024_07529_z crossref_primary_10_1016_j_quascirev_2023_108291 crossref_primary_10_1029_2021GL095161 crossref_primary_10_1016_j_jhydrol_2023_129598 crossref_primary_10_5194_esd_16_1_2025 crossref_primary_10_3389_fevo_2022_907079 crossref_primary_10_1016_j_jhydrol_2025_133099 crossref_primary_10_1007_s00382_024_07323_x crossref_primary_10_1007_s41748_024_00397_x crossref_primary_10_1088_1748_9326_ad101c crossref_primary_10_1007_s00382_023_06790_y crossref_primary_10_3389_fclim_2023_1100600 crossref_primary_10_1088_1748_9326_ac5271 crossref_primary_10_1016_j_jhydrol_2023_130456 crossref_primary_10_5194_esd_13_1167_2022 crossref_primary_10_1029_2023GL105200 crossref_primary_10_1007_s00382_023_07034_9 crossref_primary_10_1126_sciadv_adr5346 crossref_primary_10_5194_bg_21_3251_2024 crossref_primary_10_5194_esd_15_307_2024 crossref_primary_10_1016_j_cliser_2023_100386 crossref_primary_10_3390_atmos14060913 crossref_primary_10_3389_fpls_2024_1359265 crossref_primary_10_1016_j_atmosres_2023_106872 crossref_primary_10_1016_j_cam_2024_116479 crossref_primary_10_1038_s41597_022_01739_y crossref_primary_10_5194_cp_20_573_2024 crossref_primary_10_3389_fpubh_2021_707264 crossref_primary_10_1007_s00382_024_07565_9 crossref_primary_10_1016_j_jhydrol_2024_132132 crossref_primary_10_1029_2021JD036153 crossref_primary_10_1016_j_wace_2020_100269 crossref_primary_10_1088_2515_7620_abd836 crossref_primary_10_1007_s00382_023_06956_8 crossref_primary_10_1016_j_accre_2024_10_006 crossref_primary_10_1088_1748_9326_ad627d crossref_primary_10_1002_joc_7485 crossref_primary_10_3390_agriculture12040495 crossref_primary_10_1016_j_quascirev_2024_108755 crossref_primary_10_1038_s43247_024_01332_8 crossref_primary_10_1126_sciadv_adt5088 crossref_primary_10_3390_insects15060437 crossref_primary_10_3390_atmos14030607 crossref_primary_10_1002_joc_7134 crossref_primary_10_1038_s41467_023_42409_w crossref_primary_10_48084_etasr_5332 crossref_primary_10_1007_s11356_025_36209_6 crossref_primary_10_1016_j_jhydrol_2024_131309 crossref_primary_10_5194_gmd_15_6085_2022 crossref_primary_10_1016_j_resconrec_2023_106997 crossref_primary_10_1088_2752_5295_acee9f crossref_primary_10_1029_2021GL097511 crossref_primary_10_1079_cabireviews_2024_0027 crossref_primary_10_1088_1748_9326_adba01 crossref_primary_10_1016_j_hydroa_2024_100181 crossref_primary_10_1029_2023JD038906 crossref_primary_10_3390_atmos13091478 crossref_primary_10_1029_2022WR034263 crossref_primary_10_1007_s00382_020_05494_x crossref_primary_10_1080_07055900_2023_2239194 crossref_primary_10_1021_acs_est_2c01175 crossref_primary_10_1016_j_jped_2024_11_002 crossref_primary_10_1073_pnas_2410881122 crossref_primary_10_5194_esd_14_1211_2023 crossref_primary_10_1016_j_scitotenv_2024_175744 crossref_primary_10_1007_s11273_022_09872_6 crossref_primary_10_1038_s43247_022_00558_8 crossref_primary_10_1016_j_jhydrol_2023_130387 crossref_primary_10_3390_atmos12060742 crossref_primary_10_1002_joc_8354 crossref_primary_10_5194_esd_14_1333_2023 crossref_primary_10_5194_nhess_21_1685_2021 crossref_primary_10_1175_JCLI_D_21_0028_1 crossref_primary_10_1002_joc_7707 crossref_primary_10_1088_1748_9326_ada8c2 crossref_primary_10_1088_2752_5295_ad8300 crossref_primary_10_1007_s11157_023_09658_z crossref_primary_10_1016_j_agrformet_2023_109364 crossref_primary_10_1016_j_wace_2023_100577 crossref_primary_10_1186_s40645_023_00574_y crossref_primary_10_3390_su15010690 crossref_primary_10_1016_j_wace_2023_100576 crossref_primary_10_5194_esd_16_151_2025 crossref_primary_10_5194_essd_16_3601_2024 crossref_primary_10_1016_j_catena_2025_108881 crossref_primary_10_1029_2022GL098568 crossref_primary_10_1007_s00382_022_06658_7 crossref_primary_10_1073_pnas_2401950121 crossref_primary_10_1016_j_jhydrol_2023_129143 crossref_primary_10_1007_s12583_021_1511_2 crossref_primary_10_1029_2023JC019843 crossref_primary_10_1088_1748_9326_ad2cad crossref_primary_10_1016_j_wace_2023_100569 crossref_primary_10_1029_2022JD038199 crossref_primary_10_1029_2023JD039304 crossref_primary_10_1016_j_scitotenv_2024_172914 crossref_primary_10_1038_s41560_023_01304_w crossref_primary_10_1029_2023EA002868 crossref_primary_10_1088_1748_9326_acbfd0 crossref_primary_10_1088_2752_5295_aceea1 crossref_primary_10_1088_1748_9326_aca3b9 crossref_primary_10_1002_joc_7566 crossref_primary_10_1088_1748_9326_aba869 crossref_primary_10_1002_joc_7207 crossref_primary_10_1038_s41467_025_56356_1 crossref_primary_10_1088_1748_9326_ad984f crossref_primary_10_1088_1748_9326_ad9c9a crossref_primary_10_1016_j_wace_2023_100636 crossref_primary_10_1016_j_atmosres_2023_106818 crossref_primary_10_3390_agronomy13020510 crossref_primary_10_1016_j_accre_2025_03_008 crossref_primary_10_1038_s41558_024_02140_w crossref_primary_10_3390_w13152110 crossref_primary_10_5194_tc_16_4823_2022 crossref_primary_10_1007_s00382_023_06754_2 crossref_primary_10_1016_j_earscirev_2025_105063 crossref_primary_10_1029_2022PA004597 crossref_primary_10_1016_j_gloplacha_2024_104583 crossref_primary_10_1088_1748_9326_acd8d3 crossref_primary_10_3389_fclim_2024_1392033 crossref_primary_10_1007_s00704_022_04199_x crossref_primary_10_1038_s43247_022_00528_0 crossref_primary_10_5194_gmd_16_3927_2023 crossref_primary_10_1016_j_atmosres_2023_106812 crossref_primary_10_1142_S2010007822400036 crossref_primary_10_1016_j_aosl_2024_100534 crossref_primary_10_3389_fmars_2022_1024111 crossref_primary_10_5194_gmd_14_1267_2021 crossref_primary_10_1038_s41467_024_53464_2 crossref_primary_10_1007_s13280_024_02092_7 crossref_primary_10_1038_s41598_022_14480_8 crossref_primary_10_1029_2019JD032356 crossref_primary_10_1016_j_jafrearsci_2023_104944 crossref_primary_10_3390_earth5040043 crossref_primary_10_1016_j_atmosres_2022_106165 crossref_primary_10_5194_esd_15_131_2024 crossref_primary_10_5194_bg_19_5107_2022 crossref_primary_10_1088_1748_9326_ac6888 crossref_primary_10_3390_land12091710 crossref_primary_10_1007_s00382_024_07218_x crossref_primary_10_1029_2022GL101667 crossref_primary_10_1007_s10584_022_03307_0 crossref_primary_10_53433_yyufbed_1429813 crossref_primary_10_1016_j_jhydrol_2025_133133 crossref_primary_10_1038_s43247_023_01016_9 crossref_primary_10_1088_1748_9326_ad40c3 crossref_primary_10_1088_1748_9326_ad545c crossref_primary_10_15531_KSCCR_2022_13_4_479 crossref_primary_10_1016_j_jclepro_2023_137201 crossref_primary_10_1088_1748_9326_ad90f6 crossref_primary_10_1007_s00382_023_06842_3 crossref_primary_10_1080_0035919X_2024_2410945 crossref_primary_10_1007_s11069_024_06604_2 crossref_primary_10_1002_joc_8447 crossref_primary_10_3390_atmos14091361 crossref_primary_10_1029_2022GL100906 crossref_primary_10_1007_s00382_021_05859_w crossref_primary_10_1126_science_abo5003 crossref_primary_10_3389_fclim_2022_763983 crossref_primary_10_3390_atmos13050741 crossref_primary_10_1007_s00382_025_07626_7 crossref_primary_10_5194_esd_13_1233_2022 crossref_primary_10_5194_gmd_15_4569_2022 crossref_primary_10_1007_s00704_023_04657_0 crossref_primary_10_1029_2021EA001817 crossref_primary_10_1038_s41467_024_54952_1 crossref_primary_10_1016_j_gloplacha_2024_104476 crossref_primary_10_3390_atmos14061052 crossref_primary_10_5194_acp_25_1659_2025 crossref_primary_10_1088_1755_1315_1101_2_022008 crossref_primary_10_1016_j_buildenv_2021_108607 |
Cites_doi | 10.1029/2009GL040000 10.1038/s41558-019-0660-0 10.1007/s00382-014-2418-8 10.1002/joc.3711 10.1088/1748-9326/aac3e5 10.1175/BAMS-D-11-00094.1 10.1127/0941-2948/2010/0430 10.1088/1748-9326/aab190 10.1002/joc.5249 10.1017/CBO9781139177245.006 10.1186/s40322-017-0036-4 10.1088/1748-9326/aa9f72 10.1175/2010JCLI3377.1 10.1088/1748-9326/aaba1b 10.5676/DWD_GPCC/FD_M_V7_050 10.1175/2009BAMS2607.1 10.5334/jors.148 10.1016/j.envsoft.2018.09.009 10.5194/gmd-11-3659-2018 10.1007/PL00013733 10.1038/s41598-019-39936-2 10.1017/CBO9781107415324.029 10.1007/s00382-018-4462-2 10.5194/gmd-9-3461-2016 10.1038/s41558-019-0599-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 1XC VOOES DOA |
DOI | 10.5194/essd-12-2959-2020 |
DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 2970 |
ExternalDocumentID | oai_doaj_org_article_bf986afb78d04f1ea904aad20a71b653 oai_HAL_insu_04875775v1 A642154716 10_5194_essd_12_2959_2020 |
GeographicLocations | Antarctica |
GeographicLocations_xml | – name: Antarctica |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PQGLB 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI 1XC C1A IPNFZ RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c518t-5aee681772d82cbc6d42e883abc60e011da92984e46b1a6d83cc0ad01a69d6893 |
IEDL.DBID | BENPR |
ISSN | 1866-3516 1866-3508 |
IngestDate | Mon Sep 01 19:38:17 EDT 2025 Fri May 09 12:15:04 EDT 2025 Fri Jul 25 19:14:53 EDT 2025 Tue Jun 17 22:04:24 EDT 2025 Thu Jul 17 05:59:27 EDT 2025 Fri Jun 27 05:25:21 EDT 2025 Tue Jul 01 02:14:30 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-5aee681772d82cbc6d42e883abc60e011da92984e46b1a6d83cc0ad01a69d6893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5957-4637 0000-0002-1481-2961 0000-0002-0057-4878 0000-0003-4032-5232 0000-0002-0001-3448 0000-0003-3726-7086 0000-0001-6219-4312 0000-0002-2294-7823 0000-0002-9919-4559 0000-0002-0549-2732 0000-0001-9972-0937 0000-0001-9528-2917 0000-0001-7432-6001 |
OpenAccessLink | https://www.proquest.com/docview/2461542805?pq-origsite=%requestingapplication% |
PQID | 2461542805 |
PQPubID | 105729 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf986afb78d04f1ea904aad20a71b653 hal_primary_oai_HAL_insu_04875775v1 proquest_journals_2461542805 gale_infotracmisc_A642154716 gale_infotracacademiconefile_A642154716 gale_incontextgauss_ISR_A642154716 crossref_primary_10_5194_essd_12_2959_2020 crossref_citationtrail_10_5194_essd_12_2959_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-18 |
PublicationDateYYYYMMDD | 2020-11-18 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref17 doi: 10.1029/2009GL040000 – ident: ref9 doi: 10.1038/s41558-019-0660-0 – ident: ref24 doi: 10.1007/s00382-014-2418-8 – ident: ref3 – ident: ref13 doi: 10.1002/joc.3711 – ident: ref5 – ident: ref6 doi: 10.1088/1748-9326/aac3e5 – ident: ref32 doi: 10.1175/BAMS-D-11-00094.1 – ident: ref29 doi: 10.1127/0941-2948/2010/0430 – ident: ref23 doi: 10.1088/1748-9326/aab190 – ident: ref20 doi: 10.1002/joc.5249 – ident: ref31 doi: 10.1017/CBO9781139177245.006 – ident: ref19 – ident: ref28 doi: 10.1186/s40322-017-0036-4 – ident: ref2 doi: 10.1088/1748-9326/aa9f72 – ident: ref11 – ident: ref34 – ident: ref7 doi: 10.1175/2010JCLI3377.1 – ident: ref4 – ident: ref27 doi: 10.1088/1748-9326/aaba1b – ident: ref30 doi: 10.5676/DWD_GPCC/FD_M_V7_050 – ident: ref15 doi: 10.1175/2009BAMS2607.1 – ident: ref16 doi: 10.5334/jors.148 – ident: ref18 doi: 10.1016/j.envsoft.2018.09.009 – ident: ref1 doi: 10.5194/gmd-11-3659-2018 – ident: ref21 – ident: ref10 doi: 10.1007/PL00013733 – ident: ref22 doi: 10.1038/s41598-019-39936-2 – ident: ref33 doi: 10.1017/CBO9781107415324.029 – ident: ref8 doi: 10.1007/s00382-018-4462-2 – ident: ref26 doi: 10.5194/gmd-9-3461-2016 – ident: ref25 doi: 10.1038/s41558-019-0599-1 – ident: ref12 – ident: ref14 |
SSID | ssj0064175 |
Score | 2.6356323 |
Snippet | Several sets of reference regions have been used in the literature
for the regional synthesis of observed and modelled climate and climate
change information.... Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information.... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2959 |
SubjectTerms | Adaptation Analysis Atmospheric data Atmospheric models Climate adaptation Climate change Climate models Climatic analysis Datasets Disaster management Disasters Future climates Global temperature changes Homogeneity Intergovernmental Panel on Climate Change Mean temperatures Oceans open climate campaign Precipitation Precipitation-temperature relationships Regional climates Regions Sciences of the Universe Temperature |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-1UPBFrFU8vUpoBUFYmuwm2VzfzsN6LUVELfQt5LMW6l5x7wQf_c87k907XB_0pW_7MYHdmcnkN7uT3xDy2mHAg2WmKKOWhairUEy0FgWa36WQUtWxfX5U8wtxdikv_2j1hTVhHT1wp7gjlyZa2eRqHZhIPNoJE9aGktmaOyUzzyeseetkqovBSvBMsYtsbkUFGKT7nwloRRxBAAlYj1DiBzBI_dlgRcrE_Zvw_OAbVkf-FaTzynPymDzqISOddo-6S7Zi84TsfMgteX_tkd_Thq5uMXGni0RPP81m1N9cf8fzTQ8Riv0XwL8oQFTarhwWqAO8xJ2Q1Pa0JDh6PTD3x6FYPXpMQ0zXTS7sAtFA7RVk6PjtLeT7bVy2T8nFyfuvs3nRN1YovOR6WUgbo9IcgHXQpXdeBQGm0pWFQxZhxgcLqEmLKJTjVgVdec9sYHA8CQoQzjOy3Sya-JxQzmNIinm4DLEAUtIYXQBIxXWoasCeI8LWyjW-Zx3H5hc3BrIPtIdBexheGrSHQXuMyNvNkNuOcuNfwu_QYhtBZMvOF8CHTO9D5n8-NCIHaG-DfBgNFtxc2VXbmtMvn80UNwJLcGg1Im96obSAN_C2378AekAKrYHkeCAJE9YPbh-CWw2eeD49N7j3wDDMH-ta_gTFjdduZ_qw0hok_5OQMDL54j7e-yV5iDrErZVcj8n28scq7gPGWrpXeTrdATB1IOQ priority: 102 providerName: Directory of Open Access Journals |
Title | An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets |
URI | https://www.proquest.com/docview/2461542805 https://insu.hal.science/insu-04875775 https://doaj.org/article/bf986afb78d04f1ea904aad20a71b653 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoKiReEJ-iUCoLkJCQotmJ47i8oLas6xCapsGkvVn-Spk0krK0SDzyn3OXOoXysLckPkuJzz7_7nL-HSFvLBo82GaSNKg8EUXmk7FSIkH129KXZbZl-zyViwvx6TK_jAG3JqZVdjaxNdS-dhgjP0TesxywMss_rH4kWDUK_67GEho90gcTrMD56k-PTs_OO1ssBW-pdpHVLckAi2z_awJqEYdgSDzmJaQYCEsZFvz-Z2dqCfx3Zrr3DbMk_zPW7Q40f0DuR-hIJ1tdPyR3QvWI3D1uS_P-ekx-Tyq6WaEDT-uSnpzNZtRdX33H-10tEYp1GGCeUYCqtNlYTFQHmIknIqmJ9CTYu-vY1smhmEX6nvpQXlVtgheIemqW4KljDM637U1YN0_Ixfzo62yRxAILicu5Wie5CUEqDgDbq9RZJ70AlanMwCULsPK9AfSkRBDSciO9ypxjxjO4HnsJSOcpOajqKjwjlPPgS8kcPAabAK5pCNYDtOLKZwVg0AFh3eBqF9nHsQjGtQYvBPWhUR-apxr1oVEfA_Ju12W1pd64TXiKGtsJImt2-6C-Weq4CLUtx0qa0hbKM1HyYMZMGONTZgpuZZ4NyCvUt0ZejAoTb5Zm0zT65Mu5nuCB4BwmthyQt1GorOELnInnGGAckEprT3K4JwkL1-01v4ZptffGi8lnjWcQNEM_sijynzBww27a6WheGv13MTy_vfkFuYejg4cnuRqSg_XNJrwEFLW2I9JT8-MR6U-mH6fzUVw4ozYm8QdD8xxE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxKfoKGDxISSkaHbiOA4SQqXQtaxMCDZpb55jO92kkZSlBe2Rf4i_kbt8FMrD3vaWxucquS-fnbvfEfI8Q4cHy0wQehUHIolckColAhR_lrs8jxq0zz05PhAfD-PDDfK7q4XBtMrOJ9aO2pUWz8i3EfcshliZxW_n3wPsGoVfV7sWGo1a7Przn7Blq95M3oN8X4Th6MP-cBy0XQUCG3O1CGLjvVQcokqnQptZ6QQ8p4oMXDIP6u4MhAxKeCEzbqRTkbXMOAbXqZMKwZfA5V8VUZSiRanRTuf5peA1sC9iyAURRD7NV1SIkcQ2uC2HWRAhHruFDNuL_7MO1u0CVovClWPMyfxvaajXu9EtcrMNVOmg0azbZMMXd8i1nboR8Pld8mtQ0OUcjwtomdPJ5-GQ2tOTb_h71bmEYtcH0GoKgTGtlhmmxUNQi_WX1LRgKDi7m1h35aGYs_qaOp-fFHU6GZA6amYz-DMgcvV45RfVPXJwKYy_TzaLsvAPCOXcu1wyC7fBA8FG2PvMQSDHlYsSiHh7hHXM1bbFOseWG6ca9jwoD43y0DzUKA-N8uiRV6sp8wbo4yLidyixFSFidNc3yrOZbk1eZ3mqpMmzRDkmcu5NyoQxLmQm4ZmMox55ivLWiMJRYJrPzCyrSk--ftEDLD-OwYxkj7xsifIS3sCatmoC-IDAXWuU_TVKcBN2bfgZqNXaE48HU40VD5rhrjVJ4h_AuH6ndrp1ZpX-a3pbFw8_IdfH-5-mejrZ231IbiCnsGyTqz7ZXJwt_SOI3xbZ49poKDm6bCv9A-RrVJ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVCAuvBGBACseQkJys-vHeoOEUJoSElqqUqjobVnvrkNFcUIdg8qNv8Vf4c8w40cgPfTWAzfHO47s9cw3s-uZbwh5lCDggZvxfCcjL4wD6_WkDD18_Ulq0zSo2D63xWgvfL0f7a-QX00tDKZVNphYArWdGtwj7yLvWQSxMou6aZ0WsbMxfDH76mEHKfzS2rTTqFRk0x1_h-Vb_ny8Ae_6se8PX74fjLy6w4BnIi7nXqSdE5JDhGmlbxIjbAj3LAMNh8yB6lsN4YMMXSgSroWVgTFMWwbHPSskEjEB_K9KISO_RVbXh2_efmj8gAh5SfOLjHJeAHFQ9U0VIqawCyBmMSfCx004n2Gz8X-8Ytk8YOEizn3CDM0TjqL0fsPL5Hczb1XSy-e1Yp6smR8nKCX_z4m9Qi7VQTntV1Z0lay47Bo5_6psenx8nfzsZ7SY4dYInaZ0vDMYUHN48AV_L7q0UOxwARZMYRFA8yLBEgAI4LHWlOqa-AWvbi4sOxBRzM99Rq1LD7IydQ5ELdWTCfwZCNlyPHfz_AbZO5Pnv0la2TRztwjl3NlUMAOnAW1h0e9cYiFo5dIGMUT3bcIa1VGm5nXH9iKHCtZ3qG0KtU1xX6G2KdS2Nnm6uGRWkZqcJryO-rgQRD7y8sT0aKJqeFNJ2pNCp0ksLQtT7nSPhVpbn-mYJyIK2uQBarNCxpEMVWyiizxX43e7qo-l1hFAhmiTJ7VQOoUnMLquEIF5QJKyJcnOkiRAolkafghGs3THo_6WwuoOxXCFHsfRN5i4TmMQqgbuXP21htunD98nF8BM1NZ4e_MOuYgThRWqXHZIa35UuLsQqs6TezUmUPLxrK3lD4wIodc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+of+IPCC+climate+reference+regions+for+subcontinental+analysis+of+climate+model+data%3A+definition+and+aggregated+datasets&rft.jtitle=Earth+system+science+data&rft.au=Iturbide%2C+Maialen&rft.au=Guti%C3%A9rrez%2C+Jos%C3%A9+M.&rft.au=Alves%2C+Lincoln+M.&rft.au=Bedia%2C+Joaqu%C3%ADn&rft.date=2020-11-18&rft.issn=1866-3516&rft.eissn=1866-3516&rft.volume=12&rft.issue=4&rft.spage=2959&rft.epage=2970&rft_id=info:doi/10.5194%2Fessd-12-2959-2020&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_essd_12_2959_2020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |