Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts
As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their ap...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5662 - 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li
x
MoS
2
as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10
6
cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS
2
as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.
The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS
2
semiconducting channels with phase-engineered 1T-Li
x
MoS
2
edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >10
6
cycles and expected retention lifetime of >10 years. |
---|---|
AbstractList | As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li
x
MoS
2
as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10
6
cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS
2
as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.
The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS
2
semiconducting channels with phase-engineered 1T-Li
x
MoS
2
edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >10
6
cycles and expected retention lifetime of >10 years. As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the 'speed-retention-endurance' dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10-100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the 'speed-retention-endurance' dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10-100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage. Abstract As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage. As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li x MoS 2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10 6 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS 2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage. As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS2 semiconducting channels with phase-engineered 1T-LixMoS2 edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >106 cycles and expected retention lifetime of >10 years. |
ArticleNumber | 5662 |
Author | Miao, Xiangshui Chen, Zirui Zhuge, Fuwei Ma, Ying Hu, Man Zhai, Tianyou Yu, Jun Wang, Han Xu, Xiang He, Yuhui |
Author_xml | – sequence: 1 givenname: Jun surname: Yu fullname: Yu, Jun organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Han surname: Wang fullname: Wang, Han organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Fuwei orcidid: 0000-0003-3673-2257 surname: Zhuge fullname: Zhuge, Fuwei email: zhugefw@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 4 givenname: Zirui surname: Chen fullname: Chen, Zirui organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology – sequence: 5 givenname: Man surname: Hu fullname: Hu, Man organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 6 givenname: Xiang surname: Xu fullname: Xu, Xiang organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 7 givenname: Yuhui surname: He fullname: He, Yuhui organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology – sequence: 8 givenname: Ying orcidid: 0000-0002-5649-7410 surname: Ma fullname: Ma, Ying email: yingma@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology – sequence: 9 givenname: Xiangshui orcidid: 0000-0002-3999-7421 surname: Miao fullname: Miao, Xiangshui organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology – sequence: 10 givenname: Tianyou orcidid: 0000-0003-0985-4806 surname: Zhai fullname: Zhai, Tianyou email: zhaity@hust.edu.cn organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology |
BookMark | eNp9UsFu1DAQjVARLaU_wMkSFy4BO3Zi-4RQBW2lShyAs-U4412vEnuxk7b79wxNEbSHWrL8NH7veWY8r6ujmCJU1VtGPzDK1ccimOhkTRteC8Y7Xt-9qE4aKljNZMOP_sPH1VkpO4qLa6aEeFUdcymp6Kg-qfbfw7SMs42QljIeCOJsvS0zsXEgOfULwvk21UOYIJaQoh2JH23ZkgmmlA9kgJvgoJDeFhhIimS_RVRD3IQIkDEGwwaIS3G2bi5vqpfejgXOHs7T6ufXLz_OL-vrbxdX55-va9cyNdctVb1zLW0FHYRQQsu-132HhYJVzstOCd9w4TTegu6llxI398I6Pljw_LS6Wn2HZHdmn8Nk88EkG8x9IOWNsXkObgTTAHZUemgZcME6pXjvZDfYVkmnoZPo9Wn12i_9BIODiE0aH5k-volhazbpxjAqtFa8QYf3Dw45_VqgzGYKxcE4ro03jeqE0poJjtR3T6i7tGRs-8riSjOtkaVWlsuplAzeuDDbGf8HEwgjvmz-jIlZx8TgmJj7MTF3KG2eSP8W8qyIr6KC5LiB_C-rZ1S_AWCe0x0 |
CitedBy_id | crossref_primary_10_1063_5_0196918 crossref_primary_10_1021_acs_chemmater_3c02521 crossref_primary_10_1021_acsphotonics_3c01922 crossref_primary_10_1016_j_mser_2025_100938 crossref_primary_10_1007_s40820_024_01461_x crossref_primary_10_1038_s41467_024_48690_7 crossref_primary_10_1021_acsami_4c18913 crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1002_adfm_202415360 crossref_primary_10_1002_admt_202400838 crossref_primary_10_1016_j_device_2024_100509 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1002_inf2_12599 crossref_primary_10_1002_adma_202309099 crossref_primary_10_1016_j_jallcom_2024_173699 crossref_primary_10_1088_1674_1056_ad8db4 crossref_primary_10_1038_s41928_024_01229_6 crossref_primary_10_1021_acs_nanolett_4c03828 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1021_acsnano_4c11898 crossref_primary_10_1002_adma_202307951 crossref_primary_10_1021_acsnano_3c12938 crossref_primary_10_1002_adfm_202405293 |
Cites_doi | 10.1002/inf2.12230 10.1126/science.aac9439 10.1021/nn3059136 10.1007/978-94-017-7512-0_1 10.1002/aelm.201800726 10.1038/s41586-020-2861-0 10.1103/PhysRevB.97.045425 10.1109/16.129096 10.1109/LED.2008.2008667 10.1088/2053-1583/aab728 10.1021/acsnano.0c10005 10.1109/TED.2022.3208804 10.1109/TED.2020.3008667 10.1063/1.2147714 10.1063/1.126845 10.1109/LED.2013.2265599 10.1038/nchem.2108 10.1038/s41586-021-03472-9 10.1109/ISSCC42613.2021.9365809 10.1002/adfm.201900657 10.1038/s41586-021-03339-z 10.1038/nmat4080 10.1038/s41928-017-0006-8 10.1002/adfm.201503645 10.1039/C9MH01923E 10.1109/LED.2007.897888 10.1063/1.4742861 10.1016/0039-6028(67)90117-3 10.1038/ncomms2652 10.1109/IRPS.2017.7936364 10.1109/TED.2017.2779182 10.1038/s41586-019-1013-x 10.1016/j.mee.2013.12.016 10.1002/adma.201808231 10.1038/s41565-021-00921-4 10.1038/s41565-023-01339-w 10.1038/nnano.2015.29 10.1109/TC.2016.2615038 10.1109/LED.2014.2320971 10.1109/TED.2014.2311100 10.1007/s11837-005-0111-4 10.1038/s41586-018-0129-8 10.1038/s41565-021-00904-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-41363-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_2e1037fe51e3416883bc76da587c9e67 PMC10499832 10_1038_s41467_023_41363_x |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: 2021YFA1200500 funderid: https://doi.org/10.13039/501100002855 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21825103, U21A2069 funderid: https://doi.org/10.13039/501100001809 – fundername: Item “large-scale and energy-efficient in-memory computing systems” of National Key Research and Development Program of China – fundername: ; – fundername: ; grantid: 21825103, U21A2069 – fundername: ; grantid: 2021YFA1200500 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-508bcc50540d448497bb9b6363ea8cf7684f234c9d44e9b7f777f73f4ac3daef3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:18:01 EDT 2025 Thu Aug 21 18:36:44 EDT 2025 Thu Jul 10 23:43:41 EDT 2025 Wed Aug 13 05:16:44 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 02:10:35 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-508bcc50540d448497bb9b6363ea8cf7684f234c9d44e9b7f777f73f4ac3daef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3673-2257 0000-0002-3999-7421 0000-0003-0985-4806 0000-0002-5649-7410 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41363-x |
PMID | 37704609 |
PQID | 2864389199 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e1037fe51e3416883bc76da587c9e67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499832 proquest_miscellaneous_2864899143 proquest_journals_2864389199 crossref_citationtrail_10_1038_s41467_023_41363_x crossref_primary_10_1038_s41467_023_41363_x springer_journals_10_1038_s41467_023_41363_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-13 |
PublicationDateYYYYMMDD | 2023-09-13 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | SasakiTMaterial and device structure designs for 2D memory devices based on the floating gate voltage trajectoryACS Nano202115665866681:CAS:528:DC%2BB3MXntFGju7g%3D10.1021/acsnano.0c1000533765381 ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat. Electron.20181222910.1038/s41928-017-0006-8 LiDNonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructuresAdv. Funct. Mater.201525736073651:CAS:528:DC%2BC2MXhslyhtrfJ10.1002/adfm.201503645 LiuLUltrafast non-volatile flash memory based on van der Waals heterostructuresNat. Nanotechnol.2021168748811:CAS:528:DC%2BB3MXht1Ghs7jP10.1038/s41565-021-00921-4340837732021NatNa..16..874L ShihCHLuoYXEffects of dopant-segregated profiles on Schottky barrier charge-trapping flash memoriesIEEE Trans. Electron Devices201461136113681:CAS:528:DC%2BC2cXhtVSgt7rE10.1109/TED.2014.23111002014ITED...61.1361S WongHSSalahuddinSMemory leads the way to better computingNat. Nanotechnol.2015101911941:CAS:528:DC%2BC2MXjvVCqt7o%3D10.1038/nnano.2015.29257401272015NatNa..10..191W WuLAtomically sharp interface enabled ultrahigh-speed non-volatile memory devicesNat. Nanotechnol.2021168828871:CAS:528:DC%2BB3MXhtVensbjF10.1038/s41565-021-00904-5339419192021NatNa..16..882W WangSPNew floating gate memory with excellent retention characteristicsAdv. Electron. Mater.20195180072610.1002/aelm.201800726 ChenYAn asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memoryMater. Horiz.20207133113401:CAS:528:DC%2BB3cXotFynsg%3D%3D10.1039/C9MH01923E PalumboFA review on dielectric breakdown in thin dielectrics: silicon dioxide, high‐k, and layered dielectricsAdv. Funct. Mater.201930190065710.1002/adfm.201900657 Park, H. et al. Impact of SiO2/Si interface micro-roughness on SILC distribution and dielectric breakdown: a comparative study with atomically flattened devices. In: 2017 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2017). LiuYApproaching the Schottky-Mott limit in van der Waals metal-semiconductor junctionsNature20185576967001:CAS:528:DC%2BC1cXpvVSjsbs%3D10.1038/s41586-018-0129-8297697292018Natur.557..696L WangYABand-tailored van der Waals heterostructure for multilevel memory and artificial synapseInfomat202139179281:CAS:528:DC%2BB3MXis1Ojt7%2FN10.1002/inf2.12230 Badaroglu, M. International Roadmap for Devices and Systems 2021 (IEEE, 2021); https://irds.ieee.org/editions/2021. LinLGuoYRobertsonJMetal silicide Schottky barriers on Si and Ge show weaker Fermi level pinningAppl. Phys. Lett.201210105211010.1063/1.47428612012ApPhL.101e2110L Yosuke, K. et al. Disturbless flash memory due to high boost efficiency on BiCS structure and optimal memory film stack for ultra high density storage device. In: 2008 IEEE International Electron Devices Meeting (IEDM), 1-4 (IEEE, 2008). HoudtJVAnalysis of the enhanced hot-electron injection in split-gate transistors useful for EEPROM applicationsIEEE Trans. Electron Devices1992391150115610.1109/16.1290961992ITED...39.1150V HuangXAn ultrafast bipolar flash memory for self-activated in-memory computingNat. Nanotechnol.2023184864921:CAS:528:DC%2BB3sXlslajsbY%3D10.1038/s41565-023-01339-w369413592023NatNa..18..486H FangHKOperation characteristics of gate-all-around junctionless flash memory devices with Si3N4/ZrO-based stacked trapping layerIEEE Trans. Electron Devices202067362636311:CAS:528:DC%2BB3cXitVCitL7F10.1109/TED.2020.30086672020ITED...67.3626F HattoriYTaniguchiTWatanabeKNagashioKImpact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurementPhys. Rev. B2018970454251:CAS:528:DC%2BC1MXlt1Cru70%3D10.1103/PhysRevB.97.0454252018PhRvB..97d5425H Sung-JinCEnhancement of program speed in dopant-segregated Schottky-Barrier (DSSB) FinFET SONOS for NAND-type flash memoryIEEE Electron Device Lett.200930788110.1109/LED.2008.20086672009IEDL...30...85S Park, J. W. et al. A 176-stacked 512Gb 3b/Cell 3D-NAND flash with 10.8Gb/mm2 density with a peripheral circuit under cell array architecture. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), 422-423 (IEEE, 2021). Advani, R. N. 3D Flash Memories Ch. 1 (Springer Netherlands, 2016). ZhaoPEvaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis2D Mater.2018503100210.1088/2053-1583/aab728 NowickiRInfluence of space-charge on potential barrier in field emissionSurf. Sci.1967835736910.1016/0039-6028(67)90117-31967SurSc...8..357N JeongJDynamic erase voltage and time scaling for extending lifetime of NAND flash-based SSDsIEEE Trans. Comput.201766616630362343310.1109/TC.2016.26150381366.94785 LombardoSDielectric breakdown mechanisms in gate oxidesJ. Appl. Phys.20059812130110.1063/1.21477142005JAP....98l1301L YangZA fermi‐level‐pinning‐free 1D electrical contact at the intrinsic 2D MoS2–metal junctionAdv. Mater.201931180823110.1002/adma.201808231 NovoselovKSMishchenkoACarvalhoACastro NetoAH2D materials and van der Waals heterostructuresScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac943927471306 ChenCChang-LiaoKWuKWangTImproved erasing speed in junctionless flash memory device by HfO2/Si3N4 stacked trapping layerIEEE Electron Device Lett.2013349939951:CAS:528:DC%2BC3sXhsVyntrbK10.1109/LED.2013.22655992013IEDL...34..993C BertolazziSKrasnozhonDKisANonvolatile memory cells based on MoS2/graphene heterostructuresACS Nano20137324632521:CAS:528:DC%2BC3sXktF2gu7o%3D10.1021/nn305913623510133 LiYA novel dual-doping floating-gate (DDFG) flash memory featuring low power and high reliability applicationIEEE Electron Device Lett.2007286226241:CAS:528:DC%2BD2sXotVajtLY%3D10.1109/LED.2007.8978882007IEDL...28..622L ChenLJMetal silicides: An integral part of microelectronicsJOM20055724301:CAS:528:DC%2BD2MXhtVyksLrN10.1007/s11837-005-0111-4 ChoiMSControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devicesNat. Commun.2013410.1038/ncomms2652235356452013NatCo...4.1624S UchidaKEnhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistorsAppl. Phys. Lett.200076399239941:CAS:528:DC%2BD3cXkt1Gnsro%3D10.1063/1.1268452000ApPhL..76.3992U KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK10.1038/nmat4080251735812014NatMa..13.1128K LiuYHuangYDuanXVan der Waals integration before and beyond two-dimensional materialsNature20195673233331:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x308947232019Natur.567..323L LinYRComparison with nitride interface defects and nanocrystals for charge trapping layer nanowire gate-all-around nonvolatile memory performanceIEEE Trans. Electron Devices2018654934981:CAS:528:DC%2BC1cXitFGrtb%2FL10.1109/TED.2017.27791822018ITED...65..493L ShenPCUltralow contact resistance between semimetal and monolayer semiconductorsNature20215932112171:CAS:528:DC%2BB3MXhtVOksb7M10.1038/s41586-021-03472-9339810502021Natur.593..211S LiuYPromises and prospects of two-dimensional transistorsNature202159143531:CAS:528:DC%2BB3MXls1Oitr0%3D10.1038/s41586-021-03339-z336586912021Natur.591...43L GehringASelberherrSModeling of tunneling current and gate dielectric reliability for nonvolatile memory devicesIEEE Trans. Electron Devices200443063191:CAS:528:DC%2BD28XhsVejtLc%3D Migliato MaregaGLogic-in-memory based on an atomically thin semiconductorNature202058772771:CAS:528:DC%2BB3cXit1GgtLjN10.1038/s41586-020-2861-0331492892020Natur.587...72M ChenGMetal floating gate memory device with SiO2/HfO2 dual-layer as engineered tunneling barrierIEEE Electron Device Lett.20143574474610.1109/LED.2014.2320971 VoiryDCovalent functionalization of monolayered transition metal dichalcogenides by phase engineeringNat. Chem.2015745491:CAS:528:DC%2BC2cXhvFKlsrjE10.1038/nchem.210825515889 PancieraFNi(Pt)-silicide contacts on CMOS devices: Impact of substrate nature and Pt concentration on the phase formationMicroelectron. Eng.201412034401:CAS:528:DC%2BC2cXnt1Ohsg%3D%3D10.1016/j.mee.2013.12.016 GiusiGMaregaGMKisAIannacconeGImpact of interface traps in floating-gate memory based on monolayer MoS2IEEE Trans. Electron Devices202269612161261:CAS:528:DC%2BB38XivFeqtbjM10.1109/TED.2022.32088042022ITED...69.6121G 41363_CR9 PC Shen (41363_CR37) 2021; 593 MS Choi (41363_CR22) 2013; 4 K Uchida (41363_CR12) 2000; 76 41363_CR5 Y Liu (41363_CR18) 2019; 567 41363_CR4 41363_CR1 HK Fang (41363_CR31) 2020; 67 41363_CR44 YR Lin (41363_CR30) 2018; 65 Y Li (41363_CR41) 2007; 28 KS Novoselov (41363_CR19) 2016; 353 P Zhao (41363_CR38) 2018; 5 JV Houdt (41363_CR10) 1992; 39 G Chen (41363_CR43) 2014; 35 J Jeong (41363_CR6) 2017; 66 G Giusi (41363_CR20) 2022; 69 F Panciera (41363_CR13) 2014; 120 CH Shih (41363_CR35) 2014; 61 Y Liu (41363_CR16) 2018; 557 L Liu (41363_CR29) 2021; 16 LJ Chen (41363_CR14) 2005; 57 L Lin (41363_CR15) 2012; 101 Z Yang (41363_CR17) 2019; 31 MA Zidan (41363_CR2) 2018; 1 Y Chen (41363_CR25) 2020; 7 R Nowicki (41363_CR39) 1967; 8 R Kappera (41363_CR33) 2014; 13 S Bertolazzi (41363_CR21) 2013; 7 YA Wang (41363_CR27) 2021; 3 C Chen (41363_CR42) 2013; 34 G Migliato Marega (41363_CR26) 2020; 587 SP Wang (41363_CR24) 2019; 5 X Huang (41363_CR32) 2023; 18 T Sasaki (41363_CR36) 2021; 15 S Lombardo (41363_CR7) 2005; 98 D Li (41363_CR23) 2015; 25 F Palumbo (41363_CR8) 2019; 30 D Voiry (41363_CR34) 2015; 7 C Sung-Jin (41363_CR11) 2009; 30 L Wu (41363_CR28) 2021; 16 A Gehring (41363_CR40) 2004; 4 HS Wong (41363_CR3) 2015; 10 Y Hattori (41363_CR45) 2018; 97 Y Liu (41363_CR46) 2021; 591 |
References_xml | – reference: ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat. Electron.20181222910.1038/s41928-017-0006-8 – reference: PalumboFA review on dielectric breakdown in thin dielectrics: silicon dioxide, high‐k, and layered dielectricsAdv. Funct. Mater.201930190065710.1002/adfm.201900657 – reference: FangHKOperation characteristics of gate-all-around junctionless flash memory devices with Si3N4/ZrO-based stacked trapping layerIEEE Trans. Electron Devices202067362636311:CAS:528:DC%2BB3cXitVCitL7F10.1109/TED.2020.30086672020ITED...67.3626F – reference: HoudtJVAnalysis of the enhanced hot-electron injection in split-gate transistors useful for EEPROM applicationsIEEE Trans. Electron Devices1992391150115610.1109/16.1290961992ITED...39.1150V – reference: Migliato MaregaGLogic-in-memory based on an atomically thin semiconductorNature202058772771:CAS:528:DC%2BB3cXit1GgtLjN10.1038/s41586-020-2861-0331492892020Natur.587...72M – reference: WangYABand-tailored van der Waals heterostructure for multilevel memory and artificial synapseInfomat202139179281:CAS:528:DC%2BB3MXis1Ojt7%2FN10.1002/inf2.12230 – reference: Park, H. et al. Impact of SiO2/Si interface micro-roughness on SILC distribution and dielectric breakdown: a comparative study with atomically flattened devices. In: 2017 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2017). – reference: LiYA novel dual-doping floating-gate (DDFG) flash memory featuring low power and high reliability applicationIEEE Electron Device Lett.2007286226241:CAS:528:DC%2BD2sXotVajtLY%3D10.1109/LED.2007.8978882007IEDL...28..622L – reference: KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK10.1038/nmat4080251735812014NatMa..13.1128K – reference: LiuLUltrafast non-volatile flash memory based on van der Waals heterostructuresNat. Nanotechnol.2021168748811:CAS:528:DC%2BB3MXht1Ghs7jP10.1038/s41565-021-00921-4340837732021NatNa..16..874L – reference: JeongJDynamic erase voltage and time scaling for extending lifetime of NAND flash-based SSDsIEEE Trans. Comput.201766616630362343310.1109/TC.2016.26150381366.94785 – reference: PancieraFNi(Pt)-silicide contacts on CMOS devices: Impact of substrate nature and Pt concentration on the phase formationMicroelectron. Eng.201412034401:CAS:528:DC%2BC2cXnt1Ohsg%3D%3D10.1016/j.mee.2013.12.016 – reference: LiuYApproaching the Schottky-Mott limit in van der Waals metal-semiconductor junctionsNature20185576967001:CAS:528:DC%2BC1cXpvVSjsbs%3D10.1038/s41586-018-0129-8297697292018Natur.557..696L – reference: VoiryDCovalent functionalization of monolayered transition metal dichalcogenides by phase engineeringNat. Chem.2015745491:CAS:528:DC%2BC2cXhvFKlsrjE10.1038/nchem.210825515889 – reference: NowickiRInfluence of space-charge on potential barrier in field emissionSurf. Sci.1967835736910.1016/0039-6028(67)90117-31967SurSc...8..357N – reference: HuangXAn ultrafast bipolar flash memory for self-activated in-memory computingNat. Nanotechnol.2023184864921:CAS:528:DC%2BB3sXlslajsbY%3D10.1038/s41565-023-01339-w369413592023NatNa..18..486H – reference: LiuYHuangYDuanXVan der Waals integration before and beyond two-dimensional materialsNature20195673233331:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x308947232019Natur.567..323L – reference: NovoselovKSMishchenkoACarvalhoACastro NetoAH2D materials and van der Waals heterostructuresScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac943927471306 – reference: BertolazziSKrasnozhonDKisANonvolatile memory cells based on MoS2/graphene heterostructuresACS Nano20137324632521:CAS:528:DC%2BC3sXktF2gu7o%3D10.1021/nn305913623510133 – reference: LinYRComparison with nitride interface defects and nanocrystals for charge trapping layer nanowire gate-all-around nonvolatile memory performanceIEEE Trans. Electron Devices2018654934981:CAS:528:DC%2BC1cXitFGrtb%2FL10.1109/TED.2017.27791822018ITED...65..493L – reference: ChenGMetal floating gate memory device with SiO2/HfO2 dual-layer as engineered tunneling barrierIEEE Electron Device Lett.20143574474610.1109/LED.2014.2320971 – reference: Badaroglu, M. International Roadmap for Devices and Systems 2021 (IEEE, 2021); https://irds.ieee.org/editions/2021. – reference: LiuYPromises and prospects of two-dimensional transistorsNature202159143531:CAS:528:DC%2BB3MXls1Oitr0%3D10.1038/s41586-021-03339-z336586912021Natur.591...43L – reference: ChoiMSControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devicesNat. Commun.2013410.1038/ncomms2652235356452013NatCo...4.1624S – reference: WangSPNew floating gate memory with excellent retention characteristicsAdv. Electron. Mater.20195180072610.1002/aelm.201800726 – reference: WongHSSalahuddinSMemory leads the way to better computingNat. Nanotechnol.2015101911941:CAS:528:DC%2BC2MXjvVCqt7o%3D10.1038/nnano.2015.29257401272015NatNa..10..191W – reference: ZhaoPEvaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis2D Mater.2018503100210.1088/2053-1583/aab728 – reference: UchidaKEnhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistorsAppl. Phys. Lett.200076399239941:CAS:528:DC%2BD3cXkt1Gnsro%3D10.1063/1.1268452000ApPhL..76.3992U – reference: Park, J. W. et al. A 176-stacked 512Gb 3b/Cell 3D-NAND flash with 10.8Gb/mm2 density with a peripheral circuit under cell array architecture. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), 422-423 (IEEE, 2021). – reference: YangZA fermi‐level‐pinning‐free 1D electrical contact at the intrinsic 2D MoS2–metal junctionAdv. Mater.201931180823110.1002/adma.201808231 – reference: LiDNonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructuresAdv. Funct. Mater.201525736073651:CAS:528:DC%2BC2MXhslyhtrfJ10.1002/adfm.201503645 – reference: Sung-JinCEnhancement of program speed in dopant-segregated Schottky-Barrier (DSSB) FinFET SONOS for NAND-type flash memoryIEEE Electron Device Lett.200930788110.1109/LED.2008.20086672009IEDL...30...85S – reference: ChenLJMetal silicides: An integral part of microelectronicsJOM20055724301:CAS:528:DC%2BD2MXhtVyksLrN10.1007/s11837-005-0111-4 – reference: ShenPCUltralow contact resistance between semimetal and monolayer semiconductorsNature20215932112171:CAS:528:DC%2BB3MXhtVOksb7M10.1038/s41586-021-03472-9339810502021Natur.593..211S – reference: GehringASelberherrSModeling of tunneling current and gate dielectric reliability for nonvolatile memory devicesIEEE Trans. Electron Devices200443063191:CAS:528:DC%2BD28XhsVejtLc%3D – reference: LinLGuoYRobertsonJMetal silicide Schottky barriers on Si and Ge show weaker Fermi level pinningAppl. Phys. Lett.201210105211010.1063/1.47428612012ApPhL.101e2110L – reference: GiusiGMaregaGMKisAIannacconeGImpact of interface traps in floating-gate memory based on monolayer MoS2IEEE Trans. Electron Devices202269612161261:CAS:528:DC%2BB38XivFeqtbjM10.1109/TED.2022.32088042022ITED...69.6121G – reference: LombardoSDielectric breakdown mechanisms in gate oxidesJ. Appl. Phys.20059812130110.1063/1.21477142005JAP....98l1301L – reference: Yosuke, K. et al. Disturbless flash memory due to high boost efficiency on BiCS structure and optimal memory film stack for ultra high density storage device. In: 2008 IEEE International Electron Devices Meeting (IEDM), 1-4 (IEEE, 2008). – reference: HattoriYTaniguchiTWatanabeKNagashioKImpact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurementPhys. Rev. B2018970454251:CAS:528:DC%2BC1MXlt1Cru70%3D10.1103/PhysRevB.97.0454252018PhRvB..97d5425H – reference: ChenYAn asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memoryMater. Horiz.20207133113401:CAS:528:DC%2BB3cXotFynsg%3D%3D10.1039/C9MH01923E – reference: SasakiTMaterial and device structure designs for 2D memory devices based on the floating gate voltage trajectoryACS Nano202115665866681:CAS:528:DC%2BB3MXntFGju7g%3D10.1021/acsnano.0c1000533765381 – reference: ChenCChang-LiaoKWuKWangTImproved erasing speed in junctionless flash memory device by HfO2/Si3N4 stacked trapping layerIEEE Electron Device Lett.2013349939951:CAS:528:DC%2BC3sXhsVyntrbK10.1109/LED.2013.22655992013IEDL...34..993C – reference: WuLAtomically sharp interface enabled ultrahigh-speed non-volatile memory devicesNat. Nanotechnol.2021168828871:CAS:528:DC%2BB3MXhtVensbjF10.1038/s41565-021-00904-5339419192021NatNa..16..882W – reference: ShihCHLuoYXEffects of dopant-segregated profiles on Schottky barrier charge-trapping flash memoriesIEEE Trans. Electron Devices201461136113681:CAS:528:DC%2BC2cXhtVSgt7rE10.1109/TED.2014.23111002014ITED...61.1361S – reference: Advani, R. N. 3D Flash Memories Ch. 1 (Springer Netherlands, 2016). – volume: 3 start-page: 917 year: 2021 ident: 41363_CR27 publication-title: Infomat doi: 10.1002/inf2.12230 – volume: 353 start-page: aac9439 year: 2016 ident: 41363_CR19 publication-title: Science doi: 10.1126/science.aac9439 – volume: 7 start-page: 3246 year: 2013 ident: 41363_CR21 publication-title: ACS Nano doi: 10.1021/nn3059136 – ident: 41363_CR44 doi: 10.1007/978-94-017-7512-0_1 – volume: 5 start-page: 1800726 year: 2019 ident: 41363_CR24 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800726 – volume: 587 start-page: 72 year: 2020 ident: 41363_CR26 publication-title: Nature doi: 10.1038/s41586-020-2861-0 – volume: 97 start-page: 045425 year: 2018 ident: 41363_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.045425 – volume: 39 start-page: 1150 year: 1992 ident: 41363_CR10 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.129096 – volume: 30 start-page: 78 year: 2009 ident: 41363_CR11 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2008.2008667 – volume: 5 start-page: 031002 year: 2018 ident: 41363_CR38 publication-title: 2D Mater. doi: 10.1088/2053-1583/aab728 – volume: 15 start-page: 6658 year: 2021 ident: 41363_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.0c10005 – volume: 69 start-page: 6121 year: 2022 ident: 41363_CR20 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3208804 – volume: 67 start-page: 3626 year: 2020 ident: 41363_CR31 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2020.3008667 – ident: 41363_CR1 – volume: 98 start-page: 121301 year: 2005 ident: 41363_CR7 publication-title: J. Appl. Phys. doi: 10.1063/1.2147714 – volume: 76 start-page: 3992 year: 2000 ident: 41363_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126845 – volume: 34 start-page: 993 year: 2013 ident: 41363_CR42 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2265599 – volume: 7 start-page: 45 year: 2015 ident: 41363_CR34 publication-title: Nat. Chem. doi: 10.1038/nchem.2108 – volume: 593 start-page: 211 year: 2021 ident: 41363_CR37 publication-title: Nature doi: 10.1038/s41586-021-03472-9 – ident: 41363_CR5 – ident: 41363_CR4 doi: 10.1109/ISSCC42613.2021.9365809 – volume: 4 start-page: 306 year: 2004 ident: 41363_CR40 publication-title: IEEE Trans. Electron Devices – volume: 30 start-page: 1900657 year: 2019 ident: 41363_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900657 – volume: 591 start-page: 43 year: 2021 ident: 41363_CR46 publication-title: Nature doi: 10.1038/s41586-021-03339-z – volume: 13 start-page: 1128 year: 2014 ident: 41363_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat4080 – volume: 1 start-page: 22 year: 2018 ident: 41363_CR2 publication-title: Nat. Electron. doi: 10.1038/s41928-017-0006-8 – volume: 25 start-page: 7360 year: 2015 ident: 41363_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503645 – volume: 7 start-page: 1331 year: 2020 ident: 41363_CR25 publication-title: Mater. Horiz. doi: 10.1039/C9MH01923E – volume: 28 start-page: 622 year: 2007 ident: 41363_CR41 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.897888 – volume: 101 start-page: 052110 year: 2012 ident: 41363_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742861 – volume: 8 start-page: 357 year: 1967 ident: 41363_CR39 publication-title: Surf. Sci. doi: 10.1016/0039-6028(67)90117-3 – volume: 4 year: 2013 ident: 41363_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms2652 – ident: 41363_CR9 doi: 10.1109/IRPS.2017.7936364 – volume: 65 start-page: 493 year: 2018 ident: 41363_CR30 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2779182 – volume: 567 start-page: 323 year: 2019 ident: 41363_CR18 publication-title: Nature doi: 10.1038/s41586-019-1013-x – volume: 120 start-page: 34 year: 2014 ident: 41363_CR13 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2013.12.016 – volume: 31 start-page: 1808231 year: 2019 ident: 41363_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201808231 – volume: 16 start-page: 874 year: 2021 ident: 41363_CR29 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00921-4 – volume: 18 start-page: 486 year: 2023 ident: 41363_CR32 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01339-w – volume: 10 start-page: 191 year: 2015 ident: 41363_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.29 – volume: 66 start-page: 616 year: 2017 ident: 41363_CR6 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2016.2615038 – volume: 35 start-page: 744 year: 2014 ident: 41363_CR43 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2014.2320971 – volume: 61 start-page: 1361 year: 2014 ident: 41363_CR35 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2014.2311100 – volume: 57 start-page: 24 year: 2005 ident: 41363_CR14 publication-title: JOM doi: 10.1007/s11837-005-0111-4 – volume: 557 start-page: 696 year: 2018 ident: 41363_CR16 publication-title: Nature doi: 10.1038/s41586-018-0129-8 – volume: 16 start-page: 882 year: 2021 ident: 41363_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00904-5 |
SSID | ssj0000391844 |
Score | 2.5657544 |
Snippet | As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the... Abstract As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5662 |
SubjectTerms | 140/133 142/126 147/137 147/143 147/3 639/301/1005 639/925/927/1007 Carrier injection Data storage Density Efficiency Electric fields Fatigue limit Flash memory (computers) Graphene Heterostructures Humanities and Social Sciences Lithium Memory cells Memory devices Molybdenum disulfide multidisciplinary Performance enhancement Phase transitions Retention Robustness Science Science (multidisciplinary) Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifmL1lAi-abhL0jbpo4rHIeiLHtxbyMeEPTi7y24Pb_97Z9Luej1QX3wohCSlSWYyH83kN4y9UTanpGIUyYRG1CCtCMofC5DQGYgZuYAuCn_52p6e1Z_Pm_Mbqb4oJmyEBx4X7kgB3WTL0EhAgdtaq0M0bfKNNbGDttwjR513w5kqMlh36LrU0y2ZY22PNnWRCaiiBMrtVovrmSYqgP0zK_N2jOStg9Kif04esPuT4cjfjwN-yO5A_4jdHVNJbh-z1bcLig30PaArf7nlWF777DcD933i62W4wuLwcykSwfmPUBw8o-m84D8o2HbLExShwUmvJb7s-WqBJQETYCHW0a83TrHtPg6bJ-zs5NP3j6diyqYgYiPtINASCzE2ZKIl9MnqzoTQhRaXAryNmQ7kstJ17LAVumCyMfjoXPuok4esn7KDftnDM8ZlMgqsBpuzqtucfW1847NVMmmNdRWTu5V1cYIap4wXl64ceWvrRmo4pIYr1HDXFXu7f2c1Am38tfcHIti-J4FklwpkHTexjvsX61TscEduN-3cjVO2pYTwsusq9nrfjHuODlJGIpY-6KeiqVkxO2OT2YDmLf3FoqB3S3IyUY5W7N2Oo35__c8zfv4_ZvyC3VO0AygFhj5kB8P6Cl6iUTWEV2X__AJsfSDD priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmK9UyL4puEuH23SJ1FxPQR90YN7K_l0D8523fa42__embS7Rw-8h0JIUppmJjOTzOQ3hLwVJoUgvGdBu5KpyA1zwh6xyGOto0_ABXhR-PuP6vhEfTstT6cDt34Kq9zKxCyoQ-fxjPxQmAoTdfO6_rD6yzBrFHpXpxQad8k9DpoGQ7rM4uvujAXRz41S012ZI2kOe5UlAygqBtK7kuxqpo8ybP_M1rwZKXnDXZq10OIReTiZj_TjSO_H5E5sn5D7Y0LJzVOy-nmGEYK2jbChP99QKK9tsv1AbRvounMXUBwuOxYQ1H8E5KAJDOgl_YMhtxsaYhYdFLVboF1LV0sosTjBFkIdHsBRjHC3fuifkZPFl1-fj9mUU4H5kpuBgT3mvC_RUAuwM1O1dq52FUxFtMYndMslIZWvoTXWTiet4ZFJWS-DjUk-J3tt18YXhPKgRTQympSEqlKyStvSJiN4kBLqCsK3M9v4CXAc816cN9nxLU0zUqMBajSZGs1VQd7t3lmNcBu39v6EBNv1RKjsXNGtfzfTymtExKuQKZY8gsaujJHO6yrY0mhfx0oX5GBL7mZav31zzW0FebNrhpWH7pSRiLkP7FbB4CyImbHJbEDzlvZsmTG8OW41QZoW5P2Wo66__v8_fnn7YPfJA4G8jSku5AHZG9YX8RUYTYN7nVfGPxYxGO0 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HHYIv4if2PCWCbxq8JmmTPq7icSzoy3lwbyGf7sHZLrs9dP97Z9J2pYcKPhRCMqVpZpKZZCa_IeQN1ykE7j0LylVMxlIzx-0pi2VsVPQJpAAvCn_-Up9fyuVVdXVA-HQXJgftZ0jLvExP0WHvtzJPadAwDJbdWjCwG48Qqh1k-2ixWF4s9ycriHmupRxvyJwK_YeXZ1oog_XPLMy78ZF3nKRZ95w9JA9Go5Euhm4-IgexfUzuDWkkd0_I-uIa4wJtG2Ebf7OjUN7YZLc9tW2gm87dQrH_0bGAUP4DDAdNYDav6HcMtN3REPOCQVGnBdq1dL2CEosjWCHU4bEbxbh26_vtU3J59unrx3M2ZlJgvip1z8AKc95XaJ4F2I_JRjnXuBqGIlrtEzrjEhfSN9AaG6eSUvCIJK0XwcYknpHDtmvjc0LLoHjUIuqUuKxTslLZyibNyyAE1BWknEbW-BFmHLNd3Jjs7hbaDNwwwA2TuWF-FuTt_p31ALLxT-oPyLA9JQJk54pu882MAmN4xAuQKVZlBD1day2cV3WwlVa-ibUqyMnEbjPO2q3husZk8GXTFOT1vhnmGzpRBiZmGtijgplZED0Tk1mH5i3t9Sojd5e4wYQ1tCDvJon6_fW___Hx_5G_IPc5yjomuhAn5LDf3MaXYDr17tU4V34B45sYcg priority: 102 providerName: Springer Nature |
Title | Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts |
URI | https://link.springer.com/article/10.1038/s41467-023-41363-x https://www.proquest.com/docview/2864389199 https://www.proquest.com/docview/2864899143 https://pubmed.ncbi.nlm.nih.gov/PMC10499832 https://doaj.org/article/2e1037fe51e3416883bc76da587c9e67 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTaC9ID5FYFRG4g0MJE5i5wGhrlqZKm1CjEp9ixx_0EklLW0m1v-eOyct6jR44CGJZTtK4rvz_S5n3wG8TpS3NjGGW1llPHWx4lWiP3AXu0I645ELaKPw2Xl-Ok5Hk2yyB5t0R90Arm417Sif1Hg5e3f9c_0JBf5ju2VcvV-lQdxR-3CcknPBEVMeoGaSlNHgrIP7YWYWBRo0abd35vZbD-GekJLchcWOqgoR_Xdg6M1FlDc8qUFBDR_A_Q5Zsn7LCg9hz9WP4G6ba3L9GBYXl7R4UNcObf3ZmmF5qb1eNUzXli3n1RUWm19zbinefxurg3nE1lP2g1bjrpl1YVZhpPgsm9dsMcUSd11EQ6yjf3OMFr9r06yewHh48m1wyrt0C9xksWo4QrXKmIwwnEWjLS1kVRVVjqPitDKePHY-EakpsNUVlfRS4iF8qo2w2nnxFPbree2eAYutTJwSTnmfpLn3OpU6014lsRUC6yKINyNbmi4WOaXEmJXBJy5U2RKmRMKUgTDldQRvtvcs2kgc_-x9TATb9qQo2qFivvxedkJZJo52SXqXxQ6Vea6UqIzMrc6UNIXLZQRHG3KXG84sE5VTxvi4KCJ4tW1GoSRPS0vE0AcNWcSiEagdNtl5od2W-nIawnvHZIXiRBvB2w1H_Xn637_4-f8_6QUcJiQClBlDHMF-s7xyLxFrNVUP7siJxLMafu7BQb8_uhjh9fjk_MtXrB3kg174i9ELgvYbkf8wiQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmC1sZPYOSDEa9nSx4VW6i04frCVSrLdZNXun-I3MuMkW20leuthJct2No8Zz4w9j4-QN1x5a7kxzMoyZYmLFSu53mYudrl0xgMXYKLw_kE2Pkp-HKfHa-TvkAuDYZWDTAyC2tYGz8i3uMoQqDvO84_TM4aoUehdHSA0OrbYdYtz2LI1H3a-An3fcj76dvhlzHpUAWbSWLUMLJLSmBRNFQt7kySXZZmXmciE08p4dEx5LhKTw6jLS-mlhJ_wiTbCaucF_O8tcjsRoMkxM330fXmmg9XWVZL0uTnbQm01SZBEoBgZaItMsIsV_RdgAlZs26uRmVfcs0HrjR6Q-725Sj91_PWQrLnqEbnTAVguHpPpzxOMSNSVq-fN6YJCe6a9blqqK0tndTmHZnteM4sgAl0BEOrBYJ_QPxjiu6DWBVFFUZtaWld0OoEWc32ZROjDAz-KEfXatM0TcnQjX_spWa_qyj0jNLaSOyWc8p4nmfc6kTrVXvHYCgF9EYmHL1uYvsA54mycFsHRLlTRUaMAahSBGsVFRN4tr5l25T2unf0ZCbaciaW5Q0c9-130K73gDlMvvUtjBxZCppQojcysTpU0uctkRDYHche9vGiKS-6OyOvlMKx0dN90RAxzYHcMBm5E1AqbrDzQ6kh1Mgk1w2Pc2oL0jsj7gaMu7_7_N964_mFfkbvjw_29Ym_nYPc5uceRzxFeQ2yS9XY2dy_AYGvLl2GVUPLrppflPxtaVj8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbgbggniKlgJHgBNY2dhI7B4Qo7aqlsKqASr2ljh9spZJsN1m1-2t8HTN5bLWV6K2HSJbtJE7m7RnPEPKWK28tN4ZZmccscqFiOddbzIUulc54wAI8KPx9nOwdRV-P4-M18rc_C4NhlT1PbBi1LQ3ukQ-5SrBQd5imQ9-FRRzujD5NzxlWkEJPa19Oo0WRA7e4APOt-ri_A7B-x_lo99eXPdZVGGAmDlXNQDvJjYlRbbFgp0SpzPM0T0QinFbGo5PKcxGZFEZdmksvJVzCR9oIq50X8Nw7ZF2iVTQg69u748Mfyx0ezL2uoqg7qbMl1LCKGr4EYpKB7EgEu1yRhk3RgBVN93qc5jVnbSMDRw_Jg055pZ9bbHtE1lzxmNxty1kunpDpz1OMT9SFK-fV2YJCe6a9rmqqC0tnZT6HZn1RMoslBdp0INSD-j6hfzDgd0GtaxgXRdlqaVnQ6QRazHVJE6EPt_8oxtdrU1dPydGt_O9nZFCUhXtOaGgld0o45T2PEu91JHWsveKhFQL6AhL2fzYzXbpzrLpxljVud6GyFhoZQCNroJFdBuT98p5pm-zjxtnbCLDlTEzU3XSUs99ZR_cZd3gQ07s4dKAvJEqJ3MjE6lhJk7pEBmSzB3fWcY8qu8L1gLxZDgPdozOnBWIzB2xlUHcDolbQZGVBqyPF6aTJIB6ioQu8PCAfeoy6evv_v3jj5sW-JveAJLNv--ODF-Q-RzTHWhtikwzq2dy9BO2tzl91ZELJyW1T5j-WL1vR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneously+ultrafast+and+robust+two-dimensional+flash+memory+devices+based+on+phase-engineered+edge+contacts&rft.jtitle=Nature+communications&rft.au=Yu%2C+Jun&rft.au=Wang%2C+Han&rft.au=Zhuge%2C+Fuwei&rft.au=Chen%2C+Zirui&rft.date=2023-09-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft_id=info:doi/10.1038%2Fs41467-023-41363-x&rft_id=info%3Apmid%2F37704609&rft.externalDocID=PMC10499832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |