Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts

As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their ap...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5662 - 9
Main Authors Yu, Jun, Wang, Han, Zhuge, Fuwei, Chen, Zirui, Hu, Man, Xu, Xiang, He, Yuhui, Ma, Ying, Miao, Xiangshui, Zhai, Tianyou
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li x MoS 2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10 6 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS 2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage. The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS 2 semiconducting channels with phase-engineered 1T-Li x MoS 2 edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >10 6 cycles and expected retention lifetime of >10 years.
AbstractList As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li x MoS 2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10 6 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS 2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage. The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS 2 semiconducting channels with phase-engineered 1T-Li x MoS 2 edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >10 6 cycles and expected retention lifetime of >10 years.
As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the 'speed-retention-endurance' dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10-100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the 'speed-retention-endurance' dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10-100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.
Abstract As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.
As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-Li x MoS 2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>10 6 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS 2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.
As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the ‘speed-retention-endurance’ dilemma, their typical speed is limited to ~microseconds to milliseconds for program and erase operations, restricting their application in scenarios with high-speed data throughput. Here, by adopting metallic 1T-LixMoS2 as edge contact, we show that ultrafast (10–100 ns) and robust (endurance>106 cycles, retention>10 years) memory operation can be simultaneously achieved in a two-dimensional van der Waals heterostructure flash memory with 2H-MoS2 as semiconductor channel. We attribute the superior performance to the gate tunable Schottky barrier at the edge contact, which can facilitate hot carrier injection to the semiconductor channel and subsequent tunneling when compared to a conventional top contact with high density of defects at the metal interface. Our results suggest that contact engineering can become a strategy to further improve the performance of 2D flash memory devices and meet the increasing demands of high speed and reliable data storage.The speed-retention-endurance trade-off usually limits the performance of flash memory devices. Here, the authors report the realization of van der Waals flash memory cells based on 2H-MoS2 semiconducting channels with phase-engineered 1T-LixMoS2 edge contacts, showing program/erasing speed of ~10/100 ns, endurance of >106 cycles and expected retention lifetime of >10 years.
ArticleNumber 5662
Author Miao, Xiangshui
Chen, Zirui
Zhuge, Fuwei
Ma, Ying
Hu, Man
Zhai, Tianyou
Yu, Jun
Wang, Han
Xu, Xiang
He, Yuhui
Author_xml – sequence: 1
  givenname: Jun
  surname: Yu
  fullname: Yu, Jun
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Fuwei
  orcidid: 0000-0003-3673-2257
  surname: Zhuge
  fullname: Zhuge, Fuwei
  email: zhugefw@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 4
  givenname: Zirui
  surname: Chen
  fullname: Chen, Zirui
  organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology
– sequence: 5
  givenname: Man
  surname: Hu
  fullname: Hu, Man
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 6
  givenname: Xiang
  surname: Xu
  fullname: Xu, Xiang
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 7
  givenname: Yuhui
  surname: He
  fullname: He, Yuhui
  organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology
– sequence: 8
  givenname: Ying
  orcidid: 0000-0002-5649-7410
  surname: Ma
  fullname: Ma, Ying
  email: yingma@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
– sequence: 9
  givenname: Xiangshui
  orcidid: 0000-0002-3999-7421
  surname: Miao
  fullname: Miao, Xiangshui
  organization: Hubei Yangtze Memory Laboratory; School of Integrated circuits, Huazhong University of Science and Technology
– sequence: 10
  givenname: Tianyou
  orcidid: 0000-0003-0985-4806
  surname: Zhai
  fullname: Zhai, Tianyou
  email: zhaity@hust.edu.cn
  organization: State Key Laboratory of Materials Processing and Die and Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology
BookMark eNp9UsFu1DAQjVARLaU_wMkSFy4BO3Zi-4RQBW2lShyAs-U4412vEnuxk7b79wxNEbSHWrL8NH7veWY8r6ujmCJU1VtGPzDK1ccimOhkTRteC8Y7Xt-9qE4aKljNZMOP_sPH1VkpO4qLa6aEeFUdcymp6Kg-qfbfw7SMs42QljIeCOJsvS0zsXEgOfULwvk21UOYIJaQoh2JH23ZkgmmlA9kgJvgoJDeFhhIimS_RVRD3IQIkDEGwwaIS3G2bi5vqpfejgXOHs7T6ufXLz_OL-vrbxdX55-va9cyNdctVb1zLW0FHYRQQsu-132HhYJVzstOCd9w4TTegu6llxI398I6Pljw_LS6Wn2HZHdmn8Nk88EkG8x9IOWNsXkObgTTAHZUemgZcME6pXjvZDfYVkmnoZPo9Wn12i_9BIODiE0aH5k-volhazbpxjAqtFa8QYf3Dw45_VqgzGYKxcE4ro03jeqE0poJjtR3T6i7tGRs-8riSjOtkaVWlsuplAzeuDDbGf8HEwgjvmz-jIlZx8TgmJj7MTF3KG2eSP8W8qyIr6KC5LiB_C-rZ1S_AWCe0x0
CitedBy_id crossref_primary_10_1063_5_0196918
crossref_primary_10_1021_acs_chemmater_3c02521
crossref_primary_10_1021_acsphotonics_3c01922
crossref_primary_10_1016_j_mser_2025_100938
crossref_primary_10_1007_s40820_024_01461_x
crossref_primary_10_1038_s41467_024_48690_7
crossref_primary_10_1021_acsami_4c18913
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1002_adfm_202415360
crossref_primary_10_1002_admt_202400838
crossref_primary_10_1016_j_device_2024_100509
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1002_inf2_12599
crossref_primary_10_1002_adma_202309099
crossref_primary_10_1016_j_jallcom_2024_173699
crossref_primary_10_1088_1674_1056_ad8db4
crossref_primary_10_1038_s41928_024_01229_6
crossref_primary_10_1021_acs_nanolett_4c03828
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1021_acsnano_4c11898
crossref_primary_10_1002_adma_202307951
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1002_adfm_202405293
Cites_doi 10.1002/inf2.12230
10.1126/science.aac9439
10.1021/nn3059136
10.1007/978-94-017-7512-0_1
10.1002/aelm.201800726
10.1038/s41586-020-2861-0
10.1103/PhysRevB.97.045425
10.1109/16.129096
10.1109/LED.2008.2008667
10.1088/2053-1583/aab728
10.1021/acsnano.0c10005
10.1109/TED.2022.3208804
10.1109/TED.2020.3008667
10.1063/1.2147714
10.1063/1.126845
10.1109/LED.2013.2265599
10.1038/nchem.2108
10.1038/s41586-021-03472-9
10.1109/ISSCC42613.2021.9365809
10.1002/adfm.201900657
10.1038/s41586-021-03339-z
10.1038/nmat4080
10.1038/s41928-017-0006-8
10.1002/adfm.201503645
10.1039/C9MH01923E
10.1109/LED.2007.897888
10.1063/1.4742861
10.1016/0039-6028(67)90117-3
10.1038/ncomms2652
10.1109/IRPS.2017.7936364
10.1109/TED.2017.2779182
10.1038/s41586-019-1013-x
10.1016/j.mee.2013.12.016
10.1002/adma.201808231
10.1038/s41565-021-00921-4
10.1038/s41565-023-01339-w
10.1038/nnano.2015.29
10.1109/TC.2016.2615038
10.1109/LED.2014.2320971
10.1109/TED.2014.2311100
10.1007/s11837-005-0111-4
10.1038/s41586-018-0129-8
10.1038/s41565-021-00904-5
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41363-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_2e1037fe51e3416883bc76da587c9e67
PMC10499832
10_1038_s41467_023_41363_x
GrantInformation_xml – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2021YFA1200500
  funderid: https://doi.org/10.13039/501100002855
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21825103, U21A2069
  funderid: https://doi.org/10.13039/501100001809
– fundername: Item “large-scale and energy-efficient in-memory computing systems” of National Key Research and Development Program of China
– fundername: ;
– fundername: ;
  grantid: 21825103, U21A2069
– fundername: ;
  grantid: 2021YFA1200500
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-508bcc50540d448497bb9b6363ea8cf7684f234c9d44e9b7f777f73f4ac3daef3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:18:01 EDT 2025
Thu Aug 21 18:36:44 EDT 2025
Thu Jul 10 23:43:41 EDT 2025
Wed Aug 13 05:16:44 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 02:10:35 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-508bcc50540d448497bb9b6363ea8cf7684f234c9d44e9b7f777f73f4ac3daef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3673-2257
0000-0002-3999-7421
0000-0003-0985-4806
0000-0002-5649-7410
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41363-x
PMID 37704609
PQID 2864389199
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_2e1037fe51e3416883bc76da587c9e67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499832
proquest_miscellaneous_2864899143
proquest_journals_2864389199
crossref_citationtrail_10_1038_s41467_023_41363_x
crossref_primary_10_1038_s41467_023_41363_x
springer_journals_10_1038_s41467_023_41363_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-13
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SasakiTMaterial and device structure designs for 2D memory devices based on the floating gate voltage trajectoryACS Nano202115665866681:CAS:528:DC%2BB3MXntFGju7g%3D10.1021/acsnano.0c1000533765381
ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat. Electron.20181222910.1038/s41928-017-0006-8
LiDNonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructuresAdv. Funct. Mater.201525736073651:CAS:528:DC%2BC2MXhslyhtrfJ10.1002/adfm.201503645
LiuLUltrafast non-volatile flash memory based on van der Waals heterostructuresNat. Nanotechnol.2021168748811:CAS:528:DC%2BB3MXht1Ghs7jP10.1038/s41565-021-00921-4340837732021NatNa..16..874L
ShihCHLuoYXEffects of dopant-segregated profiles on Schottky barrier charge-trapping flash memoriesIEEE Trans. Electron Devices201461136113681:CAS:528:DC%2BC2cXhtVSgt7rE10.1109/TED.2014.23111002014ITED...61.1361S
WongHSSalahuddinSMemory leads the way to better computingNat. Nanotechnol.2015101911941:CAS:528:DC%2BC2MXjvVCqt7o%3D10.1038/nnano.2015.29257401272015NatNa..10..191W
WuLAtomically sharp interface enabled ultrahigh-speed non-volatile memory devicesNat. Nanotechnol.2021168828871:CAS:528:DC%2BB3MXhtVensbjF10.1038/s41565-021-00904-5339419192021NatNa..16..882W
WangSPNew floating gate memory with excellent retention characteristicsAdv. Electron. Mater.20195180072610.1002/aelm.201800726
ChenYAn asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memoryMater. Horiz.20207133113401:CAS:528:DC%2BB3cXotFynsg%3D%3D10.1039/C9MH01923E
PalumboFA review on dielectric breakdown in thin dielectrics: silicon dioxide, high‐k, and layered dielectricsAdv. Funct. Mater.201930190065710.1002/adfm.201900657
Park, H. et al. Impact of SiO2/Si interface micro-roughness on SILC distribution and dielectric breakdown: a comparative study with atomically flattened devices. In: 2017 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2017).
LiuYApproaching the Schottky-Mott limit in van der Waals metal-semiconductor junctionsNature20185576967001:CAS:528:DC%2BC1cXpvVSjsbs%3D10.1038/s41586-018-0129-8297697292018Natur.557..696L
WangYABand-tailored van der Waals heterostructure for multilevel memory and artificial synapseInfomat202139179281:CAS:528:DC%2BB3MXis1Ojt7%2FN10.1002/inf2.12230
Badaroglu, M. International Roadmap for Devices and Systems 2021 (IEEE, 2021); https://irds.ieee.org/editions/2021.
LinLGuoYRobertsonJMetal silicide Schottky barriers on Si and Ge show weaker Fermi level pinningAppl. Phys. Lett.201210105211010.1063/1.47428612012ApPhL.101e2110L
Yosuke, K. et al. Disturbless flash memory due to high boost efficiency on BiCS structure and optimal memory film stack for ultra high density storage device. In: 2008 IEEE International Electron Devices Meeting (IEDM), 1-4 (IEEE, 2008).
HoudtJVAnalysis of the enhanced hot-electron injection in split-gate transistors useful for EEPROM applicationsIEEE Trans. Electron Devices1992391150115610.1109/16.1290961992ITED...39.1150V
HuangXAn ultrafast bipolar flash memory for self-activated in-memory computingNat. Nanotechnol.2023184864921:CAS:528:DC%2BB3sXlslajsbY%3D10.1038/s41565-023-01339-w369413592023NatNa..18..486H
FangHKOperation characteristics of gate-all-around junctionless flash memory devices with Si3N4/ZrO-based stacked trapping layerIEEE Trans. Electron Devices202067362636311:CAS:528:DC%2BB3cXitVCitL7F10.1109/TED.2020.30086672020ITED...67.3626F
HattoriYTaniguchiTWatanabeKNagashioKImpact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurementPhys. Rev. B2018970454251:CAS:528:DC%2BC1MXlt1Cru70%3D10.1103/PhysRevB.97.0454252018PhRvB..97d5425H
Sung-JinCEnhancement of program speed in dopant-segregated Schottky-Barrier (DSSB) FinFET SONOS for NAND-type flash memoryIEEE Electron Device Lett.200930788110.1109/LED.2008.20086672009IEDL...30...85S
Park, J. W. et al. A 176-stacked 512Gb 3b/Cell 3D-NAND flash with 10.8Gb/mm2 density with a peripheral circuit under cell array architecture. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), 422-423 (IEEE, 2021).
Advani, R. N. 3D Flash Memories Ch. 1 (Springer Netherlands, 2016).
ZhaoPEvaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis2D Mater.2018503100210.1088/2053-1583/aab728
NowickiRInfluence of space-charge on potential barrier in field emissionSurf. Sci.1967835736910.1016/0039-6028(67)90117-31967SurSc...8..357N
JeongJDynamic erase voltage and time scaling for extending lifetime of NAND flash-based SSDsIEEE Trans. Comput.201766616630362343310.1109/TC.2016.26150381366.94785
LombardoSDielectric breakdown mechanisms in gate oxidesJ. Appl. Phys.20059812130110.1063/1.21477142005JAP....98l1301L
YangZA fermi‐level‐pinning‐free 1D electrical contact at the intrinsic 2D MoS2–metal junctionAdv. Mater.201931180823110.1002/adma.201808231
NovoselovKSMishchenkoACarvalhoACastro NetoAH2D materials and van der Waals heterostructuresScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac943927471306
ChenCChang-LiaoKWuKWangTImproved erasing speed in junctionless flash memory device by HfO2/Si3N4 stacked trapping layerIEEE Electron Device Lett.2013349939951:CAS:528:DC%2BC3sXhsVyntrbK10.1109/LED.2013.22655992013IEDL...34..993C
BertolazziSKrasnozhonDKisANonvolatile memory cells based on MoS2/graphene heterostructuresACS Nano20137324632521:CAS:528:DC%2BC3sXktF2gu7o%3D10.1021/nn305913623510133
LiYA novel dual-doping floating-gate (DDFG) flash memory featuring low power and high reliability applicationIEEE Electron Device Lett.2007286226241:CAS:528:DC%2BD2sXotVajtLY%3D10.1109/LED.2007.8978882007IEDL...28..622L
ChenLJMetal silicides: An integral part of microelectronicsJOM20055724301:CAS:528:DC%2BD2MXhtVyksLrN10.1007/s11837-005-0111-4
ChoiMSControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devicesNat. Commun.2013410.1038/ncomms2652235356452013NatCo...4.1624S
UchidaKEnhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistorsAppl. Phys. Lett.200076399239941:CAS:528:DC%2BD3cXkt1Gnsro%3D10.1063/1.1268452000ApPhL..76.3992U
KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK10.1038/nmat4080251735812014NatMa..13.1128K
LiuYHuangYDuanXVan der Waals integration before and beyond two-dimensional materialsNature20195673233331:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x308947232019Natur.567..323L
LinYRComparison with nitride interface defects and nanocrystals for charge trapping layer nanowire gate-all-around nonvolatile memory performanceIEEE Trans. Electron Devices2018654934981:CAS:528:DC%2BC1cXitFGrtb%2FL10.1109/TED.2017.27791822018ITED...65..493L
ShenPCUltralow contact resistance between semimetal and monolayer semiconductorsNature20215932112171:CAS:528:DC%2BB3MXhtVOksb7M10.1038/s41586-021-03472-9339810502021Natur.593..211S
LiuYPromises and prospects of two-dimensional transistorsNature202159143531:CAS:528:DC%2BB3MXls1Oitr0%3D10.1038/s41586-021-03339-z336586912021Natur.591...43L
GehringASelberherrSModeling of tunneling current and gate dielectric reliability for nonvolatile memory devicesIEEE Trans. Electron Devices200443063191:CAS:528:DC%2BD28XhsVejtLc%3D
Migliato MaregaGLogic-in-memory based on an atomically thin semiconductorNature202058772771:CAS:528:DC%2BB3cXit1GgtLjN10.1038/s41586-020-2861-0331492892020Natur.587...72M
ChenGMetal floating gate memory device with SiO2/HfO2 dual-layer as engineered tunneling barrierIEEE Electron Device Lett.20143574474610.1109/LED.2014.2320971
VoiryDCovalent functionalization of monolayered transition metal dichalcogenides by phase engineeringNat. Chem.2015745491:CAS:528:DC%2BC2cXhvFKlsrjE10.1038/nchem.210825515889
PancieraFNi(Pt)-silicide contacts on CMOS devices: Impact of substrate nature and Pt concentration on the phase formationMicroelectron. Eng.201412034401:CAS:528:DC%2BC2cXnt1Ohsg%3D%3D10.1016/j.mee.2013.12.016
GiusiGMaregaGMKisAIannacconeGImpact of interface traps in floating-gate memory based on monolayer MoS2IEEE Trans. Electron Devices202269612161261:CAS:528:DC%2BB38XivFeqtbjM10.1109/TED.2022.32088042022ITED...69.6121G
41363_CR9
PC Shen (41363_CR37) 2021; 593
MS Choi (41363_CR22) 2013; 4
K Uchida (41363_CR12) 2000; 76
41363_CR5
Y Liu (41363_CR18) 2019; 567
41363_CR4
41363_CR1
HK Fang (41363_CR31) 2020; 67
41363_CR44
YR Lin (41363_CR30) 2018; 65
Y Li (41363_CR41) 2007; 28
KS Novoselov (41363_CR19) 2016; 353
P Zhao (41363_CR38) 2018; 5
JV Houdt (41363_CR10) 1992; 39
G Chen (41363_CR43) 2014; 35
J Jeong (41363_CR6) 2017; 66
G Giusi (41363_CR20) 2022; 69
F Panciera (41363_CR13) 2014; 120
CH Shih (41363_CR35) 2014; 61
Y Liu (41363_CR16) 2018; 557
L Liu (41363_CR29) 2021; 16
LJ Chen (41363_CR14) 2005; 57
L Lin (41363_CR15) 2012; 101
Z Yang (41363_CR17) 2019; 31
MA Zidan (41363_CR2) 2018; 1
Y Chen (41363_CR25) 2020; 7
R Nowicki (41363_CR39) 1967; 8
R Kappera (41363_CR33) 2014; 13
S Bertolazzi (41363_CR21) 2013; 7
YA Wang (41363_CR27) 2021; 3
C Chen (41363_CR42) 2013; 34
G Migliato Marega (41363_CR26) 2020; 587
SP Wang (41363_CR24) 2019; 5
X Huang (41363_CR32) 2023; 18
T Sasaki (41363_CR36) 2021; 15
S Lombardo (41363_CR7) 2005; 98
D Li (41363_CR23) 2015; 25
F Palumbo (41363_CR8) 2019; 30
D Voiry (41363_CR34) 2015; 7
C Sung-Jin (41363_CR11) 2009; 30
L Wu (41363_CR28) 2021; 16
A Gehring (41363_CR40) 2004; 4
HS Wong (41363_CR3) 2015; 10
Y Hattori (41363_CR45) 2018; 97
Y Liu (41363_CR46) 2021; 591
References_xml – reference: ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat. Electron.20181222910.1038/s41928-017-0006-8
– reference: PalumboFA review on dielectric breakdown in thin dielectrics: silicon dioxide, high‐k, and layered dielectricsAdv. Funct. Mater.201930190065710.1002/adfm.201900657
– reference: FangHKOperation characteristics of gate-all-around junctionless flash memory devices with Si3N4/ZrO-based stacked trapping layerIEEE Trans. Electron Devices202067362636311:CAS:528:DC%2BB3cXitVCitL7F10.1109/TED.2020.30086672020ITED...67.3626F
– reference: HoudtJVAnalysis of the enhanced hot-electron injection in split-gate transistors useful for EEPROM applicationsIEEE Trans. Electron Devices1992391150115610.1109/16.1290961992ITED...39.1150V
– reference: Migliato MaregaGLogic-in-memory based on an atomically thin semiconductorNature202058772771:CAS:528:DC%2BB3cXit1GgtLjN10.1038/s41586-020-2861-0331492892020Natur.587...72M
– reference: WangYABand-tailored van der Waals heterostructure for multilevel memory and artificial synapseInfomat202139179281:CAS:528:DC%2BB3MXis1Ojt7%2FN10.1002/inf2.12230
– reference: Park, H. et al. Impact of SiO2/Si interface micro-roughness on SILC distribution and dielectric breakdown: a comparative study with atomically flattened devices. In: 2017 IEEE International Reliability Physics Symposium (IRPS) (IEEE, 2017).
– reference: LiYA novel dual-doping floating-gate (DDFG) flash memory featuring low power and high reliability applicationIEEE Electron Device Lett.2007286226241:CAS:528:DC%2BD2sXotVajtLY%3D10.1109/LED.2007.8978882007IEDL...28..622L
– reference: KapperaRPhase-engineered low-resistance contacts for ultrathin MoS2 transistorsNat. Mater.201413112811341:CAS:528:DC%2BC2cXhsVCrtLfK10.1038/nmat4080251735812014NatMa..13.1128K
– reference: LiuLUltrafast non-volatile flash memory based on van der Waals heterostructuresNat. Nanotechnol.2021168748811:CAS:528:DC%2BB3MXht1Ghs7jP10.1038/s41565-021-00921-4340837732021NatNa..16..874L
– reference: JeongJDynamic erase voltage and time scaling for extending lifetime of NAND flash-based SSDsIEEE Trans. Comput.201766616630362343310.1109/TC.2016.26150381366.94785
– reference: PancieraFNi(Pt)-silicide contacts on CMOS devices: Impact of substrate nature and Pt concentration on the phase formationMicroelectron. Eng.201412034401:CAS:528:DC%2BC2cXnt1Ohsg%3D%3D10.1016/j.mee.2013.12.016
– reference: LiuYApproaching the Schottky-Mott limit in van der Waals metal-semiconductor junctionsNature20185576967001:CAS:528:DC%2BC1cXpvVSjsbs%3D10.1038/s41586-018-0129-8297697292018Natur.557..696L
– reference: VoiryDCovalent functionalization of monolayered transition metal dichalcogenides by phase engineeringNat. Chem.2015745491:CAS:528:DC%2BC2cXhvFKlsrjE10.1038/nchem.210825515889
– reference: NowickiRInfluence of space-charge on potential barrier in field emissionSurf. Sci.1967835736910.1016/0039-6028(67)90117-31967SurSc...8..357N
– reference: HuangXAn ultrafast bipolar flash memory for self-activated in-memory computingNat. Nanotechnol.2023184864921:CAS:528:DC%2BB3sXlslajsbY%3D10.1038/s41565-023-01339-w369413592023NatNa..18..486H
– reference: LiuYHuangYDuanXVan der Waals integration before and beyond two-dimensional materialsNature20195673233331:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x308947232019Natur.567..323L
– reference: NovoselovKSMishchenkoACarvalhoACastro NetoAH2D materials and van der Waals heterostructuresScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac943927471306
– reference: BertolazziSKrasnozhonDKisANonvolatile memory cells based on MoS2/graphene heterostructuresACS Nano20137324632521:CAS:528:DC%2BC3sXktF2gu7o%3D10.1021/nn305913623510133
– reference: LinYRComparison with nitride interface defects and nanocrystals for charge trapping layer nanowire gate-all-around nonvolatile memory performanceIEEE Trans. Electron Devices2018654934981:CAS:528:DC%2BC1cXitFGrtb%2FL10.1109/TED.2017.27791822018ITED...65..493L
– reference: ChenGMetal floating gate memory device with SiO2/HfO2 dual-layer as engineered tunneling barrierIEEE Electron Device Lett.20143574474610.1109/LED.2014.2320971
– reference: Badaroglu, M. International Roadmap for Devices and Systems 2021 (IEEE, 2021); https://irds.ieee.org/editions/2021.
– reference: LiuYPromises and prospects of two-dimensional transistorsNature202159143531:CAS:528:DC%2BB3MXls1Oitr0%3D10.1038/s41586-021-03339-z336586912021Natur.591...43L
– reference: ChoiMSControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devicesNat. Commun.2013410.1038/ncomms2652235356452013NatCo...4.1624S
– reference: WangSPNew floating gate memory with excellent retention characteristicsAdv. Electron. Mater.20195180072610.1002/aelm.201800726
– reference: WongHSSalahuddinSMemory leads the way to better computingNat. Nanotechnol.2015101911941:CAS:528:DC%2BC2MXjvVCqt7o%3D10.1038/nnano.2015.29257401272015NatNa..10..191W
– reference: ZhaoPEvaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis2D Mater.2018503100210.1088/2053-1583/aab728
– reference: UchidaKEnhancement of hot-electron generation rate in Schottky source metal–oxide–semiconductor field-effect transistorsAppl. Phys. Lett.200076399239941:CAS:528:DC%2BD3cXkt1Gnsro%3D10.1063/1.1268452000ApPhL..76.3992U
– reference: Park, J. W. et al. A 176-stacked 512Gb 3b/Cell 3D-NAND flash with 10.8Gb/mm2 density with a peripheral circuit under cell array architecture. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), 422-423 (IEEE, 2021).
– reference: YangZA fermi‐level‐pinning‐free 1D electrical contact at the intrinsic 2D MoS2–metal junctionAdv. Mater.201931180823110.1002/adma.201808231
– reference: LiDNonvolatile floating-gate memories based on stacked black phosphorus-boron nitride-MoS2 heterostructuresAdv. Funct. Mater.201525736073651:CAS:528:DC%2BC2MXhslyhtrfJ10.1002/adfm.201503645
– reference: Sung-JinCEnhancement of program speed in dopant-segregated Schottky-Barrier (DSSB) FinFET SONOS for NAND-type flash memoryIEEE Electron Device Lett.200930788110.1109/LED.2008.20086672009IEDL...30...85S
– reference: ChenLJMetal silicides: An integral part of microelectronicsJOM20055724301:CAS:528:DC%2BD2MXhtVyksLrN10.1007/s11837-005-0111-4
– reference: ShenPCUltralow contact resistance between semimetal and monolayer semiconductorsNature20215932112171:CAS:528:DC%2BB3MXhtVOksb7M10.1038/s41586-021-03472-9339810502021Natur.593..211S
– reference: GehringASelberherrSModeling of tunneling current and gate dielectric reliability for nonvolatile memory devicesIEEE Trans. Electron Devices200443063191:CAS:528:DC%2BD28XhsVejtLc%3D
– reference: LinLGuoYRobertsonJMetal silicide Schottky barriers on Si and Ge show weaker Fermi level pinningAppl. Phys. Lett.201210105211010.1063/1.47428612012ApPhL.101e2110L
– reference: GiusiGMaregaGMKisAIannacconeGImpact of interface traps in floating-gate memory based on monolayer MoS2IEEE Trans. Electron Devices202269612161261:CAS:528:DC%2BB38XivFeqtbjM10.1109/TED.2022.32088042022ITED...69.6121G
– reference: LombardoSDielectric breakdown mechanisms in gate oxidesJ. Appl. Phys.20059812130110.1063/1.21477142005JAP....98l1301L
– reference: Yosuke, K. et al. Disturbless flash memory due to high boost efficiency on BiCS structure and optimal memory film stack for ultra high density storage device. In: 2008 IEEE International Electron Devices Meeting (IEDM), 1-4 (IEEE, 2008).
– reference: HattoriYTaniguchiTWatanabeKNagashioKImpact ionization and transport properties of hexagonal boron nitride in a constant-voltage measurementPhys. Rev. B2018970454251:CAS:528:DC%2BC1MXlt1Cru70%3D10.1103/PhysRevB.97.0454252018PhRvB..97d5425H
– reference: ChenYAn asymmetric hot carrier tunneling van der Waals heterostructure for multibit optoelectronic memoryMater. Horiz.20207133113401:CAS:528:DC%2BB3cXotFynsg%3D%3D10.1039/C9MH01923E
– reference: SasakiTMaterial and device structure designs for 2D memory devices based on the floating gate voltage trajectoryACS Nano202115665866681:CAS:528:DC%2BB3MXntFGju7g%3D10.1021/acsnano.0c1000533765381
– reference: ChenCChang-LiaoKWuKWangTImproved erasing speed in junctionless flash memory device by HfO2/Si3N4 stacked trapping layerIEEE Electron Device Lett.2013349939951:CAS:528:DC%2BC3sXhsVyntrbK10.1109/LED.2013.22655992013IEDL...34..993C
– reference: WuLAtomically sharp interface enabled ultrahigh-speed non-volatile memory devicesNat. Nanotechnol.2021168828871:CAS:528:DC%2BB3MXhtVensbjF10.1038/s41565-021-00904-5339419192021NatNa..16..882W
– reference: ShihCHLuoYXEffects of dopant-segregated profiles on Schottky barrier charge-trapping flash memoriesIEEE Trans. Electron Devices201461136113681:CAS:528:DC%2BC2cXhtVSgt7rE10.1109/TED.2014.23111002014ITED...61.1361S
– reference: Advani, R. N. 3D Flash Memories Ch. 1 (Springer Netherlands, 2016).
– volume: 3
  start-page: 917
  year: 2021
  ident: 41363_CR27
  publication-title: Infomat
  doi: 10.1002/inf2.12230
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 41363_CR19
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 7
  start-page: 3246
  year: 2013
  ident: 41363_CR21
  publication-title: ACS Nano
  doi: 10.1021/nn3059136
– ident: 41363_CR44
  doi: 10.1007/978-94-017-7512-0_1
– volume: 5
  start-page: 1800726
  year: 2019
  ident: 41363_CR24
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800726
– volume: 587
  start-page: 72
  year: 2020
  ident: 41363_CR26
  publication-title: Nature
  doi: 10.1038/s41586-020-2861-0
– volume: 97
  start-page: 045425
  year: 2018
  ident: 41363_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.045425
– volume: 39
  start-page: 1150
  year: 1992
  ident: 41363_CR10
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.129096
– volume: 30
  start-page: 78
  year: 2009
  ident: 41363_CR11
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2008.2008667
– volume: 5
  start-page: 031002
  year: 2018
  ident: 41363_CR38
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aab728
– volume: 15
  start-page: 6658
  year: 2021
  ident: 41363_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10005
– volume: 69
  start-page: 6121
  year: 2022
  ident: 41363_CR20
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3208804
– volume: 67
  start-page: 3626
  year: 2020
  ident: 41363_CR31
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.3008667
– ident: 41363_CR1
– volume: 98
  start-page: 121301
  year: 2005
  ident: 41363_CR7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2147714
– volume: 76
  start-page: 3992
  year: 2000
  ident: 41363_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126845
– volume: 34
  start-page: 993
  year: 2013
  ident: 41363_CR42
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2265599
– volume: 7
  start-page: 45
  year: 2015
  ident: 41363_CR34
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2108
– volume: 593
  start-page: 211
  year: 2021
  ident: 41363_CR37
  publication-title: Nature
  doi: 10.1038/s41586-021-03472-9
– ident: 41363_CR5
– ident: 41363_CR4
  doi: 10.1109/ISSCC42613.2021.9365809
– volume: 4
  start-page: 306
  year: 2004
  ident: 41363_CR40
  publication-title: IEEE Trans. Electron Devices
– volume: 30
  start-page: 1900657
  year: 2019
  ident: 41363_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900657
– volume: 591
  start-page: 43
  year: 2021
  ident: 41363_CR46
  publication-title: Nature
  doi: 10.1038/s41586-021-03339-z
– volume: 13
  start-page: 1128
  year: 2014
  ident: 41363_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4080
– volume: 1
  start-page: 22
  year: 2018
  ident: 41363_CR2
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
– volume: 25
  start-page: 7360
  year: 2015
  ident: 41363_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503645
– volume: 7
  start-page: 1331
  year: 2020
  ident: 41363_CR25
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01923E
– volume: 28
  start-page: 622
  year: 2007
  ident: 41363_CR41
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.897888
– volume: 101
  start-page: 052110
  year: 2012
  ident: 41363_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742861
– volume: 8
  start-page: 357
  year: 1967
  ident: 41363_CR39
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(67)90117-3
– volume: 4
  year: 2013
  ident: 41363_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2652
– ident: 41363_CR9
  doi: 10.1109/IRPS.2017.7936364
– volume: 65
  start-page: 493
  year: 2018
  ident: 41363_CR30
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2779182
– volume: 567
  start-page: 323
  year: 2019
  ident: 41363_CR18
  publication-title: Nature
  doi: 10.1038/s41586-019-1013-x
– volume: 120
  start-page: 34
  year: 2014
  ident: 41363_CR13
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2013.12.016
– volume: 31
  start-page: 1808231
  year: 2019
  ident: 41363_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808231
– volume: 16
  start-page: 874
  year: 2021
  ident: 41363_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00921-4
– volume: 18
  start-page: 486
  year: 2023
  ident: 41363_CR32
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01339-w
– volume: 10
  start-page: 191
  year: 2015
  ident: 41363_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.29
– volume: 66
  start-page: 616
  year: 2017
  ident: 41363_CR6
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2016.2615038
– volume: 35
  start-page: 744
  year: 2014
  ident: 41363_CR43
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2320971
– volume: 61
  start-page: 1361
  year: 2014
  ident: 41363_CR35
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2014.2311100
– volume: 57
  start-page: 24
  year: 2005
  ident: 41363_CR14
  publication-title: JOM
  doi: 10.1007/s11837-005-0111-4
– volume: 557
  start-page: 696
  year: 2018
  ident: 41363_CR16
  publication-title: Nature
  doi: 10.1038/s41586-018-0129-8
– volume: 16
  start-page: 882
  year: 2021
  ident: 41363_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00904-5
SSID ssj0000391844
Score 2.5657544
Snippet As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the...
Abstract As the prevailing non-volatile memory (NVM), flash memory offers mass data storage at high integration density and low cost. However, due to the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5662
SubjectTerms 140/133
142/126
147/137
147/143
147/3
639/301/1005
639/925/927/1007
Carrier injection
Data storage
Density
Efficiency
Electric fields
Fatigue limit
Flash memory (computers)
Graphene
Heterostructures
Humanities and Social Sciences
Lithium
Memory cells
Memory devices
Molybdenum disulfide
multidisciplinary
Performance enhancement
Phase transitions
Retention
Robustness
Science
Science (multidisciplinary)
Transmission electron microscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifmL1lAi-abhL0jbpo4rHIeiLHtxbyMeEPTi7y24Pb_97Z9Luej1QX3wohCSlSWYyH83kN4y9UTanpGIUyYRG1CCtCMofC5DQGYgZuYAuCn_52p6e1Z_Pm_Mbqb4oJmyEBx4X7kgB3WTL0EhAgdtaq0M0bfKNNbGDttwjR513w5kqMlh36LrU0y2ZY22PNnWRCaiiBMrtVovrmSYqgP0zK_N2jOStg9Kif04esPuT4cjfjwN-yO5A_4jdHVNJbh-z1bcLig30PaArf7nlWF777DcD933i62W4wuLwcykSwfmPUBw8o-m84D8o2HbLExShwUmvJb7s-WqBJQETYCHW0a83TrHtPg6bJ-zs5NP3j6diyqYgYiPtINASCzE2ZKIl9MnqzoTQhRaXAryNmQ7kstJ17LAVumCyMfjoXPuok4esn7KDftnDM8ZlMgqsBpuzqtucfW1847NVMmmNdRWTu5V1cYIap4wXl64ceWvrRmo4pIYr1HDXFXu7f2c1Am38tfcHIti-J4FklwpkHTexjvsX61TscEduN-3cjVO2pYTwsusq9nrfjHuODlJGIpY-6KeiqVkxO2OT2YDmLf3FoqB3S3IyUY5W7N2Oo35__c8zfv4_ZvyC3VO0AygFhj5kB8P6Cl6iUTWEV2X__AJsfSDD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmK9UyL4puEuH23SJ1FxPQR90YN7K_l0D8523fa42__embS7Rw-8h0JIUppmJjOTzOQ3hLwVJoUgvGdBu5KpyA1zwh6xyGOto0_ABXhR-PuP6vhEfTstT6cDt34Kq9zKxCyoQ-fxjPxQmAoTdfO6_rD6yzBrFHpXpxQad8k9DpoGQ7rM4uvujAXRz41S012ZI2kOe5UlAygqBtK7kuxqpo8ybP_M1rwZKXnDXZq10OIReTiZj_TjSO_H5E5sn5D7Y0LJzVOy-nmGEYK2jbChP99QKK9tsv1AbRvounMXUBwuOxYQ1H8E5KAJDOgl_YMhtxsaYhYdFLVboF1LV0sosTjBFkIdHsBRjHC3fuifkZPFl1-fj9mUU4H5kpuBgT3mvC_RUAuwM1O1dq52FUxFtMYndMslIZWvoTXWTiet4ZFJWS-DjUk-J3tt18YXhPKgRTQympSEqlKyStvSJiN4kBLqCsK3M9v4CXAc816cN9nxLU0zUqMBajSZGs1VQd7t3lmNcBu39v6EBNv1RKjsXNGtfzfTymtExKuQKZY8gsaujJHO6yrY0mhfx0oX5GBL7mZav31zzW0FebNrhpWH7pSRiLkP7FbB4CyImbHJbEDzlvZsmTG8OW41QZoW5P2Wo66__v8_fnn7YPfJA4G8jSku5AHZG9YX8RUYTYN7nVfGPxYxGO0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HHYIv4if2PCWCbxq8JmmTPq7icSzoy3lwbyGf7sHZLrs9dP97Z9J2pYcKPhRCMqVpZpKZZCa_IeQN1ykE7j0LylVMxlIzx-0pi2VsVPQJpAAvCn_-Up9fyuVVdXVA-HQXJgftZ0jLvExP0WHvtzJPadAwDJbdWjCwG48Qqh1k-2ixWF4s9ycriHmupRxvyJwK_YeXZ1oog_XPLMy78ZF3nKRZ95w9JA9Go5Euhm4-IgexfUzuDWkkd0_I-uIa4wJtG2Ebf7OjUN7YZLc9tW2gm87dQrH_0bGAUP4DDAdNYDav6HcMtN3REPOCQVGnBdq1dL2CEosjWCHU4bEbxbh26_vtU3J59unrx3M2ZlJgvip1z8AKc95XaJ4F2I_JRjnXuBqGIlrtEzrjEhfSN9AaG6eSUvCIJK0XwcYknpHDtmvjc0LLoHjUIuqUuKxTslLZyibNyyAE1BWknEbW-BFmHLNd3Jjs7hbaDNwwwA2TuWF-FuTt_p31ALLxT-oPyLA9JQJk54pu882MAmN4xAuQKVZlBD1day2cV3WwlVa-ibUqyMnEbjPO2q3husZk8GXTFOT1vhnmGzpRBiZmGtijgplZED0Tk1mH5i3t9Sojd5e4wYQ1tCDvJon6_fW___Hx_5G_IPc5yjomuhAn5LDf3MaXYDr17tU4V34B45sYcg
  priority: 102
  providerName: Springer Nature
Title Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts
URI https://link.springer.com/article/10.1038/s41467-023-41363-x
https://www.proquest.com/docview/2864389199
https://www.proquest.com/docview/2864899143
https://pubmed.ncbi.nlm.nih.gov/PMC10499832
https://doaj.org/article/2e1037fe51e3416883bc76da587c9e67
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTaC9ID5FYFRG4g0MJE5i5wGhrlqZKm1CjEp9ixx_0EklLW0m1v-eOyct6jR44CGJZTtK4rvz_S5n3wG8TpS3NjGGW1llPHWx4lWiP3AXu0I645ELaKPw2Xl-Ok5Hk2yyB5t0R90Arm417Sif1Hg5e3f9c_0JBf5ju2VcvV-lQdxR-3CcknPBEVMeoGaSlNHgrIP7YWYWBRo0abd35vZbD-GekJLchcWOqgoR_Xdg6M1FlDc8qUFBDR_A_Q5Zsn7LCg9hz9WP4G6ba3L9GBYXl7R4UNcObf3ZmmF5qb1eNUzXli3n1RUWm19zbinefxurg3nE1lP2g1bjrpl1YVZhpPgsm9dsMcUSd11EQ6yjf3OMFr9r06yewHh48m1wyrt0C9xksWo4QrXKmIwwnEWjLS1kVRVVjqPitDKePHY-EakpsNUVlfRS4iF8qo2w2nnxFPbree2eAYutTJwSTnmfpLn3OpU6014lsRUC6yKINyNbmi4WOaXEmJXBJy5U2RKmRMKUgTDldQRvtvcs2kgc_-x9TATb9qQo2qFivvxedkJZJo52SXqXxQ6Vea6UqIzMrc6UNIXLZQRHG3KXG84sE5VTxvi4KCJ4tW1GoSRPS0vE0AcNWcSiEagdNtl5od2W-nIawnvHZIXiRBvB2w1H_Xn637_4-f8_6QUcJiQClBlDHMF-s7xyLxFrNVUP7siJxLMafu7BQb8_uhjh9fjk_MtXrB3kg174i9ELgvYbkf8wiQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmC1sZPYOSDEa9nSx4VW6i04frCVSrLdZNXun-I3MuMkW20leuthJct2No8Zz4w9j4-QN1x5a7kxzMoyZYmLFSu53mYudrl0xgMXYKLw_kE2Pkp-HKfHa-TvkAuDYZWDTAyC2tYGz8i3uMoQqDvO84_TM4aoUehdHSA0OrbYdYtz2LI1H3a-An3fcj76dvhlzHpUAWbSWLUMLJLSmBRNFQt7kySXZZmXmciE08p4dEx5LhKTw6jLS-mlhJ_wiTbCaucF_O8tcjsRoMkxM330fXmmg9XWVZL0uTnbQm01SZBEoBgZaItMsIsV_RdgAlZs26uRmVfcs0HrjR6Q-725Sj91_PWQrLnqEbnTAVguHpPpzxOMSNSVq-fN6YJCe6a9blqqK0tndTmHZnteM4sgAl0BEOrBYJ_QPxjiu6DWBVFFUZtaWld0OoEWc32ZROjDAz-KEfXatM0TcnQjX_spWa_qyj0jNLaSOyWc8p4nmfc6kTrVXvHYCgF9EYmHL1uYvsA54mycFsHRLlTRUaMAahSBGsVFRN4tr5l25T2unf0ZCbaciaW5Q0c9-130K73gDlMvvUtjBxZCppQojcysTpU0uctkRDYHche9vGiKS-6OyOvlMKx0dN90RAxzYHcMBm5E1AqbrDzQ6kh1Mgk1w2Pc2oL0jsj7gaMu7_7_N964_mFfkbvjw_29Ym_nYPc5uceRzxFeQ2yS9XY2dy_AYGvLl2GVUPLrppflPxtaVj8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbgbggniKlgJHgBNY2dhI7B4Qo7aqlsKqASr2ljh9spZJsN1m1-2t8HTN5bLWV6K2HSJbtJE7m7RnPEPKWK28tN4ZZmccscqFiOddbzIUulc54wAI8KPx9nOwdRV-P4-M18rc_C4NhlT1PbBi1LQ3ukQ-5SrBQd5imQ9-FRRzujD5NzxlWkEJPa19Oo0WRA7e4APOt-ri_A7B-x_lo99eXPdZVGGAmDlXNQDvJjYlRbbFgp0SpzPM0T0QinFbGo5PKcxGZFEZdmksvJVzCR9oIq50X8Nw7ZF2iVTQg69u748Mfyx0ezL2uoqg7qbMl1LCKGr4EYpKB7EgEu1yRhk3RgBVN93qc5jVnbSMDRw_Jg055pZ9bbHtE1lzxmNxty1kunpDpz1OMT9SFK-fV2YJCe6a9rmqqC0tnZT6HZn1RMoslBdp0INSD-j6hfzDgd0GtaxgXRdlqaVnQ6QRazHVJE6EPt_8oxtdrU1dPydGt_O9nZFCUhXtOaGgld0o45T2PEu91JHWsveKhFQL6AhL2fzYzXbpzrLpxljVud6GyFhoZQCNroJFdBuT98p5pm-zjxtnbCLDlTEzU3XSUs99ZR_cZd3gQ07s4dKAvJEqJ3MjE6lhJk7pEBmSzB3fWcY8qu8L1gLxZDgPdozOnBWIzB2xlUHcDolbQZGVBqyPF6aTJIB6ioQu8PCAfeoy6evv_v3jj5sW-JveAJLNv--ODF-Q-RzTHWhtikwzq2dy9BO2tzl91ZELJyW1T5j-WL1vR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneously+ultrafast+and+robust+two-dimensional+flash+memory+devices+based+on+phase-engineered+edge+contacts&rft.jtitle=Nature+communications&rft.au=Yu%2C+Jun&rft.au=Wang%2C+Han&rft.au=Zhuge%2C+Fuwei&rft.au=Chen%2C+Zirui&rft.date=2023-09-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft_id=info:doi/10.1038%2Fs41467-023-41363-x&rft_id=info%3Apmid%2F37704609&rft.externalDocID=PMC10499832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon