Computational fluid dynamics–based modeling and optimization of flow rate and radiant exitance for 1,4-dioxane degradation in a vacuum ultraviolet photoreactor

•Computational fluid dynamics model was developed to optimize photoreactor parameters.•Model was validated for 1,4-dioxane by using a pilot-scale flow-through photoreactor.•The model revealed that radiation efficiency increased with increasing flow rate.•Radiation efficiency increased with decreasin...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 197; p. 117086
Main Authors Shi, Gang, Nishizawa, Shota, Matsushita, Taku, Kato, Yuna, Kozumi, Takahiro, Matsui, Yoshihiko, Shirasaki, Nobutaka
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Computational fluid dynamics model was developed to optimize photoreactor parameters.•Model was validated for 1,4-dioxane by using a pilot-scale flow-through photoreactor.•The model revealed that radiation efficiency increased with increasing flow rate.•Radiation efficiency increased with decreasing radiation exitance.•Low/high-power lamps are recommended for laminar/turbulent flow, respectively. 1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics–based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters—flow rate and radiant exitance. First, we constructed a computational fluid dynamics model and determined the sole parameter required for the model, the pseudo-first-order rate constant for the reaction of 1,4-dioxane, by simple batch experiment. Then, we validated the model by using a pilot-scale flow-through annular photoreactor. Finally, we used the validated model to examine the effects of flow rate and radiant exitance on the efficiency of 1,4-dioxane degradation in a virtual annular photoreactor. Radiation efficiency, which was defined as the ratio of the logarithmic residual ratio of 1,4-dioxane to the theoretical minimum logarithmic residual ratio (best possible performance) under the given operating conditions, was calculated as an energy-based index of cost-effectiveness. Radiation efficiency was found to increase with increasing flow rate but decreasing radiant exitance. An electrical energy per order (EEO) analysis suggested that VUV treatment under laminar flow was most economical when low-power lamps and a high flow rate were used. In contrast, VUV treatment under turbulent flow was suggested to be most economical when high-power lamps were used at a high flow rate. [Display omitted]
AbstractList •Computational fluid dynamics model was developed to optimize photoreactor parameters.•Model was validated for 1,4-dioxane by using a pilot-scale flow-through photoreactor.•The model revealed that radiation efficiency increased with increasing flow rate.•Radiation efficiency increased with decreasing radiation exitance.•Low/high-power lamps are recommended for laminar/turbulent flow, respectively. 1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics–based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters—flow rate and radiant exitance. First, we constructed a computational fluid dynamics model and determined the sole parameter required for the model, the pseudo-first-order rate constant for the reaction of 1,4-dioxane, by simple batch experiment. Then, we validated the model by using a pilot-scale flow-through annular photoreactor. Finally, we used the validated model to examine the effects of flow rate and radiant exitance on the efficiency of 1,4-dioxane degradation in a virtual annular photoreactor. Radiation efficiency, which was defined as the ratio of the logarithmic residual ratio of 1,4-dioxane to the theoretical minimum logarithmic residual ratio (best possible performance) under the given operating conditions, was calculated as an energy-based index of cost-effectiveness. Radiation efficiency was found to increase with increasing flow rate but decreasing radiant exitance. An electrical energy per order (EEO) analysis suggested that VUV treatment under laminar flow was most economical when low-power lamps and a high flow rate were used. In contrast, VUV treatment under turbulent flow was suggested to be most economical when high-power lamps were used at a high flow rate. [Display omitted]
1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics-based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters-flow rate and radiant exitance. First, we constructed a computational fluid dynamics model and determined the sole parameter required for the model, the pseudo-first-order rate constant for the reaction of 1,4-dioxane, by simple batch experiment. Then, we validated the model by using a pilot-scale flow-through annular photoreactor. Finally, we used the validated model to examine the effects of flow rate and radiant exitance on the efficiency of 1,4-dioxane degradation in a virtual annular photoreactor. Radiation efficiency, which was defined as the ratio of the logarithmic residual ratio of 1,4-dioxane to the theoretical minimum logarithmic residual ratio (best possible performance) under the given operating conditions, was calculated as an energy-based index of cost-effectiveness. Radiation efficiency was found to increase with increasing flow rate but decreasing radiant exitance. An electrical energy per order (EEO) analysis suggested that VUV treatment under laminar flow was most economical when low-power lamps and a high flow rate were used. In contrast, VUV treatment under turbulent flow was suggested to be most economical when high-power lamps were used at a high flow rate.
ArticleNumber 117086
Author Nishizawa, Shota
Shirasaki, Nobutaka
Kato, Yuna
Matsui, Yoshihiko
Shi, Gang
Matsushita, Taku
Kozumi, Takahiro
Author_xml – sequence: 1
  givenname: Gang
  surname: Shi
  fullname: Shi, Gang
  organization: Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 2
  givenname: Shota
  surname: Nishizawa
  fullname: Nishizawa, Shota
  organization: Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 3
  givenname: Taku
  surname: Matsushita
  fullname: Matsushita, Taku
  email: taku-m@eng.hokudai.ac.jp
  organization: Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 4
  givenname: Yuna
  surname: Kato
  fullname: Kato, Yuna
  organization: Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 5
  givenname: Takahiro
  surname: Kozumi
  fullname: Kozumi, Takahiro
  organization: Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 6
  givenname: Yoshihiko
  surname: Matsui
  fullname: Matsui, Yoshihiko
  organization: Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
– sequence: 7
  givenname: Nobutaka
  surname: Shirasaki
  fullname: Shirasaki, Nobutaka
  organization: Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33819661$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFu1DAUhi3Uik4LN0DIByCDX-wkzgYJjSggVWLTri3XfikeJXZkO9OWFXfgBL0aJ8FtgGU3z0_6_8-2vlNy5INHQt4A2wKD9v1-e6tzxLStWQ1bgI7J9gXZgOz6qhZCHpENY4JXwBtxQk5T2jPG6pr3L8kJ5xL6toUNediFaV6yzi54PdJhXJyl9t7ryZn0--eva53Q0ilYHJ2_odpbGubsJvfjCaFhKEy4pVFnfEqjtk77TPHOZe0N0iFECu9EZV240x6pxZvSWWnnqaYHbZZlosuYoz64MGKm8_eQQ0RtynxFjgc9Jnz99zwjV-efLndfqotvn7_uPl5UpgGZK8HA2t6YtuFda7oeawGiH2yDzIJEZgbDZKO7jkPJjZWN6YWBtjTKziU_I2K918SQUsRBzdFNOt4rYOrRuNqr1bh6NK5W4wV7u2Lzcj2h_Q_9U1wKH9YCls8fHEaVjMNixrqIJisb3PMv_AER75ry
CitedBy_id crossref_primary_10_1016_j_cej_2023_148507
crossref_primary_10_1021_acs_est_3c08414
crossref_primary_10_1039_D3EW00111C
crossref_primary_10_2166_wst_2024_003
Cites_doi 10.1021/es025814p
10.1016/j.watres.2012.03.036
10.1016/j.jwpe.2017.06.015
10.1021/acs.estlett.6b00444
10.1016/j.cej.2014.06.068
10.1016/S1010-6030(96)04463-2
10.1016/j.watres.2019.114918
10.1163/15685670260469474
10.1016/j.cej.2012.01.107
10.1016/j.ces.2015.06.061
10.1016/j.psep.2014.11.005
10.1016/j.watres.2018.01.019
10.1021/es00060a010
10.1016/j.jhazmat.2007.04.049
10.1002/aic.12255
10.1016/j.jhazmat.2015.03.036
10.1016/j.watres.2004.03.002
10.1016/j.cej.2012.08.088
10.1002/j.1551-8833.1978.tb04244.x
10.1089/109287503768335913
10.1111/wusa.12020
10.1016/S0045-6535(99)00204-0
10.1016/j.chemosphere.2018.01.138
10.1016/j.watres.2013.09.057
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.watres.2021.117086
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2021_117086
33819661
S0043135421002840
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
AAHBH
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
.55
186
29R
6TJ
AAQXK
AAYXX
ABEFU
ABTAH
ABXDB
ACKIV
ADMUD
AFFNX
AFJKZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
ID FETCH-LOGICAL-c518t-401dd9cc65376c79e24149fd5e0d18e0cfc085a773176ccd85c94c16fd5d85383
IEDL.DBID AIKHN
ISSN 0043-1354
IngestDate Thu Sep 26 19:16:19 EDT 2024
Sat Sep 28 08:22:58 EDT 2024
Fri Feb 23 02:45:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Radiation efficiency
Modeling
EEO
Advanced oxidation process
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-401dd9cc65376c79e24149fd5e0d18e0cfc085a773176ccd85c94c16fd5d85383
OpenAccessLink http://hdl.handle.net/2115/88578
PMID 33819661
ParticipantIDs crossref_primary_10_1016_j_watres_2021_117086
pubmed_primary_33819661
elsevier_sciencedirect_doi_10_1016_j_watres_2021_117086
PublicationCentury 2000
PublicationDate 2021-06-01
2021-Jun-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stepien, Diehl, Helm, Thoms, Püttmann (bib0022) 2014; 48
McGuire, Suffet, Radziul (bib0017) 1978; 70
Bagheri, Mohseni (bib0004) 2014; 256
Wols, Hofman-Caris (bib0030) 2012; 46
De Laat, Gallard, Ancelin, Legube (bib0008) 1999; 39
Furatian, Mohseni (bib0011) 2018; 199
Coleman, Vimonses, Leslie, Amal (bib0006) 2007; 146
Matsushita, Hirai, Ishikawa, Matsui, Shirasaki (bib0015) 2015; 94
Xie, Yue, Ding, Wan, Li, Ma, Wang (bib0032) 2018; 133
USEPA, 2013. Summary on 1,4-Dioxane (123-91-1) 1–16.
Suh, Mohseni (bib0023) 2004; 38
Darbyshire, Mullin (bib0007) 2005; 77
Mohr, DiGuiseppi, Hatton, Anderson (bib0018) 2020
Bagheri, Mohseni (bib0002) 2017; 19
Li, Jain, Ishida, Liu (bib0014) 2017; 3
Dietz, Schnoor (bib0009) 2001; 109
Bolton, Stefan (bib0005) 2002; 28
WHO, 2005. 1,4-Dioxane in Drinking-water.Background document for preparation of WHO Guidelines for drinking-water quality.
(bib0010) 2004
Zenker, Borden, Barlaz (bib0033) 2003; 20
Versteeg, H.K., Malalasekera, W., 2007. An introduction to computational fluid dynamics: the finite volume method.
Patton, Li, Couch, Mezyk, Ishida, Liu (bib0020) 2017; 4
Weimar (bib0026) 1980; 17
Matsushita, Sugita, Ishikawa, Shi, Nishizawa, Matsui, Shirasaki (bib0016) 2019; 164
Wols, Hofman-Caris (bib0029) 2012; 210
Wols, Harmsen, van Remmen, Beerendonk, Hofman-Caris (bib0028) 2015; 137
Bagheri, Mohseni (bib0003) 2015; 294
Imoberdorf, Mohseni (bib0013) 2012; 187
Adams, Scanlan, Secrist (bib0001) 1994; 28
Wols, Hofman, Beerendonk, Uijttewaal, van Dijk (bib0031) 2011; 57
Oppenlander (bib0019) 2007
Hill, Jeffs, Roberts (bib0012) 1997; 108
Sharpless, Linden (bib0021) 2003; 37
Bolton (10.1016/j.watres.2021.117086_bib0005) 2002; 28
Sharpless (10.1016/j.watres.2021.117086_bib0021) 2003; 37
De Laat (10.1016/j.watres.2021.117086_bib0008) 1999; 39
Xie (10.1016/j.watres.2021.117086_bib0032) 2018; 133
Bagheri (10.1016/j.watres.2021.117086_bib0002) 2017; 19
Matsushita (10.1016/j.watres.2021.117086_bib0015) 2015; 94
(10.1016/j.watres.2021.117086_bib0010) 2004
Bagheri (10.1016/j.watres.2021.117086_bib0004) 2014; 256
Darbyshire (10.1016/j.watres.2021.117086_bib0007) 2005; 77
Wols (10.1016/j.watres.2021.117086_bib0031) 2011; 57
Wols (10.1016/j.watres.2021.117086_bib0029) 2012; 210
Oppenlander (10.1016/j.watres.2021.117086_bib0019) 2007
McGuire (10.1016/j.watres.2021.117086_bib0017) 1978; 70
Suh (10.1016/j.watres.2021.117086_bib0023) 2004; 38
Adams (10.1016/j.watres.2021.117086_bib0001) 1994; 28
Li (10.1016/j.watres.2021.117086_bib0014) 2017; 3
10.1016/j.watres.2021.117086_bib0024
10.1016/j.watres.2021.117086_bib0025
Wols (10.1016/j.watres.2021.117086_bib0028) 2015; 137
Patton (10.1016/j.watres.2021.117086_bib0020) 2017; 4
Wols (10.1016/j.watres.2021.117086_bib0030) 2012; 46
Hill (10.1016/j.watres.2021.117086_bib0012) 1997; 108
Bagheri (10.1016/j.watres.2021.117086_bib0003) 2015; 294
Mohr (10.1016/j.watres.2021.117086_bib0018) 2020
Weimar (10.1016/j.watres.2021.117086_bib0026) 1980; 17
Imoberdorf (10.1016/j.watres.2021.117086_bib0013) 2012; 187
Coleman (10.1016/j.watres.2021.117086_bib0006) 2007; 146
Furatian (10.1016/j.watres.2021.117086_bib0011) 2018; 199
Stepien (10.1016/j.watres.2021.117086_bib0022) 2014; 48
Zenker (10.1016/j.watres.2021.117086_bib0033) 2003; 20
Dietz (10.1016/j.watres.2021.117086_bib0009) 2001; 109
Matsushita (10.1016/j.watres.2021.117086_bib0016) 2019; 164
10.1016/j.watres.2021.117086_bib0027
References_xml – volume: 20
  start-page: 423
  year: 2003
  end-page: 432
  ident: bib0033
  article-title: Occurrence and Treatment of 1,4-Dioxane in Aqueous Environments
  publication-title: Environ. Eng. Sci.
  contributor:
    fullname: Barlaz
– volume: 37
  start-page: 1933
  year: 2003
  end-page: 1940
  ident: bib0021
  article-title: Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Linden
– volume: 28
  start-page: 1812
  year: 1994
  end-page: 1818
  ident: bib0001
  article-title: Oxidation and Biodegradability Enhancement of 1,4-Dioxane Using Hydrogen Peroxide and Ozone
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Secrist
– volume: 17
  start-page: 30
  year: 1980
  end-page: 33
  ident: bib0026
  article-title: Prevent groundwater contamination before it's too late
  publication-title: Water Waste Eng.
  contributor:
    fullname: Weimar
– volume: 108
  start-page: 55
  year: 1997
  end-page: 58
  ident: bib0012
  article-title: Photocatalytic degradation of 1,4-dioxane in aqueous solution
  publication-title: J. Photochem. Photobiol. A
  contributor:
    fullname: Roberts
– volume: 46
  start-page: 2815
  year: 2012
  end-page: 2827
  ident: bib0030
  article-title: Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water
  publication-title: Water Res.
  contributor:
    fullname: Hofman-Caris
– volume: 3
  start-page: 128
  year: 2017
  end-page: 138
  ident: bib0014
  article-title: A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse
  publication-title: Environ. Sci.: Water Res. Technol.
  contributor:
    fullname: Liu
– volume: 38
  start-page: 2596
  year: 2004
  end-page: 2604
  ident: bib0023
  article-title: A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide
  publication-title: Water Res.
  contributor:
    fullname: Mohseni
– volume: 137
  start-page: 712
  year: 2015
  end-page: 721
  ident: bib0028
  article-title: Design aspects of UV/H2O2 reactors
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Hofman-Caris
– volume: 19
  start-page: 185
  year: 2017
  end-page: 192
  ident: bib0002
  article-title: Pilot-scale treatment of 1,4-dioxane contaminated waters using 185nm radiation: experimental and CFD modeling
  publication-title: J. Water Process Eng.
  contributor:
    fullname: Mohseni
– start-page: 253
  year: 2007
  end-page: 264
  ident: bib0019
  article-title: Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment
  publication-title: J. 6
  contributor:
    fullname: Oppenlander
– volume: 94
  start-page: 528
  year: 2015
  end-page: 541
  ident: bib0015
  article-title: Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation: study of economic feasibility and by-product formation
  publication-title: Process Saf. Environ. Prot.
  contributor:
    fullname: Shirasaki
– volume: 210
  start-page: 289
  year: 2012
  end-page: 297
  ident: bib0029
  article-title: Modelling micropollutant degradation in UV/H 2O 2 systems: lagrangian versus Eulerian method
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Hofman-Caris
– volume: 109
  start-page: 163
  year: 2001
  end-page: 168
  ident: bib0009
  article-title: Advances in Phytoremediation
  publication-title: Environ. Health Perspect.
  contributor:
    fullname: Schnoor
– volume: 48
  start-page: 406
  year: 2014
  end-page: 419
  ident: bib0022
  article-title: Fate of 1, 4-dioxane in the aquatic environment: from sewage to drinking water
  publication-title: Water Res.
  contributor:
    fullname: Püttmann
– volume: 39
  start-page: 2693
  year: 1999
  end-page: 2706
  ident: bib0008
  article-title: Comparative study of the oxidation of atrazine and acetone by H
  publication-title: Chemosphere
  contributor:
    fullname: Legube
– volume: 256
  start-page: 51
  year: 2014
  end-page: 60
  ident: bib0004
  article-title: Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Mohseni
– volume: 77
  start-page: 221
  year: 2005
  end-page: 231
  ident: bib0007
  article-title: Transition to turbulence in pipe flow
  publication-title: Fluid Mech. Appl.
  contributor:
    fullname: Mullin
– volume: 133
  start-page: 69
  year: 2018
  end-page: 78
  ident: bib0032
  article-title: Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): kinetic model and efficiency
  publication-title: Water Res.
  contributor:
    fullname: Wang
– volume: 294
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0003
  article-title: A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water
  publication-title: J. Hazard. Mater.
  contributor:
    fullname: Mohseni
– volume: 146
  start-page: 496
  year: 2007
  end-page: 501
  ident: bib0006
  article-title: Degradation of 1,4-dioxane in water using TiO
  publication-title: J. Hazard. Mater.
  contributor:
    fullname: Amal
– year: 2004
  ident: bib0010
  article-title: European Union Risk Assessment Report
– volume: 70
  start-page: 565
  year: 1978
  end-page: 572
  ident: bib0017
  article-title: Assessment of Unit Processes for the Removal of Trace Organic Compounds From Drinking Water
  publication-title: J. Am. Water Works Assoc.
  contributor:
    fullname: Radziul
– volume: 199
  start-page: 263
  year: 2018
  end-page: 268
  ident: bib0011
  article-title: Influence of chloride on the 185 nm advanced oxidation process
  publication-title: Chemosphere
  contributor:
    fullname: Mohseni
– year: 2020
  ident: bib0018
  article-title: Environmental Investigation and remediation: 1, 4-dioxane and Other Solvent Stabilizers
  contributor:
    fullname: Anderson
– volume: 57
  start-page: 193
  year: 2011
  end-page: 207
  ident: bib0031
  article-title: A systematic approach for the design of UV reactors using computational fluid dynamics
  publication-title: AIChE J.
  contributor:
    fullname: van Dijk
– volume: 4
  start-page: 26
  year: 2017
  end-page: 30
  ident: bib0020
  article-title: Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal: new insights into potable water reuse
  publication-title: Environ. Sci. Technol. Lett.
  contributor:
    fullname: Liu
– volume: 28
  start-page: 857
  year: 2002
  end-page: 870
  ident: bib0005
  article-title: Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions
  publication-title: Res. Chem. Intermed.
  contributor:
    fullname: Stefan
– volume: 187
  start-page: 114
  year: 2012
  end-page: 122
  ident: bib0013
  article-title: Kinetic study and modeling of the vacuum-UV photoinduced degradation of 2,4-D
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Mohseni
– volume: 164
  year: 2019
  ident: bib0016
  article-title: Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions
  publication-title: Water Res.
  contributor:
    fullname: Shirasaki
– volume: 37
  start-page: 1933
  year: 2003
  ident: 10.1016/j.watres.2021.117086_bib0021
  article-title: Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025814p
  contributor:
    fullname: Sharpless
– volume: 46
  start-page: 2815
  year: 2012
  ident: 10.1016/j.watres.2021.117086_bib0030
  article-title: Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.03.036
  contributor:
    fullname: Wols
– volume: 19
  start-page: 185
  year: 2017
  ident: 10.1016/j.watres.2021.117086_bib0002
  article-title: Pilot-scale treatment of 1,4-dioxane contaminated waters using 185nm radiation: experimental and CFD modeling
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2017.06.015
  contributor:
    fullname: Bagheri
– volume: 4
  start-page: 26
  year: 2017
  ident: 10.1016/j.watres.2021.117086_bib0020
  article-title: Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal: new insights into potable water reuse
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.6b00444
  contributor:
    fullname: Patton
– volume: 256
  start-page: 51
  year: 2014
  ident: 10.1016/j.watres.2021.117086_bib0004
  article-title: Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.06.068
  contributor:
    fullname: Bagheri
– volume: 108
  start-page: 55
  year: 1997
  ident: 10.1016/j.watres.2021.117086_bib0012
  article-title: Photocatalytic degradation of 1,4-dioxane in aqueous solution
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/S1010-6030(96)04463-2
  contributor:
    fullname: Hill
– ident: 10.1016/j.watres.2021.117086_bib0025
– ident: 10.1016/j.watres.2021.117086_bib0027
– volume: 164
  year: 2019
  ident: 10.1016/j.watres.2021.117086_bib0016
  article-title: Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114918
  contributor:
    fullname: Matsushita
– volume: 28
  start-page: 857
  year: 2002
  ident: 10.1016/j.watres.2021.117086_bib0005
  article-title: Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions
  publication-title: Res. Chem. Intermed.
  doi: 10.1163/15685670260469474
  contributor:
    fullname: Bolton
– volume: 187
  start-page: 114
  year: 2012
  ident: 10.1016/j.watres.2021.117086_bib0013
  article-title: Kinetic study and modeling of the vacuum-UV photoinduced degradation of 2,4-D
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.107
  contributor:
    fullname: Imoberdorf
– volume: 137
  start-page: 712
  year: 2015
  ident: 10.1016/j.watres.2021.117086_bib0028
  article-title: Design aspects of UV/H2O2 reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.06.061
  contributor:
    fullname: Wols
– volume: 94
  start-page: 528
  year: 2015
  ident: 10.1016/j.watres.2021.117086_bib0015
  article-title: Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation: study of economic feasibility and by-product formation
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2014.11.005
  contributor:
    fullname: Matsushita
– volume: 133
  start-page: 69
  year: 2018
  ident: 10.1016/j.watres.2021.117086_bib0032
  article-title: Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): kinetic model and efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.019
  contributor:
    fullname: Xie
– volume: 28
  start-page: 1812
  year: 1994
  ident: 10.1016/j.watres.2021.117086_bib0001
  article-title: Oxidation and Biodegradability Enhancement of 1,4-Dioxane Using Hydrogen Peroxide and Ozone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00060a010
  contributor:
    fullname: Adams
– volume: 146
  start-page: 496
  year: 2007
  ident: 10.1016/j.watres.2021.117086_bib0006
  article-title: Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.04.049
  contributor:
    fullname: Coleman
– year: 2020
  ident: 10.1016/j.watres.2021.117086_bib0018
  contributor:
    fullname: Mohr
– volume: 57
  start-page: 193
  year: 2011
  ident: 10.1016/j.watres.2021.117086_bib0031
  article-title: A systematic approach for the design of UV reactors using computational fluid dynamics
  publication-title: AIChE J.
  doi: 10.1002/aic.12255
  contributor:
    fullname: Wols
– volume: 294
  start-page: 1
  year: 2015
  ident: 10.1016/j.watres.2021.117086_bib0003
  article-title: A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.03.036
  contributor:
    fullname: Bagheri
– volume: 38
  start-page: 2596
  year: 2004
  ident: 10.1016/j.watres.2021.117086_bib0023
  article-title: A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.03.002
  contributor:
    fullname: Suh
– volume: 3
  start-page: 128
  year: 2017
  ident: 10.1016/j.watres.2021.117086_bib0014
  article-title: A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse
  publication-title: Environ. Sci.: Water Res. Technol.
  contributor:
    fullname: Li
– volume: 210
  start-page: 289
  year: 2012
  ident: 10.1016/j.watres.2021.117086_bib0029
  article-title: Modelling micropollutant degradation in UV/H 2O 2 systems: lagrangian versus Eulerian method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.08.088
  contributor:
    fullname: Wols
– year: 2004
  ident: 10.1016/j.watres.2021.117086_bib0010
– volume: 77
  start-page: 221
  year: 2005
  ident: 10.1016/j.watres.2021.117086_bib0007
  article-title: Transition to turbulence in pipe flow
  publication-title: Fluid Mech. Appl.
  contributor:
    fullname: Darbyshire
– volume: 70
  start-page: 565
  year: 1978
  ident: 10.1016/j.watres.2021.117086_bib0017
  article-title: Assessment of Unit Processes for the Removal of Trace Organic Compounds From Drinking Water
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1978.tb04244.x
  contributor:
    fullname: McGuire
– volume: 17
  start-page: 30
  year: 1980
  ident: 10.1016/j.watres.2021.117086_bib0026
  article-title: Prevent groundwater contamination before it's too late
  publication-title: Water Waste Eng.
  contributor:
    fullname: Weimar
– volume: 20
  start-page: 423
  year: 2003
  ident: 10.1016/j.watres.2021.117086_bib0033
  article-title: Occurrence and Treatment of 1,4-Dioxane in Aqueous Environments
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335913
  contributor:
    fullname: Zenker
– ident: 10.1016/j.watres.2021.117086_bib0024
  doi: 10.1111/wusa.12020
– volume: 39
  start-page: 2693
  year: 1999
  ident: 10.1016/j.watres.2021.117086_bib0008
  article-title: Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00204-0
  contributor:
    fullname: De Laat
– volume: 109
  start-page: 163
  year: 2001
  ident: 10.1016/j.watres.2021.117086_bib0009
  article-title: Advances in Phytoremediation
  publication-title: Environ. Health Perspect.
  contributor:
    fullname: Dietz
– start-page: 253
  year: 2007
  ident: 10.1016/j.watres.2021.117086_bib0019
  article-title: Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment
  publication-title: J. 6
  contributor:
    fullname: Oppenlander
– volume: 199
  start-page: 263
  year: 2018
  ident: 10.1016/j.watres.2021.117086_bib0011
  article-title: Influence of chloride on the 185 nm advanced oxidation process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.138
  contributor:
    fullname: Furatian
– volume: 48
  start-page: 406
  year: 2014
  ident: 10.1016/j.watres.2021.117086_bib0022
  article-title: Fate of 1, 4-dioxane in the aquatic environment: from sewage to drinking water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.057
  contributor:
    fullname: Stepien
SSID ssj0002239
Score 2.4498248
Snippet •Computational fluid dynamics model was developed to optimize photoreactor parameters.•Model was validated for 1,4-dioxane by using a pilot-scale flow-through...
1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 117086
SubjectTerms Advanced oxidation process
Dioxanes
EEO
Hydrodynamics
Modeling
Oxidation-Reduction
Radiation efficiency
Ultraviolet Rays
Vacuum
Water Pollutants, Chemical
Water Purification
Title Computational fluid dynamics–based modeling and optimization of flow rate and radiant exitance for 1,4-dioxane degradation in a vacuum ultraviolet photoreactor
URI https://dx.doi.org/10.1016/j.watres.2021.117086
https://www.ncbi.nlm.nih.gov/pubmed/33819661
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtxADLZgudADagsUKCAfemwgk2SSnSNadbUFwalI3KLJ_KhBkKyWBDgh3oEn6Kv1SerJJIheQOIS5W-SaDyyP8f2Z4BvNhOWKWsDLnkUJDqNA6F0FESx0ATHU54p5yienqWz8-T4gl8swWSohXFplb3u9zq909b9mcN-Ng_nZelqfMn4xTyJHIso-SnLsNIFiUawcvTzZHb2rJDJAooh0OwGDBV0XZrXnXQ1GeQoRswFMENXVP2qhXphfqYfYa3HjXjkP-0TLJnqM3x4wSa4Dn98h4b-7x7aq7bUqH3H-Zu_j0_OYGnsWt_Q_SgrjTUpjOu-EhNrS2PqO3TkEd3VRcdb0KC5Lxu3OJAALrLvSaDL-l5WBrVjmvBNmbCsUOKtVG17je1Vs5BdyL_B-e-a3HrTtfXZgPPpj1-TWdB3YAgUZ-OGnEumtVAqdaQvKhOGJjgRVnMTajY2obKKIJvMMkIhqVJ6zJVIFEvpDton53cTRlVdmS3AUBG4YkZYUYjExkYmhOtpU6QFjwsZbkMwzHo-90Qb-ZCBdpl7KeVOSrmX0jZkg2jy_xZMTrbgjZFfvCSf3xM7t5WAys67n_kVVt2RzyHbhVGzaM0eoZWm2Iflgwe236_Jf-957UE
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JToRAEO2MelAPxt1xrYNHiWwN00djNKOjc9LEG2l6iZgZmIygHv0Hv8Bf80uspsHoRRMvhNA0kK5KvVd0LYQc6phpT2jtUE59J5RR4DAhfccPmEQ6HtFYGEfxehj1b8PLO3rXIadtLowJq2xsv7XptbVurhw3q3k8yTKT44vgF9DQN1VE0U-ZIXPIBhgq-9zJxaA__DLIiICs3Wg2E9oMujrM65mbnAx0FH3PbGC6Jqn6V4T6Bj_ny2Sp4Y1wYj9thXRUvkoWv1UTXCPvtkND83cP9KjKJEjbcf7x4_XNAJaEuvUN3g88l1CgwRg3mZhQaJxTPIMpHlGPTuu6BSWol6w0ygFIcME7Ch2ZFS88VyBNpQnblAmyHDg8cVFVY6hG5ZTXW_4lTO4LdOtV3dZnndyen92c9p2mA4MjqNcr0bn0pGRCRKboi4iZQrwPmZZUudLrKVdogZSNxzGykEgI2aOChcKL8A48R-d3g8zmRa62CLgCyZWnmGYpC3WgeIi8Hg9plNIg5W6XOO2qJxNbaCNpI9AeEiulxEgpsVLqkrgVTfJDYRLEgj9mblpJfr0nMG4rEpXtfz_zgMz3b66vkquL4WCHLJgRG0-2S2bLaaX2kLmU6X6jmZ_FSu8-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics%E2%80%93based+modeling+and+optimization+of+flow+rate+and+radiant+exitance+for+1%2C4-dioxane+degradation+in+a+vacuum+ultraviolet+photoreactor&rft.jtitle=Water+research+%28Oxford%29&rft.au=Shi%2C+Gang&rft.au=Nishizawa%2C+Shota&rft.au=Matsushita%2C+Taku&rft.au=Kato%2C+Yuna&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=197&rft_id=info:doi/10.1016%2Fj.watres.2021.117086&rft.externalDocID=S0043135421002840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon