Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions

Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 6082 - 8
Main Authors Yang, Jian, Hu, Shao-Jun, Cai, Li-Xuan, Zhou, Li-Peng, Sun, Qing-Fu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents. The development of efficient adsorbents to capture iodine originating from radioactive wastes is of importance. Here, the authors synthesize hexacationic imidazolium organic cages and study the crucial role of the counter anions for iodine capture and the iodine binding modes at the molecular level on the solid state.
AbstractList Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.The development of efficient adsorbents to capture iodine originating from radioactive wastes is of importance. Here, the authors synthesize hexacationic imidazolium organic cages and study the crucial role of the counter anions for iodine capture and the iodine binding modes at the molecular level on the solid state.
Abstract Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents. The development of efficient adsorbents to capture iodine originating from radioactive wastes is of importance. Here, the authors synthesize hexacationic imidazolium organic cages and study the crucial role of the counter anions for iodine capture and the iodine binding modes at the molecular level on the solid state.
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
ArticleNumber 6082
Author Hu, Shao-Jun
Zhou, Li-Peng
Cai, Li-Xuan
Sun, Qing-Fu
Yang, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences
– sequence: 2
  givenname: Shao-Jun
  surname: Hu
  fullname: Hu, Shao-Jun
  organization: State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences
– sequence: 3
  givenname: Li-Xuan
  surname: Cai
  fullname: Cai, Li-Xuan
  organization: State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences
– sequence: 4
  givenname: Li-Peng
  surname: Zhou
  fullname: Zhou, Li-Peng
  organization: State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences
– sequence: 5
  givenname: Qing-Fu
  orcidid: 0000-0002-6419-8904
  surname: Sun
  fullname: Sun, Qing-Fu
  email: qfsun@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kk1v1DAQhiNUREvpH-AUiQuXgL8SOyeEVnxUqsQFztZkMtl65diLk1S0f4C_jTdbAe2hvtgav-8zM_a8LE5CDFQUrzl7x5k07yfFVaMrJmSluGmaSj8rzgRTvOJayJP_zqfFxTTtWF6y5UapF8Wp1FozZfhZ8XsTlzBTguBiqEbqHczUlzQMDh2FuXSxd4FKhP28JCpdKKG8pl-AMGeHw9KNroe76N0yljFt4RBD2FJJATqfWd1tOS5-dntPZW6iwngDfkWvifHAmV4VzwfwE13c7-fFj8-fvm--VlffvlxuPl5VWHMzVzXjAnHgClDgINpe9SRZLxvdY9M2HQ4KG0RgUrccG9kBSNOLumuxM4qhPC8uj9w-ws7ukxsh3doIzq6B3ICFNDv0ZCUNLddGIypQQEM3aDCSRJ8rkC0bMuvDkbVfuvxymHtK4B9AH94Ed2238cZyVstWiiYT3t4TUvy50DTb0U1I3kOguExWGM3altdcZOmbR9JdXFLIb5VVTWuYMDXLKnFUYYrTlGj4Ww1n9jA39jg3Ns-NXefG6mwyj0zo5vV7c9XOP22VR-uU84QtpX9VPeH6AxIa3Gc
CitedBy_id crossref_primary_10_1007_s40820_024_01438_w
crossref_primary_10_1016_j_jssc_2023_124528
crossref_primary_10_1002_ange_202423226
crossref_primary_10_1039_D4TA03881A
crossref_primary_10_1016_j_seppur_2025_132494
crossref_primary_10_1002_adfm_202422677
crossref_primary_10_1002_anie_202411613
crossref_primary_10_1002_asia_202401421
crossref_primary_10_1016_j_cej_2025_159974
crossref_primary_10_1007_s11426_025_2598_y
crossref_primary_10_1016_j_dyepig_2024_111954
crossref_primary_10_1002_asia_202401471
crossref_primary_10_1002_cjoc_202401089
crossref_primary_10_1002_smll_202410678
crossref_primary_10_1039_D4SE01033G
crossref_primary_10_1002_advs_202500993
crossref_primary_10_1021_acsapm_4c00560
crossref_primary_10_1002_ange_202411613
crossref_primary_10_1016_j_cej_2024_153777
crossref_primary_10_1002_ange_202403658
crossref_primary_10_1016_j_cej_2024_155716
crossref_primary_10_1007_s12274_024_6606_5
crossref_primary_10_1039_D4QI03110E
crossref_primary_10_1002_anie_202411342
crossref_primary_10_1039_D3CC05337G
crossref_primary_10_1021_acsami_4c21105
crossref_primary_10_1016_j_mtchem_2024_102452
crossref_primary_10_1016_j_cej_2024_154091
crossref_primary_10_1002_anie_202423226
crossref_primary_10_1002_smll_202404994
crossref_primary_10_1016_j_jwpe_2024_106386
crossref_primary_10_1021_acs_cgd_4c00701
crossref_primary_10_1021_acsapm_4c00702
crossref_primary_10_1038_s41467_024_50980_z
crossref_primary_10_1002_advs_202408494
crossref_primary_10_1002_anie_202403658
crossref_primary_10_1016_j_apsusc_2024_160173
crossref_primary_10_34133_research_0608
crossref_primary_10_1016_j_cej_2025_161326
crossref_primary_10_1016_j_rechem_2024_101827
crossref_primary_10_1016_j_seppur_2023_125664
crossref_primary_10_1039_D4TA00592A
crossref_primary_10_1002_ange_202411342
crossref_primary_10_1002_smll_202311181
crossref_primary_10_1039_D4DT00169A
Cites_doi 10.1021/cr200029u
10.1039/D2NJ04689J
10.1002/anie.202113724
10.1002/anie.201405199
10.1021/ja103110y
10.1021/jacs.1c06390
10.1039/C5EE02843D
10.1002/anie.202006569
10.1021/acsapm.0c01136
10.1002/anie.201907003
10.1002/anie.202007454
10.1002/anie.201912730
10.1038/srep05826
10.1021/jacs.7b09850
10.1016/j.molstruc.2011.11.038
10.1039/c2ee22019a
10.1021/ja908293n
10.1038/ncomms2758
10.1039/C9CC02341K
10.1016/j.cej.2023.143525
10.1002/anie.201503362
10.1038/ncomms15898
10.1002/anie.202010829
10.1016/j.cej.2021.131129
10.1002/anie.202214039
10.1002/anie.201307552
10.1002/anie.201713240
10.1080/00397910008087085
10.1002/chem.201002105
10.1016/0022-3697(86)90099-5
10.1002/anie.201915931
10.1021/ja204757x
10.1021/jacs.9b12982
10.1021/ja205969q
10.1021/jacs.1c11731
10.1016/j.chempr.2020.11.024
10.1021/jacs.2c00563
10.1021/jacs.0c10253
10.1002/anie.202108522
10.1021/jacs.0c12064
10.1021/jacs.8b00394
10.1002/anie.202015162
10.1021/jacs.9b01241
10.1002/chem.202201933
10.1039/C9TA04408F
10.1021/jacs.7b03204
10.1002/anie.202209879
10.1021/jacs.2c03959
10.1016/j.cej.2021.131322
10.1016/0020-1650(73)80019-4
10.1021/acs.chemmater.5b00413
10.1021/jacs.0c11778
10.1039/b513733k
10.1002/tcr.201600108
10.1038/s41467-022-30663-3
10.1002/anie.202011474
10.1016/j.jnucmat.2015.11.038
10.1002/chem.201705405
10.1038/s41467-022-34296-4
10.1002/anie.200602598
10.1039/C9PY01948K
10.1039/C9TA13980J
10.1002/anie.201006916
10.1002/anie.202204732
10.1021/acsami.1c07178
10.1021/cr0204101
10.1021/ja3112274
10.1002/adma.201801991
10.1039/b708692j
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-41866-7
DatabaseName WRHA-SpringerOpen Free
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
ProQuest Natural Science Collection (Hollins)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_3ef91787cc4a4aefbf7a83e2d2cc390f
PMC10539326
10_1038_s41467_023_41866_7
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province (Fujian Provincial Natural Science Foundation)
  grantid: 2021J02016; 2022J05093
  funderid: https://doi.org/10.13039/501100003392
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21825107, 22171264; 22001252; 22171262
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China (Grants 2021YFA1500400)
– fundername: ;
– fundername: ;
  grantid: 2021J02016; 2022J05093
– fundername: ;
  grantid: 21825107, 22171264; 22001252; 22171262
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-5012ccf14ac2cf29d4de30d367dc696bcf4c6cca03791c63baa38d25b9cb840c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:36 EDT 2025
Thu Aug 28 05:04:22 EDT 2025
Fri Jul 11 03:30:52 EDT 2025
Wed Aug 13 05:10:35 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 02:10:37 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-5012ccf14ac2cf29d4de30d367dc696bcf4c6cca03791c63baa38d25b9cb840c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6419-8904
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-41866-7
PMID 37770481
PQID 2869802850
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_3ef91787cc4a4aefbf7a83e2d2cc390f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10539326
proquest_miscellaneous_2870991512
proquest_journals_2869802850
crossref_primary_10_1038_s41467_023_41866_7
crossref_citationtrail_10_1038_s41467_023_41866_7
springer_journals_10_1038_s41467_023_41866_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-28
PublicationDateYYYYMMDD 2023-09-28
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Svensson, Kloo (CR64) 2003; 103
Subrahmanyam (CR6) 2015; 27
Chun (CR36) 2013; 4
Tang, Huang, Li, Xue, Zhong (CR63) 2019; 7
Zhang (CR13) 2022; 144
Shirinfar (CR40) 2013; 135
Yuan (CR56) 2007; 30
Feng (CR58) 2020; 11
He (CR11) 2021; 7
Saiz-Lopez (CR2) 2012; 112
Shui (CR19) 2023; 468
Sutar, Engelage, Stoll, Huber (CR38) 2020; 59
Riley, Vienna, Strachan, McCloy, Jerden (CR3) 2016; 470
Zhu (CR7) 2022; 428
Breckenridge, Surles (CR65) 1973; 9
Cai (CR47) 2018; 140
Caballero, White, Beer (CR39) 2011; 50
Sen (CR30) 2021; 13
Liu (CR54) 2020; 142
Xie (CR31) 2021; 60
Kumar, Sandhu, Singh, Kumar (CR37) 2017; 17
Cheng (CR51) 2020; 59
Xie (CR18) 2022; 13
CR46
Ten Hoeve, Jacobson (CR1) 2012; 5
Sun (CR42) 2018; 57
Yang (CR28) 2022; 61
Guo (CR10) 2020; 59
Gou, Liu, Wang, Han (CR43) 2020; 59
Modak, Mondal, Howlader, Mukherjee (CR45) 2019; 55
Yan (CR50) 2022; 61
Yan, Yuan, Tian, Zhang, Zhu (CR17) 2015; 54
Lin (CR62) 2017; 139
Luo, He, Tian, Sessler, Chi (CR25) 2022; 144
Chi (CR35) 2019; 141
Niu, Feng, Yao, Yang, Xu (CR14) 2020; 3
Liu (CR24) 2022; 144
Liu (CR26) 2022; 13
Yan (CR49) 2021; 143
Jiao (CR29) 2022; 28
Hasell, Schmidtmann, Cooper (CR22) 2011; 133
Xu (CR57) 2011; 17
Marti-Rujas (CR60) 2013; 52
Zeng (CR8) 2010; 132
Pham (CR4) 2016; 9
CR12
Yoon, Kim, Singh, Kim (CR33) 2006; 35
Sava (CR9) 2011; 133
Li, Cai, Hong, Chen, Sun (CR55) 2022; 61
Wang (CR52) 2020; 142
Golecki (CR32) 2014; 53
Liu (CR21) 2022; 428
Yao, Fang, Sun, Wang, Zhang (CR27) 2021; 143
Kim, Van Dung, Cho, Madhav, Kim (CR69) 2014; 4
Zhang, Zhou, Guo, Cai, Sun (CR41) 2017; 8
Wang (CR16) 2018; 24
Xie (CR61) 2022; 61
Li (CR59) 2020; 8
Zhang (CR44) 2019; 58
Duan (CR53) 2020; 59
Jie (CR23) 2017; 139
Cai (CR48) 2021; 143
Aragoni (CR66) 2022; 46
Dai (CR15) 2021; 60
Chernov’yants (CR68) 2012; 1010
Amendola (CR34) 2006; 45
Zhang (CR20) 2020; 59
Chapman, Chupas, Nenoff (CR5) 2010; 132
Ferraro (CR67) 1986; 47
L Zhang (41866_CR44) 2019; 58
YJ Liu (41866_CR26) 2022; 13
P-M Cheng (41866_CR51) 2020; 59
J Li (41866_CR59) 2020; 8
Y Xie (41866_CR18) 2022; 13
LX Cai (41866_CR47) 2018; 140
KS Subrahmanyam (41866_CR6) 2015; 27
B Shirinfar (41866_CR40) 2013; 135
Y Xie (41866_CR31) 2021; 60
X Guo (41866_CR10) 2020; 59
J Marti-Rujas (41866_CR60) 2013; 52
DF Sava (41866_CR9) 2011; 133
D Dai (41866_CR15) 2021; 60
J Yoon (41866_CR33) 2006; 35
D-N Yan (41866_CR50) 2022; 61
C Liu (41866_CR21) 2022; 428
Z Zhang (41866_CR13) 2022; 144
C Feng (41866_CR58) 2020; 11
D-N Yan (41866_CR49) 2021; 143
K Jie (41866_CR23) 2017; 139
TCT Pham (41866_CR4) 2016; 9
Y Yuan (41866_CR56) 2007; 30
BJ Riley (41866_CR3) 2016; 470
M-H Zeng (41866_CR8) 2010; 132
H Duan (41866_CR53) 2020; 59
H Wang (41866_CR52) 2020; 142
A Caballero (41866_CR39) 2011; 50
R Modak (41866_CR45) 2019; 55
MC Aragoni (41866_CR66) 2022; 46
RL Sutar (41866_CR38) 2020; 59
S-C Li (41866_CR55) 2022; 61
MS Chernov’yants (41866_CR68) 2012; 1010
C Liu (41866_CR24) 2022; 144
L Xie (41866_CR61) 2022; 61
Z Yan (41866_CR17) 2015; 54
XX Gou (41866_CR43) 2020; 59
X Yang (41866_CR28) 2022; 61
KW Chapman (41866_CR5) 2010; 132
41866_CR46
T Zhang (41866_CR41) 2017; 8
V Amendola (41866_CR34) 2006; 45
H Zhu (41866_CR7) 2022; 428
M Golecki (41866_CR32) 2014; 53
D Luo (41866_CR25) 2022; 144
S Yao (41866_CR27) 2021; 143
T-H Niu (41866_CR14) 2020; 3
C Wang (41866_CR16) 2018; 24
W Liu (41866_CR54) 2020; 142
JE Ten Hoeve (41866_CR1) 2012; 5
T Hasell (41866_CR22) 2011; 133
A Saiz-Lopez (41866_CR2) 2012; 112
L He (41866_CR11) 2021; 7
PH Svensson (41866_CR64) 2003; 103
41866_CR12
LX Cai (41866_CR48) 2021; 143
Y Tang (41866_CR63) 2019; 7
F Shui (41866_CR19) 2023; 468
H Kim (41866_CR69) 2014; 4
Y Lin (41866_CR62) 2017; 139
JR Ferraro (41866_CR67) 1986; 47
Y Chun (41866_CR36) 2013; 4
A Sen (41866_CR30) 2021; 13
L Zhang (41866_CR20) 2020; 59
X Chi (41866_CR35) 2019; 141
R Kumar (41866_CR37) 2017; 17
LY Sun (41866_CR42) 2018; 57
J Jiao (41866_CR29) 2022; 28
Z Xu (41866_CR57) 2011; 17
J Breckenridge (41866_CR65) 1973; 9
References_xml – volume: 112
  start-page: 1773
  year: 2012
  end-page: 1804
  ident: CR2
  article-title: Atmospheric chemistry of iodine
  publication-title: Chem. Rev.
  doi: 10.1021/cr200029u
– volume: 46
  start-page: 21921
  year: 2022
  end-page: 21929
  ident: CR66
  article-title: An unprecedented non-classical polyinterhalogen anion made of [I2Cl]− and I2 at the 2-(p-tolyl)selenopheno[2,3-b]pyridinium cation template
  publication-title: N. J. Chem.
  doi: 10.1039/D2NJ04689J
– volume: 61
  start-page: e202113724
  year: 2022
  ident: CR61
  article-title: Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113724
– volume: 53
  start-page: 9949
  year: 2014
  end-page: 9952
  ident: CR32
  article-title: Adsorption of I(2) by macrocyclic polyazadithiophenolato complexes mediated by charge-transfer interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201405199
– volume: 132
  start-page: 8897
  year: 2010
  end-page: 8899
  ident: CR5
  article-title: Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103110y
– volume: 143
  start-page: 16087
  year: 2021
  end-page: 16094
  ident: CR49
  article-title: Photooxidase Mimicking with Adaptive Coordination Molecular Capsules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06390
– ident: CR12
– volume: 9
  start-page: 1050
  year: 2016
  end-page: 1062
  ident: CR4
  article-title: Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02843D
– volume: 59
  start-page: 16683
  year: 2020
  end-page: 16689
  ident: CR43
  article-title: Ultrastable and Highly Catalytically Active N-Heterocyclic-Carbene-Stabilized Gold Nanoparticles in Confined Spaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006569
– volume: 3
  start-page: 354
  year: 2020
  end-page: 361
  ident: CR14
  article-title: Bisimidazole-based conjugated polymers for excellent iodine capture
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c01136
– volume: 58
  start-page: 13360
  year: 2019
  end-page: 13364
  ident: CR44
  article-title: C(3) -Symmetric Assemblies from Trigonal Polycarbene Ligands and M(I) Ions for the Synthesis of Three-Dimensional Polyimidazolium Cations
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907003
– volume: 59
  start-page: 20846
  year: 2020
  end-page: 20851
  ident: CR20
  article-title: Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007454
– volume: 59
  start-page: 10101
  year: 2020
  end-page: 10110
  ident: CR53
  article-title: Host-Guest Recognition and Fluorescence of a Tetraphenylethene-Based Octacationic Cage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912730
– volume: 4
  year: 2014
  ident: CR69
  article-title: Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions
  publication-title: Sci. Rep.
  doi: 10.1038/srep05826
– volume: 139
  start-page: 15320
  year: 2017
  end-page: 15323
  ident: CR23
  article-title: Reversible Iodine Capture by Nonporous Pillar[6]arene Crystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09850
– ident: CR46
– volume: 1010
  start-page: 98
  year: 2012
  end-page: 103
  ident: CR68
  article-title: Reaction of 1Н,2Н,3Н,4Н-pyrido[4,3-d]pyrimidinium bromide derivatives with molecular iodine: Comparative structure and spectroscopic analysis
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2011.11.038
– volume: 5
  start-page: 8743
  year: 2012
  end-page: 8757
  ident: CR1
  article-title: Worldwide health effects of the Fukushima Daiichi nuclear accident
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22019a
– volume: 132
  start-page: 2561
  year: 2010
  end-page: 2563
  ident: CR8
  article-title: Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908293n
– volume: 4
  year: 2013
  ident: CR36
  article-title: Calix[n]imidazolium as a new class of positively charged homo-calix compounds
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2758
– volume: 55
  start-page: 6711
  year: 2019
  end-page: 6714
  ident: CR45
  article-title: Self-assembly of a “cationic-cage” via the formation of Ag–carbene bonds followed by imine condensation
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02341K
– volume: 468
  start-page: 143525
  year: 2023
  ident: CR19
  article-title: Iodine nanotrap for highly efficient iodine capture under high temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143525
– volume: 54
  start-page: 12733
  year: 2015
  end-page: 12737
  ident: CR17
  article-title: Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503362
– volume: 8
  year: 2017
  ident: CR41
  article-title: Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15898
– volume: 59
  start-page: 22697
  year: 2020
  end-page: 22705
  ident: CR10
  article-title: Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I(2) adsorption
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010829
– volume: 428
  start-page: 131129
  year: 2022
  ident: CR21
  article-title: Porous organic cages for efficient gas selective separation and iodine capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131129
– volume: 61
  start-page: e202214039
  year: 2022
  ident: CR28
  article-title: Energy-Efficient Iodine Uptake by a Molecular Host⋅Guest Crystal
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202214039
– volume: 52
  start-page: 13444
  year: 2013
  end-page: 13448
  ident: CR60
  article-title: An adaptive and dynamically porous organic salt traps unique tetrahalide dianions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201307552
– volume: 57
  start-page: 5161
  year: 2018
  end-page: 5165
  ident: CR42
  article-title: Template Synthesis of Three-Dimensional Hexakisimidazolium Cages
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713240
– volume: 30
  start-page: 4555
  year: 2007
  end-page: 4561
  ident: CR56
  article-title: A Convenient and Effective Synthesis of Tris-Bridged Tricationic Azolophanes
  publication-title: Synth. Commun.
  doi: 10.1080/00397910008087085
– volume: 17
  start-page: 1163
  year: 2011
  end-page: 1170
  ident: CR57
  article-title: Induction-driven stabilization of the anion-pi interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-cage receptors
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201002105
– volume: 47
  start-page: 301
  year: 1986
  end-page: 308
  ident: CR67
  article-title: Spectroscopic and structural characterization of tetrabutylammonium trihalides: n-Bu4NI3, n-Bu4NI2Br, n-Bu4NIBr2, and n-Bu4NAuI2; Precursors to organic conducting salts
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(86)90099-5
– volume: 59
  start-page: 6806
  year: 2020
  end-page: 6810
  ident: CR38
  article-title: Bidentate Chiral Bis(imidazolium)-Based Halogen-Bond Donors: Synthesis and Applications in Enantioselective Recognition and Catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915931
– volume: 133
  start-page: 12398
  year: 2011
  end-page: 12401
  ident: CR9
  article-title: Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204757x
– volume: 142
  start-page: 3165
  year: 2020
  end-page: 3173
  ident: CR54
  article-title: XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12982
– volume: 133
  start-page: 14920
  year: 2011
  end-page: 14923
  ident: CR22
  article-title: Molecular doping of porous organic cages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205969q
– volume: 144
  start-page: 113
  year: 2022
  end-page: 117
  ident: CR25
  article-title: Reversible Iodine Capture by Nonporous Adaptive Crystals of a Bipyridine Cage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11731
– volume: 7
  start-page: 699
  year: 2021
  end-page: 714
  ident: CR11
  article-title: A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.11.024
– volume: 144
  start-page: 6821
  year: 2022
  end-page: 6829
  ident: CR13
  article-title: Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00563
– volume: 142
  start-page: 20182
  year: 2020
  end-page: 20190
  ident: CR52
  article-title: Constraining Homo- and Heteroanion Dimers in Ultraclose Proximity within a Self-Assembled Hexacationic Cage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10253
– volume: 60
  start-page: 22432
  year: 2021
  end-page: 22440
  ident: CR31
  article-title: Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108522
– volume: 143
  start-page: 2016
  year: 2021
  end-page: 2024
  ident: CR48
  article-title: Controlled Self-Assembly and Multistimuli-Responsive Interconversions of Three Conjoined Twin-Cages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12064
– volume: 140
  start-page: 4869
  year: 2018
  end-page: 4876
  ident: CR47
  article-title: Water-Soluble Redox-Active Cage Hosting Polyoxometalates for Selective Desulfurization Catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00394
– volume: 60
  start-page: 8967
  year: 2021
  end-page: 8975
  ident: CR15
  article-title: Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO(2) capture and iodine adsorption
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015162
– volume: 141
  start-page: 6468
  year: 2019
  end-page: 6472
  ident: CR35
  article-title: Azobenzene-Bridged Expanded “Texas-sized” Box: A Dual-Responsive Receptor for Aryl Dianion Encapsulation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01241
– volume: 28
  start-page: e202201933
  year: 2022
  ident: CR29
  article-title: Effective Iodine Capture Behavior by a Censer-shaped Macrocycle in Vapor Phase and Aqueous Solution
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202201933
– volume: 7
  start-page: 18324
  year: 2019
  end-page: 18329
  ident: CR63
  article-title: IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04408F
– volume: 139
  start-page: 7172
  year: 2017
  end-page: 7175
  ident: CR62
  article-title: An Elastic Hydrogen-Bonded Cross-Linked Organic Framework for Effective Iodine Capture in Water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03204
– volume: 61
  start-page: e202209879
  year: 2022
  ident: CR50
  article-title: An Organo-Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self-Assembly, Induced-Fit Guest Binding, and Catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209879
– volume: 144
  start-page: 12390
  year: 2022
  end-page: 12399
  ident: CR24
  article-title: Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient Iodine Vapor Capture Performance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03959
– volume: 428
  start-page: 131322
  year: 2022
  ident: CR7
  article-title: Sponge-inspired reassembly of 3D hydrolyzed collagen aerogel with polyphenol-functionalization for ultra-capturing iodine from airborne effluents
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131322
– volume: 9
  start-page: 1131
  year: 1973
  end-page: 1135
  ident: CR65
  article-title: Preparation and Raman spectra of some metal-ammine trihalide compounds
  publication-title: Inorg. Nucl. Chem. Lett.
  doi: 10.1016/0020-1650(73)80019-4
– volume: 27
  start-page: 2619
  year: 2015
  end-page: 2626
  ident: CR6
  article-title: Chalcogenide aerogels as sorbents for radioactive iodine
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00413
– volume: 143
  start-page: 2325
  year: 2021
  end-page: 2330
  ident: CR27
  article-title: Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11778
– volume: 35
  start-page: 355
  year: 2006
  end-page: 360
  ident: CR33
  article-title: Imidazolium receptors for the recognition of anions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b513733k
– volume: 17
  start-page: 441
  year: 2017
  end-page: 471
  ident: CR37
  article-title: Imidazolium Based Probes for Recognition of Biologically and Medically Relevant Anions
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201600108
– volume: 13
  year: 2022
  ident: CR18
  article-title: Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30663-3
– volume: 59
  start-page: 23569
  year: 2020
  end-page: 23573
  ident: CR51
  article-title: Guest-Reaction Driven Cage to Conjoined Twin-Cage Mitosis-Like Host Transformation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011474
– volume: 470
  start-page: 307
  year: 2016
  end-page: 326
  ident: CR3
  article-title: Materials and processes for the effective capture and immobilization of radioiodine: a review
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.11.038
– volume: 24
  start-page: 585
  year: 2018
  end-page: 589
  ident: CR16
  article-title: A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201705405
– volume: 13
  year: 2022
  ident: CR26
  article-title: Water-stable porous Al(24) Archimedean solids for removal of trace iodine
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34296-4
– volume: 45
  start-page: 6920
  year: 2006
  end-page: 6924
  ident: CR34
  article-title: A metal-based trisimidazolium cage that provides six C-H hydrogen-bond-donor fragments and includes anions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602598
– volume: 11
  start-page: 2786
  year: 2020
  end-page: 2790
  ident: CR58
  article-title: Polytriazine porous networks for effective iodine capture
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY01948K
– volume: 8
  start-page: 9523
  year: 2020
  end-page: 9527
  ident: CR59
  article-title: Two-dimensional covalent–organic frameworks for ultrahigh iodine capture
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13980J
– volume: 50
  start-page: 1845
  year: 2011
  end-page: 1848
  ident: CR39
  article-title: A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006916
– volume: 61
  start-page: e202204732
  year: 2022
  ident: CR55
  article-title: Combinatorial Self-Assembly of Coordination Cages with Systematically Fine-Tuned Cavities for Efficient Co-Encapsulation and Catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202204732
– volume: 13
  start-page: 34188
  year: 2021
  end-page: 34196
  ident: CR30
  article-title: Functionalized Ionic Porous Organic Polymers Exhibiting High Iodine Uptake from Both the Vapor and Aqueous Medium
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07178
– volume: 103
  start-page: 1649
  year: 2003
  end-page: 1684
  ident: CR64
  article-title: Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide−Iodine Systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr0204101
– volume: 135
  start-page: 90
  year: 2013
  end-page: 93
  ident: CR40
  article-title: Selective fluorescent detection of RNA in living cells by using imidazolium-based cyclophane
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3112274
– volume: 141
  start-page: 6468
  year: 2019
  ident: 41866_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01241
– volume: 47
  start-page: 301
  year: 1986
  ident: 41866_CR67
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(86)90099-5
– volume: 112
  start-page: 1773
  year: 2012
  ident: 41866_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr200029u
– volume: 59
  start-page: 20846
  year: 2020
  ident: 41866_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007454
– volume: 7
  start-page: 699
  year: 2021
  ident: 41866_CR11
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.11.024
– volume: 144
  start-page: 12390
  year: 2022
  ident: 41866_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03959
– volume: 30
  start-page: 4555
  year: 2007
  ident: 41866_CR56
  publication-title: Synth. Commun.
  doi: 10.1080/00397910008087085
– volume: 7
  start-page: 18324
  year: 2019
  ident: 41866_CR63
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04408F
– volume: 133
  start-page: 12398
  year: 2011
  ident: 41866_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204757x
– volume: 24
  start-page: 585
  year: 2018
  ident: 41866_CR16
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201705405
– volume: 8
  start-page: 9523
  year: 2020
  ident: 41866_CR59
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13980J
– volume: 144
  start-page: 113
  year: 2022
  ident: 41866_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11731
– ident: 41866_CR12
  doi: 10.1002/adma.201801991
– volume: 53
  start-page: 9949
  year: 2014
  ident: 41866_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201405199
– volume: 470
  start-page: 307
  year: 2016
  ident: 41866_CR3
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2015.11.038
– volume: 57
  start-page: 5161
  year: 2018
  ident: 41866_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713240
– volume: 1010
  start-page: 98
  year: 2012
  ident: 41866_CR68
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2011.11.038
– volume: 52
  start-page: 13444
  year: 2013
  ident: 41866_CR60
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201307552
– volume: 54
  start-page: 12733
  year: 2015
  ident: 41866_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503362
– volume: 61
  start-page: e202209879
  year: 2022
  ident: 41866_CR50
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209879
– volume: 28
  start-page: e202201933
  year: 2022
  ident: 41866_CR29
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202201933
– volume: 140
  start-page: 4869
  year: 2018
  ident: 41866_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00394
– volume: 45
  start-page: 6920
  year: 2006
  ident: 41866_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602598
– volume: 60
  start-page: 8967
  year: 2021
  ident: 41866_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015162
– volume: 132
  start-page: 2561
  year: 2010
  ident: 41866_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908293n
– volume: 35
  start-page: 355
  year: 2006
  ident: 41866_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b513733k
– volume: 132
  start-page: 8897
  year: 2010
  ident: 41866_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103110y
– volume: 143
  start-page: 2325
  year: 2021
  ident: 41866_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11778
– volume: 8
  year: 2017
  ident: 41866_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15898
– volume: 9
  start-page: 1131
  year: 1973
  ident: 41866_CR65
  publication-title: Inorg. Nucl. Chem. Lett.
  doi: 10.1016/0020-1650(73)80019-4
– volume: 9
  start-page: 1050
  year: 2016
  ident: 41866_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02843D
– volume: 135
  start-page: 90
  year: 2013
  ident: 41866_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3112274
– volume: 428
  start-page: 131322
  year: 2022
  ident: 41866_CR7
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131322
– volume: 50
  start-page: 1845
  year: 2011
  ident: 41866_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006916
– volume: 13
  start-page: 34188
  year: 2021
  ident: 41866_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07178
– volume: 60
  start-page: 22432
  year: 2021
  ident: 41866_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108522
– volume: 59
  start-page: 22697
  year: 2020
  ident: 41866_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010829
– volume: 59
  start-page: 23569
  year: 2020
  ident: 41866_CR51
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011474
– volume: 143
  start-page: 16087
  year: 2021
  ident: 41866_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06390
– volume: 468
  start-page: 143525
  year: 2023
  ident: 41866_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143525
– volume: 5
  start-page: 8743
  year: 2012
  ident: 41866_CR1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22019a
– volume: 58
  start-page: 13360
  year: 2019
  ident: 41866_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907003
– volume: 428
  start-page: 131129
  year: 2022
  ident: 41866_CR21
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131129
– volume: 46
  start-page: 21921
  year: 2022
  ident: 41866_CR66
  publication-title: N. J. Chem.
  doi: 10.1039/D2NJ04689J
– volume: 139
  start-page: 15320
  year: 2017
  ident: 41866_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09850
– volume: 61
  start-page: e202214039
  year: 2022
  ident: 41866_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202214039
– volume: 142
  start-page: 20182
  year: 2020
  ident: 41866_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10253
– volume: 55
  start-page: 6711
  year: 2019
  ident: 41866_CR45
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02341K
– volume: 11
  start-page: 2786
  year: 2020
  ident: 41866_CR58
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY01948K
– volume: 13
  year: 2022
  ident: 41866_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34296-4
– volume: 59
  start-page: 16683
  year: 2020
  ident: 41866_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006569
– volume: 4
  year: 2014
  ident: 41866_CR69
  publication-title: Sci. Rep.
  doi: 10.1038/srep05826
– volume: 59
  start-page: 10101
  year: 2020
  ident: 41866_CR53
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912730
– volume: 61
  start-page: e202204732
  year: 2022
  ident: 41866_CR55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202204732
– volume: 27
  start-page: 2619
  year: 2015
  ident: 41866_CR6
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00413
– volume: 4
  year: 2013
  ident: 41866_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2758
– volume: 13
  year: 2022
  ident: 41866_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30663-3
– volume: 61
  start-page: e202113724
  year: 2022
  ident: 41866_CR61
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113724
– volume: 17
  start-page: 441
  year: 2017
  ident: 41866_CR37
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201600108
– ident: 41866_CR46
  doi: 10.1039/b708692j
– volume: 144
  start-page: 6821
  year: 2022
  ident: 41866_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00563
– volume: 133
  start-page: 14920
  year: 2011
  ident: 41866_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205969q
– volume: 143
  start-page: 2016
  year: 2021
  ident: 41866_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12064
– volume: 59
  start-page: 6806
  year: 2020
  ident: 41866_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915931
– volume: 3
  start-page: 354
  year: 2020
  ident: 41866_CR14
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c01136
– volume: 17
  start-page: 1163
  year: 2011
  ident: 41866_CR57
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201002105
– volume: 142
  start-page: 3165
  year: 2020
  ident: 41866_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12982
– volume: 139
  start-page: 7172
  year: 2017
  ident: 41866_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03204
– volume: 103
  start-page: 1649
  year: 2003
  ident: 41866_CR64
  publication-title: Chem. Rev.
  doi: 10.1021/cr0204101
SSID ssj0000391844
Score 2.603791
Snippet Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a...
Abstract Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6082
SubjectTerms 140/131
140/133
140/146
140/58
639/301/923/3931
639/638/298/923/3931
639/638/541/965
Adsorbents
Anions
Binding
Cages
Crystallography
Electrostatic properties
Humanities and Social Sciences
Hydrogen bonding
Hydrogen bonds
Iodine
Iodine radioisotopes
multidisciplinary
Radioactive wastes
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiPIhAgUZiRtY3dgT2zkCoqqQ4ESl3ix77NBIbbZidyXKH-jfZuxkl6YScOGaOHHsGXveZDxvGHudWbC0gii8SkmAxJr2wWAEGMLKuvahjjl3-PMXfXwCn06b0xulvvKZsJEeeJy4Q5U68iisQQQPPnWhM96qJKNEJH-9y7sv2bwbzlTZg1VLrgtMWTILZQ9XUPYEMlECMsmbMDNLVAj7Zyjz9hnJW4HSYn-OHrD7E3Dk78YP3md30vCQ3R1LSV49Ytc5uTxnEw800aLkgxCW5KkwRNDLeb8kK5U4-sscM-D9wD0_Sz_8-MuuR95f9NH_XJ73mws-1npCav0t8VTSqyIPV3x7_JAP1AkuSUvLq0vHJUFi9ZidHH38-uFYTEUWBDa1XYuGLBRiV4NHiZ1sI8SkFlFpE1G3OmAHqEnMC2XaGrUK3isbZRNaDOQconrC9qjP9JRx8h47RVKKJhgI2rZapgQqgYUAEKFi9XbCHU4M5LkQxrkrkXBl3SgkR0JyRUjOVOzN7pnLkX_jr63fZznuWmbu7HKBps1NGuX-pVEVO9hqgZsW9MpJq1tLWKxZVOzV7jYtxRxf8UNabnIbQ3g7Q6iK2Zn2zD5ofmfozwqpN-FclbF0xd5uFe13738e8bP_MeLn7J7MCyMH2-wB21t_36QXhLXW4WVZVr8AY4IqWA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIlLxacIFGQkbhA1iSe2c0KAWCokOFGpN8seOzRSm2zZXanlD_C3GTvJVluJXmMndjxjz7PH84axt5EFSwrwuRUh5FBhSeugUzkowsqytK70MXb4-w95dAzfTuqT6cBtNV2rnNfEtFD7AeMZ-WGlZaPJGNbFh-VFHrNGRe_qlELjLrtXkqWJV7r04uv2jCWyn2uAKVamEPpwBWllIEOVQ6R6y9WOPUq0_TtY8-ZNyRvu0mSFFg_Z_gQf-cdR3o_YndA_ZvfHhJJXT9jfGGIeY4p7Gu48RYUQouQh8UTQx3k3kK0KHO0yeg5413PLT8OlHQ_uOuTdeeftn-Gs25zzMeMTUu1fgYcUZOW5u-LzJUTeUyM4kK6mT6eGU5jE6ik7Xnz5-fkon1It5FiXep3XZKcQ2xIsVthWjQcfROGFVB5lIx22gJKEXQjVlCiFs1ZoX9WuQUdbRBTP2B61GZ4zTnvIVoAFr5wCJ3UjqxBABNDgADxkrJwH3ODEQx7TYZyZ5A8X2oxCMiQkk4RkVMbebd9Zjiwct9b-FOW4rRkZtNMDGjYzTUgjQks7Va0Qqa82tK5VVotQeRoH0RRtxg5mLTDTtF6ZayXM2JttMU3I6GWxfRg2sY4i1B2BVMb0jvbsdGi3pO9OE7U3oV0REXXG3s-Kdt36___4xe2dfckeVFHlozNNH7C99e9NeEVYau1epwnzDzxvID4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiKcIFGQkbhCRxBPbOS6IqloJLlCpN8seOzRSm63YXYn2D_RvM3aSRakAiWs8sR3PTObzYz4z9iayYEkBPrcihBwqLOk_6FQOirCyLK0rfcwd_vxFHp_A8rQ-3WPVlAuTDu0nSsv0m55Oh71fQ3JpijA5RI62XN1hB5GqnWz7YLFYfl3uVlYi57kGGDNkCqH_8PIsCiWy_hnCvH0-8tYmaYo9Rw_Y_RE08sXQzYdsL_SP2N3hGsmrx-wmJpbHTOKeBjlPuSCEI3lI7BBUOe9WFKECR3sZP5l3Pbf8LPy0w3Jdh7y76Ly9Xp132ws-3POEJP098JBSqzx3V3w6esh7agRXZKGp6tRwSo5YP2EnR5--fTzOxwsWcqxLvclrik6IbQkWK2yrxoMPovBCKo-ykQ5bQEkqLoRqSpTCWSu0r2rXoKOJIYqnbJ_aDM8Yp5ljK8CCV06Bk7qRVQggAmhwAB4yVk4DbnBkH4-XYJybtAsutBmUZEhJJinJqIy93b1zOXBv_FP6Q9TjTjLyZqcHNGxmtCMjQkvzU60Qqa82tK5VVotQeRoH0RRtxg4nKzCjM69NpWWjCYfVRcZe74rJDePeiu3DahtlFGHtCJ8ypmfWM-vQvKTvzhKhN2FcEXF0xt5Nhva79b9_8fP_E3_B7lXRBeKWmj5k-5sf2_CSENXGvRpd6Bd7Gh9n
  priority: 102
  providerName: Springer Nature
Title Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions
URI https://link.springer.com/article/10.1038/s41467-023-41866-7
https://www.proquest.com/docview/2869802850
https://www.proquest.com/docview/2870991512
https://pubmed.ncbi.nlm.nih.gov/PMC10539326
https://doaj.org/article/3ef91787cc4a4aefbf7a83e2d2cc390f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY5_MWxc02NvmLbZkSX4YIw3NSqBlbAvkzejLrSF1uiaBZv_A_u2dZDslpR17ccA-S4ruzvc7n-8O4J2vgsUps7GizsUsNQk-B7WImUCszBOlE-tzh09O-fGEjafZdAe6dkftBi7udO18P6nJ1ezj9a_1F1T4z03KuPy0YEHd0frEzNdvi8Uu7KNlEr6jwUkL98OTmebo0PhAc9pnSYwEtM2juXuYLVsVSvpv4dDbX1HeCqUGCzV6DI9aaEkGjSw8gR1XP4UHTbPJ9TP449PPfb5xjayIQ8YIok3iQg0JHJxUc7Rjjhh16aMKpKqJIufuWjUv9SpDqovKqt_zWbW6IE03KIPUZ464kIBliV6T7gNFUuMkZo5yHIYOE4cUisVzmIyOfg6P47YNQ2yyRC7jDG2YMWXClElNmeaWWUf7lnJhDc-5NiUzHAWhT0WeGE61UlTaNNO50eg-GvoC9nBO9xII-pclZYpZoQXTXOY8dY5RxyTTjFkWQdJteGHaGuW-VcasCLFyKouGSQUyqQhMKkQE7zf3XDYVOv5Jfej5uKH01bXDCdy2olXWgroSvVgpjMG1KlfqUihJXWpxH2jeLyM46KSg6CS2SCXPJaK1rB_B281lVFYfgVG1m688jUBE7kFWBHJLerYWtH2lrs5D2W9EwtSj7Qg-dIJ2M_v9__jVf6zmNTxMvdz7aJs8gL3l1cq9QbC11D3YFVOBRzn62oP9wWD8Y4y_h0en377j2SEf9sJrjF7QtL9-6C4J
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNLWAkOEHUJPbazgEhXsuWPk6t1JvxKzRSm126u4LlD_Bv-I2MnWSrrURvvcaOXzOe-ezxzAC8DFGwOGUu1dT7lBU2RzloRMoEYmWea5O74Du8f8BHR-zr8eB4Df72vjDhWWUvE6OgdmMb7si3C8lLicpwkL2b_EhD1qhgXe1TaLRssesXP_HINn278wnp-6oohp8PP47SLqtAage5nKUDFMnWVjnTtrBVUTrmPM0c5cJZXnJjK2Y5ziujoswtp0ZrKl0xMKU1eBqyFNu9ATcZRU0ePNOHX5Z3OiHaumSs883JqNyesiiJUDGmLISWS8WK_otpAlaw7eWXmZfMs1HrDe_B3Q6ukvctf92HNd88gFttAsvFQ_gTXNqDD3OD5E2jFwoiWOJjXApsnNRj1I2eWD0JlgpSN0STE_9LtxeFtSX1We307_FpPT8jbYYpi7W_e-KjU5cjZkH6R4-kwU7sGPdGbDp2HN0ypo_g6FqI8BjWsU-_AQTPrBVlmjlhBDNclrzwnlHPJDOMOZZA3i-4sl3c85B-41RF-zuVqiWSQiKpSCQlEni9_GfSRv24svaHQMdlzRCxO37AZVOdAFDUV3gylsJaHKv2lamEltQXDteBllmVwFbPBaoTI1N1wfQJvFgWowAIVh3d-PE81BGI8gNwS0CucM_KgFZLmvokhhJHdE0Dgk_gTc9oF73_f8ZPrh7sc7g9OtzfU3s7B7ubcKcI7B8MeXIL1mfnc_8UcdzMPIubh8C3696t_wAf816i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFRSgbggnmKhgJHgBKtk147tPSBEaaOWQlQhKvVm_Fq6UrsJJBGEH-Cf-DrG3t1UqURvva69fs3b45kBeBGyYHHKXKqp9ynLbYZ80IiUCdSVeaZN5kLs8Kcx3ztiH46Hxxvwt4uFCc8qO54YGbWb2HBH3s8lLyQKw-GgX7bPIg53Rm-n39NQQSp4WrtyGg2KHPjlTzTfZm_2dxDWL_N8tPvl_V7aVhhI7TCT83SI7NnaMmPa5rbMC8ecpwNHuXCWF9zYklmOexxQUWSWU6M1lS4fmsIatIwsxXGvwaYIVlEPNrd3x4efVzc8Ife6ZKyN1BlQ2Z-xyJdQTKYsJJpLxZo0jEUD1jTdi-80Lzhrowwc3YZbrfJK3jXYdgc2fH0XrjflLJf34E8IcA8RzTUCO40xKajPEh-zVODgpJqgpPTE6mnwW5CqJpqc-F-6uTasLKnOKqd_T06rxRlp6k1Z7P3NEx9DvBwxS9I9gSQ1TmInSClx6DhxDNKY3YejKwHDA-jhnP4hELRgS8o0c8IIZrgseO49o55JZhhzLIGsO3Bl2yzooRjHqYreeCpVAySFQFIRSEok8Gr1z7TJAXJp7-0Ax1XPkL87fsBjUy07UNSXaCdLYS2uVfvSlEJL6nOH50CLQZnAVocFqmUqM3VOAgk8XzUjOwg-Hl37ySL0EajzBzUuAbmGPWsLWm-pq5OYWBx1bRr0-QRed4h2Pvv_d_zo8sU-gxtIqerj_vjgMdzMA_YHr57cgt78x8I_QaVubp621EPg61UT7D8Le2Q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counteranion-mediated+efficient+iodine+capture+in+a+hexacationic+imidazolium+organic+cage+enabled+by+multiple+non-covalent+interactions&rft.jtitle=Nature+communications&rft.au=Yang%2C+Jian&rft.au=Hu%2C+Shao-Jun&rft.au=Cai%2C+Li-Xuan&rft.au=Zhou%2C+Li-Peng&rft.date=2023-09-28&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=6082&rft_id=info:doi/10.1038%2Fs41467-023-41866-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon