Analysis of the Hindriks and van Putten model for propofol anesthesia: Limitations and extensions

[Display omitted] We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhi...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 227; p. 117633
Main Authors Noroozbabaee, Leyla, Steyn-Ross, D.A., Steyn-Ross, Moira L., Sleigh, J.W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state (“awake”) and a low-firing (“anesthetized”) state such that the brain can transition from “awake” to “anesthetized” states at a critical level of drug concentration. The modified HvP model predicts a drug–effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
AbstractList We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state (“awake”) and a low-firing (“anesthetized”) state such that the brain can transition from “awake” to “anesthetized” states at a critical level of drug concentration. The modified HvP model predicts a drug–effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state (“awake”) and a low-firing (“anesthetized”) state such that the brain can transition from “awake” to “anesthetized” states at a critical level of drug concentration. The modified HvP model predicts a drug–effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state ("awake") and a low-firing ("anesthetized") state such that the brain can transition from "awake" to "anesthetized" states at a critical level of drug concentration. The modified HvP model predicts a drug-effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
[Display omitted] We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state (“awake”) and a low-firing (“anesthetized”) state such that the brain can transition from “awake” to “anesthetized” states at a critical level of drug concentration. The modified HvP model predicts a drug–effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.
ArticleNumber 117633
Author Steyn-Ross, D.A.
Steyn-Ross, Moira L.
Noroozbabaee, Leyla
Sleigh, J.W.
Author_xml – sequence: 1
  givenname: Leyla
  surname: Noroozbabaee
  fullname: Noroozbabaee, Leyla
  organization: School of Engineering, University of Waikato, Hamilton 3240, New Zealand
– sequence: 2
  givenname: D.A.
  orcidid: 0000-0002-4385-1791
  surname: Steyn-Ross
  fullname: Steyn-Ross, D.A.
  email: asr@waikato.ac.nz
  organization: School of Engineering, University of Waikato, Hamilton 3240, New Zealand
– sequence: 3
  givenname: Moira L.
  surname: Steyn-Ross
  fullname: Steyn-Ross, Moira L.
  organization: School of Engineering, University of Waikato, Hamilton 3240, New Zealand
– sequence: 4
  givenname: J.W.
  surname: Sleigh
  fullname: Sleigh, J.W.
  organization: Waikato Clinical School, University of Auckland, Waikato Hospital, Hamilton 3204, New Zealand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33316393$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wF5AlNmxy8Su2w65UQCtdCRawtnztcXFI4oudVPTf45BSJDZ444e-M-Mz5xydTGkChDAlO0qofNPvJlhyiqO9hR0jrD5TJTl_gs4o6dqmaxU7Wc8tbzSl3Sk6L6UnhHRU6GfolHNOJe_4GbKXkx3uSyw4BTx_A3wdJ5_j94Lt5PGdnfDnZZ5hwmPyMOCQMj7mdEwhDZWAUiUl2rd4H8c42zmmaVPCzyoq6_U5ehrsUODFw36Bvn54_-Xqutl_-nhzdblvXEv13IjgLZFe0qBaZRUnnNbVHYCBFoE4eiDByQA6aMW9tD50jjhFJAQrJWX8At1sdX2yvTnmOpx8b5KN5vdDyrfG5jm6AYym4IM8dNILLhgnVnRCCR-op3U-StVar7da1euPpbo0YywOhqFaTksxTCjCtOCMVPTVP2ifllyHulJaCcYo1ZXSG-VyKiVDePwgJWaN1PTmb6RmjdRskVbpy4cGy2EE_yj8k2EF3m0A1OneRcimuAiTAx8zuLnaj__v8gvMk7hu
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112844
crossref_primary_10_7554_eLife_86547
crossref_primary_10_1088_1741_2552_acc2e8
crossref_primary_10_1371_journal_pone_0275837
Cites_doi 10.1016/j.pbiomolbio.2004.02.001
10.1093/bja/80.6.725
10.1371/journal.pone.0011903
10.1111/j.1476-5381.1996.tb15633.x
10.1103/PhysRevE.56.826
10.1523/JNEUROSCI.4895-14.2015
10.1371/journal.pone.0050580
10.1371/journal.pcbi.1006387
10.1097/00000542-199908000-00025
10.1101/2020.06.09.141416
10.1111/j.1476-5381.1995.tb15903.x
10.1007/s004220050550
10.1177/0310057X9902700307
10.1021/ac034173t
10.1007/s11571-009-9092-2
10.1523/JNEUROSCI.19-24-10635.1999
10.1103/PhysRevE.71.041902
10.1103/PhysRevE.65.041924
10.1523/JNEUROSCI.5670-12.2013
10.1016/j.neuroimage.2012.02.042
10.1159/000079981
10.1124/jpet.102.043273
10.1103/PhysRevE.76.041911
10.1523/JNEUROSCI.20-13-04829.2000
10.1073/pnas.1017069108
10.1103/PhysRevE.60.7299
10.1073/pnas.1221180110
10.1016/j.jneumeth.2015.06.002
10.1007/s00422-002-0310-9
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Feb 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 15, 2021
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2020.117633
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 117633
ExternalDocumentID oai_doaj_org_article_81edf6b96d434230a49474df1d114877
10_1016_j_neuroimage_2020_117633
33316393
S1053811920311186
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
6I.
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AACTN
AADPK
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLVK
ABMAC
ABMZM
ABUWG
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
ADFRT
AEBSH
AEFWE
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HMQ
IHE
J1W
KOM
LCYCR
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZA5
ZU3
~G-
.1-
.FO
0SF
AAEDT
AAXKI
ADVLN
AFJKZ
AFRHN
AJUYK
AKRWK
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
Z5R
29N
3V.
53G
AAQXK
AAYXX
ABXDB
ADFGL
ADMUD
AGHFR
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
ROL
SEW
WUQ
XPP
ZMT
7TK
7XB
8FD
8FK
FR3
K9.
P64
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c518t-4fda06d61f757a730311119be2e84f0c1b0fc6fe8f873d6adf9c0c706efa66123
IEDL.DBID DOA
ISSN 1053-8119
IngestDate Tue Oct 22 15:12:04 EDT 2024
Sat Oct 05 05:59:26 EDT 2024
Mon Nov 04 11:28:20 EST 2024
Thu Sep 26 19:48:23 EDT 2024
Sat Sep 28 08:34:54 EDT 2024
Fri Feb 23 02:46:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thalamocortical mean-field model
Anesthesia
Propofol
EEG
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-4fda06d61f757a730311119be2e84f0c1b0fc6fe8f873d6adf9c0c706efa66123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4385-1791
OpenAccessLink https://doaj.org/article/81edf6b96d434230a49474df1d114877
PMID 33316393
PQID 2487422118
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_81edf6b96d434230a49474df1d114877
proquest_miscellaneous_2470284320
proquest_journals_2487422118
crossref_primary_10_1016_j_neuroimage_2020_117633
pubmed_primary_33316393
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117633
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Purdon, Pierce, Mukamel, Prerau, Walsh, Wong, Salazar-Gomez, Harrell, Sampson, Cimenser, Ching, Kopell, Tavares-Stoeckel, Habeeb, Merhar, Brown (bib0020) 2013; 110
Abeysuriya, Rennie, Robinson (bib0001) 2015; 253
Feshchenko, Veselis, Reinsel (bib0009) 2004; 50
Wright (bib0031) 1999; 81
Friedman, Sun, Moore, Hung, Meng, Perera, Joiner, Thomas, Eckenhoff, Sehgal, Kelz (bib0011) 2010; 5
Whittington, Jefferys, Traub (bib0029) 1996; 118
Kitamura, Marszalec, Yeh, Narahashi (bib0015) 2003; 304
Robinson, Rennie, Wright (bib0023) 1997; 56
Molaee-Ardekani, Senhadji, Shamsollahi, Vosoughi-Vahdat, Wodey (bib0017) 2007; 76
Antkowiak (bib0003) 1999; 91
Bojak, Liley (bib0005) 2005; 71
Adodra, Hales (bib0002) 1995; 115
Eilers (bib0008) 2003; 75
Rennie, Robinson, Wright (bib0021) 2002; 86
Ching, Cimenser, Purdon, Brown, Kopell (bib0007) 2010; 107
Williams, Sleigh (bib0030) 1999; 27
Bai, Pennefather, MacDonald, Orser (bib0004) 1999; 19
Hutt, Longtin (bib0013) 2010; 4
Brumberg, Nowak, McCormick (bib0006) 2000; 20
Robinson, Rennie, Rowe (bib0022) 2002; 65
Hindriks, van Putten (bib0012) 2012; 60
Müller, E.J., Munn, B., Shine, J.M., 2020. Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. BioRxiv, 2020.06.09.141416.
Flohr, Glade, Motzko (bib0010) 2000
Solovey, Alonso, Yanagawa, Fujii, Magnasco, Cecchi, Proekt (bib0025) 2015; 35
Steyn-Ross, Steyn-Ross, Sleigh (bib0026) 2004; 85
Hwang, Kim, Han, Choi (bib0014) 2012; 7
Kuizenga, Kalkman, Hennis (bib0016) 1998; 80
Noroozbabaee (bib0019) 2016
Steyn-Ross, Steyn-Ross, Sleigh, Liley (bib0027) 1999; 60
Vijayan, Ching, Purdon, Brown, Kopell (bib0028) 2013; 33
Sanz-Leon, Robinson, Knock, Drysdale, Abeysuriya, Fung, Rennie, Zhao (bib0024) 2018; 14
Hindriks (10.1016/j.neuroimage.2020.117633_bib0012) 2012; 60
Friedman (10.1016/j.neuroimage.2020.117633_bib0011) 2010; 5
10.1016/j.neuroimage.2020.117633_bib0018
Steyn-Ross (10.1016/j.neuroimage.2020.117633_bib0027) 1999; 60
Abeysuriya (10.1016/j.neuroimage.2020.117633_bib0001) 2015; 253
Steyn-Ross (10.1016/j.neuroimage.2020.117633_bib0026) 2004; 85
Whittington (10.1016/j.neuroimage.2020.117633_bib0029) 1996; 118
Brumberg (10.1016/j.neuroimage.2020.117633_bib0006) 2000; 20
Solovey (10.1016/j.neuroimage.2020.117633_bib0025) 2015; 35
Hutt (10.1016/j.neuroimage.2020.117633_bib0013) 2010; 4
Eilers (10.1016/j.neuroimage.2020.117633_bib0008) 2003; 75
Kuizenga (10.1016/j.neuroimage.2020.117633_bib0016) 1998; 80
Rennie (10.1016/j.neuroimage.2020.117633_bib0021) 2002; 86
Kitamura (10.1016/j.neuroimage.2020.117633_bib0015) 2003; 304
Hwang (10.1016/j.neuroimage.2020.117633_bib0014) 2012; 7
Williams (10.1016/j.neuroimage.2020.117633_bib0030) 1999; 27
Bojak (10.1016/j.neuroimage.2020.117633_bib0005) 2005; 71
Flohr (10.1016/j.neuroimage.2020.117633_bib0010) 2000
Ching (10.1016/j.neuroimage.2020.117633_bib0007) 2010; 107
Antkowiak (10.1016/j.neuroimage.2020.117633_bib0003) 1999; 91
Molaee-Ardekani (10.1016/j.neuroimage.2020.117633_bib0017) 2007; 76
Robinson (10.1016/j.neuroimage.2020.117633_bib0022) 2002; 65
Vijayan (10.1016/j.neuroimage.2020.117633_bib0028) 2013; 33
Robinson (10.1016/j.neuroimage.2020.117633_bib0023) 1997; 56
Purdon (10.1016/j.neuroimage.2020.117633_bib0020) 2013; 110
Bai (10.1016/j.neuroimage.2020.117633_bib0004) 1999; 19
Sanz-Leon (10.1016/j.neuroimage.2020.117633_bib0024) 2018; 14
Adodra (10.1016/j.neuroimage.2020.117633_bib0002) 1995; 115
Noroozbabaee (10.1016/j.neuroimage.2020.117633_bib0019) 2016
Feshchenko (10.1016/j.neuroimage.2020.117633_bib0009) 2004; 50
Wright (10.1016/j.neuroimage.2020.117633_bib0031) 1999; 81
References_xml – volume: 91
  start-page: 500
  year: 1999
  end-page: 511
  ident: bib0003
  article-title: Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABA
  publication-title: Anesthesiology
  contributor:
    fullname: Antkowiak
– volume: 5
  start-page: e11903
  year: 2010
  ident: bib0011
  article-title: A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
  publication-title: PLoS ONE
  contributor:
    fullname: Kelz
– volume: 20
  start-page: 4829
  year: 2000
  end-page: 4843
  ident: bib0006
  article-title: Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons
  publication-title: J Neurosci
  contributor:
    fullname: McCormick
– volume: 253
  start-page: 55
  year: 2015
  end-page: 69
  ident: bib0001
  article-title: Physiologically based arousal state estimation and dynamics
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Robinson
– volume: 115
  start-page: 953
  year: 1995
  end-page: 960
  ident: bib0002
  article-title: Potentiation, activation and blockade of GABA
  publication-title: Br. J. Pharmacol.
  contributor:
    fullname: Hales
– volume: 86
  start-page: 457
  year: 2002
  end-page: 471
  ident: bib0021
  article-title: Unified neurophysical model of EEG spectra and evoked potentials
  publication-title: Biol Cybern
  contributor:
    fullname: Wright
– volume: 56
  start-page: 826
  year: 1997
  ident: bib0023
  article-title: Propagation and stability of waves of electrical activity in the cerebral cortex
  publication-title: Physical Review E
  contributor:
    fullname: Wright
– volume: 107
  start-page: 22665
  year: 2010
  end-page: 22670
  ident: bib0007
  article-title: Thalamocortical model for a propofol-induced
  publication-title: Proceedings of the National Academy of Sciences
  contributor:
    fullname: Kopell
– volume: 75
  start-page: 3631
  year: 2003
  end-page: 3636
  ident: bib0008
  article-title: A perfect smoother
  publication-title: Anal Chem
  contributor:
    fullname: Eilers
– volume: 33
  start-page: 11070
  year: 2013
  end-page: 11075
  ident: bib0028
  article-title: Thalamocortical mechanisms for the anteriorization of
  publication-title: J Neurosci
  contributor:
    fullname: Kopell
– volume: 81
  start-page: 131
  year: 1999
  end-page: 147
  ident: bib0031
  article-title: Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex
  publication-title: Biol. Cybern.
  contributor:
    fullname: Wright
– volume: 76
  start-page: 041911
  year: 2007
  ident: bib0017
  article-title: Brain activity modelling in general anaesthesia: enhancing local mean-field models using a slow adaptive firing rate
  publication-title: Physical Review E
  contributor:
    fullname: Wodey
– volume: 110
  start-page: E1142
  year: 2013
  end-page: E1151
  ident: bib0020
  article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Brown
– year: 2016
  ident: bib0019
  publication-title: Theoretical and experimental investigation of anaesthetic effects in the brain
  contributor:
    fullname: Noroozbabaee
– volume: 7
  start-page: e50580
  year: 2012
  ident: bib0014
  article-title: Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness
  publication-title: PLoS ONE
  contributor:
    fullname: Choi
– start-page: 12
  year: 2000
  end-page: 24
  ident: bib0010
  article-title: The neural correlate of consciousness and the mechanisms of general anaesthesia
  publication-title: Molecular Pharmacology of Anaesthesia
  contributor:
    fullname: Motzko
– volume: 19
  start-page: 10635
  year: 1999
  end-page: 10646
  ident: bib0004
  article-title: The general anaesthetic propofol slows deactivation and desensitization of GABA
  publication-title: The Journal of Neuroscience
  contributor:
    fullname: Orser
– volume: 60
  start-page: 7299
  year: 1999
  ident: bib0027
  article-title: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anaesthetic-induced phase transition
  publication-title: Physical Review E
  contributor:
    fullname: Liley
– volume: 50
  start-page: 257
  year: 2004
  end-page: 266
  ident: bib0009
  article-title: Propofol-induced alpha rhythm
  publication-title: Neuropsychobiology
  contributor:
    fullname: Reinsel
– volume: 60
  start-page: 2323
  year: 2012
  end-page: 2334
  ident: bib0012
  article-title: Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms
  publication-title: NeuroImage
  contributor:
    fullname: van Putten
– volume: 14
  start-page: e1006387
  year: 2018
  ident: bib0024
  article-title: NFTSim: theory and simulation of multiscale neural field dynamics
  publication-title: PLoS Comput Biol
  contributor:
    fullname: Zhao
– volume: 27
  start-page: 265
  year: 1999
  end-page: 268
  ident: bib0030
  article-title: Auditory recall and response to command during recovery from propofol anaesthesia
  publication-title: Anaesth Intensive Care
  contributor:
    fullname: Sleigh
– volume: 304
  start-page: 162
  year: 2003
  end-page: 171
  ident: bib0015
  article-title: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons
  publication-title: J. Pharmacol. Exp. Ther.
  contributor:
    fullname: Narahashi
– volume: 4
  start-page: 37
  year: 2010
  end-page: 59
  ident: bib0013
  article-title: Effects of the anesthetic agent propofol on neural populations
  publication-title: Cogn. Neurodyn.
  contributor:
    fullname: Longtin
– volume: 80
  start-page: 725
  year: 1998
  end-page: 732
  ident: bib0016
  article-title: Quantitative electroencephalographic analysis of the biphasic concentration-effect relationship of propofol in surgical patients during extradural analgesia
  publication-title: Br. J. Anaesth.
  contributor:
    fullname: Hennis
– volume: 118
  start-page: 1977
  year: 1996
  end-page: 1986
  ident: bib0029
  article-title: Effects of intravenous anaesthetic agents on fast inhibitory oscillations in the rat hippocampus in vitro
  publication-title: Br. J. Pharmacol.
  contributor:
    fullname: Traub
– volume: 71
  start-page: 041902
  year: 2005
  ident: bib0005
  article-title: Modeling the effects of anesthesia on the electroencephalogram
  publication-title: Phys Rev E
  contributor:
    fullname: Liley
– volume: 65
  start-page: 041924
  year: 2002
  ident: bib0022
  article-title: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
  publication-title: Physical Review E
  contributor:
    fullname: Rowe
– volume: 35
  start-page: 10866
  year: 2015
  end-page: 10877
  ident: bib0025
  article-title: Loss of consciousness is associated with stabilization of cortical activity
  publication-title: J Neurosci
  contributor:
    fullname: Proekt
– volume: 85
  start-page: 369
  year: 2004
  end-page: 385
  ident: bib0026
  article-title: Modelling general anaesthesia as a first-order phase transition in the cortex
  publication-title: Prog. Biophys. Mol. Biol.
  contributor:
    fullname: Sleigh
– volume: 85
  start-page: 369
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117633_bib0026
  article-title: Modelling general anaesthesia as a first-order phase transition in the cortex
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2004.02.001
  contributor:
    fullname: Steyn-Ross
– volume: 80
  start-page: 725
  issue: 6
  year: 1998
  ident: 10.1016/j.neuroimage.2020.117633_bib0016
  article-title: Quantitative electroencephalographic analysis of the biphasic concentration-effect relationship of propofol in surgical patients during extradural analgesia
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/80.6.725
  contributor:
    fullname: Kuizenga
– volume: 5
  start-page: e11903
  issue: 7
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117633_bib0011
  article-title: A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011903
  contributor:
    fullname: Friedman
– volume: 118
  start-page: 1977
  issue: 8
  year: 1996
  ident: 10.1016/j.neuroimage.2020.117633_bib0029
  article-title: Effects of intravenous anaesthetic agents on fast inhibitory oscillations in the rat hippocampus in vitro
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1996.tb15633.x
  contributor:
    fullname: Whittington
– volume: 56
  start-page: 826
  issue: 1
  year: 1997
  ident: 10.1016/j.neuroimage.2020.117633_bib0023
  article-title: Propagation and stability of waves of electrical activity in the cerebral cortex
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.56.826
  contributor:
    fullname: Robinson
– volume: 35
  start-page: 10866
  issue: 30
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117633_bib0025
  article-title: Loss of consciousness is associated with stabilization of cortical activity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4895-14.2015
  contributor:
    fullname: Solovey
– volume: 7
  start-page: e50580
  issue: 12
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117633_bib0014
  article-title: Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050580
  contributor:
    fullname: Hwang
– volume: 14
  start-page: e1006387
  issue: 8
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117633_bib0024
  article-title: NFTSim: theory and simulation of multiscale neural field dynamics
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006387
  contributor:
    fullname: Sanz-Leon
– volume: 91
  start-page: 500
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117633_bib0003
  article-title: Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABAA receptor
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199908000-00025
  contributor:
    fullname: Antkowiak
– ident: 10.1016/j.neuroimage.2020.117633_bib0018
  doi: 10.1101/2020.06.09.141416
– volume: 115
  start-page: 953
  issue: 6
  year: 1995
  ident: 10.1016/j.neuroimage.2020.117633_bib0002
  article-title: Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT1-7 neurones by propofol
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1995.tb15903.x
  contributor:
    fullname: Adodra
– volume: 81
  start-page: 131
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117633_bib0031
  article-title: Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050550
  contributor:
    fullname: Wright
– volume: 27
  start-page: 265
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117633_bib0030
  article-title: Auditory recall and response to command during recovery from propofol anaesthesia
  publication-title: Anaesth Intensive Care
  doi: 10.1177/0310057X9902700307
  contributor:
    fullname: Williams
– year: 2016
  ident: 10.1016/j.neuroimage.2020.117633_bib0019
  contributor:
    fullname: Noroozbabaee
– volume: 75
  start-page: 3631
  issue: 14
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117633_bib0008
  article-title: A perfect smoother
  publication-title: Anal Chem
  doi: 10.1021/ac034173t
  contributor:
    fullname: Eilers
– volume: 4
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117633_bib0013
  article-title: Effects of the anesthetic agent propofol on neural populations
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-009-9092-2
  contributor:
    fullname: Hutt
– volume: 19
  start-page: 10635
  issue: 24
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117633_bib0004
  article-title: The general anaesthetic propofol slows deactivation and desensitization of GABAA receptors
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.19-24-10635.1999
  contributor:
    fullname: Bai
– volume: 71
  start-page: 041902
  issue: 4 Pt 1
  year: 2005
  ident: 10.1016/j.neuroimage.2020.117633_bib0005
  article-title: Modeling the effects of anesthesia on the electroencephalogram
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.041902
  contributor:
    fullname: Bojak
– volume: 65
  start-page: 041924
  issue: 4
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117633_bib0022
  article-title: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.65.041924
  contributor:
    fullname: Robinson
– volume: 33
  start-page: 11070
  issue: 27
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117633_bib0028
  article-title: Thalamocortical mechanisms for the anteriorization of α-rhythms during propofol-induced unconsciousness
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5670-12.2013
  contributor:
    fullname: Vijayan
– start-page: 12
  year: 2000
  ident: 10.1016/j.neuroimage.2020.117633_bib0010
  article-title: The neural correlate of consciousness and the mechanisms of general anaesthesia
  publication-title: Molecular Pharmacology of Anaesthesia
  contributor:
    fullname: Flohr
– volume: 60
  start-page: 2323
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117633_bib0012
  article-title: Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.042
  contributor:
    fullname: Hindriks
– volume: 50
  start-page: 257
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2020.117633_bib0009
  article-title: Propofol-induced alpha rhythm
  publication-title: Neuropsychobiology
  doi: 10.1159/000079981
  contributor:
    fullname: Feshchenko
– volume: 304
  start-page: 162
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117633_bib0015
  article-title: Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.102.043273
  contributor:
    fullname: Kitamura
– volume: 76
  start-page: 041911
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2020.117633_bib0017
  article-title: Brain activity modelling in general anaesthesia: enhancing local mean-field models using a slow adaptive firing rate
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.76.041911
  contributor:
    fullname: Molaee-Ardekani
– volume: 20
  start-page: 4829
  issue: 13
  year: 2000
  ident: 10.1016/j.neuroimage.2020.117633_bib0006
  article-title: Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-13-04829.2000
  contributor:
    fullname: Brumberg
– volume: 107
  start-page: 22665
  issue: 52
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117633_bib0007
  article-title: Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1017069108
  contributor:
    fullname: Ching
– volume: 60
  start-page: 7299
  issue: 6
  year: 1999
  ident: 10.1016/j.neuroimage.2020.117633_bib0027
  article-title: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anaesthetic-induced phase transition
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.60.7299
  contributor:
    fullname: Steyn-Ross
– volume: 110
  start-page: E1142
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117633_bib0020
  article-title: Electroencephalogram signatures of loss and recovery of consciousness from propofol
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1221180110
  contributor:
    fullname: Purdon
– volume: 253
  start-page: 55
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117633_bib0001
  article-title: Physiologically based arousal state estimation and dynamics
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.06.002
  contributor:
    fullname: Abeysuriya
– volume: 86
  start-page: 457
  issue: 6
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117633_bib0021
  article-title: Unified neurophysical model of EEG spectra and evoked potentials
  publication-title: Biol Cybern
  doi: 10.1007/s00422-002-0310-9
  contributor:
    fullname: Rennie
SSID ssj0009148
Score 2.419233
Snippet [Display omitted] We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23),...
We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks...
SourceID doaj
proquest
crossref
pubmed
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 117633
SubjectTerms Anesthesia
Anesthetics, Intravenous - pharmacology
Cerebral Cortex - drug effects
Cerebral Cortex - physiology
Coma
Consciousness
EEG
Fainting
Firing pattern
Firing rate
General anesthesia
Humans
Light effects
Models, Neurological
Nerve Net - drug effects
Nerve Net - physiology
Neural Inhibition - drug effects
Neural Inhibition - physiology
Neuroimaging
Neurons
Neurons - drug effects
Neurons - physiology
Ordinary differential equations
Phase transitions
Population
Propagation
Propofol
Propofol - pharmacology
Thalamocortical mean-field model
Thalamus
γ-Aminobutyric acid A receptors
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9wgEEZRDlUuUdrmsW1aUSlXZ43BgNtTGzVaVUoVqY2UG8IGEudhr3Y31_72zmC80R4iVaqPGGOYGZhvYJgh5MQLxblyTRaUcGCg1D6zXoWsgXUBxCM4HZ1oLn7K2ZX4cV1eb5Gz8S4MulWmtX9Y0-NqnUqmiZrTedtOfwEyAHUDCAXkEmAyht0WoP5Apk__PLt5VEwM1-FKnmHt5M0z-HjFmJHtI8xcsBSLeIIpOd9QUTGS_4amegmJRo10vkd2E5SkX4feviZbvntDXl2kw_K3xI4BR2gfKOA8OgP7e9HeL6ntHAUETS8xS3VHYzYcCuiVzjFnQugfoAb8-dYvW_uZxjtQw8Ze_DLum-Mm23KfXJ1__302y1JGhawpmV5lIjibSydZUKWyMLmRcqyqfeG1CHnD6jw0MngdtOJOWheqJm9ULn2wEgO1HJDtru_8EaGh0hZI72TJrPAWHm2d98htBopRTwgbiWjmQ-AMM3qU3ZlnwhskvBkIPyHfkNrr-hj6Ohb0ixuTeG808y7IupJOYPTC3IpKgJwF5tC0U2pCvoy8MhuSBE21_9CF45G9Js3mpSmgXVGAqQyj-rR-DfMQD1eAIf0T1lEA1QQv8gk5HMRiPQ7OOcDeir_7r669JzsFOtRgNprymGyvFk_-AyCiVf0xivxfTbgKGA
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgKyEuiDeBgozENcKOHduBA6Ko1QqpVYWo1JvlxDZsgWTZbP8_M46zqx5A5Jg4r3n5m_F4hpA3QWohtO_KqKUHB6UNpQs6lh3YBRCP6E1Kojk9U8sL-fmyvswBtzGnVc42MRlqP3QYI39bAbKWFbgr5sP6d4ldo3B1NbfQuE0OKvAU2IIcHB2fnX_Zl93lctoMV4vScN7kXJ4pwytVjFz9Ar0FP7FK65dKiBsTVKrjf2Oe-hsOTfPRyX1yLwNJ-nHi_ANyK_QPyZ3TvFT-iLi53AgdIgWUR5fgfW9WP0bqek8BP9Nz7FHd09QLhwJ2pWvsmBCHnzAC3vw9jCv3jqYdUFNYL92ZouYYYhsfk4uT46-flmXup1B2NTfbUkbvmPKKR11rB6ot0F42baiCkZF1vGWxUzGYaLTwyvnYdKzTTIXoFJZpeUIW_dCHZ4TGxrimYl7V3Mng4DDOh4C85jAtmoLwmYh2PZXNsHM-2ZXdE94i4e1E-IIcIbV347HwdToxbL7ZrEfW8OCjahvlJdYuZE42EqQsco-OndYFeT_zymYMMWEDeNTqPz7hcGavzbo82r3kFeT17jJoIS6tAEOGaxyjAahJUbGCPJ3EYvcfQggAvY14_u-HvyB3K8yXwWYz9SFZbDfX4SUAnm37Kkv1HyxHADo
  priority: 102
  providerName: ProQuest
Title Analysis of the Hindriks and van Putten model for propofol anesthesia: Limitations and extensions
URI https://dx.doi.org/10.1016/j.neuroimage.2020.117633
https://www.ncbi.nlm.nih.gov/pubmed/33316393
https://www.proquest.com/docview/2487422118
https://search.proquest.com/docview/2470284320
https://doaj.org/article/81edf6b96d434230a49474df1d114877
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RKlW9VPS9BVau1GtaO3ZsB06AQAsVK1QVaW-WE9vq9pFF7HLltzO2k205VO2BHBIpcZx4JmN_Y0--AfjgheJcubYISjh0UBpfWK9C0WK_gJ9HcDoF0ZxP5eRSnM2q2R-pvmJMWKYHzoL7pJl3QTa1dCKS1VEraoHVBuYiklf5P3JaD87UQLeL1_q4nRzNldgh57_QRtEnLNNapeT83mCUOPvvjUl_w5xp7DnZgmc9aCQH-WWfw4bvXsCT835Z_CXYgVqELAJBREcm6Glfz38sie0cQaxMLmI-6o6kvDcEcSq5itkRwuInlsAnf_PLud0j6W-nPIWX7kwz5HE6bfkKLk-Ovx5Nij53QtFWTK8KEZyl0kkWVKUsmjGPfWPd-NJrEWjLGhpaGbwOWnEnrQt1S1tFpQ9WRkqW17DZLTr_Fkiota1L6mTFrPAWN22d91GvDIdAPQI2CNFcZYoMM8SOfTe_BW-i4E0W_AgOo7TX5SPJdTqBqje96s2_VD-C_UFXpscLGQdgVfP_eIWdQb2mt9ulKbFeUaJTjK16v76MFheXUVAhi5tYRiEoE7ykI3iTP4t1OzjnCHBr_u4h2rcNT8sYQRPTz1Q7sLm6vvG7CIFWzRgefbxluFczNYbHB6efJ1M8Hh5PL76MkyXcAUebCac
link.rule.ids 315,783,787,867,2109,4509,12068,21400,24128,27936,27937,31731,31732,33756,33757,43322,43817,45597,45691,74079,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk4AXxDeBAUbiNSKOHduBB8TQpgJrNaFN2pvlxDaUj6Q03f_PneO02gOIPDZumt6H_bvz-XeEvPJCca5cmwclHAQojc-tVyFvYV4A8whOxyKa-ULOzsWni-oiJdyGVFY5zYlxonZ9izny1yUga1FCuKLfrX7n2DUKd1dTC43rZB-pqiD42j88Wpx-2dHuMjEehqt4rhmrUy3PWOEVGSOXv8BvIU4s4_6l5PzKAhV5_K-sU3_DoXE9Or5DbicgSd-Pmr9LrvnuHrkxT1vl94md6EZoHyigPDqD6Hu9_DFQ2zkK-JmeYo_qjsZeOBSwK11hx4TQ_4QR8Mvf_LC0b2g8ATWm9eI3Y9YcU2zDA3J-fHT2YZanfgp5WzG9yUVwtpBOsqAqZcG1Oc6XdeNLr0UoWtYUoZXB66AVd9K6ULdFqwrpg5VI0_KQ7HV95x8TGmpt67JwsmJWeAuXts571DWDZVFnhE1CNKuRNsNM9WTfzU7wBgVvRsFn5BClvR2PxNfxg3791SQ_Mpp5F2RTSyeQu7CwohZgZYE5DOyUysjbSVcmYYgRG8Cjlv_xCgeTek3y5cHsLC8jL7e3wQtxawUU0l_iGAVATfCyyMij0Sy2_4NzDqC35k_-_fAX5ObsbH5iTj4uPj8lt0qsncHGM9UB2dusL_0zAD-b5nmy8D99NAM0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSBUXxJvQAkbiGjWOHdsph6o8VsujVQ9U2pvlxDYsj2TZbP8_M46zqx5A5Jg4r3n5m_F4hpBXXijOlWvzoIQDB6XxufUq5C3YBRCP4HRMojk7l_NL8XFRLVL-05DSKiebGA2161uMkR-VgKxFCe6KPgopLeLi3exk9TvHDlK40praadwktxR4KSjhaqF2BXiZGLfFVTzXjNUpq2fM9Yq1I5e_QIPBYyzjSqbk_NpUFSv6X5ux_oZI48w0u0vuJEhJT0cZuEdu-O4-2T9Li-YPiJ0Kj9A-UMB7dA5--Hr5Y6C2cxSQNL3AbtUdjV1xKKBYusLeCaH_CSPgzd_8sLTHNO6FGgN88c4YP8dg2_CQXM7ef3k7z1NnhbytmN7kIjhbSCdZUJWyoOQcLWfd-NJrEYqWNUVoZfA6aMWdtC7UbdGqQvpgJRZseUT2ur7zTwgNtbZ1WThZMSu8hUNb5z1yncEEqTPCJiKa1VhAw0yZZd_NjvAGCW9GwmfkDVJ7Ox5LYMcT_fqrSRplNPMuyKaWTmAVw8KKWoC8BebQxVMqI68nXpmEJkaUAI9a_scnHE7sNUmrB7OTwYy83F4GfcRFFmBIf4VjFEA2wcsiI49Hsdj-B-cc4G_Nn_774S_IPoi2-fzh_NMBuV1iEg12oKkOyd5mfeWfAQraNM-jeP8BRGgGAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Hindriks+and+van+Putten+model+for+propofol+anesthesia%3A+Limitations+and+extensions&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Leyla+Noroozbabaee&rft.au=D.A.+Steyn-Ross&rft.au=Moira+L.+Steyn-Ross&rft.au=J.W.+Sleigh&rft.date=2021-02-15&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=227&rft.spage=117633&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117633&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_81edf6b96d434230a49474df1d114877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon