A mechanistic IR calibration technique for boiling heat transfer investigations

•We developed an IR calibration technique to improve the accuracy boiling heat transfer measurements.•Suitable for heaters consisting of an IR opaque film coated on an IR semi-transparent substrate.•The technique requires the solution of a coupled 3D-conduction/2D-radiation problem.•The technique ha...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of multiphase flow Vol. 83; no. C; pp. 115 - 127
Main Authors Bucci, Matteo, Richenderfer, Andrew, Su, Guan-Yu, McKrell, Thomas, Buongiorno, Jacopo
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 01.07.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We developed an IR calibration technique to improve the accuracy boiling heat transfer measurements.•Suitable for heaters consisting of an IR opaque film coated on an IR semi-transparent substrate.•The technique requires the solution of a coupled 3D-conduction/2D-radiation problem.•The technique has been validated through experiments supported by a well know analytic solution. This paper presents a new calibration technique to improve the accuracy of infrared thermometry in boiling heat transfer investigations. The technique is suitable for heaters consisting of a thin, infrared (IR) opaque conductive film coated on one side of a flat and IR semi-transparent substrate. The conductive film is in contact with the liquid and acts as the boiling surface. The IR camera sees the boiling surface through the substrate. If the substrate is not completely transparent, the radiation emitted by the IR opaque film is partially absorbed and contaminated by the radiation emitted by the substrate itself. Therefore, the correlation between the IR radiation measured by the IR camera and the temperature of the boiling surface (IR opaque film) is not unique, but depends on the temperature distribution in the substrate. To solve this issue, we developed a model that solves the coupled conduction/radiation inverse problem in the heater. The problem is inverse because the boundary condition for the conduction problem (the boiling surface temperature) is not known. The IR camera measures the combined radiation emitted by the boiling surface, emitted by the substrate and also the reflection of the background radiation; from that information one has to reconstruct the boiling surface temperature. The technique is unique in that it takes into account the spectral dependence of optical properties in the optical materials. For this reason, it is particularly suitable for heaters where the optical properties of the conductive film and the substrate materials depend on the wavelength of the IR radiation. Using this technique, we can measure with improved accuracy the time-dependent 3D temperature distribution in the heater, as well as local temperature and local heat flux distributions on the boiling surface. The validation of the technique was carried out using transient conduction experiments. Then, the technique was applied to transient pool boiling experiments to prove its feasibility and show the potential applications.
AbstractList This paper presents a new calibration technique to improve the accuracy of infrared thermometry in boiling heat transfer investigations. The technique is suitable for heaters consisting of a thin, infrared (IR) opaque conductive film coated on one side of a flat and IR semi-transparent substrate. The conductive film is in contact with the liquid and acts as the boiling surface. The IR camera sees the boiling surface through the substrate. If the substrate is not completely transparent, the radiation emitted by the IR opaque film is partially absorbed and contaminated by the radiation emitted by the substrate itself. Therefore, the correlation between the IR radiation measured by the IR camera and the temperature of the boiling surface (IR opaque film) is not unique, but depends on the temperature distribution in the substrate. To solve this issue, we developed a model that solves the coupled conduction/radiation inverse problem in the heater. The problem is inverse because the boundary condition for the conduction problem (the boiling surface temperature) is not known. The IR camera measures the combined radiation emitted by the boiling surface, emitted by the substrate and also the reflection of the background radiation; from that information one has to reconstruct the boiling surface temperature. The technique is unique in that it takes into account the spectral dependence of optical properties in the optical materials. For this reason, it is particularly suitable for heaters where the optical properties of the conductive film and the substrate materials depend on the wavelength of the IR radiation. Using this technique, we can measure with improved accuracy the time-dependent 3D temperature distribution in the heater, as well as local temperature and local heat flux distributions on the boiling surface. The validation of the technique was carried out using transient conduction experiments. Then, the technique was applied to transient pool boiling experiments to prove its feasibility and show the potential applications.
•We developed an IR calibration technique to improve the accuracy boiling heat transfer measurements.•Suitable for heaters consisting of an IR opaque film coated on an IR semi-transparent substrate.•The technique requires the solution of a coupled 3D-conduction/2D-radiation problem.•The technique has been validated through experiments supported by a well know analytic solution. This paper presents a new calibration technique to improve the accuracy of infrared thermometry in boiling heat transfer investigations. The technique is suitable for heaters consisting of a thin, infrared (IR) opaque conductive film coated on one side of a flat and IR semi-transparent substrate. The conductive film is in contact with the liquid and acts as the boiling surface. The IR camera sees the boiling surface through the substrate. If the substrate is not completely transparent, the radiation emitted by the IR opaque film is partially absorbed and contaminated by the radiation emitted by the substrate itself. Therefore, the correlation between the IR radiation measured by the IR camera and the temperature of the boiling surface (IR opaque film) is not unique, but depends on the temperature distribution in the substrate. To solve this issue, we developed a model that solves the coupled conduction/radiation inverse problem in the heater. The problem is inverse because the boundary condition for the conduction problem (the boiling surface temperature) is not known. The IR camera measures the combined radiation emitted by the boiling surface, emitted by the substrate and also the reflection of the background radiation; from that information one has to reconstruct the boiling surface temperature. The technique is unique in that it takes into account the spectral dependence of optical properties in the optical materials. For this reason, it is particularly suitable for heaters where the optical properties of the conductive film and the substrate materials depend on the wavelength of the IR radiation. Using this technique, we can measure with improved accuracy the time-dependent 3D temperature distribution in the heater, as well as local temperature and local heat flux distributions on the boiling surface. The validation of the technique was carried out using transient conduction experiments. Then, the technique was applied to transient pool boiling experiments to prove its feasibility and show the potential applications.
Author Buongiorno, Jacopo
Su, Guan-Yu
Bucci, Matteo
Richenderfer, Andrew
McKrell, Thomas
Author_xml – sequence: 1
  givenname: Matteo
  orcidid: 0000-0002-6423-1356
  surname: Bucci
  fullname: Bucci, Matteo
  email: mbucci@mit.edu
– sequence: 2
  givenname: Andrew
  surname: Richenderfer
  fullname: Richenderfer, Andrew
– sequence: 3
  givenname: Guan-Yu
  surname: Su
  fullname: Su, Guan-Yu
– sequence: 4
  givenname: Thomas
  surname: McKrell
  fullname: McKrell, Thomas
– sequence: 5
  givenname: Jacopo
  surname: Buongiorno
  fullname: Buongiorno, Jacopo
BackLink https://www.osti.gov/biblio/2280088$$D View this record in Osti.gov
BookMark eNqNUMtqHDEQFMYGrx3_g_Ah5DLj1mNGmkvAmCQ2GAwhPguNtserZVbaSFqH_H00Xp98yqmhu6q6qi7IaYgBCfnMoGXA-ptt67e7w1z8fmMzTnP80_K6b0G0AOqErJhWQyM6IU7JCgSwZhCcn5OLnLcA0CkpVuTplu7QbWzwuXhHH35SZ2c_Jlt8DLTUU_C_D0inmOgY_ezDC92gLbQkG_KEifrwipX78sbIn8jZZOeMV-_zkjx___br7r55fPrxcHf72LiO6dJI10unbK_1ONqB90Khkh0b0KGychxAip5bKTWs1x1jurpFp6BDKdTo5CAuyfVRN9bfJju_WHUxBHTFcK4BtK6gL0fQPsUaIhez89nhPNuA8ZAN06yHjneSV-jXI9SlmHPCyeyT39n01zAwS91maz7WbZa6DQhT664C90cBrKlfPabFFAaHa58WT-vo_1fqHxp6lU8
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2022_123367
crossref_primary_10_1016_j_precisioneng_2023_03_013
crossref_primary_10_1063_5_0187146
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120331
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125860
crossref_primary_10_1080_10407790_2023_2266770
crossref_primary_10_2139_ssrn_4045890
crossref_primary_10_1016_j_expthermflusci_2018_11_012
crossref_primary_10_1016_j_anucene_2021_108797
crossref_primary_10_1103_PhysRevLett_122_134501
crossref_primary_10_1016_j_solener_2018_10_047
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_170
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103295
crossref_primary_10_1080_01457632_2023_2191441
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120134
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120137
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122754
crossref_primary_10_1016_j_expthermflusci_2022_110728
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125516
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121294
crossref_primary_10_1016_j_icheatmasstransfer_2019_104328
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120143
crossref_primary_10_1126_sciadv_abg4537
crossref_primary_10_1080_08916152_2018_1549622
crossref_primary_10_1063_5_0140825
crossref_primary_10_1002_dro2_124
crossref_primary_10_1016_j_infrared_2021_103862
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103522
crossref_primary_10_1002_adfm_202006249
crossref_primary_10_1017_jfm_2021_1108
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123915
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122525
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122723
crossref_primary_10_1016_j_ijthermalsci_2021_107042
crossref_primary_10_1016_j_expthermflusci_2023_110879
crossref_primary_10_1515_kern_2020_0064
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122924
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119360
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122967
crossref_primary_10_1063_5_0048391
crossref_primary_10_1088_1742_6596_2766_1_012135
crossref_primary_10_1021_acsanm_9b01116
crossref_primary_10_1088_1742_6596_2766_1_012138
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121363
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125166
crossref_primary_10_1016_j_expthermflusci_2019_109907
crossref_primary_10_1016_j_applthermaleng_2019_114357
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121006
crossref_primary_10_1016_j_applthermaleng_2023_120210
crossref_primary_10_1021_acsami_8b21260
crossref_primary_10_1038_s41467_023_37899_7
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_075
crossref_primary_10_1299_jfst_2022jfst0009
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122417
crossref_primary_10_1016_j_applthermaleng_2022_119018
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124589
crossref_primary_10_1063_5_0135110
crossref_primary_10_1016_j_applthermaleng_2023_121313
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_079
crossref_primary_10_1021_acsnano_9b06501
crossref_primary_10_1016_j_expthermflusci_2018_07_017
Cites_doi 10.1007/s00231-007-0295-y
10.1016/S0894-1777(02)00192-9
10.1080/08916152.2012.736837
10.1016/j.ijmultiphaseflow.2011.11.012
10.1016/j.ijheatmasstransfer.2011.08.021
10.1615/MultScienTechn.v21.i4.40
10.1007/s12217-011-9273-6
10.1016/j.ijheatmasstransfer.2014.02.014
10.1016/S0894-1777(02)00193-0
10.1016/j.ijthermalsci.2014.12.007
10.1016/j.ijheatmasstransfer.2010.05.041
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
OTOTI
DOI 10.1016/j.ijmultiphaseflow.2016.03.007
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 127
ExternalDocumentID 2280088
10_1016_j_ijmultiphaseflow_2016_03_007
S030193221530183X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c518t-4c64c7a688bba92637e74519ece7a4b904362a4480dd5118057ec705e437bc493
IEDL.DBID AIKHN
ISSN 0301-9322
IngestDate Mon Jan 15 05:23:04 EST 2024
Fri Aug 16 20:51:53 EDT 2024
Thu Sep 26 16:12:32 EDT 2024
Fri Feb 23 02:25:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Boiling heat transfer
Coupled conduction/radiation inverse problem
Infrared thermometry calibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-4c64c7a688bba92637e74519ece7a4b904362a4480dd5118057ec705e437bc493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
021439-001
ORCID 0000-0002-6423-1356
0000000264231356
OpenAccessLink http://manuscript.elsevier.com/S030193221530183X/pdf/S030193221530183X.pdf
PQID 1816052542
PQPubID 23500
PageCount 13
ParticipantIDs osti_scitechconnect_2280088
proquest_miscellaneous_1816052542
crossref_primary_10_1016_j_ijmultiphaseflow_2016_03_007
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2016_03_007
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
20160701
2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle International journal of multiphase flow
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yoo, Estrada-Perez, Hassan (bib0013) 2015; 90
Stephan, Sielaff, Fischer, Dietl, Herbert (bib0007) 2013; 21
Theofanous, Tu, Dinh, Dinh (bib0004) 2002; 26
Personal conversation with Prof. Hyungdae Kim
Golobic, Petkovsek, Kenning (bib0003) 2012; 55
Gerardi, Buongiorno, Hu, McKrell (bib0008) 2010; 53
from Kyung Hee University, Korea, during the 2015 Boiling and Condensation Conference in Boulder, Colorado.
Fowles (bib0016) 1975
Jung, Kim (bib0010) 2014; 73
Duan, Phillips, Mckrell, Buongiorno (bib0009) 2012; 26
Schweizer, Stephan (bib0002) 2009; 21
Phillips (bib0011) 2014
Fischer, Herbert, Sielaff, Slomsky, Stephan, Oechsner (bib0006) 2012; 24
Golobic, Petkovsek, Baselj, Papez, Kenning (bib0001) 2009; 45
Tetreault-Friend (bib0012) 2014
Theofanous, Dinh, Tu, Dinh (bib0005) 2002; 26
Kim, Kommer, Dessiatoun, Kim (bib0014) 2012; 40
Dobrovinskaya, Lytvynov, Pishchik (bib0017) 2009
Theofanous (10.1016/j.ijmultiphaseflow.2016.03.007_bib0004) 2002; 26
Theofanous (10.1016/j.ijmultiphaseflow.2016.03.007_bib0005) 2002; 26
Dobrovinskaya (10.1016/j.ijmultiphaseflow.2016.03.007_bib0017) 2009
Phillips (10.1016/j.ijmultiphaseflow.2016.03.007_bib0011) 2014
Yoo (10.1016/j.ijmultiphaseflow.2016.03.007_bib0013) 2015; 90
10.1016/j.ijmultiphaseflow.2016.03.007_bib0015
Stephan (10.1016/j.ijmultiphaseflow.2016.03.007_bib0007) 2013; 21
Gerardi (10.1016/j.ijmultiphaseflow.2016.03.007_bib0008) 2010; 53
Fowles (10.1016/j.ijmultiphaseflow.2016.03.007_bib0016) 1975
Golobic (10.1016/j.ijmultiphaseflow.2016.03.007_bib0003) 2012; 55
Schweizer (10.1016/j.ijmultiphaseflow.2016.03.007_bib0002) 2009; 21
Golobic (10.1016/j.ijmultiphaseflow.2016.03.007_bib0001) 2009; 45
Duan (10.1016/j.ijmultiphaseflow.2016.03.007_bib0009) 2012; 26
Kim (10.1016/j.ijmultiphaseflow.2016.03.007_bib0014) 2012; 40
Fischer (10.1016/j.ijmultiphaseflow.2016.03.007_bib0006) 2012; 24
Jung (10.1016/j.ijmultiphaseflow.2016.03.007_bib0010) 2014; 73
Tetreault-Friend (10.1016/j.ijmultiphaseflow.2016.03.007_bib0012) 2014
References_xml – volume: 21
  start-page: 329
  year: 2009
  end-page: 350
  ident: bib0002
  article-title: Experimental study of bubble behavior and local heat flux in pool boiling under variable gravitational conditions
  publication-title: Multiph. Sci. Technol.
  contributor:
    fullname: Stephan
– volume: 24
  start-page: 139
  year: 2012
  end-page: 146
  ident: bib0006
  article-title: Experimental investigation of nucleate boiling on a thermal capacitive heater under variable gravity conditions
  publication-title: Microgravity Sci. Tech.
  contributor:
    fullname: Oechsner
– year: 1975
  ident: bib0016
  article-title: Introduction to Modern Optics
  contributor:
    fullname: Fowles
– volume: 53
  start-page: 4185
  year: 2010
  end-page: 4192
  ident: bib0008
  article-title: Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video
  publication-title: Int. J. Heat. Mass Trans
  contributor:
    fullname: McKrell
– year: 2014
  ident: bib0012
  article-title: Systematic Investigation of the Effects of Hydrophilic Porosity on Boiling Heat Transfer and Critical Heat Flux (MSc Thesis)
  contributor:
    fullname: Tetreault-Friend
– volume: 73
  start-page: 365
  year: 2014
  end-page: 375
  ident: bib0010
  article-title: An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Kim
– year: 2014
  ident: bib0011
  article-title: Experimental Investigation of Subcooled Flow Boiling Using Synchronized High Speed Video, Infrared Thermography, and Particle Image Velocimetry (Ph.D. Thesis)
  contributor:
    fullname: Phillips
– volume: 26
  start-page: 169
  year: 2012
  end-page: 197
  ident: bib0009
  article-title: Synchronized high speed video, infrared thermometry and PIV data for validation of interface-tracking simulations of nucleate boiling phenomena
  publication-title: Exp. Heat Transf.
  contributor:
    fullname: Buongiorno
– volume: 40
  start-page: 56
  year: 2012
  end-page: 67
  ident: bib0014
  article-title: Measurement of two-phase flow and heat transfer parameters using infrared thermometry
  publication-title: Int. J. Multiph. Flow
  contributor:
    fullname: Kim
– volume: 26
  start-page: 793
  year: 2002
  end-page: 810
  ident: bib0005
  article-title: The boiling crisis phenomenon - Part II: dryout dynamics and burnout
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Dinh
– volume: 26
  start-page: 775
  year: 2002
  end-page: 792
  ident: bib0004
  article-title: The boiling crisis phenomenon - Part I: nucleation and nucleate boiling heat transfer
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Dinh
– volume: 90
  start-page: 248
  year: 2015
  end-page: 266
  ident: bib0013
  article-title: An accurate wall temperature measurement using infrared thermometry with enhanced two-phase flow visualization in a convective boiling system
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Hassan
– volume: 45
  start-page: 857
  year: 2009
  end-page: 866
  ident: bib0001
  article-title: Experimental determination of transient wall temperature distributions close to growing vapor bubbles
  publication-title: Heat Mass Transf.
  contributor:
    fullname: Kenning
– volume: 55
  start-page: 1385
  year: 2012
  end-page: 1402
  ident: bib0003
  article-title: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography
  publication-title: Int. J. Heat. Mass Tran
  contributor:
    fullname: Kenning
– volume: 21
  start-page: 39
  year: 2013
  end-page: 57
  ident: bib0007
  article-title: A contribution to the basic understanding of nucleate boiling phenomena: generic experiments and numeric simulations
  publication-title: Therm. Sci. Eng.
  contributor:
    fullname: Herbert
– year: 2009
  ident: bib0017
  article-title: Sapphire, Material, Manufacturing, Properties
  contributor:
    fullname: Pishchik
– volume: 45
  start-page: 857
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0001
  article-title: Experimental determination of transient wall temperature distributions close to growing vapor bubbles
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-007-0295-y
  contributor:
    fullname: Golobic
– year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0012
  contributor:
    fullname: Tetreault-Friend
– volume: 26
  start-page: 775
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0004
  article-title: The boiling crisis phenomenon - Part I: nucleation and nucleate boiling heat transfer
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(02)00192-9
  contributor:
    fullname: Theofanous
– year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0011
  contributor:
    fullname: Phillips
– volume: 26
  start-page: 169
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0009
  article-title: Synchronized high speed video, infrared thermometry and PIV data for validation of interface-tracking simulations of nucleate boiling phenomena
  publication-title: Exp. Heat Transf.
  doi: 10.1080/08916152.2012.736837
  contributor:
    fullname: Duan
– volume: 40
  start-page: 56
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0014
  article-title: Measurement of two-phase flow and heat transfer parameters using infrared thermometry
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2011.11.012
  contributor:
    fullname: Kim
– volume: 55
  start-page: 1385
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0003
  article-title: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography
  publication-title: Int. J. Heat. Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.08.021
  contributor:
    fullname: Golobic
– year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0017
  contributor:
    fullname: Dobrovinskaya
– volume: 21
  start-page: 329
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0002
  article-title: Experimental study of bubble behavior and local heat flux in pool boiling under variable gravitational conditions
  publication-title: Multiph. Sci. Technol.
  doi: 10.1615/MultScienTechn.v21.i4.40
  contributor:
    fullname: Schweizer
– volume: 24
  start-page: 139
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0006
  article-title: Experimental investigation of nucleate boiling on a thermal capacitive heater under variable gravity conditions
  publication-title: Microgravity Sci. Tech.
  doi: 10.1007/s12217-011-9273-6
  contributor:
    fullname: Fischer
– volume: 73
  start-page: 365
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0010
  article-title: An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.02.014
  contributor:
    fullname: Jung
– volume: 21
  start-page: 39
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0007
  article-title: A contribution to the basic understanding of nucleate boiling phenomena: generic experiments and numeric simulations
  publication-title: Therm. Sci. Eng.
  contributor:
    fullname: Stephan
– volume: 26
  start-page: 793
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0005
  article-title: The boiling crisis phenomenon - Part II: dryout dynamics and burnout
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(02)00193-0
  contributor:
    fullname: Theofanous
– year: 1975
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0016
  contributor:
    fullname: Fowles
– volume: 90
  start-page: 248
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0013
  article-title: An accurate wall temperature measurement using infrared thermometry with enhanced two-phase flow visualization in a convective boiling system
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.12.007
  contributor:
    fullname: Yoo
– ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0015
– volume: 53
  start-page: 4185
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2016.03.007_bib0008
  article-title: Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video
  publication-title: Int. J. Heat. Mass Trans
  doi: 10.1016/j.ijheatmasstransfer.2010.05.041
  contributor:
    fullname: Gerardi
SSID ssj0005743
Score 2.5002205
Snippet •We developed an IR calibration technique to improve the accuracy boiling heat transfer measurements.•Suitable for heaters consisting of an IR opaque film...
This paper presents a new calibration technique to improve the accuracy of infrared thermometry in boiling heat transfer investigations. The technique is...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 115
SubjectTerms Boiling
Boiling heat transfer
Coupled conduction/radiation inverse problem
Heat transfer
Heaters
Heating equipment
Infrared cameras
Infrared thermometry calibration
Substrates
Surface temperature
Temperature distribution
Title A mechanistic IR calibration technique for boiling heat transfer investigations
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.03.007
https://search.proquest.com/docview/1816052542
https://www.osti.gov/biblio/2280088
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH7oiKIHccVxI4J4q7P0tWmPgyijooILzC0kaYoVnYqOePO3-14XxwXBg7e2NCF8L3lL--ULwK62SahjtJ6l8sJDjYFn-EucSSzaVFLlnPIG57PzsH-DJ4NgMAEH9V4YplVWvr_06YW3rp60KjRbj1nWuuJknrIPill0EfmDSZiicITYgKne8Wn_fMz0KHn2_L7HDWZgb0zzyu5K5t4tBY30Pn9ltldY6p7K32JVI6fl98N5FxHpaAHmq1RS9MrRLsKEGy7B3CeBwSWYLgie9nkZLnriwfEu30KYWRxfCjIOl8psGPGh5CoohxUmz3iTumA_LUZFZuueRDZW5KCZugI3R4fXB32vOkzBs0EnGnloQ7RSh1FkjI67oS-dZGkZZ53UaGKWou9qKtbaScJVB6HmrGwHDn1pLMb-KjSG-dCtgYi0Tn0dxGkn7WDioyZrW5m6wCSou2ibIGvY1GOpmaFqMtmd-g64YsBV21cEeBN6NcrqyyxQ5OD_3McGm4fbM3iW-ULUAcv-kEdtwk5tNUULif-O6KHLX54VpTohH-qH3fV_GMUGzPJdSezdhMbo6cVtUfoyMtswuf_W2a4m6TtsDvNW
link.rule.ids 230,315,786,790,891,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50xddBfOL6jCDe6j6aNu1xEZdVd1fQFfYWkjTFim5FV7z5253pw_WB4MFbadMQvkkmM-03XwAOlYl8FXLjGEwvHK6452j6Eqcjw00sMHOOqcC51_c7N_x86A2n4KSshSFaZeH7c5-eeeviTq1As_aYJLVrCuYx-sA9Cy8CdzgNMxQNEK_r-O0TzyNn2VNrh5rPwdGE5JXc5by9W9wy4vv0lbhefq56Kn7bqSopLr4frjvbj9rLsFQEkqyVj3UFpuxoFRY_yQuuwmxG7zTPa3DZYg-WanwzWWZ2dsXQNJQok1nYh44rwwiW6TShEnVGXpqNs7jWPrFkoseB83Qdbtqng5OOUxyl4BivEYwdbnxuhPKDQGsVNn1XWEHCMtZYobgOSYi-qTBVq0cR5RyImjWi7lnuCm146G5AZZSO7CawQKnYVV4YN-IGj1yu0NZGxNbTEVdNbqogStjkY66YIUsq2Z38DrgkwGXdlQh4FVolyvLLHJDo3v_cxzaZh94n8AyxhbADEv1Bf1qFg9JqEpcR_RtRI5u-PEsMdHw60o83t_5hFPsw3xn0urJ71r_YhgV6klN8d6AyfnqxuxjIjPVeNlHfAZvt9Cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanistic+IR+calibration+technique+for+boiling+heat+transfer+investigations&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Bucci%2C+Matteo&rft.au=Richenderfer%2C+Andrew&rft.au=Su%2C+Guan-Yu&rft.au=McKrell%2C+Thomas&rft.date=2016-07-01&rft.pub=Elsevier&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=83&rft.issue=C&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2016.03.007&rft.externalDocID=2280088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon